AI & ML interests

finding your community

KingNishΒ 
posted an update about 17 hours ago
prithivMLmodsΒ 
posted an update 1 day ago
view post
Post
2016
Qwen Image – The Latest Image Generation ModelπŸ”₯

Below are some samples generated using the Qwen Image Diffusion Model. Qwen-Image, a 20B MMDiT model for next-generation text-to-image generation, preserves typographic details, layout coherence, and contextual harmony with stunning accuracy. It is especially strong at creating stunning graphic posters with native text. The model is now open-source. [ πš€πš πšŽπš—-π™Έπš–πšŠπšπšŽ : Qwen/Qwen-Image ]

β€· Try the Qwen Image demo here: prithivMLmods/Qwen-Image-Diffusion, Qwen/Qwen-Image & more ...

β€· Qwen-Image Technical Report : Qwen-Image Technical Report (2508.02324)
β€· Qwen Image [GitHub] : https://github.com/QwenLM/Qwen-Image

Even more impressively, it demonstrates a strong ability to understand images. The model supports a wide range of vision-related tasks such as object detection, semantic segmentation, depth and edge (Canny) estimation, novel view synthesis, and image super-resolution. While each task is technically distinct, they can all be viewed as advanced forms of intelligent image editing driven by deep visual understanding. Collectively, these capabilities position Qwen-Image as more than just a tool for generating appealing visuals, it serves as a versatile foundation model for intelligent visual creation and transformation, seamlessly blending language, layout, and imagery.

Qwen-Image uses a dual-stream MMDiT architecture with a frozen Qwen2.5-VL, VAE encoder, RMSNorm for QK-Norm, LayerNorm elsewhere, and a custom MSRoPE scheme for joint image-text positional encoding.

.
.
.
To know more about it, visit the model card of the respective model. !!
prithivMLmodsΒ 
posted an update 4 days ago
view post
Post
3096
Introducing Camel-Doc-OCR-080125(v2), a document content-structure retrieval VLM designed for content extraction and summarization. This is the second model in the Camel Doc OCR VLM series, following Camel-Doc-OCR-062825(v1). The new version fixes formal table reconstruction issues in both en and zh language, achieving optimal performance for long-context inferences.πŸ€—πŸͺ

β€· Camel-Doc-OCR(v2) : prithivMLmods/Camel-Doc-OCR-080125
β€· Camel-Doc-OCR(v1) : prithivMLmods/Camel-Doc-OCR-062825
β€· Demo : prithivMLmods/core-OCR

Multimodal Model Collections and Spaces:

➝ Camel-Doc-OCR : prithivMLmods/camel-doc-ocr-080125-688c0c61c5dba648756f31f8
➝ Vision-Language (VLr) : prithivMLmods/vision-language-for-reasoning-vlr-6889b3f45917352b5e3a6f7a
➝ Multimodal Spaces : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0
➝ Multimodal VLMs : prithivMLmods/multimodal-vlms-until-july25-688312e6b840e1e156f13027

.
.
.
To know more about it, visit the model card of the respective model. !!
  • 2 replies
Β·
Reality123bΒ 
posted an update 6 days ago
view post
Post
135
Be prepared for a HUGE model from me!
(would be a closed model)
this uses advanced CoT with multiple new strategies and algorithms to be far more efficient and powerful than current leading models (i hope so)
i will release this on August 4
  • 1 reply
Β·
prithivMLmodsΒ 
posted an update 6 days ago
view post
Post
1049
Exciting to bring the explicitly grounded experimental reasoning model, Lumian-VLR-7B-Thinking, built on top of Qwen2.5-VL, featuring reasoning-aware trajectories with enhanced spatial perception. Along with this, we’ve also added a demo for the model while bringing some of the latest and most interesting models available on the hub to make full use of the remaining resources.

