MACE-MH-1: Multi-Head Foundation Model for Atomistic Materials Chemistry
Highlights
MACE-MH-1 is a foundation machine-learning interatomic potential (MLIP) that bridges molecular, surface, and materials chemistry through cross-domain learning:
- Unified cross-domain capability spanning inorganic crystals, molecular systems, surface chemistry, and reactive organic chemistry with a single model
- State-of-the-art performance across materials, molecular crystals, surfaces, and molecular benchmarks with a global performance score of 0.862
- Enhanced MACE architecture with improved weight sharing across chemical elements and non-linear tensor decomposition in the product basis
Model Overview
MACE-MH-1 has the following features:
- Type: E(3)-equivariant graph neural network for interatomic potentials
- Architecture: MACE
- Interaction Blocks: Non-linear
- Training Stages: Pre-training on OMAT-24 (100M inorganic crystals) + Multi-head fine-tuning on diverse datasets
- Hyper-Parameters: 512 node channels, 128 edge channels, L=2, max_ell=3, 2 layers
- Chemical Coverage: 89 elements
- Cutoff Radius: 6 Å
- Multiple Heads: OMAT PBE (main), OMOL (ωB97M-VV10), OC20 (surfaces), SPICE, RGD1, MPTraj, Matpes (r2scan)
For more details, please refer to the paper, GitHub repository, and MACE foundations.
Performance
Materials Benchmarks (PBE+U Reference)
| Benchmark | Metric | MACE-MH-1 | ORB-v3 | UMA-S-1.1 |
|---|---|---|---|---|
| Phonon BZ | MAE (K) | 5 | 15 | 9 |
| Phonon ωavg | MAE (K) | 3 | 5 | 4 |
| Phonon ωmin | MAE (K) | 11 | 29 | 21 |
| Phonon ωmax | MAE (K) | 12 | 12 | 11 |
| Entropy (300K) | MAE (J/mol·K) | 8 | 13 | 7 |
| Helmholtz Free Energy (300K) | MAE (kJ/mol) | 2 | 3 | 2 |
| Heat Capacity | MAE (J/mol·K) | 3 | 4 | 3 |
| Bulk Modulus | MAE (GPa) | 12.49 | 7.18 | 14.33 |
| Shear Modulus | MAE (GPa) | 7.95 | 8.03 | 8.18 |
| Thermal Conductivity | RMSE (W/mK) | 0.24 | 0.21 | 0.20 |
Molecular Crystal Benchmarks
| Benchmark | Metric | MACE-MH-1-OMAT-D3 | ORB-v3 | UMA-S-1.1-OMAT-D3 |
|---|---|---|---|---|
| X23 Formation Energy | MAE (kJ/mol) | 15.82 | 28.76 | 27.99 |
| Ice Polymorphs (DMC) | MAE (meV) | 11.23 | 138.44 | 310.82 |
Surface Benchmarks
| Benchmark | Metric | MACE-MH-1-OMAT-D3 | ORB-v3-D3 | UMA-S-1.1-OMAT-D3 |
|---|---|---|---|---|
| S24 Adsorption | MAE (eV) | 0.095 | 0.174 | 0.329 |
| OC20 Adsorption | MAE (eV) | 0.138 | 0.159 | 0.172 |
| OC20 Correlation | Pearson's r | 0.98 | 0.974 | 0.97 |
Molecular Benchmarks
| Benchmark | Metric | MACE-MH-1-OMAT-D3 | ORB-v3-D3 | UMA-S-1.1-OMAT-D3 |
|---|---|---|---|---|
| Wiggle150 | MAE (kcal/mol) | 4.80 | 7.65 | 6.60 |
| GMTKN55 Overall | WTMAD (kcal/mol) | 11.23 | 22.30 | 30.83 |
| PLF547 (proteins) | MAE (kcal/mol) | 0.626 | 1.829 | 2.935 |
| S30L (host-guest) | MAE (kcal/mol) | 10.13 | 13.64 | 15.14 |
Physicality Tests
| Test | Metric | MACE-MH-1 | ORB-v3 | UMA-S-1.1 |
|---|---|---|---|---|
| Slab Extensivity | Δ (meV) | 0.0 | -709.7 | -453.8 |
| H-Atom Additivity | max |ΔF| (meV/Å) | 0.0 | 61.65 | 969.2 |
| Diatomic Force Flips | Mean count | 2.09 | 2.91 | 10.73 |
| Diatomic Minima | Mean count | 1.42 | 1.62 | 4.82 |
Training Data
Pre-training
- OMAT-24: 100M configurations of inorganic crystals (PBE/PBE+U) spanning 89 elements
Multi-Head Fine-tuning
- OMAT Replay: 10M configurations (10% subset) to prevent catastrophic forgetting
- MPTraj: 1.5M configurations from Materials Project with PBE+U
