Rename NeMo Retriever references to Nemotron

#3
This view is limited to 50 files because it contains too many changes.Β  See the raw diff here.
Files changed (50) hide show
  1. Dockerfile +3 -3
  2. README.md +18 -18
  3. docker-compose.yaml +1 -1
  4. example.py +1 -1
  5. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/.gitattributes +0 -0
  6. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/.gitignore +0 -0
  7. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/.gitmodules +0 -0
  8. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/README.md +0 -0
  9. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/beam_decode.cpp +0 -0
  10. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/beam_decode.h +0 -0
  11. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/kn_lm.cpp +0 -0
  12. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/kn_lm.h +0 -0
  13. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/language_model.cpp +0 -0
  14. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/language_model.h +0 -0
  15. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/log_sum_exp.cpp +0 -0
  16. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/log_sum_exp.h +0 -0
  17. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/ngram_lm_base.cpp +0 -0
  18. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/ngram_lm_base.h +0 -0
  19. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/prefix.cpp +0 -0
  20. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/prefix.h +0 -0
  21. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/sbo_lm.cpp +0 -0
  22. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/sbo_lm.h +0 -0
  23. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/better_grid_sample/cpu_indirect_grid_sample.cpp +0 -0
  24. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/better_grid_sample/gpu_grid_sample_utils.cuh +0 -0
  25. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/better_grid_sample/gpu_indirect_grid_sample.cu +0 -0
  26. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/better_grid_sample/grid_sample.h +0 -0
  27. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/common.cpp +0 -0
  28. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/common.h +0 -0
  29. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/cuda_intellisense.cuh +0 -0
  30. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry.h +0 -0
  31. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/calc_poly_min_rrect.cpp +0 -0
  32. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/geometry_api.cpp +0 -0
  33. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/geometry_api.h +0 -0
  34. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/geometry_api_common.h +0 -0
  35. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/geometry_api_gpu.cu +0 -0
  36. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/get_rel_continuation_cos.cpp +0 -0
  37. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/matrix2x2.h +0 -0
  38. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/poly_bounds_quad.cpp +0 -0
  39. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/graph_detection/encode_util.cpp +0 -0
  40. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/graph_detection/encode_util.h +0 -0
  41. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/half_ops.cu +0 -0
  42. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/half_ops.cuh +0 -0
  43. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/local_ips/local_ips.h +0 -0
  44. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/local_ips/quad_all_2_all_dist_v2.cu +0 -0
  45. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/module.cpp +0 -0
  46. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/non_maximal_suppression/cpu_non_maximal_suppression.cpp +0 -0
  47. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/non_maximal_suppression/cuda_non_maximal_suppression.cu +0 -0
  48. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/non_maximal_suppression/nms_common.h +0 -0
  49. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/non_maximal_suppression/nms_kd_tree.h +0 -0
  50. {nemo-retriever-ocr β†’ nemotron-ocr}/cpp/non_maximal_suppression/non_maximal_suppression.cpp +0 -0
Dockerfile CHANGED
@@ -8,11 +8,11 @@ ENV TORCH_CUDA_ARCH_LIST=${TORCH_CUDA_ARCH_LIST}
8
  RUN --mount=type=cache,target=/root/.cache/pip \
9
  pip install -U pip hatchling "setuptools>=68" --root-user-action ignore
10
 
11
- COPY nemo-retriever-ocr /workspace/nemo-retriever-ocr
12
- WORKDIR /workspace/nemo-retriever-ocr
13
 
14
  # Ensure no prebuilt binaries/artifacts from the host are present
15
- RUN rm -f src/nemo_retriever_ocr_cpp/*.so || true \
16
  && rm -rf build/ dist/
17
 
18
  RUN --mount=type=cache,target=/root/.cache/pip \
 
8
  RUN --mount=type=cache,target=/root/.cache/pip \
9
  pip install -U pip hatchling "setuptools>=68" --root-user-action ignore
10
 
11
+ COPY nemotron-ocr /workspace/nemotron-ocr
12
+ WORKDIR /workspace/nemotron-ocr
13
 
14
  # Ensure no prebuilt binaries/artifacts from the host are present
15
+ RUN rm -f src/nemotron_ocr_cpp/*.so || true \
16
  && rm -rf build/ dist/
17
 
18
  RUN --mount=type=cache,target=/root/.cache/pip \
README.md CHANGED
@@ -16,7 +16,7 @@ tags:
16
  - ingestion
17
  ---
18
 
