fire_1/0.05/128/64/True/defined.phastCons.percentile-75_0.05_0.001/small/0.1/42/50000/True/True/0.1

This model is a fine-tuned version of on the results/dataset/128/64/True/defined.phastCons.percentile-75_0.05_0.001 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1115

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 512
  • total_eval_batch_size: 1024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2500
  • training_steps: 50000

Training results

Training Loss Epoch Step Validation Loss
0.1298 1.9450 5000 0.1270
0.1192 3.8897 10000 0.1170
0.1164 5.8345 15000 0.1148
0.1149 7.7792 20000 0.1128
0.1137 9.7240 25000 0.1121
0.1131 11.6687 30000 0.1120
0.1126 13.6135 35000 0.1124
0.1124 15.5583 40000 0.1117
0.1124 17.5030 45000 0.1112
0.1122 19.4478 50000 0.1116

Framework versions

  • Transformers 4.56.2
  • Pytorch 2.8.0+cu128
  • Datasets 4.1.1
  • Tokenizers 0.22.1
Downloads last month
5
Safetensors
Model size
25.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support