train_boolq_123_1762618900

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1626
  • Num Input Tokens Seen: 42678144

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2178 1.0 2121 0.2072 2131904
0.1702 2.0 4242 0.1700 4264768
0.1224 3.0 6363 0.1626 6404896
0.131 4.0 8484 0.1692 8537088
0.1128 5.0 10605 0.1783 10677088
0.2673 6.0 12726 0.1823 12814080
0.0028 7.0 14847 0.2114 14950432
0.0025 8.0 16968 0.2463 17082336
0.321 9.0 19089 0.2489 19211360
0.0014 10.0 21210 0.2931 21342336
0.1209 11.0 23331 0.3105 23472352
0.001 12.0 25452 0.3424 25602144
0.0009 13.0 27573 0.3634 27739072
0.0005 14.0 29694 0.4114 29880544
0.0005 15.0 31815 0.4213 32013760
0.0004 16.0 33936 0.4479 34138272
0.0008 17.0 36057 0.4568 36269152
0.0005 18.0 38178 0.4607 38408800
0.0001 19.0 40299 0.4635 40541312
0.031 20.0 42420 0.4603 42678144

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
73
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_boolq_123_1762618900

Adapter
(2046)
this model