19
- # NeMo Retriever OCR v1
20
 
21
  ## **Model Overview**
22
 
@@ -27,15 +27,15 @@ tags:
27
 
28
  ### **Description**
29
 
30
- The NeMo Retriever OCR v1 model is a state-of-the-art text recognition model designed for robust end-to-end optical character recognition (OCR) on complex real-world images. It integrates three core neural network modules: a detector for text region localization, a recognizer for transcription of detected regions, and a relational model for layout and structure analysis.
31
 
32
- This model is optimized for a wide variety of OCR tasks, including multi-line, multi-block, and natural scene text, and it supports advanced reading order analysis via its relational model component. NeMo Retriever OCR v1 has been developed to be production-ready and commercially usable, with a focus on speed and accuracy on both document and natural scene images.
33
 
34
- The NeMo Retriever OCR v1 model is part of the NVIDIA NeMo Retriever collection of NIM microservices, which provides state-of-the-art, commercially-ready models and microservices optimized for the lowest latency and highest throughput. It features a production-ready information retrieval pipeline with enterprise support. The models that form the core of this solution have been trained using responsibly selected, auditable data sources. With multiple pre-trained models available as starting points, developers can readily customize them for domain-specific use cases, such as information technology, human resource help assistants, and research & development research assistants.
35
 
36
  This model is ready for commercial use.
37
 
38
- We are excited to announce the open sourcing of this commercial model. For users interested in deploying this model in production environments, it is also available via the model API in NVIDIA Inference Microservices (NIM) at [nemoretriever-ocr-v1](https://build.nvidia.com/nvidia/nemoretriever-ocr-v1).
39
 
40
  ### **License/Terms of use**
41
 
@@ -57,11 +57,11 @@ Global
57
 
58
  ### Use Case
59
 
60
- The **NeMo Retriever OCR v1** model is designed for high-accuracy and high-speed extraction of textual information from images, making it ideal for powering multimodal retrieval systems, Retrieval-Augmented Generation (RAG) pipelines, and agentic applications that require seamless integration of visual and language understanding. Its robust performance and efficiency make it an excellent choice for next-generation AI systems that demand both precision and scalability across diverse real-world content.
61
 
62
  ### Release Date
63
 
64
- 10/23/2025 via https://huggingface.co/nvidia/nemoretriever-ocr-v1
65
 
66
  ### References
67
 
@@ -71,7 +71,7 @@ The **NeMo Retriever OCR v1** model is designed for high-accuracy and high-speed
71
 
72
  **Architecture Type:** Hybrid detector–recognizer with document-level relational modeling
73
 
74
- The NeMo Retriever OCR v1 model integrates three specialized neural components:
75
 
76
  - **Text Detector:** Utilizes a RegNetY-8GF convolutional backbone for high-accuracy localization of text regions within images.
77
  - **Text Recognizer:** Employs a Transformer-based sequence recognizer to transcribe text from detected regions, supporting variable word and line lengths.
@@ -163,11 +163,11 @@ git lfs install
163
  ```
164
  - Using https
165
  ```
166
- git clone https://huggingface.co/nvidia/nemoretriever-ocr-v1
167
  ```
168
  - Or using ssh
169
  ```
170
- git clone git@hf.co:nvidia/nemoretriever-ocr-v1
171
  ```
172
 
173
  2. Installation
@@ -179,7 +179,7 @@ git clone git@hf.co:nvidia/nemoretriever-ocr-v1
179
  - Run the following command to install the package:
180
 
181
  ```bash
182
- cd nemo-retriever-ocr
183
  pip install hatchling
184
  pip install -v .
185
  ```
@@ -197,7 +197,7 @@ docker run --rm --gpus all nvcr.io/nvidia/pytorch:25.09-py3 nvidia-smi
197
  - From the repo root, bring up the service to run the example against the provided image `ocr-example-image.png`:
198
 
199
  ```bash
200
- docker compose run --rm nemo-retriever-ocr \
201
  bash -lc "python example.py ocr-example-input-1.png --merge-level paragraph"
202
  ```
203
 
@@ -212,7 +212,7 @@ Output is saved next to your input image as `<name>-annotated.<ext>` on the host
212
  3. Run the model using the following code:
213
 
214
  ```python
215
- from nemo_retriever_ocr.inference.pipeline import NemoRetrieverOCR
216
 
217
  ocr = NemoRetrieverOCR()
218
 
@@ -230,7 +230,7 @@ for pred in predictions:
230
  ### Software Integration
231
 
232
  **Runtime Engine(s):**
233
- - **NeMo Retriever Page Elements v3** NIM
234
 
235
 
236
  **Supported Hardware Microarchitecture Compatibility [List in Alphabetic Order]:**
@@ -247,7 +247,7 @@ This AI model can be embedded as an Application Programming Interface (API) call
247
 
