fire_1/0.05/128/64/True/defined.phastCons.percentile-75_0.05_0.001/small/0.1/42/50000/True/True/0.1
This model is a fine-tuned version of on the results/dataset/128/64/True/defined.phastCons.percentile-75_0.05_0.001 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1115
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 512
- total_eval_batch_size: 1024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2500
- training_steps: 50000
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.1298 | 1.9450 | 5000 | 0.1270 |
| 0.1192 | 3.8897 | 10000 | 0.1170 |
| 0.1164 | 5.8345 | 15000 | 0.1148 |
| 0.1149 | 7.7792 | 20000 | 0.1128 |
| 0.1137 | 9.7240 | 25000 | 0.1121 |
| 0.1131 | 11.6687 | 30000 | 0.1120 |
| 0.1126 | 13.6135 | 35000 | 0.1124 |
| 0.1124 | 15.5583 | 40000 | 0.1117 |
| 0.1124 | 17.5030 | 45000 | 0.1112 |
| 0.1122 | 19.4478 | 50000 | 0.1116 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu128
- Datasets 4.1.1
- Tokenizers 0.22.1
- Downloads last month
- 5