✨ Multimodal-VLM-Thinking : prithivMLmods/Multimodal-VLM-Thinking
✨ Multimodal-VLM-OCR : prithivMLmods/Multimodal-VLM-OCR

✦ Models used in these spaces:

✨ Lumian-VLR-7B-Thinking : prithivMLmods/Lumian-VLR-7B-Thinking
✨ Enesidaon-VLR-7B-no-Thinking : prithivMLmods/Enesidaon-VLR-7B-no-Thinking
✨ GLM-4.1V-9B-Thinking : zai-org/GLM-4.1V-9B-Thinking
✨ DREX-062225-exp : prithivMLmods/DREX-062225-exp & more ...

✦ Multimodal Model Collections and Spaces:

✨ Vision-Language (VLr) : prithivMLmods/vision-language-for-reasoning-vlr-6889b3f45917352b5e3a6f7a
✨ Multimodal Spaces : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0
✨ Multimodal VLMs : prithivMLmods/multimodal-vlms-until-july25-688312e6b840e1e156f13027

.
.
.
To know more about it, visit the model card of the respective model. !!
prithivMLmodsΒ 
posted an update 10 days ago
view post
Post
4801
Explore OCR, Captioning, and Visual Understanding with Cutting-Edge Models on Hugging Face. πŸ€—πŸ§ͺ

I’ve put together a collection of Google Colab notebooks to experiment with some of the most exciting models available on the Hugging Face Hub focused on OCR, image captioning, and visual understanding tasks. [Image-to-Text] / [Image-Text-to-Text]

> πŸ“– OCR-ReportLab-Notebooks : prithivMLmods/OCR-ReportLab-Notebooks

These notebooks are built for quick prototyping and run on free T4 GPUs, making them perfect for experimentation, testing ideas, or just exploring what’s possible with modern vision-language models.

Note: The experimental notebooks are compiled with models that fit within the T4 GPU (free-tier) limits. More models along with their notebooks will be added over time.
nroggendorffΒ 
posted an update 10 days ago
view post
Post
3662
Is it possible to apply for a resources grant for a whole organization, or do you need to apply for each repo individually? I think it'd be pretty cool to have something like the discord-community org for None-yet in terms of resource allocation (multiple spaces running on cpu upgrade.

I realize the scale of the community is just a tiny bit different, and that having this for a public org (one where anyone can join) isn't super fiscally responsible, but we'll be good. I promise we will! Right, guys?
  • 1 reply
Β·
prithivMLmodsΒ 
posted an update 12 days ago
view post
Post
2361
Excited to introduce the new experimental model "Qwen2.5-VL-7B-Abliterated-Caption-it", which is performing exceptionally well on image captioning tasks. This variant is specifically tailored for Abliterated Captioning and Uncensored Image Captioning. It is designed to generate highly detailed and descriptive captions across a broad range of visual categories including images with complex, sensitive, or nuanced content while handling varying aspect ratios and resolutions.πŸ§ͺπŸ€—

✨ Try the demo here : prithivMLmods/Qwen2.5-VL
✨ Qwen2.5-VL-7B-Abliterated-Caption-it : prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it
✨ Multimodal VLMs : prithivMLmods/multimodal-vlms-until-july25-688312e6b840e1e156f13027
✨ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

.
.
.
To know more about it, visit the model card of the respective model. !!
prithivMLmodsΒ 
posted an update 13 days ago
view post
Post
2364
olmOCR [Allen AI] just got an upgrade! πŸ“ˆπŸ§‘β€πŸ³

The allenai/olmOCR-7B-0725 β€” fine-tuned with allenai/olmOCR-mix-0225 on top of Qwen/Qwen2.5-VL-7B-Instruct, pushing the boundaries of OCR technology. It takes a single document image as input, with the longest side resized to 1288 pixels. High-quality, openly available approach to parsing pdfs and other complex documents optical character recognition.

Try the demo here: prithivMLmods/Multimodal-OCR

✨ Model: allenai/olmOCR-7B-0725
✨ Model [fp8]: allenai/olmOCR-7B-0725-FP8
✨ Multimodal Implementations Space Collection: prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

.
.
.
To know more about it, visit the model card of the respective model. !!
AtAndDevΒ 
posted an update 14 days ago
view post
Post
298
Qwen 3 Coder is a personal attack to k2, and I love it.
It achieves near SOTA on LCB while not having reasoning.
Finally people are understanding that reasoning isnt necessary for high benches...

