|
from __future__ import annotations |
|
|
|
import math |
|
import warnings |
|
from typing import Any, Optional, Union, List |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from peft.tuners.lora import LoraLayer |
|
|
|
class MultiAdapterLinear(nn.Module, LoraLayer): |
|
""" |
|
Custom LoRA module supporting multiple adapters for a linear layer. |
|
|
|
This module extends the standard LoRA implementation to support multiple task-specific |
|
adapters that can be dynamically selected during the forward pass. The task_label |
|
parameter passed to the forward function determines which LoRA adapter(s) to use: |
|
- If task_label is a string, all examples in the batch use the same adapter |
|
- If task_label is a list of strings, each example can use a different adapter |
|
|
|
This enables efficient multi-task inference where all task-specific LoRA adapters |
|
are loaded in memory simultaneously and dynamically selected per example, eliminating |
|
the need to switch adapter states between tasks and allowing optimal throughput |
|
for mixed-task batches. |
|
|
|
Derived from peft.tuners.lora.Linear. |
|
""" |
|
def __init__( |
|
self, |
|
base_layer, |
|
adapter_name: str, |
|
task_names: List[str], |
|
r: int = 0, |
|
lora_alpha: int = 1, |
|
lora_dropout: float = 0.0, |
|
fan_in_fan_out: bool = False, |
|
is_target_conv_1d_layer: bool = False, |
|
init_lora_weights: Union[bool, str] = True, |
|
use_rslora: bool = False, |
|
use_dora: bool = False, |
|
lora_bias: bool = False, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
LoraLayer.__init__(self, base_layer, **kwargs) |
|
|
|
self.fan_in_fan_out = fan_in_fan_out |
|
self.task_names = task_names |
|
self._active_adapter = adapter_name |
|
self.update_layer( |
|
adapter_name, |
|
r, |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
init_lora_weights=init_lora_weights, |
|
use_rslora=use_rslora, |
|
use_dora=use_dora, |
|
lora_bias=lora_bias, |
|
) |
|
self.is_target_conv_1d_layer = is_target_conv_1d_layer |
|
|
|
|
|
def forward(self, x: torch.Tensor, task_label: Union[str, List[str]], *args: Any, **kwargs: Any) -> torch.Tensor: |
|
self._check_forward_args(x, *args, **kwargs) |
|
|
|
if self.disable_adapters: |
|
if self.merged: |
|
self.unmerge() |
|
result = self.base_layer(x, *args, **kwargs) |
|
elif self.merged: |
|
result = self.base_layer(x, *args, **kwargs) |
|
else: |
|
result = self.base_layer(x, *args, **kwargs) |
|
torch_result_dtype = result.dtype |
|
|
|
lora_A_keys = self.lora_A.keys() |
|
for active_adapter in self.active_adapters: |
|
if active_adapter not in lora_A_keys: |
|
continue |
|
|
|
if isinstance(task_label, str): |
|
lora_A = self.lora_A[active_adapter][task_label] |
|
lora_B = self.lora_B[active_adapter][task_label] |
|
dropout = self.lora_dropout[active_adapter] |
|
scaling = self.scaling[active_adapter] |
|
x = self._cast_input_dtype(x, lora_A.weight.dtype) |
|
result = result + lora_B(lora_A(dropout(x))) * scaling |
|
else: |
|
unique_tasks = list(set(task_label)) |
|
lora_output = torch.zeros_like(result) |
|
|
|
for task in unique_tasks: |
|
task_indices = [i for i, t in enumerate(task_label) if t == task] |
|
task_x = x[task_indices] |
|
|
|
lora_A = self.lora_A[active_adapter][task] |
|
lora_B = self.lora_B[active_adapter][task] |
|
dropout = self.lora_dropout[active_adapter] |
|
scaling = self.scaling[active_adapter] |
|
|
|
task_x = self._cast_input_dtype(task_x, lora_A.weight.dtype) |
|
task_lora_value = lora_B(lora_A(dropout(task_x))) * scaling |
|
|
|
for i, idx in enumerate(task_indices): |
|
lora_output[idx] = task_lora_value[i] |
|
|
|
result = result + lora_output |
|
|
|
result = result.to(torch_result_dtype) |
|
|
|
return result |
|
|
|
def __repr__(self) -> str: |
|
rep = super().__repr__() |
|
return "lora." + rep |
|
|
|
|
|
def update_layer( |
|
self, |
|
adapter_name, |
|
r, |
|
lora_alpha, |
|
lora_dropout, |
|
init_lora_weights, |
|
use_rslora, |
|
use_dora: bool = False, |
|
lora_bias: bool = False, |
|
): |
|
|
|
if r <= 0: |
|
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") |
|
|
|
self.r[adapter_name] = r |
|
self.lora_alpha[adapter_name] = lora_alpha |
|
if lora_dropout > 0.0: |
|
lora_dropout_layer = nn.Dropout(p=lora_dropout) |
|
else: |
|
lora_dropout_layer = nn.Identity() |
|
|
|
self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer})) |
|
|
|
self.lora_A[adapter_name] = nn.ModuleDict({ |
|
task_name: nn.Linear(self.in_features, r, bias=False) |
|
for task_name in self.task_names |
|
}) |
|
self.lora_B[adapter_name] = nn.ModuleDict({ |
|
task_name: nn.Linear(r, self.out_features, bias=lora_bias) |
|
for task_name in self.task_names |
|
}) |
|
self.lora_bias[adapter_name] = lora_bias |
|
|
|
if use_rslora: |
|
self.scaling[adapter_name] = lora_alpha / math.sqrt(r) |
|
else: |
|
self.scaling[adapter_name] = lora_alpha / r |
|
|
|
self.reset_lora_parameters(adapter_name, init_lora_weights) |
|
self._move_adapter_to_device_of_base_layer(adapter_name) |
|
self.use_dora[adapter_name] = False |
|
self.set_adapter(self.active_adapters) |
|
|
|
def reset_lora_parameters(self, adapter_name, init_lora_weights): |
|
if init_lora_weights is False: |
|
return |
|
if init_lora_weights is True: |
|
|
|
|
|
for task_name in self.task_names: |
|
nn.init.kaiming_uniform_(self.lora_A[adapter_name][task_name].weight, a=math.sqrt(5)) |
|
elif init_lora_weights.lower() == "gaussian": |
|
for task_name in self.task_names: |
|
nn.init.normal_(self.lora_A[adapter_name][task_name].weight, std=1 / self.r[adapter_name]) |
|
else: |
|
raise ValueError(f"Unknown initialization {init_lora_weights=}") |
|
for task_name in self.task_names: |
|
nn.init.zeros_(self.lora_B[adapter_name][task_name].weight) |
|
if self.lora_bias[adapter_name]: |
|
for task_name in self.task_names: |
|
nn.init.zeros_(self.lora_B[adapter_name][task_name].bias) |
|
|
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: |
|
""" |
|
Merge the active adapter weights into the base weights |
|
""" |
|
raise NotImplementedError("Merge operation is not supported") |
|
|
|
def unmerge(self) -> None: |
|
""" |
|
This method unmerges all merged adapter layers from the base weights. |
|
""" |
|
raise NotImplementedError("Unmerge operation is not supported") |
|
|