Model Card for Model ID
LoRA Adapter for sentiment classification
Training params
%pip uninstall -y flash-attn && pip install flash-attn==2.7.3
%pip uninstall -y torch && pip install torch==2.5.1
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=False,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model_dir = "Qwen/Qwen3-8B"
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_dir,
quantization_config=bnb_config,
device_map="auto",
attn_implementation="flash_attention_2", # Add this line
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
peft_config = LoraConfig(
lora_alpha=16, # Scaling factor for LoRA
lora_dropout=0.1, # Add slight dropout for regularization
r=64, # Rank of the LoRA update matrices
bias="none", # No bias reparameterization
task_type="CAUSAL_LM", # Task type: Causal Language Modeling
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
]
)
training_arguments = TrainingArguments(
output_dir="output",
per_device_train_batch_size=4,
gradient_accumulation_steps=1,
optim="paged_adamw_8bit",
num_train_epochs=2,
logging_steps=50,
max_grad_norm=0.5,
save_steps=500,
warmup_ratio=0.1,
lr_scheduler_type="cosine_with_restarts",
logging_strategy="steps",
learning_rate=2e-5,
fp16=False,
bf16=True,
group_by_length=True,
report_to="none",
seed = 3407,
gradient_checkpointing=True,
weight_decay=0.01
)
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support