248
  ## Model Version(s):
249
 
250
- * `nemoretriever-ocr-v1`
251
 
252
  ## **Training and Evaluation Datasets:**
253
 
@@ -267,7 +267,7 @@ The model is trained on a large-scale, curated mix of public and proprietary OCR
267
 
268
  ### **Evaluation Datasets**
269
 
270
- The NeMo Retriever OCR v1 model is evaluated on several NVIDIA internal datasets for various tasks, such as pure OCR, table content extraction, and document retrieval.
271
 
272
  **Data Collection Method:** Hybrid (Automated, Human, Synthetic)<br>
273
  **Labeling Method:** Hybrid (Automated, Human, Synthetic)<br>
@@ -275,9 +275,9 @@ The NeMo Retriever OCR v1 model is evaluated on several NVIDIA internal datasets
275
 
276
  ### **Evaluation Results**
277
 
278
- We benchmarked NeMo Retriever OCR v1 on internal evaluation datasets against PaddleOCR on various tasks, such as pure OCR (Character Error Rate), table content extraction (TEDS), and document retrieval (Recall@5).
279
 
280
- | Metric | NeMo Retriever OCR v1 | PaddleOCR | Net change |
281
  |-------------------------------------------|--------------------|-----------|-----------------|
282
  | Character Error Rate | 0.1633 | 0.2029 | -19.5% βœ”οΈ |
283
  | Bag-of-character Error Rate | 0.0453 | 0.0512 | -11.5% βœ”οΈ |
 
16
  - ingestion
17
  ---
18
 
19
+ # Nemotron OCR v1
20
 
21
  ## **Model Overview**
22
 
 
27
 
28
  ### **Description**
29
 
30
+ The Nemotron OCR v1 model is a state-of-the-art text recognition model designed for robust end-to-end optical character recognition (OCR) on complex real-world images. It integrates three core neural network modules: a detector for text region localization, a recognizer for transcription of detected regions, and a relational model for layout and structure analysis.
31
 
32
+ This model is optimized for a wide variety of OCR tasks, including multi-line, multi-block, and natural scene text, and it supports advanced reading order analysis via its relational model component. Nemotron OCR v1 has been developed to be production-ready and commercially usable, with a focus on speed and accuracy on both document and natural scene images.
33
 
34
+ The Nemotron OCR v1 model is part of the NVIDIA NeMo Retriever collection of NIM microservices, which provides state-of-the-art, commercially-ready models and microservices optimized for the lowest latency and highest throughput. It features a production-ready information retrieval pipeline with enterprise support. The models that form the core of this solution have been trained using responsibly selected, auditable data sources. With multiple pre-trained models available as starting points, developers can readily customize them for domain-specific use cases, such as information technology, human resource help assistants, and research & development research assistants.
35
 
36
  This model is ready for commercial use.
37
 
38
+ We are excited to announce the open sourcing of this commercial model. For users interested in deploying this model in production environments, it is also available via the model API in NVIDIA Inference Microservices (NIM) at [nemotron-ocr-v1](https://build.nvidia.com/nvidia/nemotron-ocr-v1).
39
 
40
  ### **License/Terms of use**
41
 
 
57
 
58
  ### Use Case
59
 
60
+ The **Nemotron OCR v1** model is designed for high-accuracy and high-speed extraction of textual information from images, making it ideal for powering multimodal retrieval systems, Retrieval-Augmented Generation (RAG) pipelines, and agentic applications that require seamless integration of visual and language understanding. Its robust performance and efficiency make it an excellent choice for next-generation AI systems that demand both precision and scalability across diverse real-world content.
61
 
62
  ### Release Date
63
 
64
+ 10/23/2025 via https://huggingface.co/nvidia/nemotron-ocr-v1
65
 
66
  ### References
67
 
 
71
 
72
  **Architecture Type:** Hybrid detector–recognizer with document-level relational modeling
73
 
74
+ The Nemotron OCR v1 model integrates three specialized neural components:
75
 
76
  - **Text Detector:** Utilizes a RegNetY-8GF convolutional backbone for high-accuracy localization of text regions within images.
77
  - **Text Recognizer:** Employs a Transformer-based sequence recognizer to transcribe text from detected regions, supporting variable word and line lengths.
 
