Sample Use
Google Colab ไธใงใขใใซใ่ชญใฟ่พผใฟใelyza-tasks-100-TV_0.jsonl ใฎinput ใใoutput ใๅบๅใใjsonl ๅฝขๅผใงไฟๅญใใใณใผใใฏไปฅไธใฎ้ใใงใใใ
# ๅฟ
่ฆใชใฉใคใใฉใชใใคใณในใใผใซ
%%capture
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install -U torch
!pip install -U peft
# ๅฟ
่ฆใชใฉใคใใฉใชใ่ชญใฟ่พผใฟ
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re
import pandas as pd
from datasets import load_dataset
import time
from google.colab import userdata
HF_TOKEN=userdata.get('HF_TOKEN')
# ใใผในใจใชใใขใใซใจๅญฆ็ฟใใLoRAใฎใขใใใฟ๏ผHugging FaceใฎIDใๆๅฎ๏ผใ
model_id = "./gemma-2-27b"
adapter_id = "LLMstudy/gemma-2-27b-it-241217-2epoch-Llama_lora"
# ๅ
ฅๅบๅใใกใคใซใฎ่จญๅฎ
test_file_path = './elyza-tasks-100-TV_0.jsonl'
output_file_path = f'./answer_gemma-2-27b-it-241217.jsonl'
# ใใญใณใใใใฉใผใใใใฎๅฎ็พฉ
prompt = """ไปฅไธใฏใใฟในใฏใ่ชฌๆใใๆ็คบใงใใๆ็คบใ้ฉๅใซๆบใใๅ็ญใๆธใใฆใใ ใใใ
### ๆ็คบ:
{}
### ๅ็ญ:
{}"""
# ใขใใซใฎ่ชญใฟ่พผใฟ
!huggingface-cli login --token $HF_TOKEN
!huggingface-cli download google/gemma-2-27b --local-dir gemma-2-27b/
# model parameters
max_seq_length = 2048
dtype = None
load_in_4bit = True
# FastLanguageModel ใคใณในใฟใณในใไฝๆ
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=dtype,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
)
# ๅ
ใฎใขใใซใซLoRAใฎใขใใใฟใ็ตฑๅใ
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
# ๆจ่ซ
# ใใผใฟใปใใใฎ่ชญใฟ่พผใฟ
datasets = []
with open(test_file_path, "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# ๅญฆ็ฟใใใขใใซใ็จใใฆใฟในใฏใๅฎ่ก
FastLanguageModel.for_inference(model)
start_time = time.time()
results = []
for dt in tqdm(datasets):
input = dt["input"]
instruction = prompt.format(input, "")
inputs = tokenizer([instruction], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 2048, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### ๅ็ญ:\n')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
print(f"task_id: {dt['task_id']}")
print(f"prompt: {instruction}")
print(f"output: {prediction}")
print("-" * 50)
end_time = time.time()
print(f"Execution Time: {end_time - start_time} seconds")
# jsonlใงไฟๅญ
with open(output_file_path, 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
License
This model is distributed under the following terms:
- Gemma Terms of Use (see attached
Gemma_Terms_of_Use.txtor https://ai.google.dev/gemma/terms) - Additional Restrictions:
- Use of this model, its derivatives, or its outputs is strictly prohibited for any purpose, including research, commercial, or educational purposes, without the explicit permission of the creator.
- Redistribution of this model or its derivatives in any form is prohibited without the explicit permission of the creator.
Model Card for Model ID
Model Details
Model Description
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]