SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'what sectors am i in',
'[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'sector\',None,\'portfolio\')": "portfolio"}]',
'[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test(\'portfolio\',\'eurostoxx_600\',None,\'down\')": "stress_test"}]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8205 |
cosine_accuracy@3 | 0.9744 |
cosine_accuracy@5 | 0.9872 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.8205 |
cosine_precision@3 | 0.3248 |
cosine_precision@5 | 0.1974 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.0228 |
cosine_recall@3 | 0.0271 |
cosine_recall@5 | 0.0274 |
cosine_recall@10 | 0.0278 |
cosine_ndcg@10 | 0.2029 |
cosine_mrr@10 | 0.8958 |
cosine_map@100 | 0.0249 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,541 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 4 tokens
- mean: 12.78 tokens
- max: 28 tokens
- min: 20 tokens
- mean: 75.46 tokens
- max: 269 tokens
- Samples:
sentence_0 sentence_1 [TICKER] vs peers based on [ATTRIBUTE]
[{"search('query', 'match_type', '')": "search_results"},{"compare([[''],'search_results'], [''], None)": "comparison_data"}]
How will the rising UK stock index affect my portfolio?
[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test('portfolio','ftse_100',None,'up')": "stress_test"}]
How much did [A_SECTOR] sector move [DATES]?
[{"get_attribute([''],['returns'],'')":"sector_returns"}]
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 6multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | cosine_ndcg@10 |
---|---|---|---|
0.0129 | 2 | - | 0.0999 |
0.0258 | 4 | - | 0.1004 |
0.0387 | 6 | - | 0.1009 |
0.0516 | 8 | - | 0.1031 |
0.0645 | 10 | - | 0.1045 |
0.0774 | 12 | - | 0.1064 |
0.0903 | 14 | - | 0.1097 |
0.1032 | 16 | - | 0.1117 |
0.1161 | 18 | - | 0.1143 |
0.1290 | 20 | - | 0.1175 |
0.1419 | 22 | - | 0.1200 |
0.1548 | 24 | - | 0.1239 |
0.1677 | 26 | - | 0.1261 |
0.1806 | 28 | - | 0.1296 |
0.1935 | 30 | - | 0.1310 |
0.2065 | 32 | - | 0.1322 |
0.2194 | 34 | - | 0.1361 |
0.2323 | 36 | - | 0.1403 |
0.2452 | 38 | - | 0.1426 |
0.2581 | 40 | - | 0.1442 |
0.2710 | 42 | - | 0.1458 |
0.2839 | 44 | - | 0.1474 |
0.2968 | 46 | - | 0.1478 |
0.3097 | 48 | - | 0.1487 |
0.3226 | 50 | - | 0.1482 |
0.3355 | 52 | - | 0.1483 |
0.3484 | 54 | - | 0.1495 |
0.3613 | 56 | - | 0.1497 |
0.3742 | 58 | - | 0.1491 |
0.3871 | 60 | - | 0.1499 |
0.4 | 62 | - | 0.1512 |
0.4129 | 64 | - | 0.1524 |
0.4258 | 66 | - | 0.1540 |
