Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

adapter: lora
base_model: Qwen/QwQ-32B-Preview
trust_remote_code: true
bf16: true
dataset_processes: 64
datasets:
- path: phxdev/creed
  type: completion
  field: text
  trust_remote_code: false
  streaming: true
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
learning_rate: 0.001
lisa_layers_attribute: model.layers
lisa_enabled: true
lisa_layers_fraction: 0.25
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: true
lora_alpha: 128
lora_dropout: 0.15
lora_r: 64
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lora_fan_in_fan_out: false
modules_to_save:
- embed_tokens
- lm_head
loraplus_lr_embedding: 1.0e-06
loraplus_lr_ratio: 16
lr_scheduler: cosine_with_min_lr
lr_scheduler_kwargs:
  min_lr: 0.00001
max_prompt_len: 1024
mean_resizing_embeddings: false
micro_batch_size: 1
num_epochs: 3.0
optimizer: adamw_torch
# optim_args:
#   weight_decay: 0.05
#   betas: [0.9, 0.95]
#   eps: 1.0e-8
output_dir: ./outputs/heisenberg-crystal
pretrain_multipack_attn: true
pretrain_multipack_buffer_size: 20000
qlora_sharded_model_loading: false
ray_num_workers: 1
resources_per_worker:
  GPU: 1
resume_from_checkpoint: null
sample_packing: false
sample_packing_bin_size: 200
sample_packing_group_size: 100000
sample_packing_seq_len_multiplier: 1.0
save_only_model: true
save_safetensors: true
save_strategy: steps
save_steps: 100
save_total_limit: 3
eval_strategy: steps
eval_steps: 100
metric_for_best_model: loss
greater_is_better: false
sequence_len: 512
shuffle_merged_datasets: true
skip_prepare_dataset: false
strict: false
train_on_inputs: false
neftune_noise_alpha: 5.0
model_config:
  rope_scaling:
    type: linear
    factor: 1.5
dataloader_prefetch_factor: 4
dataloader_num_workers: 8
dataloader_pin_memory: true
dataloader_persistent_workers: true
max_grad_norm: 1.0
adam_beta2_schedule: cosine
torch_compile: true
torch_compile_backend: inductor
trl:
  log_completions: true
  ref_model_mixup_alpha: 0.9
  ref_model_sync_steps: 64
  sync_ref_model: false
  use_vllm: false
  vllm_device: auto
  vllm_dtype: auto
  vllm_gpu_memory_utilization: 0.9
use_ray: false
val_set_size: 0.05
warmup_steps: 100
warmup_ratio: 0.0
weight_decay: 0.05
flash_attention: true
flash_attn_cross_entropy: true
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: false
ddp_backend: nccl
ddp_broadcast_buffers: false
ddp_find_unused_parameters: false
tf32: true
bf16_full_eval: false
fp16: false
# unfrozen_parameters:
# - lm_head.*
# - embed_tokens.*
# - norm.*
xformers_attention: false
s2_attention: false
sdp_attention: false
pad_to_sequence_len: true
peft_use_dora: false
peft_lora_modules_to_save: null
special_tokens:
  pad_token: <|endoftext|>
deepspeed: null
fsdp: null
fsdp_config: null
# wandb_project: heisenberg-qwen
# wandb_entity: null
# wandb_name: blue-crystal-run
# wandb_log_model: checkpoint
hub_model_id: null
hub_strategy: null
report_to: []
logging_strategy: steps
logging_steps: 10
logging_first_step: true

outputs/heisenberg-crystal

This model is a fine-tuned version of Qwen/QwQ-32B-Preview on the phxdev/creed dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_min_lr
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
No log 0.0013 1 nan
7.8286 0.1259 100 nan
7.2486 0.2519 200 nan
7.2601 0.3778 300 nan
8.2142 0.5038 400 nan
7.1902 0.6297 500 nan
6.3799 0.7557 600 nan
6.7115 0.8816 700 nan
6.0414 1.0076 800 nan
6.428 1.1335 900 nan
6.3167 1.2594 1000 nan
6.0359 1.3854 1100 nan
6.3701 1.5113 1200 nan
6.9225 1.6373 1300 nan
6.5807 1.7632 1400 nan
6.8649 1.8892 1500 nan
6.1397 2.0151 1600 nan
5.7675 2.1411 1700 nan
6.2605 2.2670 1800 nan
5.8788 2.3929 1900 nan
6.0279 2.5189 2000 nan
6.3911 2.6448 2100 nan
6.0412 2.7708 2200 nan
6.0862 2.8967 2300 nan

Framework versions

  • PEFT 0.14.0
  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for phxdev/qwq-32b-lora-creed

Base model

Qwen/Qwen2.5-32B
Adapter
(24)
this model

Dataset used to train phxdev/qwq-32b-lora-creed