Qwen ftw!

DECENTRALIZE DECENTRALIZE DECENTRALIZE
prithivMLmodsΒ 
posted an update 17 days ago
view post
Post
5093
Upgraded the step-by-step notebook for fine-tuning SigLIP2 on domain-specific image classification tasks. The notebook supports both datasets with predefined train/test splits and those with only a train split, making it suitable for low-resource, custom, and real-world classification scenarios. πŸ“’πŸ‘‰

➺ FineTuning-SigLIP2-Notebook : prithivMLmods/FineTuning-SigLIP2-Notebook

➺ GitHub : https://github.com/PRITHIVSAKTHIUR/FineTuning-SigLIP-2

➺ In the first, datasets include predefined train and test splits, enabling conventional supervised learning and generalization evaluation : prithivMLmods/FineTuning-SigLIP2-Notebook (.ipynb)

➺ In the second scenario, only a training split is available; in such cases, the training set is either partially reserved for validation or reused entirely for evaluation : prithivMLmods/FineTuning-SigLIP2-Notebook (.ipynb)

This flexibility supports experimentation in constrained or domain-specific settings, where standard test annotations may not exist.
prithivMLmodsΒ 
posted an update 18 days ago
view post
Post
4071
Dropping the general-purpose reasoning dataset Poseidon-Reasoning-5M, which supports general thought processes, math, and science β€” featuring a diverse mixture of domains 🌊 : prithivMLmods/Poseidon-Reasoning-5M

from datasets import load_dataset

dataset = load_dataset("prithivMLmods/Poseidon-Reasoning-5M", split="data")

The compact version is as follows β€” Poseidon-Reasoning-Mini-300K : prithivMLmods/Poseidon-Reasoning-Mini-300K


from datasets import load_dataset

dataset = load_dataset("prithivMLmods/Poseidon-Reasoning-Mini-300K", split="train")


Collection : prithivMLmods/poseidon-reasoning-6879ca98e118b307c781a9ba
prithivMLmodsΒ 
posted an update 22 days ago
view post
Post
2173
Open Omega Ξ© (Forge, Atom, Explora):
A Fusion of Math, Science, and Coding πŸ§ͺπŸ€—

Datasets :
⌯⌲ Open-Omega-Forge-1M [Mathematics, Coding, and Science]: prithivMLmods/Open-Omega-Forge-1M
⌯⌲ Open-Omega-Atom-1.5M [Mathematics and Science]: prithivMLmods/Open-Omega-Atom-1.5M
⌯⌲ Open-Omega-Explora-2.5M [Forge + Atom]: prithivMLmods/Open-Omega-Explora-2.5M
⌯⌲ Others [Subordinate portion] - Curated and blended modular dataset.

Models :
> Omega-Qwen3-Atom-8B : prithivMLmods/Omega-Qwen3-Atom-8B
> Omega-Qwen2.5-Coder-3B : prithivMLmods/Omega-Qwen2.5-Coder-3B

Dataset Collection: prithivMLmods/open-omega-a-fusion-of-math-science-and-coding-68756c37769fa39c4055cc0e

.
.
.
For more information, refer to the dataset card(s).

prithivMLmodsΒ 
posted an update 24 days ago
view post
Post
3840
Excited to bring the new models that are performing exceptionally well in document OCR, image captioning, and visual understanding tasks. Megalodon-OCR and Perseus-Doc-VL have both demonstrated significant improvements across key areas. You can explore live demos on Hugging Face Spaces to compare their performance with other top-tier models available on the hub. πŸ€—πŸ“„

Models & Spaces :
> Megalodon-OCR (3B) : prithivMLmods/Megalodon-OCR-Sync-0713
> Perseus-Doc-vl (7B): prithivMLmods/Perseus-Doc-vl-0712
> Doc-VLMs-OCR : prithivMLmods/Multimodal-VLM-OCR
> core-OCR : prithivMLmods/core-OCR