0.4387 | 68 | - | 0.1552 |
0.4516 | 70 | - | 0.1562 |
0.4645 | 72 | - | 0.1570 |
0.4774 | 74 | - | 0.1600 |
0.4903 | 76 | - | 0.1607 |
0.5032 | 78 | - | 0.1614 |
0.5161 | 80 | - | 0.1616 |
0.5290 | 82 | - | 0.1612 |
0.5419 | 84 | - | 0.1626 |
0.5548 | 86 | - | 0.1642 |
0.5677 | 88 | - | 0.1646 |
0.5806 | 90 | - | 0.1653 |
0.5935 | 92 | - | 0.1663 |
0.6065 | 94 | - | 0.1668 |
0.6194 | 96 | - | 0.1678 |
0.6323 | 98 | - | 0.1682 |
0.6452 | 100 | - | 0.1683 |
0.6581 | 102 | - | 0.1689 |
0.6710 | 104 | - | 0.1705 |
0.6839 | 106 | - | 0.1696 |
0.6968 | 108 | - | 0.1713 |
0.7097 | 110 | - | 0.1719 |
0.7226 | 112 | - | 0.1723 |
0.7355 | 114 | - | 0.1730 |
0.7484 | 116 | - | 0.1739 |
0.7613 | 118 | - | 0.1746 |
0.7742 | 120 | - | 0.1751 |
0.7871 | 122 | - | 0.1760 |
0.8 | 124 | - | 0.1773 |
0.8129 | 126 | - | 0.1791 |
0.8258 | 128 | - | 0.1794 |
0.8387 | 130 | - | 0.1792 |
0.8516 | 132 | - | 0.1779 |
0.8645 | 134 | - | 0.1779 |
0.8774 | 136 | - | 0.1775 |
0.8903 | 138 | - | 0.1783 |
0.9032 | 140 | - | 0.1784 |
0.9161 | 142 | - | 0.1795 |
0.9290 | 144 | - | 0.1797 |
0.9419 | 146 | - | 0.1799 |
0.9548 | 148 | - | 0.1815 |
0.9677 | 150 | - | 0.1823 |
0.9806 | 152 | - | 0.1829 |
0.9935 | 154 | - | 0.1839 |
1.0 | 155 | - | 0.1847 |
1.0065 | 156 | - | 0.1841 |
1.0194 | 158 | - | 0.1839 |
1.0323 | 160 | - | 0.1840 |
1.0452 | 162 | - | 0.1844 |
1.0581 | 164 | - | 0.1842 |
1.0710 | 166 | - | 0.1837 |
1.0839 | 168 | - | 0.1829 |
1.0968 | 170 | - | 0.1833 |
1.1097 | 172 | - | 0.1837 |
1.1226 | 174 | - | 0.1841 |
1.1355 | 176 | - | 0.1832 |
1.1484 | 178 | - | 0.1826 |
1.1613 | 180 | - | 0.1828 |
1.1742 | 182 | - | 0.1824 |
1.1871 | 184 | - | 0.1816 |
1.2 | 186 | - | 0.1812 |
1.2129 | 188 | - | 0.1804 |
1.2258 | 190 | - | 0.1814 |
1.2387 | 192 | - | 0.1806 |
1.2516 | 194 | - | 0.1805 |
1.2645 | 196 | - | 0.1810 |
1.2774 | 198 | - | 0.1828 |
1.2903 | 200 | - | 0.1834 |
1.3032 | 202 | - | 0.1823 |
1.3161 | 204 | - | 0.1827 |
1.3290 | 206 | - | 0.1830 |
1.3419 | 208 | - | 0.1832 |
1.3548 | 210 | - | 0.1829 |
1.3677 | 212 | - | 0.1839 |
1.3806 | 214 | - | 0.1857 |
1.3935 | 216 | - | 0.1855 |
1.4065 | 218 | - | 0.1856 |
1.4194 | 220 | - | 0.1862 |
1.4323 | 222 | - | 0.1858 |
1.4452 | 224 | - | 0.1853 |
1.4581 | 226 | - | 0.1862 |
1.4710 | 228 | - | 0.1872 |
1.4839 | 230 | - | 0.1877 |
1.4968 | 232 | - | 0.1878 |
1.5097 | 234 | - | 0.1878 |
1.5226 | 236 | - | 0.1882 |
1.5355 | 238 | - | 0.1882 |
1.5484 | 240 | - | 0.1877 |
1.5613 | 242 | - | 0.1884 |
1.5742 | 244 | - | 0.1885 |
