Visualize in Weights & Biases Visualize in Weights & Biases

ap-LracgWanIBIvdjeHeDoO07

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5750
  • Model Preparation Time: 0.025
  • Wer: 0.1411

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 16
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer
0.3835 1.0 250 0.4302 0.025 0.2568
0.3373 2.0 500 0.4448 0.025 0.1976
0.2796 3.0 750 0.3961 0.025 0.1652
0.2106 4.0 1000 0.3875 0.025 0.1811
0.1608 5.0 1250 0.3860 0.025 0.1693
0.1203 6.0 1500 0.3717 0.025 0.1520
0.0948 7.0 1750 0.3979 0.025 0.1592
0.0723 8.0 2000 0.4183 0.025 0.1511
0.0569 9.0 2250 0.4161 0.025 0.1597
0.0423 10.0 2500 0.4580 0.025 0.1540
0.031 11.0 2750 0.4652 0.025 0.1389
0.0208 12.0 3000 0.4817 0.025 0.1391
0.0162 13.0 3250 0.5002 0.025 0.1369
0.0087 14.0 3500 0.5394 0.025 0.1378
0.0033 15.0 3750 0.5667 0.025 0.1400
0.0013 15.9365 3984 0.5750 0.025 0.1411

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.2
Downloads last month
3
Safetensors
Model size
0.8B params
Tensor type
F16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for dhaval0108/whisper-large-v3-turbo-finetuned-frozen-encoder

Finetuned
(387)
this model