File size: 5,129 Bytes
1d33b47 0381907 0df58ae 0381907 c48241c 0381907 9ae2411 0381907 9ae2411 0381907 9ae2411 0381907 0e66f23 0381907 0e66f23 2d9b8e2 0381907 0e66f23 2d9b8e2 0381907 e900791 0381907 0df58ae bb34401 0df58ae bb34401 2d9b8e2 0381907 1d33b47 0381907 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import streamlit as st
import os
import numpy as np # linear algebra
import pandas as pd # data processing
# from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Processor
# from utils import download_video, extract_audio, accent_classify
import whisper
from transformers import pipeline
import yt_dlp
import torchaudio
import yt_dlp
import ffmpeg
from transformers.utils import logging
logging.set_verbosity_info()
# Define the resampling rate in Hertz (Hz) for audio data
RATE_HZ = 16000
# Define the maximum audio interval length to consider in seconds
MAX_SECONDS = 1
# Calculate the maximum audio interval length in samples by multiplying the rate and seconds
MAX_LENGTH = RATE_HZ * MAX_SECONDS
def download_video(url, output_dir="/app/tmp"):
os.makedirs(output_dir, exist_ok=True)
ydl_opts = {
'format': 'worstvideo[ext=mp4]+bestaudio[ext=m4a]/bestaudio',
"outtmpl": os.path.join(output_dir, "video.%(ext)s"),
"quiet": True,
'merge_output_format': 'mp4',
'quiet': True,
'noplaylist': True,
'nocheckcertificate': True,
'retries': 3,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
return os.path.join(output_dir, "video.mp4")
def extract_audio(input_path, output_dir="/app/tmp"):
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, "audio.mp3")
(
ffmpeg
.input(input_path)
.output(output_path, format='mp3', acodec='libmp3lame', audio_bitrate='192k')
.overwrite_output()
.run(quiet=True)
)
return output_path
# Split files by chunks with == MAX_LENGTH size
def split_audio(file):
try:
# Load the audio file using torchaudio and get its sample rate.
audio, rate = torchaudio.load(str(file))
# Calculate the number of segments based on the MAX_LENGTH
num_segments = (len(audio[0]) // MAX_LENGTH) # Floor division to get segments
# Create an empty list to store segmented audio data
segmented_audio = []
# Split the audio into segments
for i in range(num_segments):
start = i * MAX_LENGTH
end = min((i + 1) * MAX_LENGTH, len(audio[0]))
segment = audio[0][start:end]
# Create a transformation to resample the audio to a specified sample rate (RATE_HZ).
transform = torchaudio.transforms.Resample(rate, RATE_HZ)
segment = transform(segment).squeeze(0).numpy().reshape(-1)
segmented_audio.append(segment)
# Create a DataFrame from the segmented audio
df_segments = pd.DataFrame({'audio': segmented_audio})
return df_segments
except Exception as e:
# If an exception occurs (e.g., file not found), return nothing
print(f"Error processing file: {e}")
return None
def accent_classify(pipe, audio_path):
audio_df = split_audio(audio_path)
return pipe(np.concatenate(audio_df["audio"][:50].to_list()))[0]
st.set_page_config(page_title="Accent Classifier", layout="centered")
st.title("๐๏ธ English Accent Classifier")
st.markdown("Upload a video link and get the English accent with confidence.")
video_url = st.text_input("Paste a public video URL (YouTube, Loom, or MP4):")
if st.button("Analyze"):
if not video_url.strip():
st.warning("Please enter a valid URL.")
else:
with st.spinner("Downloading video..."):
video_path = download_video(video_url)
st.write("Video saved at:", video_path)
st.write("Exists:", os.path.exists(video_path))
# pass
with st.spinner("Extracting audio..."):
audio_path = extract_audio(video_path)
st.write("Audio saved at:", audio_path)
st.write("Exists:", os.path.exists(audio_path))
# pass
with st.spinner("Transcribing with Whisper..."):
whisper_model = whisper.load_model("base")
result = whisper_model.transcribe(audio_path)
transcription = result['text']
# transcription = "Hello There"
# pass
with st.spinner("Classifying accent..."):
# model_name = "dima806/english_accents_classification"
# pipe = pipeline('audio-classification', model=model_name, device=0) # GPU (device=0) or CPU (device=-1)
# accent_data = accent_classify(pipe, audio_path)
# audio_df = split_audio(audio_path)
# print(np.concatenate(audio_df["audio"][:50].to_list()))
accent_data = {"label": "us", "score": 0.9}
accent = accent_data.get("label", "American")
confidence = accent_data.get("score", 0.0)
# pass
st.success("Analysis Complete!")
st.markdown(f"**Accent:** {accent}")
st.markdown(f"**Confidence Score:** {confidence:.2f}%")
st.markdown("**Transcription:**")
st.text_area("Transcript", transcription, height=200)
# Cleanup
os.remove(video_path)
os.remove(audio_path)
|