1.5871 | 246 | - | 0.1892 |
1.6 | 248 | - | 0.1888 |
1.6129 | 250 | - | 0.1888 |
1.6258 | 252 | - | 0.1887 |
1.6387 | 254 | - | 0.1884 |
1.6516 | 256 | - | 0.1883 |
1.6645 | 258 | - | 0.1891 |
1.6774 | 260 | - | 0.1887 |
1.6903 | 262 | - | 0.1891 |
1.7032 | 264 | - | 0.1889 |
1.7161 | 266 | - | 0.1888 |
1.7290 | 268 | - | 0.1893 |
1.7419 | 270 | - | 0.1895 |
1.7548 | 272 | - | 0.1897 |
1.7677 | 274 | - | 0.1900 |
1.7806 | 276 | - | 0.1906 |
1.7935 | 278 | - | 0.1901 |
1.8065 | 280 | - | 0.1902 |
1.8194 | 282 | - | 0.1906 |
1.8323 | 284 | - | 0.1903 |
1.8452 | 286 | - | 0.1901 |
1.8581 | 288 | - | 0.1911 |
1.8710 | 290 | - | 0.1915 |
1.8839 | 292 | - | 0.1915 |
1.8968 | 294 | - | 0.1917 |
1.9097 | 296 | - | 0.1914 |
1.9226 | 298 | - | 0.1916 |
1.9355 | 300 | - | 0.1918 |
1.9484 | 302 | - | 0.1919 |
1.9613 | 304 | - | 0.1924 |
1.9742 | 306 | - | 0.1926 |
1.9871 | 308 | - | 0.1922 |
2.0 | 310 | - | 0.1923 |
2.0129 | 312 | - | 0.1917 |
2.0258 | 314 | - | 0.1919 |
2.0387 | 316 | - | 0.1923 |
2.0516 | 318 | - | 0.1923 |
2.0645 | 320 | - | 0.1925 |
2.0774 | 322 | - | 0.1918 |
2.0903 | 324 | - | 0.1927 |
2.1032 | 326 | - | 0.1927 |
2.1161 | 328 | - | 0.1934 |
2.1290 | 330 | - | 0.1928 |
2.1419 | 332 | - | 0.1927 |
2.1548 | 334 | - | 0.1931 |
2.1677 | 336 | - | 0.1931 |
2.1806 | 338 | - | 0.1937 |
2.1935 | 340 | - | 0.1937 |
2.2065 | 342 | - | 0.1938 |
2.2194 | 344 | - | 0.1936 |
2.2323 | 346 | - | 0.1934 |
2.2452 | 348 | - | 0.1935 |
2.2581 | 350 | - | 0.1937 |
2.2710 | 352 | - | 0.1937 |
2.2839 | 354 | - | 0.1941 |
2.2968 | 356 | - | 0.1945 |
2.3097 | 358 | - | 0.1950 |
2.3226 | 360 | - | 0.1947 |
2.3355 | 362 | - | 0.1940 |
2.3484 | 364 | - | 0.1945 |
2.3613 | 366 | - | 0.1951 |
2.3742 | 368 | - | 0.1954 |
2.3871 | 370 | - | 0.1954 |
2.4 | 372 | - | 0.1953 |
2.4129 | 374 | - | 0.1956 |
2.4258 | 376 | - | 0.1952 |
2.4387 | 378 | - | 0.1952 |
2.4516 | 380 | - | 0.1955 |
2.4645 | 382 | - | 0.1951 |
2.4774 | 384 | - | 0.1957 |
2.4903 | 386 | - | 0.1964 |
2.5032 | 388 | - | 0.1965 |
2.5161 | 390 | - | 0.1965 |
2.5290 | 392 | - | 0.1973 |
2.5419 | 394 | - | 0.1976 |
2.5548 | 396 | - | 0.1972 |
2.5677 | 398 | - | 0.1962 |
2.5806 | 400 | - | 0.1966 |
2.5935 | 402 | - | 0.1965 |
2.6065 | 404 | - | 0.1966 |
2.6194 | 406 | - | 0.1964 |
2.6323 | 408 | - | 0.1970 |
2.6452 | 410 | - | 0.1970 |
2.6581 | 412 | - | 0.1977 |
2.6710 | 414 | - | 0.1974 |
2.6839 | 416 | - | 0.1973 |
2.6968 | 418 | - | 0.1965 |
2.7097 | 420 | - | 0.1965 |
2.7226 | 422 | - | 0.1968 |
