1amr1ddl3's picture
Create app.py
06ab73b verified
import streamlit as st
import PyPDF2
import os
import requests
import json
from dotenv import load_dotenv
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
import tempfile
# Load environment variables
load_dotenv()
GROQ_API_TOKEN = os.getenv("GROQ_API_TOKEN")
# Function to extract text from PDF
def extract_text_from_pdf(file):
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(file.getvalue())
temp_file_path = temp_file.name
try:
with open(temp_file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
except Exception as e:
st.error(f"Error processing PDF: {str(e)}")
text = ""
finally:
os.unlink(temp_file_path)
return text
# Function to extract text from TXT
def extract_text_from_txt(file):
return file.getvalue().decode("utf-8")
# Function to query GROQ API
def query_groq(prompt, context, temperature, max_tokens):
headers = {
"Authorization": f"Bearer {GROQ_API_TOKEN}",
"Content-Type": "application/json"
}
data = {
"model": "mixtral-8x7b-32768",
"messages": [
{"role": "system", "content": "You are a helpful assistant. Answer questions based only on the provided context."},
{"role": "user", "content": f"Context: {context}\n\nQuestion: {prompt}"}
],
"temperature": temperature,
"max_tokens": max_tokens
}
try:
response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data)
response.raise_for_status()
return response.json()["choices"][0]["message"]["content"]
except requests.exceptions.RequestException as e:
st.error(f"Error querying GROQ API: {str(e)}")
return None
# Function to create vector store
def create_vector_store(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_store = FAISS.from_texts(chunks, embeddings)
return vector_store
# Streamlit UI
st.set_page_config(layout="wide")
# Custom CSS for scrollable chat container
st.markdown("""
<style>
.chat-container {
height: 600px;
display: flex;
flex-direction: column;
border: 1px solid #ccc;
border-radius: 5px;
}
.chat-messages {
flex: 1;
overflow-y: auto;
padding: 10px;
}
.chat-input {
border-top: 1px solid #ccc;
padding: 10px;
}
</style>
""", unsafe_allow_html=True)
st.title("Enhanced Document Query System")
# Create two columns for the split-screen layout
left_column, right_column = st.columns(2)
# Left column: Document upload and processing
with left_column:
st.header("Document Upload")
uploaded_file = st.file_uploader("Choose a file", type=["pdf", "txt"])
doc_type = st.selectbox("Select document type", ["PDF", "TXT"])
# Model parameters
st.subheader("Model Parameters")
temperature = st.slider("Temperature", 0.0, 1.0, 0.5, 0.1)
max_tokens = st.slider("Max Tokens", 100, 2000, 1000, 100)
if uploaded_file is not None:
# Extract text based on document type
if doc_type == "PDF":
doc_text = extract_text_from_pdf(uploaded_file)
else:
doc_text = extract_text_from_txt(uploaded_file)
if doc_text:
st.success("File uploaded and processed successfully!")
# Create vector store
vector_store = create_vector_store(doc_text)
st.session_state.vector_store = vector_store
else:
st.error("Failed to extract text from the document. Please try again.")
# Clear chat history button
if st.button("Clear Chat History"):
st.session_state.messages = []
st.rerun()
# Right column: Chat interface
with right_column:
st.header("Chat Interface")
# Chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Scrollable chat container
chat_container = st.container()
with chat_container:
st.markdown('<div class="scrollable-chat">', unsafe_allow_html=True)
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
st.markdown('</div>', unsafe_allow_html=True)
# # Display chat history
# for message in st.session_state.messages:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
# User query input
user_query = st.chat_input("Enter your question about the document:")
if user_query and 'vector_store' in st.session_state:
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": user_query})
with chat_container:
with st.chat_message("user"):
st.markdown(user_query)
# Retrieve relevant context
relevant_docs = st.session_state.vector_store.similarity_search(user_query, k=3)
context = "\n".join([doc.page_content for doc in relevant_docs])
# Query GROQ API
response = query_groq(user_query, context, temperature, max_tokens)
if response:
# Add assistant message to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
with st.chat_message("assistant"):
st.markdown(response)
elif user_query:
st.warning("Please upload and process a document first.")