Fine-tune 資訊
- 原始模型:
openai/whisper-large-v3
- 使用音訊數量: 25457
- 使用音訊總長: 14.65 小時
- 音訊平均長度: 2.07 秒
- GPU:
NVIDIA H100 PCIe
x 1 - 訓練時間: 06:31:20
- 模型大小: 5.75 GB
- 訓練參數:
- batch size: 8
- eval batch size: 4
- gradient checkpointing: True
- fp16: False
- bf16: True
Fine-tuned Whisper model for Legislative Yuan of Taiwan
This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0206
- Wer: 76.6006
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.025 | 0.3142 | 1000 | 0.0233 | 80.6920 |
0.0216 | 0.6283 | 2000 | 0.0224 | 79.8761 |
0.0229 | 0.9425 | 3000 | 0.0214 | 77.8751 |
0.0158 | 1.2567 | 4000 | 0.0210 | 77.3391 |
0.0123 | 1.5708 | 5000 | 0.0206 | 76.6006 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for luyotw/openfun-ivod-whisper-large-v3-negotiation-11-32
Base model
openai/whisper-large-v3