Datasets Caption Mix :
> Corvus-OCR-Caption-Mix : prithivMLmods/Corvus-OCR-Caption-Mix
> Corvus-OCR-Caption-Mini-Mix : prithivMLmods/Corvus-OCR-Caption-Mini-Mix

Collections :
> Corvus OCR Caption Mix: prithivMLmods/corvus-ocr-caption-mix-687349bfaceffbd10976f0cc
> Captioning / OCR / DocTable : prithivMLmods/captioning-ocr-doctable-687382e1da822008bb5c06f2

GitHub :
> OCR-ReportLab : https://github.com/PRITHIVSAKTHIUR/OCR-ReportLab/blob/main/Megalodon-OCR-Sync-0713-ColabNotebook/Megalodon_OCR_Sync_0713_ReportLab.ipynb

Others Spaces :
> Multimodal-OCR : prithivMLmods/Multimodal-OCR
> Multimodal-VLMs : https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR-Outpost
> Multimodal-OCR2 : prithivMLmods/Multimodal-OCR2
> Florence-2-Image-Caption : prithivMLmods/Florence-2-Image-Caption
> VisionScope-R2 : prithivMLmods/VisionScope-R2
> DocScope-R1 : prithivMLmods/DocScope-R1

.
.
.
To know more about it, visit the model card of the respective model. !!
nroggendorffΒ 
posted an update 27 days ago
view post
Post
2991
Since when are H200s on ZeroGPU?
Β·
prithivMLmodsΒ 
posted an update 27 days ago
view post
Post
2390
Demo of OCR & Math QA using multi-capable VLMs like MonkeyOCR-pro-1.2B, R1-One-Vision, VisionaryR1, Vision Matters-7B, and VIGAL-7B, all running together with support for both image and video inference. πŸͺ

✦ Demo Spaces :
β€· Multimodal VLMs : https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR-Outpost

✦ Models :
β€· Visionary R1 : maifoundations/Visionary-R1
β€· MonkeyOCR [1.2B] : echo840/MonkeyOCR-pro-1.2B
β€· ViGaL 7B : yunfeixie/ViGaL-7B
β€· Lh41-1042-Magellanic-7B-0711 : prithivMLmods/Lh41-1042-Magellanic-7B-0711
β€· Vision Matters 7B : Yuting6/Vision-Matters-7B
β€· WR30a-Deep-7B-0711 : prithivMLmods/WR30a-Deep-7B-0711

✦ MonkeyOCR-pro-1.2B Colab T4 Demo [ notebook ]
β€· MonkeyOCR-pro-1.2B-ReportLab : https://github.com/PRITHIVSAKTHIUR/OCR-ReportLab/blob/main/MonkeyOCR-0709/MonkeyOCR-pro-1.2B-ReportLab.ipynb

✦ GitHub : https://github.com/PRITHIVSAKTHIUR/OCR-ReportLab

The community GPU grant was given by Hugging Face β€” special thanks to them.πŸ€—πŸš€

.
.
.
To know more about it, visit the model card of the respective model. !!
prithivMLmodsΒ 
posted an update about 1 month ago
view post
Post
3565
Multimodal OCR with ReportLab? On Colab T4? (Nanonets OCR, Monkey OCR, OCRFlux 3B, Typhoo OCR 3B?) .. Yeah, it’s possible. I’ve made a dedicated Colab notebook to experiment with these models (all built on top of Qwen2.5 VL). πŸ€—πŸš€

Download notebooks here :

✦︎ NanonetsOCR : https://colab.research.google.com/drive/1VvA-amvSVxGdWgIsh4_by6KWOtEs_Iqp
✦︎ MonkeyOCR : https://colab.research.google.com/drive/1vPCojbmlXjDFUt06FJ1tjgnj_zWK4mUo
✦︎ OCRFluxOCR : https://colab.research.google.com/drive/1TDoCXzWdF2hxVLbISqW6DjXAzOyI7pzf
✦︎ TyphoonOCR : https://colab.research.google.com/drive/1_59zvLNnn1kvbiSFxzA1WiqhpbW8RKbz

🜲 Github : https://github.com/PRITHIVSAKTHIUR/OCR-ReportLab-Notebooks

What does it do?

