ap-wH91uDJmvirEKV3N90K7mW
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4653
- Model Preparation Time: 0.0075
- Wer: 0.18
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer |
|---|---|---|---|---|---|
| 0.4507 | 1.0 | 125 | 0.5035 | 0.0075 | 0.33 |
| 0.489 | 2.0 | 250 | 0.6790 | 0.0075 | 0.42 |
| 0.6016 | 3.0 | 375 | 0.8198 | 0.0075 | 0.45 |
| 0.5678 | 4.0 | 500 | 0.7948 | 0.0075 | 0.38 |
| 0.4208 | 5.0 | 625 | 0.6841 | 0.0075 | 0.33 |
| 0.2797 | 6.0 | 750 | 0.6033 | 0.0075 | 0.27 |
| 0.1738 | 7.0 | 875 | 0.5261 | 0.0075 | 0.22 |
| 0.0856 | 8.0 | 1000 | 0.4653 | 0.0075 | 0.18 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.2
- Downloads last month
- -
Model tree for mdsingh2024/ap-wH91uDJmvirEKV3N90K7mW
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo