| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						license: mit | 
					
					
						
						| 
							 | 
						library_name: transformers | 
					
					
						
						| 
							 | 
						base_model: | 
					
					
						
						| 
							 | 
						  - deepseek-ai/DeepSeek-V3.2-Exp-Base | 
					
					
						
						| 
							 | 
						base_model_relation: finetune | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						# DeepSeek-V3.2-Exp | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<!-- markdownlint-disable first-line-h1 --> | 
					
					
						
						| 
							 | 
						<!-- markdownlint-disable html --> | 
					
					
						
						| 
							 | 
						<!-- markdownlint-disable no-duplicate-header --> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<div align="center"> | 
					
					
						
						| 
							 | 
						  <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" /> | 
					
					
						
						| 
							 | 
						</div> | 
					
					
						
						| 
							 | 
						<hr> | 
					
					
						
						| 
							 | 
						<div align="center" style="line-height: 1;"> | 
					
					
						
						| 
							 | 
						  <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;"> | 
					
					
						
						| 
							 | 
						    <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/> | 
					
					
						
						| 
							 | 
						  </a> | 
					
					
						
						| 
							 | 
						  <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;"> | 
					
					
						
						| 
							 | 
						    <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V3-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/> | 
					
					
						
						| 
							 | 
						  </a> | 
					
					
						
						| 
							 | 
						  <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;"> | 
					
					
						
						| 
							 | 
						    <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> | 
					
					
						
						| 
							 | 
						  </a> | 
					
					
						
						| 
							 | 
						</div> | 
					
					
						
						| 
							 | 
						<div align="center" style="line-height: 1;"> | 
					
					
						
						| 
							 | 
						  <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;"> | 
					
					
						
						| 
							 | 
						    <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/> | 
					
					
						
						| 
							 | 
						  </a> | 
					
					
						
						| 
							 | 
						  <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;"> | 
					
					
						
						| 
							 | 
						    <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/> | 
					
					
						
						| 
							 | 
						  </a> | 
					
					
						
						| 
							 | 
						  <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;"> | 
					
					
						
						| 
							 | 
						    <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> | 
					
					
						
						| 
							 | 
						  </a> | 
					
					
						
						| 
							 | 
						</div> | 
					
					
						
						| 
							 | 
						<div align="center" style="line-height: 1;"> | 
					
					
						
						| 
							 | 
						  <a href="LICENSE" style="margin: 2px;"> | 
					
					
						
						| 
							 | 
						    <img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> | 
					
					
						
						| 
							 | 
						  </a> | 
					
					
						
						| 
							 | 
						</div> | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Introduction | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						We are excited to announce the official release of DeepSeek-V3.2-Exp, an experimental version of our model. As an intermediate step toward our next-generation architecture, V3.2-Exp builds upon V3.1-Terminus by introducing DeepSeek Sparse Attention—a sparse attention mechanism designed to explore and validate optimizations for training and inference efficiency in long-context scenarios. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This experimental release represents our ongoing research into more efficient transformer architectures, particularly focusing on improving computational efficiency when processing extended text sequences. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<div align="center"> | 
					
					
						
						| 
							 | 
						 <img src="assets/cost.png" > | 
					
					
						
						| 
							 | 
						</div> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- DeepSeek Sparse Attention (DSA) achieves fine-grained sparse attention for the first time, delivering substantial improvements in long-context training and inference efficiency while maintaining virtually identical model output quality. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- To rigorously evaluate the impact of introducing sparse attention, we deliberately aligned the training configurations of DeepSeek-V3.2-Exp with V3.1-Terminus. Across public benchmarks in various domains, DeepSeek-V3.2-Exp demonstrates performance on par with V3.1-Terminus. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						| Benchmark | DeepSeek-V3.1-Terminus | DeepSeek-V3.2-Exp | | 
					
					
						
						| 
							 | 
						| :--- | :---: | :---: | | 
					
					
						
						| 
							 | 
						| **Reasoning Mode w/o Tool Use** | | | | 
					
					
						
						| 
							 | 
						| MMLU-Pro | 85.0 | 85.0 | | 
					
					
						
						| 
							 | 
						| GPQA-Diamond | 80.7 | 79.9 | | 
					
					
						
						| 
							 | 
						| Humanity's Last Exam | 21.7 | 19.8 | | 
					
					
						
						| 
							 | 
						| LiveCodeBench | 74.9 | 74.1 | | 
					
					
						
						| 
							 | 
						| AIME 2025 | 88.4 | 89.3 | | 
					
					
						
						| 
							 | 
						| HMMT 2025 | 86.1 | 83.6 | | 
					
					
						
						| 
							 | 
						| Codeforces | 2046 | 2121 | | 
					
					
						
						| 
							 | 
						| Aider-Polyglot | 76.1 | 74.5 | | 
					
					
						
						| 
							 | 
						| **Agentic Tool Use** | | | | 
					
					
						
						| 
							 | 
						| BrowseComp | 38.5 | 40.1 | | 
					
					
						
						| 
							 | 
						| BrowseComp-zh | 45.0 | 47.9 | | 
					
					
						
						| 
							 | 
						| SimpleQA | 96.8 | 97.1 | | 
					
					
						
						| 
							 | 
						| SWE Verified | 68.4 | 67.8 | | 
					
					
						
						| 
							 | 
						| SWE-bench Multilingual | 57.8 | 57.9 | | 
					
					
						
						| 
							 | 
						| Terminal-bench | 36.7 | 37.7 | | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## How to Run Locally | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### HuggingFace | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						We provide an updated inference demo code in the [inference](https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp/tree/main/inference) folder to help the community quickly get started with our model and understand its architectural details. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						First convert huggingface model weights to the the format required by our inference demo. Set `MP` to match your available GPU count: | 
					
					
						
						| 
							 | 
						```bash | 
					
					
						
						| 
							 | 
						cd inference | 
					
					
						
						| 
							 | 
						export EXPERTS=256 | 
					
					
						
						| 
							 | 
						python convert.py --hf-ckpt-path ${HF_CKPT_PATH} --save-path ${SAVE_PATH} --n-experts ${EXPERTS} --model-parallel ${MP} | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Launch the interactive chat interface and start exploring DeepSeek's capabilities: | 
					
					
						
						| 
							 | 
						```bash | 
					
					
						
						| 
							 | 
						export CONFIG=config_671B_v3.2.json | 
					
					
						
						| 
							 | 
						torchrun --nproc-per-node ${MP} generate.py --ckpt-path ${SAVE_PATH} --config ${CONFIG} --interactive | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### SGLang | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#### Installation with Docker | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						# H200 | 
					
					
						
						| 
							 | 
						docker pull lmsysorg/sglang:dsv32 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# MI350 | 
					
					
						
						| 
							 | 
						docker pull lmsysorg/sglang:dsv32-rocm | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# NPUs | 
					
					
						
						| 
							 | 
						docker pull lmsysorg/sglang:dsv32-a2 | 
					
					
						
						| 
							 | 
						docker pull lmsysorg/sglang:dsv32-a3 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#### Launch Command | 
					
					
						
						| 
							 | 
						```bash | 
					
					
						
						| 
							 | 
						python -m sglang.launch_server --model deepseek-ai/DeepSeek-V3.2-Exp --tp 8 --dp 8 --enable-dp-attention | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### vLLM | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						vLLM provides day-0 support of DeepSeek-V3.2-Exp. See the [recipes](https://docs.vllm.ai/projects/recipes/en/latest/DeepSeek/DeepSeek-V3_2-Exp.html) for up-to-date details. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Open-Source Kernels | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						For TileLang kernels with **better readability and research-purpose design**, please refer to [TileLang](https://github.com/tile-ai/tilelang/tree/main/examples/deepseek_v32). | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						For **high-performance CUDA kernels**, indexer logit kernels (including paged versions) are available in [DeepGEMM](https://github.com/deepseek-ai/DeepGEMM/pull/200). Sparse attention kernels are released in [FlashMLA](https://github.com/deepseek-ai/FlashMLA/pull/98). | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## License | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This repository and the model weights are licensed under the [MIT License](LICENSE). | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Citation | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						@misc{deepseekai2024deepseekv32, | 
					
					
						
						| 
							 | 
						      title={DeepSeek-V3.2-Exp: Boosting Long-Context Efficiency with DeepSeek Sparse Attention},  | 
					
					
						
						| 
							 | 
						      author={DeepSeek-AI}, | 
					
					
						
						| 
							 | 
						      year={2025}, | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Contact | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com). |