1. Performs OCR on the input image
2. Generates a DOCX or PDF file with the input image and the extracted text

.
.
.
To know more about it, visit the model card of the respective model. !!
prithivMLmodsΒ 
posted an update about 1 month ago
view post
Post
1693
The bunch of comparable demos for Multimodal VLMs (excels in OCR, cinematography understanding, spatial reasoning, etc.) now up on the Hub πŸ€— β€” max recent till Jun'25.

✦ Demo Spaces β€”

> [Nanonets-OCR-s, MonkeyOCR, Typhoon-OCR-7B, SmolDocling] : prithivMLmods/Multimodal-OCR2
> [GLM-4.1v, docscopeOCR-7B, MonkeyOCR, coreOCR-7B] : prithivMLmods/core-OCR
> [Camel-Doc-OCR, ViLaSR-7B, OCRFlux-3B, ShotVL-7B] : prithivMLmods/Multimodal-VLM-OCR
> [SkyCaptioner-V1, SpaceThinker-3B, coreOCR-7B, SpaceOm-3B] : prithivMLmods/VisionScope-R2
> [RolmOCR-7B, Qwen2-VL-OCR-2B, Aya-Vision-8B, Nanonets-OCR-s] : prithivMLmods/Multimodal-OCR
> [DREX-062225-7B, Typhoon-OCR-3B, olmOCR-7B-0225, VIREX-062225-7B] : prithivMLmods/Multimodal-VLM-Thinking
> [Cosmos-Reason1-7B, docscopeOCR-7B, Captioner-7B, visionOCR-3B] : prithivMLmods/DocScope-R1

✦ Space Collection : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

.
.
.
To know more about it, visit the model card of the respective model. !!
  • 1 reply
Β·
prithivMLmodsΒ 
posted an update about 1 month ago
view post
Post
2444
The demo for Camel-Doc-OCR-062825 (exp) is optimized for document retrieval and direct Markdown (.md) generation from images and PDFs. Additional demos include OCRFlux-3B (document OCR), VilaSR (spatial reasoning with visual drawing), and ShotVL (cinematic language understanding). πŸͺ

✦ Space : https://huggingface.co/spaces/prithivMLmods/Doc-VLMs-v2-Localization

Models :
β€· camel-doc-ocr-062825 : prithivMLmods/Camel-Doc-OCR-062825
β€· ocrflux-3b : ChatDOC/OCRFlux-3B
β€· vilasr : AntResearchNLP/ViLaSR
β€· shotvl : Vchitect/ShotVL-7B

β€· Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

The community GPU grant was given by Hugging Face β€” special thanks to them. This space supports the following tasks: (image inference, video inference) with result markdown canvas and object detection/localization. πŸ€—πŸš€

.
.
.
To know more about it, visit the model card of the respective model. !!
prithivMLmodsΒ 
posted an update about 1 month ago
view post
Post
1999
The demo for DREX-062225-exp (Document Retrieval and Extraction eXpert ~ experimental) / typhoon-ocr-3b (a bilingual document parsing model built specifically for real-world documents) / VIREX-062225-exp (Video Information Retrieval and Extraction eXpert ~ experimental) / olmOCR-7B-0225-preview (the document parsing model based on Qwen2VL). πŸ€—

✦ Demo : https://huggingface.co/spaces/prithivMLmods/Doc-VLMs-OCR ~ ( with .md canvas )

β€· DREX-062225-exp : prithivMLmods/DREX-062225-exp
β€· typhoon-ocr-3b : scb10x/typhoon-ocr-3b
β€· VIREX-062225-exp : prithivMLmods/VIREX-062225-exp
β€· olmOCR-7B-0225-preview : allenai/olmOCR-7B-0225-preview

β€· Collection : prithivMLmods/doc-vl-685839064a863e1cd23be3f1
β€· Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0
.
.
.

To know more about it, visit the model card of the respective model. !!
Β·