Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import PyPDF2
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
+
import json
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
10 |
+
import tempfile
|
11 |
+
|
12 |
+
# Load environment variables
|
13 |
+
load_dotenv()
|
14 |
+
GROQ_API_TOKEN = os.getenv("GROQ_API_TOKEN")
|
15 |
+
|
16 |
+
# Function to extract text from PDF
|
17 |
+
def extract_text_from_pdf(file):
|
18 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
19 |
+
temp_file.write(file.getvalue())
|
20 |
+
temp_file_path = temp_file.name
|
21 |
+
|
22 |
+
try:
|
23 |
+
with open(temp_file_path, 'rb') as file:
|
24 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
25 |
+
text = ""
|
26 |
+
for page in pdf_reader.pages:
|
27 |
+
text += page.extract_text()
|
28 |
+
except Exception as e:
|
29 |
+
st.error(f"Error processing PDF: {str(e)}")
|
30 |
+
text = ""
|
31 |
+
finally:
|
32 |
+
os.unlink(temp_file_path)
|
33 |
+
return text
|
34 |
+
|
35 |
+
# Function to extract text from TXT
|
36 |
+
def extract_text_from_txt(file):
|
37 |
+
return file.getvalue().decode("utf-8")
|
38 |
+
|
39 |
+
# Function to query GROQ API
|
40 |
+
def query_groq(prompt, context, temperature, max_tokens):
|
41 |
+
headers = {
|
42 |
+
"Authorization": f"Bearer {GROQ_API_TOKEN}",
|
43 |
+
"Content-Type": "application/json"
|
44 |
+
}
|
45 |
+
|
46 |
+
data = {
|
47 |
+
"model": "mixtral-8x7b-32768",
|
48 |
+
"messages": [
|
49 |
+
{"role": "system", "content": "You are a helpful assistant. Answer questions based only on the provided context."},
|
50 |
+
{"role": "user", "content": f"Context: {context}\n\nQuestion: {prompt}"}
|
51 |
+
],
|
52 |
+
"temperature": temperature,
|
53 |
+
"max_tokens": max_tokens
|
54 |
+
}
|
55 |
+
|
56 |
+
try:
|
57 |
+
response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data)
|
58 |
+
response.raise_for_status()
|
59 |
+
return response.json()["choices"][0]["message"]["content"]
|
60 |
+
except requests.exceptions.RequestException as e:
|
61 |
+
st.error(f"Error querying GROQ API: {str(e)}")
|
62 |
+
return None
|
63 |
+
|
64 |
+
# Function to create vector store
|
65 |
+
def create_vector_store(text):
|
66 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
67 |
+
chunks = text_splitter.split_text(text)
|
68 |
+
|
69 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
70 |
+
vector_store = FAISS.from_texts(chunks, embeddings)
|
71 |
+
|
72 |
+
return vector_store
|
73 |
+
|
74 |
+
# Streamlit UI
|
75 |
+
st.set_page_config(layout="wide")
|
76 |
+
|
77 |
+
# Custom CSS for scrollable chat container
|
78 |
+
st.markdown("""
|
79 |
+
<style>
|
80 |
+
.chat-container {
|
81 |
+
height: 600px;
|
82 |
+
display: flex;
|
83 |
+
flex-direction: column;
|
84 |
+
border: 1px solid #ccc;
|
85 |
+
border-radius: 5px;
|
86 |
+
}
|
87 |
+
.chat-messages {
|
88 |
+
flex: 1;
|
89 |
+
overflow-y: auto;
|
90 |
+
padding: 10px;
|
91 |
+
}
|
92 |
+
.chat-input {
|
93 |
+
border-top: 1px solid #ccc;
|
94 |
+
padding: 10px;
|
95 |
+
}
|
96 |
+
</style>
|
97 |
+
""", unsafe_allow_html=True)
|
98 |
+
|
99 |
+
st.title("Enhanced Document Query System")
|
100 |
+
|
101 |
+
# Create two columns for the split-screen layout
|
102 |
+
