Version_concise_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold1
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6314
- Qwk: 0.5673
- Mse: 0.6310
- Rmse: 0.7944
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|---|---|---|---|---|---|---|
| No log | 1.0 | 4 | 9.0759 | 0.0 | 9.0732 | 3.0122 |
| No log | 2.0 | 8 | 5.1924 | 0.0380 | 5.1903 | 2.2782 |
| No log | 3.0 | 12 | 3.0938 | 0.0 | 3.0920 | 1.7584 |
| No log | 4.0 | 16 | 2.0498 | 0.0379 | 2.0481 | 1.4311 |
| No log | 5.0 | 20 | 1.5627 | 0.0 | 1.5611 | 1.2494 |
| No log | 6.0 | 24 | 1.2314 | 0.0 | 1.2299 | 1.1090 |
| No log | 7.0 | 28 | 1.5684 | 0.0211 | 1.5669 | 1.2517 |
| No log | 8.0 | 32 | 1.1449 | 0.0315 | 1.1435 | 1.0693 |
| No log | 9.0 | 36 | 1.2510 | 0.1027 | 1.2495 | 1.1178 |
| No log | 10.0 | 40 | 1.2520 | 0.0972 | 1.2506 | 1.1183 |
| No log | 11.0 | 44 | 0.7563 | 0.4286 | 0.7550 | 0.8689 |
| No log | 12.0 | 48 | 0.9158 | 0.2918 | 0.9143 | 0.9562 |
| No log | 13.0 | 52 | 1.2156 | 0.2427 | 1.2139 | 1.1018 |
| No log | 14.0 | 56 | 0.7052 | 0.4126 | 0.7041 | 0.8391 |
| No log | 15.0 | 60 | 0.9944 | 0.3434 | 0.9930 | 0.9965 |
| No log | 16.0 | 64 | 0.6705 | 0.4787 | 0.6693 | 0.8181 |
| No log | 17.0 | 68 | 0.6490 | 0.4527 | 0.6479 | 0.8049 |
| No log | 18.0 | 72 | 0.6466 | 0.4722 | 0.6456 | 0.8035 |
| No log | 19.0 | 76 | 0.6846 | 0.4632 | 0.6838 | 0.8269 |
| No log | 20.0 | 80 | 0.9050 | 0.4045 | 0.9037 | 0.9507 |
| No log | 21.0 | 84 | 0.6879 | 0.5133 | 0.6869 | 0.8288 |
| No log | 22.0 | 88 | 0.9509 | 0.3829 | 0.9494 | 0.9744 |
| No log | 23.0 | 92 | 0.7990 | 0.4621 | 0.7982 | 0.8934 |
| No log | 24.0 | 96 | 1.0442 | 0.3851 | 1.0427 | 1.0211 |
| No log | 25.0 | 100 | 0.9479 | 0.4245 | 0.9475 | 0.9734 |
| No log | 26.0 | 104 | 0.7584 | 0.4891 | 0.7577 | 0.8705 |
| No log | 27.0 | 108 | 0.7376 | 0.4773 | 0.7367 | 0.8583 |
| No log | 28.0 | 112 | 1.3238 | 0.3392 | 1.3237 | 1.1505 |
| No log | 29.0 | 116 | 0.7661 | 0.4673 | 0.7652 | 0.8748 |
| No log | 30.0 | 120 | 0.8605 | 0.4837 | 0.8600 | 0.9274 |
| No log | 31.0 | 124 | 0.9785 | 0.4690 | 0.9783 | 0.9891 |
| No log | 32.0 | 128 | 0.8292 | 0.4989 | 0.8287 | 0.9103 |
| No log | 33.0 | 132 | 0.7663 | 0.5244 | 0.7656 | 0.8750 |
| No log | 34.0 | 136 | 1.1897 | 0.4035 | 1.1897 | 1.0907 |
| No log | 35.0 | 140 | 0.7333 | 0.4626 | 0.7323 | 0.8557 |
| No log | 36.0 | 144 | 0.6917 | 0.5176 | 0.6910 | 0.8312 |
| No log | 37.0 | 148 | 0.9150 | 0.4324 | 0.9148 | 0.9564 |
| No log | 38.0 | 152 | 0.7155 | 0.4968 | 0.7145 | 0.8453 |
| No log | 39.0 | 156 | 1.0108 | 0.4593 | 1.0104 | 1.0052 |
