FP8-Block Quantized Models
Collection
Collection of State-of-the-art FP8 Block Quantized Models
•
10 items
•
Updated
Quantized version of ibm-granite/granite-4.0-h-small.
This model was obtained by quantizing the weights and activations of ibm-granite/granite-4.0-h-small to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
vllm serve RedHatAI/granite-4.0-h-small-FP8-block --tensor_parallel_size 1
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model = "RedHatAI/granite-4.0-h-small-FP8-block"
messages = [
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = client.chat.completions.create(
model=model,
messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
The model was evaluated on the OpenLLM leaderboard task, using lm-evaluation-harness. vLLM was used for all evaluations.
Openllm V1
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/granite-4.0-h-small-FP8-block",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=1,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--show_config
Openllm V2
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/granite-4.0-h-small-FP8-block",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=1,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--apply_chat_template \
--fewshot_as_multiturn \
--write_out \
--batch_size auto \
--show_config
Coding Benchmarks
evalplus.evaluate --model "RedHatAI/granite-4.0-h-small-FP8-block" \
--dataset "humaneval" \
--backend vllm \
--tp 1 \
--greedy
evalplus.evaluate --model "RedHatAI/granite-4.0-h-small-FP8-block" \
--dataset "mbpp" \
--backend vllm \
--tp 1 \
--greedy
* I/p Length = 2048, O/p Length = 2048, #Requests = 1024
| Category | Metric | ibm-granite/granite-4.0-h-small | ibm-granite/granite-4.0-h-small-FP8 | RedHatAI/granite-4.0-h-small-FP8-block |
|---|---|---|---|---|
| Model Size (GB) | 64.41 | 33.48 | 36.43 | |
| Throughput (Requests/sec)* | 2.031 | 2.144 | 2.066 | |
| OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | 72.27 | 71.67 (99.17) | 72.27 (100.00) |
| GSM8K (Strict-Match, 5-shot) | 85.06 | 85.60 (100.62) | 85.60 (100.62) | |
| HellaSwag (Acc-Norm, 10-shot) | 86.07 | 86.02 (99.94) | 85.96 (99.87) | |
| MMLU (Acc, 5-shot) | 77.15 | 76.94 (99.73) | 77.23 (100.10) | |
| TruthfulQA (MC2, 0-shot) | 57.97 | 57.62 (99.40) | 57.85 (99.80) | |
| Winogrande (Acc, 5-shot) | 81.45 | 81.14 (99.61) | 80.82 (99.22) | |
| Average Score | 76.66 | 76.50 (99.79) | 76.62 (99.95) | |
| OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | 87.41 | 87.65 (100.27) | 87.89 (100.55) |
| BBH (Acc-Norm, 3-shot) | 61.52 | 61.31 (99.66) | 61.40 (99.80) | |
| Math-Hard (Exact-Match, 4-shot) | 46.60 | 44.34 (95.14) | 44.94 (96.43) | |
| GPQA (Acc-Norm, 0-shot) | 32.55 | 32.05 (98.45) | 34.23 (105.15) | |
| MUSR (Acc-Norm, 0-shot) | 46.43 | 46.30 (99.72) | 45.77 (98.58) | |
| MMLU-Pro (Acc, 5-shot) | 47.96 | 47.91 (99.88) | 47.93 (99.93) | |
| Average Score | 53.75 | 53.26 (99.09) | 53.69 (99.89) |
Base model
ibm-granite/granite-4.0-h-small