Fine-tune 資訊

  • 原始模型: openai/whisper-large-v3
  • 使用音訊數量: 25457
  • 使用音訊總長: 14.65 小時
  • 音訊平均長度: 2.07 秒
  • GPU: NVIDIA H100 PCIe x 1
  • 訓練時間: 06:31:20
  • 模型大小: 5.75 GB
  • 訓練參數:
    • batch size: 8
    • eval batch size: 4
    • gradient checkpointing: True
    • fp16: False
    • bf16: True

Fine-tuned Whisper model for Legislative Yuan of Taiwan

This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0206
  • Wer: 76.6006

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.025 0.3142 1000 0.0233 80.6920
0.0216 0.6283 2000 0.0224 79.8761
0.0229 0.9425 3000 0.0214 77.8751
0.0158 1.2567 4000 0.0210 77.3391
0.0123 1.5708 5000 0.0206 76.6006

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
12
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for luyotw/openfun-ivod-whisper-large-v3-negotiation-11-32

Finetuned
(560)
this model