veriforge-deepseek-coder-1.3b-instruct
This model is a QLoRA fine-tuned version of deepseek-ai/deepseek-coder-1.3b-instruct
, designed for the domain of Verilog RTL synthesis. It accepts natural-language descriptions of digital circuits and generates Verilog code modules.
✨ Model Details
- Base Model: DeepSeek-Coder-1.3B-Instruct (4-bit quantized)
- Fine-Tuning: QLoRA on Hugging Face
Trainer
API - Domain: Hardware Description Language (HDL), Electronic Design Automation (EDA)
- Tokenizer: AutoTokenizer with trust_remote_code=True
📚 Dataset
- Source: PyraNet-Verilog
- Content: Natural-language descriptions paired with their corresponding Verilog implementations
- Preprocessing: Reformatted into instruction-style prompts with markdown headers
🧪 Training Configuration
- Framework:
transformers
,peft
,accelerate
,bitsandbytes
- Epochs: 10
- Batch Size: 4 (with gradient accumulation of 4)
- Optimizer: AdamW
- Learning Rate: 2e-4
- Device: Google Colab GPU (supports A100/T4)
- Precision: 4-bit (QLoRA) + FP16 mixed-precision
🚀 Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("louijiec/veriforge-deepseek-coder-1.3b-instruct")
tokenizer = AutoTokenizer.from_pretrained("louijiec/veriforge-deepseek-coder-1.3b-instruct")
prompt = """### Task: Synthesize Verilog\nDesign a 2-to-1 multiplexer using behavioral modeling.\n### Verilog Code:"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
✅ Evaluation
This model has been sanity-checked using prompt-based outputs that are expected to include:
- Valid Verilog keywords (
module
,input
,output
,assign
,endmodule
) - Structured code starting with
module
- Coherent outputs for standard digital design prompts (e.g., multiplexers, adders, encoders)
For functional verification, use Icarus Verilog or Verilator to simulate output.
📎 Citations
- Dettmers et al. (2023). QLoRA: Efficient Finetuning of Quantized LLMs
- DeepSeek. deepseek-ai/deepseek-coder-1.3b-instruct
- Bnadimi. PyraNet-Verilog dataset
- Hugging Face 🤗 Transformers. https://github.com/huggingface/transformers
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support