| No log | 40.0 | 160 | 0.7658 | 0.5399 | 0.7652 | 0.8747 |
| No log | 41.0 | 164 | 0.7358 | 0.5375 | 0.7352 | 0.8575 |
| No log | 42.0 | 168 | 0.9652 | 0.4605 | 0.9650 | 0.9824 |
| No log | 43.0 | 172 | 0.6609 | 0.5254 | 0.6603 | 0.8126 |
| No log | 44.0 | 176 | 0.9928 | 0.4636 | 0.9927 | 0.9964 |
| No log | 45.0 | 180 | 0.6912 | 0.5395 | 0.6907 | 0.8311 |
| No log | 46.0 | 184 | 0.7946 | 0.5292 | 0.7943 | 0.8913 |
| No log | 47.0 | 188 | 0.6701 | 0.5598 | 0.6697 | 0.8183 |
| No log | 48.0 | 192 | 0.8717 | 0.5226 | 0.8715 | 0.9335 |
| No log | 49.0 | 196 | 0.6677 | 0.5466 | 0.6670 | 0.8167 |
| No log | 50.0 | 200 | 0.8499 | 0.5176 | 0.8497 | 0.9218 |
| No log | 51.0 | 204 | 0.8897 | 0.4987 | 0.8896 | 0.9432 |
| No log | 52.0 | 208 | 0.6282 | 0.5419 | 0.6275 | 0.7921 |
| No log | 53.0 | 212 | 1.2012 | 0.4310 | 1.2013 | 1.0960 |
| No log | 54.0 | 216 | 1.2204 | 0.4150 | 1.2204 | 1.1047 |
| No log | 55.0 | 220 | 0.6971 | 0.5080 | 0.6963 | 0.8344 |
| No log | 56.0 | 224 | 0.7239 | 0.5409 | 0.7233 | 0.8505 |
| No log | 57.0 | 228 | 0.8197 | 0.5103 | 0.8195 | 0.9053 |
| No log | 58.0 | 232 | 0.5932 | 0.5743 | 0.5926 | 0.7698 |
| No log | 59.0 | 236 | 0.7753 | 0.5168 | 0.7751 | 0.8804 |
| No log | 60.0 | 240 | 0.6967 | 0.5337 | 0.6964 | 0.8345 |
| No log | 61.0 | 244 | 0.6374 | 0.5700 | 0.6370 | 0.7981 |
| No log | 62.0 | 248 | 0.6016 | 0.5701 | 0.6010 | 0.7753 |
| No log | 63.0 | 252 | 0.8185 | 0.5142 | 0.8184 | 0.9047 |
| No log | 64.0 | 256 | 0.7784 | 0.5255 | 0.7782 | 0.8822 |
| No log | 65.0 | 260 | 0.6558 | 0.5505 | 0.6553 | 0.8095 |
| No log | 66.0 | 264 | 0.8957 | 0.4917 | 0.8957 | 0.9464 |
| No log | 67.0 | 268 | 0.7644 | 0.5035 | 0.7642 | 0.8742 |
| No log | 68.0 | 272 | 0.6337 | 0.5294 | 0.6330 | 0.7956 |
| No log | 69.0 | 276 | 0.7035 | 0.5508 | 0.7033 | 0.8386 |
| No log | 70.0 | 280 | 0.7065 | 0.5483 | 0.7062 | 0.8404 |
| No log | 71.0 | 284 | 0.6405 | 0.5193 | 0.6397 | 0.7998 |
| No log | 72.0 | 288 | 0.6470 | 0.5306 | 0.6466 | 0.8041 |
| No log | 73.0 | 292 | 0.8013 | 0.5023 | 0.8011 | 0.8950 |
| No log | 74.0 | 296 | 0.6322 | 0.5392 | 0.6315 | 0.7947 |
| No log | 75.0 | 300 | 0.6380 | 0.5361 | 0.6374 | 0.7983 |
| No log | 76.0 | 304 | 0.7026 | 0.5561 | 0.7023 | 0.8380 |
| No log | 77.0 | 308 | 0.6170 | 0.5577 | 0.6165 | 0.7852 |
| No log | 78.0 | 312 | 0.6314 | 0.5673 | 0.6310 | 0.7944 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- -
Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold1
Base model
google-bert/bert-base-uncased