Version_concise_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6314
  • Qwk: 0.5673
  • Mse: 0.6310
  • Rmse: 0.7944

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 4 9.0759 0.0 9.0732 3.0122
No log 2.0 8 5.1924 0.0380 5.1903 2.2782
No log 3.0 12 3.0938 0.0 3.0920 1.7584
No log 4.0 16 2.0498 0.0379 2.0481 1.4311
No log 5.0 20 1.5627 0.0 1.5611 1.2494
No log 6.0 24 1.2314 0.0 1.2299 1.1090
No log 7.0 28 1.5684 0.0211 1.5669 1.2517
No log 8.0 32 1.1449 0.0315 1.1435 1.0693
No log 9.0 36 1.2510 0.1027 1.2495 1.1178
No log 10.0 40 1.2520 0.0972 1.2506 1.1183
No log 11.0 44 0.7563 0.4286 0.7550 0.8689
No log 12.0 48 0.9158 0.2918 0.9143 0.9562
No log 13.0 52 1.2156 0.2427 1.2139 1.1018
No log 14.0 56 0.7052 0.4126 0.7041 0.8391
No log 15.0 60 0.9944 0.3434 0.9930 0.9965
No log 16.0 64 0.6705 0.4787 0.6693 0.8181
No log 17.0 68 0.6490 0.4527 0.6479 0.8049
No log 18.0 72 0.6466 0.4722 0.6456 0.8035
No log 19.0 76 0.6846 0.4632 0.6838 0.8269
No log 20.0 80 0.9050 0.4045 0.9037 0.9507
No log 21.0 84 0.6879 0.5133 0.6869 0.8288
No log 22.0 88 0.9509 0.3829 0.9494 0.9744
No log 23.0 92 0.7990 0.4621 0.7982 0.8934
No log 24.0 96 1.0442 0.3851 1.0427 1.0211
No log 25.0 100 0.9479 0.4245 0.9475 0.9734
No log 26.0 104 0.7584 0.4891 0.7577 0.8705
No log 27.0 108 0.7376 0.4773 0.7367 0.8583
No log 28.0 112 1.3238 0.3392 1.3237 1.1505
No log 29.0 116 0.7661 0.4673 0.7652 0.8748
No log 30.0 120 0.8605 0.4837 0.8600 0.9274
No log 31.0 124 0.9785 0.4690 0.9783 0.9891
No log 32.0 128 0.8292 0.4989 0.8287 0.9103
No log 33.0 132 0.7663 0.5244 0.7656 0.8750
No log 34.0 136 1.1897 0.4035 1.1897 1.0907
No log 35.0 140 0.7333 0.4626 0.7323 0.8557
No log 36.0 144 0.6917 0.5176 0.6910 0.8312
No log 37.0 148 0.9150 0.4324 0.9148 0.9564
No log 38.0 152 0.7155 0.4968 0.7145 0.8453
No log 39.0 156 1.0108 0.4593 1.0104 1.0052
No log 40.0 160 0.7658 0.5399 0.7652 0.8747
No log 41.0 164 0.7358 0.5375 0.7352 0.8575
No log 42.0 168 0.9652 0.4605 0.9650 0.9824
No log 43.0 172 0.6609 0.5254 0.6603 0.8126
No log 44.0 176 0.9928 0.4636 0.9927 0.9964
No log 45.0 180 0.6912 0.5395 0.6907 0.8311
No log 46.0 184 0.7946 0.5292 0.7943 0.8913
No log 47.0 188 0.6701 0.5598 0.6697 0.8183
No log 48.0 192 0.8717 0.5226 0.8715 0.9335
No log 49.0 196 0.6677 0.5466 0.6670 0.8167
No log 50.0 200 0.8499 0.5176 0.8497 0.9218
No log 51.0 204 0.8897 0.4987 0.8896 0.9432
No log 52.0 208 0.6282 0.5419 0.6275 0.7921
No log 53.0 212 1.2012 0.4310 1.2013 1.0960
No log 54.0 216 1.2204 0.4150 1.2204 1.1047
No log 55.0 220 0.6971 0.5080 0.6963 0.8344
No log 56.0 224 0.7239 0.5409 0.7233 0.8505
No log 57.0 228 0.8197 0.5103 0.8195 0.9053
No log 58.0 232 0.5932 0.5743 0.5926 0.7698
No log 59.0 236 0.7753 0.5168 0.7751 0.8804
No log 60.0 240 0.6967 0.5337 0.6964 0.8345
No log 61.0 244 0.6374 0.5700 0.6370 0.7981
No log 62.0 248 0.6016 0.5701 0.6010 0.7753
No log 63.0 252 0.8185 0.5142 0.8184 0.9047
No log 64.0 256 0.7784 0.5255 0.7782 0.8822
No log 65.0 260 0.6558 0.5505 0.6553 0.8095
No log 66.0 264 0.8957 0.4917 0.8957 0.9464
No log 67.0 268 0.7644 0.5035 0.7642 0.8742
No log 68.0 272 0.6337 0.5294 0.6330 0.7956
No log 69.0 276 0.7035 0.5508 0.7033 0.8386
No log 70.0 280 0.7065 0.5483 0.7062 0.8404
No log 71.0 284 0.6405 0.5193 0.6397 0.7998
No log 72.0 288 0.6470 0.5306 0.6466 0.8041
No log 73.0 292 0.8013 0.5023 0.8011 0.8950
No log 74.0 296 0.6322 0.5392 0.6315 0.7947
No log 75.0 300 0.6380 0.5361 0.6374 0.7983
No log 76.0 304 0.7026 0.5561 0.7023 0.8380
No log 77.0 308 0.6170 0.5577 0.6165 0.7852
No log 78.0 312 0.6314 0.5673 0.6310 0.7944

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold1

Finetuned
(6084)
this model