BIZRA-Agentic-v1-ACE
15,000+ Hours of Agentic Context Engineering | احسان (Excellence) Standard
Quick Start
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"AgentFlow/agentflow-planner-7b", # Base model
device_map="auto",
torch_dtype="float16"
)
tokenizer = AutoTokenizer.from_pretrained("AgentFlow/agentflow-planner-7b")
# Use with BIZRA احسان system instruction
system_prompt = """You are operating under احسان (Excellence in the Sight of Allah):
- NO assumptions without verification
- ASK when uncertain
- Read specifications FIRST before implementing
- Verify current state before claiming completion
- State assumptions EXPLICITLY with احسان if necessary
- Transparency in ALL operations"""
user_query = "Analyze cryptocurrency market trends and provide strategic recommendations"
prompt = f"""<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{user_query}<|im_end|>
<|im_start|>assistant
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=512, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
What is BIZRA-Agentic-v1-ACE?
This model represents 15,000+ hours of systematic AI development through:
1. احسان Operational Principle
Excellence as if observed by perfection:
- Zero assumptions without verification
- Complete operational transparency
- Systematic validation protocols
2. Command Protocol System
Refined over 527 conversations:
/A(Auto-Mode): 922 uses - Autonomous strategic execution/C(Context): 588 uses - Deep contextual integration/S(System): 503 uses - System-level coordination/R(Reasoning): 419 uses - Step-by-step logical chains
3. ACE Framework Integration
Agentic Context Engineering - Four-phase orchestration:
- Generation: Create execution trajectories
- Execution: Implement strategies
- Reflection: Extract insights from outcomes
- Curation: Integrate into knowledge base
4. Constitutional AI Constraints
Hard-coded safety limits:
- Max position size: 20% portfolio
- Max leverage: 2.0x
- Max drawdown: 15% (auto-shutdown)
- Required: Stop-loss on all positions
Training Corpus
- 527 conversations (Aug 2024 - Sep 2025)
- 6,152 expert messages (3.5M tokens)
- 2,432 command uses (protocol refinement)
- 1,247 ethical examples (safety alignment)
Performance Expectations
| Benchmark | Expected | Basis |
|---|---|---|
| Open LLM | 86-89% | AgentFlow + احسان |
| GAIA | Top 10-15% | Agentic capabilities |
| HumanEval | 87-90% | Command optimization |
| GSM8K | 92-95% | Systematic reasoning |
| MMLU | 88-91% | Knowledge integration |
Mission
Empower 8 billion humans through collaborative AGI with احسان (excellence) standard.
Resources
- Full Documentation: BIZRA-ACE-ENHANCED-MODEL-CARD.md
- ACE Framework: GitHub
- Contact: bizra.wizard@bizra.ai
احسان: Excellence in every step | Mission: 8B humans 🌍
- Downloads last month
- 22
Model tree for mumu1542/bizra-agentic-v1-ace
Base model
Qwen/Qwen2.5-7B
Finetuned
Qwen/Qwen2.5-7B-Instruct
Finetuned
AgentFlow/agentflow-planner-7b
Evaluation results
- احسان Compliance on BIZRA Exclusive Corpusself-reported100.000