ASR-cv-corpus-ug-15
This model is a fine-tuned version of piyazon/ASR-cv-corpus-ug-14 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0090
- Wer: 0.0069
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.0087 | 0.2338 | 500 | 0.0117 | 0.0126 |
| 0.0103 | 0.4675 | 1000 | 0.0108 | 0.0122 |
| 0.0091 | 0.7013 | 1500 | 0.0093 | 0.0108 |
| 0.0099 | 0.9350 | 2000 | 0.0113 | 0.0150 |
| 0.0071 | 1.1688 | 2500 | 0.0099 | 0.0101 |
| 0.0054 | 1.4025 | 3000 | 0.0108 | 0.0112 |
| 0.0057 | 1.6363 | 3500 | 0.0096 | 0.0112 |
| 0.006 | 1.8700 | 4000 | 0.0088 | 0.0104 |
| 0.0046 | 2.1038 | 4500 | 0.0092 | 0.0110 |
| 0.0049 | 2.3375 | 5000 | 0.0095 | 0.0106 |
| 0.0044 | 2.5713 | 5500 | 0.0093 | 0.0106 |
| 0.0043 | 2.8050 | 6000 | 0.0085 | 0.0098 |
| 0.0036 | 3.0388 | 6500 | 0.0088 | 0.0094 |
| 0.0029 | 3.2726 | 7000 | 0.0089 | 0.0097 |
| 0.003 | 3.5063 | 7500 | 0.0085 | 0.0093 |
| 0.0032 | 3.7401 | 8000 | 0.0090 | 0.0093 |
| 0.0029 | 3.9738 | 8500 | 0.0084 | 0.0090 |
| 0.0019 | 4.2076 | 9000 | 0.0093 | 0.0089 |
| 0.0022 | 4.4413 | 9500 | 0.0083 | 0.0097 |
| 0.0022 | 4.6751 | 10000 | 0.0086 | 0.0092 |
| 0.0021 | 4.9088 | 10500 | 0.0085 | 0.0087 |
| 0.002 | 5.1426 | 11000 | 0.0089 | 0.0090 |
| 0.0011 | 5.3763 | 11500 | 0.0079 | 0.0081 |
| 0.0014 | 5.6101 | 12000 | 0.0076 | 0.0085 |
| 0.0014 | 5.8439 | 12500 | 0.0090 | 0.0090 |
| 0.0013 | 6.0776 | 13000 | 0.0082 | 0.0080 |
| 0.0009 | 6.3114 | 13500 | 0.0086 | 0.0083 |
| 0.0009 | 6.5451 | 14000 | 0.0088 | 0.0084 |
| 0.0009 | 6.7789 | 14500 | 0.0079 | 0.0071 |
| 0.0007 | 7.0126 | 15000 | 0.0083 | 0.0074 |
| 0.0006 | 7.2464 | 15500 | 0.0083 | 0.0081 |
| 0.0005 | 7.4801 | 16000 | 0.0092 | 0.0083 |
| 0.0005 | 7.7139 | 16500 | 0.0093 | 0.0078 |
| 0.0006 | 7.9476 | 17000 | 0.0088 | 0.0077 |
| 0.0003 | 8.1814 | 17500 | 0.0089 | 0.0071 |
| 0.0004 | 8.4151 | 18000 | 0.0089 | 0.0070 |
| 0.0004 | 8.6489 | 18500 | 0.0082 | 0.0071 |
| 0.0002 | 8.8827 | 19000 | 0.0086 | 0.0071 |
| 0.0001 | 9.1164 | 19500 | 0.0089 | 0.0071 |
| 0.0002 | 9.3502 | 20000 | 0.0092 | 0.0071 |
| 0.0001 | 9.5839 | 20500 | 0.0090 | 0.0071 |
| 0.0001 | 9.8177 | 21000 | 0.0090 | 0.0069 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu128
- Datasets 4.1.0
- Tokenizers 0.22.0
- Downloads last month
- -
Model tree for piyazon/ASR-cv-corpus-ug-15
Base model
piyazon/ASR-cv-corpus-ug-9
Finetuned
piyazon/ASR-cv-corpus-ug-10
Finetuned
piyazon/ASR-cv-corpus-ug-11
Finetuned
piyazon/ASR-cv-corpus-ug-12
Finetuned
piyazon/ASR-cv-corpus-ug-13
Finetuned
piyazon/ASR-cv-corpus-ug-14