Nanonets-OCR2-3B-AIO-GGUF

The Nanonets-OCR2-3B model is a state-of-the-art multimodal OCR and document understanding model based on the Qwen2.5-VL-3B architecture, fine-tuned for advanced image-to-markdown conversion with intelligent content recognition and semantic tagging. It can extract and transform complex document elements including text, tables (in markdown and HTML), LaTeX equations, flowcharts (as mermaid code), signatures, watermarks, checkboxes, and handwritten documents across multiple languages, supporting structured and context-rich outputs ideal for downstream AI processing. The model is 8-bit quantized for efficient inference, has about 3 billion parameters, a large 125K token context window, and supports visual question answering by providing direct answers from documents where applicable. Its design enhances document digitization workflows by unlocking structured data from unstructured documents, making it valuable in legal, medical, financial, and technical domains where accurate semantic extraction is crucial.

Model Files

File Name Quant Type File Size
Nanonets-OCR2-3B.f16.gguf F16 6.18 GB
Nanonets-OCR2-3B.Q2_K.gguf Q2_K 1.27 GB
Nanonets-OCR2-3B.Q3_K_L.gguf Q3_K_L 1.71 GB
Nanonets-OCR2-3B.Q3_K_M.gguf Q3_K_M 1.59 GB
Nanonets-OCR2-3B.Q3_K_S.gguf Q3_K_S 1.45 GB
Nanonets-OCR2-3B.Q4_K_M.gguf Q4_K_M 1.93 GB
Nanonets-OCR2-3B.Q4_K_S.gguf Q4_K_S 1.83 GB
Nanonets-OCR2-3B.Q5_K_M.gguf Q5_K_M 2.22 GB
Nanonets-OCR2-3B.Q5_K_S.gguf Q5_K_S 2.17 GB
Nanonets-OCR2-3B.Q6_K.gguf Q6_K 2.54 GB
Nanonets-OCR2-3B.Q8_0.gguf Q8_0 3.29 GB
Nanonets-OCR2-3B.IQ4_XS.gguf IQ4_XS 1.75 GB
Nanonets-OCR2-3B.i1-IQ1_M.gguf i1-IQ1_M 850 MB
Nanonets-OCR2-3B.i1-IQ1_S.gguf i1-IQ1_S 791 MB
Nanonets-OCR2-3B.i1-IQ2_M.gguf i1-IQ2_M 1.14 GB
Nanonets-OCR2-3B.i1-IQ2_S.gguf i1-IQ2_S 1.06 GB
Nanonets-OCR2-3B.i1-IQ2_XS.gguf i1-IQ2_XS 1.03 GB
Nanonets-OCR2-3B.i1-IQ2_XXS.gguf i1-IQ2_XXS 948 MB
Nanonets-OCR2-3B.i1-IQ3_M.gguf i1-IQ3_M 1.49 GB
Nanonets-OCR2-3B.i1-IQ3_S.gguf i1-IQ3_S 1.46 GB
Nanonets-OCR2-3B.i1-IQ3_XS.gguf i1-IQ3_XS 1.39 GB
Nanonets-OCR2-3B.i1-IQ3_XXS.gguf i1-IQ3_XXS 1.28 GB
Nanonets-OCR2-3B.i1-IQ4_NL.gguf i1-IQ4_NL 1.83 GB
Nanonets-OCR2-3B.i1-IQ4_XS.gguf i1-IQ4_XS 1.74 GB
Nanonets-OCR2-3B.i1-Q2_K.gguf i1-Q2_K 1.27 GB
Nanonets-OCR2-3B.i1-Q2_K_S.gguf i1-Q2_K_S 1.2 GB
Nanonets-OCR2-3B.i1-Q3_K_L.gguf i1-Q3_K_L 1.71 GB
Nanonets-OCR2-3B.i1-Q3_K_M.gguf i1-Q3_K_M 1.59 GB
Nanonets-OCR2-3B.i1-Q3_K_S.gguf i1-Q3_K_S 1.45 GB
Nanonets-OCR2-3B.i1-Q4_0.gguf i1-Q4_0 1.83 GB
Nanonets-OCR2-3B.i1-Q4_1.gguf i1-Q4_1 2 GB
Nanonets-OCR2-3B.i1-Q4_K_M.gguf i1-Q4_K_M 1.93 GB
Nanonets-OCR2-3B.i1-Q4_K_S.gguf i1-Q4_K_S 1.83 GB
Nanonets-OCR2-3B.i1-Q5_K_M.gguf i1-Q5_K_M 2.22 GB
Nanonets-OCR2-3B.i1-Q5_K_S.gguf i1-Q5_K_S 2.17 GB
Nanonets-OCR2-3B.i1-Q6_K.gguf i1-Q6_K 2.54 GB
Nanonets-OCR2-3B.imatrix.gguf imatrix 3.39 MB
Nanonets-OCR2-3B.mmproj-Q8_0.gguf mmproj-Q8_0 848 MB
Nanonets-OCR2-3B.mmproj-f16.gguf mmproj-f16 1.34 GB

Quants Usage

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

Downloads last month
5,175
GGUF
Model size
3B params
Architecture
qwen2vl
Hardware compatibility
Log In to view the estimation

1-bit

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for prithivMLmods/Nanonets-OCR2-3B-AIO-GGUF

Quantized
(6)
this model

Collection including prithivMLmods/Nanonets-OCR2-3B-AIO-GGUF