- SPICE-1: ~1M organic molecules (ωB97M-D3(BJ)/def2-TZVP)
- OC20: 2M metal surface slabs and adsorbate complexes (PBE)
- OMOL-1%: 1.2M diverse organic and organometallic configurations (ωB97M-VV10)
- RGD1: 300K organic reaction intermediates and transition states (B3LYP/6-31G*)
- MATPES R2SCAN: 400K inorganic crystals (r²SCAN)
Installation and Usage
Installation
pip install mace-torch
Basic Usage (Python)
from mace.calculators import mace_mp
from ase import Atoms
# Load the MACE-MH-1 model (using the OMAT/PBE head)
calc = mace_mp(model=path, default_dtype="float64", device="cuda", head="omat_pbe")
# Create an example structure
atoms = Atoms('H2O', positions=[[0, 0, 0], [0, 0, 1], [0, 1, 0]])
atoms.calc = calc
# Calculate energy and forces
energy = atoms.get_potential_energy()
forces = atoms.get_forces()
print(f"Energy: {energy} eV")
print(f"Forces:\n{forces}")
Available Model Heads
MACE-MH-1 contains multiple task-specific heads trained on different levels of theory:
| Head Name | Level of Theory | Best For | Access |
|---|---|---|---|
| omat_pbe (default) | PBE/PBE+U | General materials, balanced performance across tasks | Specify in model |
| omol | ωB97M-VV10 | 1% of OMOL data: Molecular systems, organic chemistry, Organometallic | Specify in model |
| spice_wB97M | ωB97M-D3(BJ) | Molecular systems and organic chemistry | Specify in model |
| rgd1_b3lyp | B3LYP | Reaction chemistry | Specify in model |
| oc20_usemppbe | PBE | Surface catalysis, adsorbates | Specify in model |
| matpes_r2scan | r²SCAN meta-GGA | High-accuracy materials | Specify in model |
By default, the OMAT head (PBE) is used, which provides the best cross-domain performance.
Best Practices
- For fine-tuning: Use OMAT head first. Test other heads if needed.
- For materials: Use OMAT head. Use D3 corrections for systems with dispersions. Test matpes_r2scan head if r2scan better reference.
- For molecules: Consider using OMOL head (ωB97M-VV10) for improved intramolecular interactions. OMAT head good for condensed phase molecular systems, test it too.
- For surfaces: OMAT head provides excellent performance; OC20 head available for specialized applications
Citation
If you use MACE-MH-1 in your research, please cite:
@article{batatia2025crosslearning,
title={Cross Learning between Electronic Structure Theories for Unifying Molecular, Surface, and Inorganic Crystal Foundation Force Fields},
author={Batatia, Ilyes and Lin, Chen and Hart, Joseph and Kasoar, Elliott and Elena, Alin M. and Norwood, Sam Walton and Wolf, Thomas and Cs{\'a}nyi, G{\'a}bor},
journal={arXiv preprint arXiv:2510.25380},
year={2025}
}
@article{batatia2022mace,
title={MACE: Higher order equivariant message passing neural networks for fast and accurate force fields},
author={Batatia, Ilyes and Kovacs, David Peter and Simm, Gregor and Ortner, Christoph and Cs{\'a}nyi, G{\'a}bor},
journal={Advances in Neural Information Processing Systems},
volume={35},
pages={11423--11436},
year={2022}
}
License
This model is released under the ASL License.
Acknowledgments
This work was supported by computational resources from:
- Jean Zay HPC (Grand Challenge GC010815458)
- Isambard-AI and Sovereign AI
Contact
- GitHub: ACEsuit/mace
- Foundations: mace-foundations
- Issues: Please report issues on the GitHub repository
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
