Deep Model Fusion
Fine-tuned ResNet model on dataset cifar100.
Models Merged
This is a merged model created using fusion-bench.
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
Algorithm Configuration
_recursive_: false
_target_: fusion_bench.method.classification.image_classification_finetune.ImageClassificationFineTuning
_usage_: null
_version_: 0.2.25.dev0
dataloader_kwargs:
batch_size: 128
num_workers: 8
pin_memory: true
label_smoothing: 0
lr_scheduler: null
max_epochs: -1
max_steps: 4000
optimizer:
_target_: torch.optim.SGD
lr: 0.001
momentum: 0.9
weight_decay: 0.0001
save_interval: 1000
save_on_train_epoch_end: false
save_top_k: -1
training_data_ratio: 0.5
Model Pool Configuration
_recursive_: false
_target_: fusion_bench.modelpool.resnet_for_image_classification.ResNetForImageClassificationPool
_usage_: null
_version_: 0.2.25.dev0
models:
_pretrained_:
config_path: microsoft/resnet-152
dataset_name: cifar100
pretrained: true
test_datasets: null
train_datasets:
cifar100:
_target_: datasets.load_dataset
path: tanganke/cifar100
split: train
type: transformers
val_datasets:
cifar100:
_target_: datasets.load_dataset
path: tanganke/cifar100
split: test
- Downloads last month
- 15
Model tree for fusion-bench/resnet152-cifar100-batch_size_128_lr_0.001_training_data_ratio_0.5-2000
Base model
microsoft/resnet-152