creation

from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map

model_id  = "huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated"
model_out = "Mistral-Small-24B-Instruct-2501-abliterated.w4a16"

num_samples = 256
max_seq_len = 4096

tokenizer = AutoTokenizer.from_pretrained(model_id)

def preprocess_fn(example):
  return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}

ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)

recipe = [
  SmoothQuantModifier(smoothing_strength=0.8),
  QuantizationModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"], dampening_frac=0.1)
]

device_map = calculate_offload_device_map(
    model_id, reserve_for_hessians=False, num_gpus=1, torch_dtype="bfloat16"
)

model = AutoModelForCausalLM.from_pretrained(
  model_id,
  device_map=device_map,
  torch_dtype="bfloat16",
)

oneshot(
  model=model,
  dataset=ds,
  recipe=recipe,
  max_seq_length=max_seq_len,
  num_calibration_samples=num_samples,
  output_dir=model_out,
)
Downloads last month
4
Safetensors
Model size
4.29B params
Tensor type
I64
I32
BF16
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for nytopop/Mistral-Small-24B-Instruct-2501-abliterated.w4a16