163
  ```
164
  - Using https
165
  ```
166
+ git clone https://huggingface.co/nvidia/nemotron-ocr-v1
167
  ```
168
  - Or using ssh
169
  ```
170
+ git clone git@hf.co:nvidia/nemotron-ocr-v1
171
  ```
172
 
173
  2. Installation
 
179
  - Run the following command to install the package:
180
 
181
  ```bash
182
+ cd nemotron-ocr
183
  pip install hatchling
184
  pip install -v .
185
  ```
 
197
  - From the repo root, bring up the service to run the example against the provided image `ocr-example-image.png`:
198
 
199
  ```bash
200
+ docker compose run --rm nemotron-ocr \
201
  bash -lc "python example.py ocr-example-input-1.png --merge-level paragraph"
202
  ```
203
 
 
212
  3. Run the model using the following code:
213
 
214
  ```python
215
+ from nemotron_ocr.inference.pipeline import NemoRetrieverOCR
216
 
217
  ocr = NemoRetrieverOCR()
218
 
 
230
  ### Software Integration
231
 
232
  **Runtime Engine(s):**
233
+ - **NeMo Nemotron OCR V1** NIM
234
 
235
 
236
  **Supported Hardware Microarchitecture Compatibility [List in Alphabetic Order]:**
 
247
 
248
  ## Model Version(s):
249
 
250
+ * `nemotron-ocr-v1`
251
 
252
  ## **Training and Evaluation Datasets:**
253
 
 
267
 
268
  ### **Evaluation Datasets**
269
 
270
+ The Nemotron OCR v1 model is evaluated on several NVIDIA internal datasets for various tasks, such as pure OCR, table content extraction, and document retrieval.
271
 
272
  **Data Collection Method:** Hybrid (Automated, Human, Synthetic)<br>
273
  **Labeling Method:** Hybrid (Automated, Human, Synthetic)<br>
 
275
 
276
  ### **Evaluation Results**
277
 
278
+ We benchmarked Nemotron OCR v1 on internal evaluation datasets against PaddleOCR on various tasks, such as pure OCR (Character Error Rate), table content extraction (TEDS), and document retrieval (Recall@5).
279
 
280
+ | Metric | Nemotron OCR v1 | PaddleOCR | Net change |
281
  |-------------------------------------------|--------------------|-----------|-----------------|
282
  | Character Error Rate | 0.1633 | 0.2029 | -19.5% βœ”οΈ |
283
  | Bag-of-character Error Rate | 0.0453 | 0.0512 | -11.5% βœ”οΈ |
docker-compose.yaml CHANGED
@@ -1,5 +1,5 @@
1
  services:
2
- nemo-retriever-ocr:
3
  build:
4
  context: .
5
  dockerfile: Dockerfile
 
1
  services:
2
+ nemotron-ocr:
3
  build:
4
  context: .
5
  dockerfile: Dockerfile
example.py CHANGED
@@ -4,7 +4,7 @@
4
 
5
  import argparse
6
 
7
- from nemo_retriever_ocr.inference.pipeline import NemoRetrieverOCR
8
 
9
 
10
  def main(image_path, merge_level, no_visualize, model_dir):
 
4
 
5
  import argparse
6
 
7
+ from nemotron_ocr.inference.pipeline import NemoRetrieverOCR
8
 
9
 
10
  def main(image_path, merge_level, no_visualize, model_dir):
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/.gitattributes RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/.gitignore RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/.gitmodules RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/README.md RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/beam_decode.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/beam_decode.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/kn_lm.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/kn_lm.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/language_model.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/language_model.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/log_sum_exp.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/log_sum_exp.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/ngram_lm_base.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/ngram_lm_base.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/prefix.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/prefix.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/sbo_lm.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/beam_decode/sbo_lm.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/better_grid_sample/cpu_indirect_grid_sample.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/better_grid_sample/gpu_grid_sample_utils.cuh RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/better_grid_sample/gpu_indirect_grid_sample.cu RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/better_grid_sample/grid_sample.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/common.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/common.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/cuda_intellisense.cuh RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/calc_poly_min_rrect.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/geometry_api.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/geometry_api.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/geometry_api_common.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/geometry_api_gpu.cu RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/get_rel_continuation_cos.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/matrix2x2.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/geometry_api/poly_bounds_quad.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/graph_detection/encode_util.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/graph_detection/encode_util.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/half_ops.cu RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/half_ops.cuh RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/local_ips/local_ips.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/local_ips/quad_all_2_all_dist_v2.cu RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/module.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/non_maximal_suppression/cpu_non_maximal_suppression.cpp RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/non_maximal_suppression/cuda_non_maximal_suppression.cu RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/non_maximal_suppression/nms_common.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/non_maximal_suppression/nms_kd_tree.h RENAMED
File without changes
{nemo-retriever-ocr β†’ nemotron-ocr}/cpp/non_maximal_suppression/non_maximal_suppression.cpp RENAMED
File without changes