left_column, right_column = st.columns(2)
|
103 |
+
|
104 |
+
# Left column: Document upload and processing
|
105 |
+
with left_column:
|
106 |
+
st.header("Document Upload")
|
107 |
+
uploaded_file = st.file_uploader("Choose a file", type=["pdf", "txt"])
|
108 |
+
doc_type = st.selectbox("Select document type", ["PDF", "TXT"])
|
109 |
+
|
110 |
+
# Model parameters
|
111 |
+
st.subheader("Model Parameters")
|
112 |
+
temperature = st.slider("Temperature", 0.0, 1.0, 0.5, 0.1)
|
113 |
+
max_tokens = st.slider("Max Tokens", 100, 2000, 1000, 100)
|
114 |
+
|
115 |
+
if uploaded_file is not None:
|
116 |
+
# Extract text based on document type
|
117 |
+
if doc_type == "PDF":
|
118 |
+
doc_text = extract_text_from_pdf(uploaded_file)
|
119 |
+
else:
|
120 |
+
doc_text = extract_text_from_txt(uploaded_file)
|
121 |
+
|
122 |
+
if doc_text:
|
123 |
+
st.success("File uploaded and processed successfully!")
|
124 |
+
|
125 |
+
# Create vector store
|
126 |
+
vector_store = create_vector_store(doc_text)
|
127 |
+
st.session_state.vector_store = vector_store
|
128 |
+
else:
|
129 |
+
st.error("Failed to extract text from the document. Please try again.")
|
130 |
+
|
131 |
+
# Clear chat history button
|
132 |
+
if st.button("Clear Chat History"):
|
133 |
+
st.session_state.messages = []
|
134 |
+
st.rerun()
|
135 |
+
|
136 |
+
# Right column: Chat interface
|
137 |
+
with right_column:
|
138 |
+
st.header("Chat Interface")
|
139 |
+
|
140 |
+
# Chat history
|
141 |
+
if "messages" not in st.session_state:
|
142 |
+
st.session_state.messages = []
|
143 |
+
|
144 |
+
# Scrollable chat container
|
145 |
+
chat_container = st.container()
|
146 |
+
with chat_container:
|
147 |
+
st.markdown('<div class="scrollable-chat">', unsafe_allow_html=True)
|
148 |
+
for message in st.session_state.messages:
|
149 |
+
with st.chat_message(message["role"]):
|
150 |
+
st.markdown(message["content"])
|
151 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
152 |
+
|
153 |
+
# # Display chat history
|
154 |
+
# for message in st.session_state.messages:
|
155 |
+
# with st.chat_message(message["role"]):
|
156 |
+
# st.markdown(message["content"])
|
157 |
+
|
158 |
+
# User query input
|
159 |
+
user_query = st.chat_input("Enter your question about the document:")
|
160 |
+
|
161 |
+
if user_query and 'vector_store' in st.session_state:
|
162 |
+
# Add user message to chat history
|
163 |
+
st.session_state.messages.append({"role": "user", "content": user_query})
|
164 |
+
with chat_container:
|
165 |
+
with st.chat_message("user"):
|
166 |
+
st.markdown(user_query)
|
167 |
+
|
168 |
+
# Retrieve relevant context
|
169 |
+
relevant_docs = st.session_state.vector_store.similarity_search(user_query, k=3)
|
170 |
+
context = "\n".join([doc.page_content for doc in relevant_docs])
|
171 |
+
|
172 |
+
# Query GROQ API
|
173 |
+
response = query_groq(user_query, context, temperature, max_tokens)
|
174 |
+
|
175 |
+
if response:
|
176 |
+
# Add assistant message to chat history
|
177 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
178 |
+
with st.chat_message("assistant"):
|
179 |
+
st.markdown(response)
|
180 |
+
elif user_query:
|
181 |
+
st.warning("Please upload and process a document first.")
|