2.7355 | 424 | - | 0.1975 |
2.7484 | 426 | - | 0.1976 |
2.7613 | 428 | - | 0.1973 |
2.7742 | 430 | - | 0.1974 |
2.7871 | 432 | - | 0.1973 |
2.8 | 434 | - | 0.1971 |
2.8129 | 436 | - | 0.1974 |
2.8258 | 438 | - | 0.1963 |
2.8387 | 440 | - | 0.1955 |
2.8516 | 442 | - | 0.1951 |
2.8645 | 444 | - | 0.1947 |
2.8774 | 446 | - | 0.1946 |
2.8903 | 448 | - | 0.1947 |
2.9032 | 450 | - | 0.1952 |
2.9161 | 452 | - | 0.1956 |
2.9290 | 454 | - | 0.1954 |
2.9419 | 456 | - | 0.1953 |
2.9548 | 458 | - | 0.1956 |
2.9677 | 460 | - | 0.1964 |
2.9806 | 462 | - | 0.1960 |
2.9935 | 464 | - | 0.1960 |
3.0 | 465 | - | 0.1956 |
3.0065 | 466 | - | 0.1953 |
3.0194 | 468 | - | 0.1953 |
3.0323 | 470 | - | 0.1964 |
3.0452 | 472 | - | 0.1973 |
3.0581 | 474 | - | 0.1973 |
3.0710 | 476 | - | 0.1963 |
3.0839 | 478 | - | 0.1965 |
3.0968 | 480 | - | 0.1973 |
3.1097 | 482 | - | 0.1985 |
3.1226 | 484 | - | 0.1988 |
3.1355 | 486 | - | 0.1988 |
3.1484 | 488 | - | 0.1991 |
3.1613 | 490 | - | 0.1990 |
3.1742 | 492 | - | 0.1990 |
3.1871 | 494 | - | 0.1993 |
3.2 | 496 | - | 0.1993 |
3.2129 | 498 | - | 0.1991 |
3.2258 | 500 | 0.3401 | 0.2005 |
3.2387 | 502 | - | 0.2001 |
3.2516 | 504 | - | 0.2003 |
3.2645 | 506 | - | 0.2009 |
3.2774 | 508 | - | 0.2009 |
3.2903 | 510 | - | 0.2011 |
3.3032 | 512 | - | 0.2007 |
3.3161 | 514 | - | 0.2006 |
3.3290 | 516 | - | 0.2006 |
3.3419 | 518 | - | 0.2005 |
3.3548 | 520 | - | 0.2009 |
3.3677 | 522 | - | 0.2005 |
3.3806 | 524 | - | 0.2005 |
3.3935 | 526 | - | 0.2001 |
3.4065 | 528 | - | 0.1999 |
3.4194 | 530 | - | 0.1999 |
3.4323 | 532 | - | 0.1996 |
3.4452 | 534 | - | 0.1999 |
3.4581 | 536 | - | 0.2007 |
3.4710 | 538 | - | 0.2009 |
3.4839 | 540 | - | 0.2013 |
3.4968 | 542 | - | 0.2012 |
3.5097 | 544 | - | 0.2014 |
3.5226 | 546 | - | 0.2017 |
3.5355 | 548 | - | 0.2022 |
3.5484 | 550 | - | 0.2029 |
3.5613 | 552 | - | 0.2029 |
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.4.1
- Transformers: 4.50.0
- PyTorch: 2.6.0
- Accelerate: 1.5.2
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for magnifi/bge-small-en-v1-5-ft-orc_fold5
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.821
- Cosine Accuracy@3 on Unknownself-reported0.974
- Cosine Accuracy@5 on Unknownself-reported0.987
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.821
- Cosine Precision@3 on Unknownself-reported0.325
- Cosine Precision@5 on Unknownself-reported0.197
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.023
- Cosine Recall@3 on Unknownself-reported0.027