Dataset Viewer
Auto-converted to Parquet
id
large_stringlengths
2
10
label
large_stringlengths
0
250
description
large_stringlengths
0
286
Q1469
Loire
longest river in France
Q1644
Elbe
major river in Central Europe
Q3190
2012 Rhythmic Gymnastics European Championships
sporting event
Q3908
Galicia
autonomous community of Spain
Q4358
2012 Ukrainian parliamentary election
Ukrainian parliamentary election of 2012
Q5351
Guillaume IX
Duke of Aquitaine and Gascony and Count of Poitou
Q5902
Red Dwarf
science-fiction comedy television programme
Q6654
Croatian
South Slavic language spoken in Croatia
Q6775
Höckendorf
village and former municipality in Saxony, Germany
Q7788
Khabarovsk Krai
federal subject of Russia
Q10034
Bunschoten
municipality in the Netherlands
Q10237
Romano Canavese
Italian comune
Q10640
Football Manager
series of association football management simulation games
Q10830
Montecastrilli
town in the region Umbria, Italy
Q11052
Nümbrecht
municipality in the Oberbergischer Kreis, in Northrhine-Westfalia, Germany
Q11394
endangered species
species of organisms facing a very high risk of extinction
Q12751
Haute-Savoie
French department
Q14336
Teruel
municipality of Aragon, Spain, in the province of Teruel and the comarca of Communidad de Teruel
Q14561
Wayland
computer display server protocol
Q15071
2010 Australian Grand Prix
2010 Formula One World Championship race
Q15802
Daniel Passarella
Argentine footballer (born 1953)
Q16303
Cormot-le-Grand
former commune in Côte-d'Or, France
Q16917
hospital
health care facility
Q16919
Malloa
Chilean commune and town
Q18063
Donato
Italian comune
Q18810
Urohidrosis
habit in some birds
Q19308
Hitman
video game series
Q19365
Vicente Guaita
Spanish association football player
Q21029
ISO 3166-2:HU
entry for Hungary in ISO 3166-2
Q21783
Arzviller
commune in Moselle, France
Q21795
Ceratophyllum
genus of plants
Q22388
Château-Voué
commune in Moselle, France
Q22487
Mandello Vitta
Italian comune
Q22576
Santeri Paloniemi
Finnish alpine skier
Q23261
Hideaki Anno
Japanese animator, film director, businessman (born 1960)
Q23882
ZX Spectrum
series of personal home computers
Q24707
Ministry of the colleges and universities of the GDR
body who oversaw higher education in German Democratic Republic
Q25149
Aristomachos
Wikimedia disambiguation page
Q25232
Benetice
part of Světlá nad Sázavou in Havlíčkův Brod District
Q27753
S
Wikimedia disambiguation page
Q28921
Hanna Schygulla
German actress and chanson singer
Q29288
Caesar
cocktail created and primarily consumed in Canada
Q29624
Zhubei City
A county-administered city in Hsinchu County, Taiwan
Q29774
International Organization of Supreme Audit Institutions
worldwide affiliation of governmental entities
Q29880
Ben Botica
rugby union player
Q30540
HAL
Wikimedia disambiguation page
Q30675
Minya Governorate
Egyptian governorate
Q31736
Larry O'Brien Championship Trophy
basketball trophy
Q33647
Kreisgrabenanlage Dresden-Nickern
heritage monument in Dresden, Germany
Q33663
Omagua
Tupí-Guaraní language of Peru
Q33740
Ormuri
language
Q33849
Thianges
commune in Nièvre, France
Q35533
Kaingang
Indigenous Brazilian ethnic group
Q35818
Fornax Dwarf
dwarf galaxy
Q36734
Phoenician
ancient Semitic language of the Mediterranean
Q36996
Holy Trinity Cathedral of Tbilisi
Cathedral in Tbilisi, Georgia
Q37587
Valentine's Day
holiday observed on February 14 to celebrate love and friendship
Q37593
Pyramid Creek Falls Provincial Park
waterfall in Near Blue River
Q39857
Rea
Italian comune
Q40169
Assyria
Roman province (116–118 AD)
Q41472
Mohs scale of mineral hardness
qualitative ordinal scale characterizing scratch resistance of various minerals
Q41726
freemasonry
group of fraternal organizations
Q41753
Klagenfurt am Wörthersee
capital city of Carinthia, Austria
Q42375
International Mother Language Day
worldwide annual observance to promote awareness of linguistic and cultural diversity
Q42565
Oggiono
Italian comune
Q42700
Khao Manee
cat breed
Q43269
Zulia
state of Venezuela
Q43329
Gratsjovka
village in Kaliningrad, Russia
Q43490
Manicoré
municipality of Brazil
Q44113
I Don't Know Anything
single
Q44732
Battle of the Golden Spurs
1302 battle between Flamish citizens and the king
Q45456
Ainsley Howard
British actress
Q45573
Eli Whiteside
American baseball catcher
Q45579
Marie des Anges
Italian religious
Q45580
Franz Stelzhamer
(1802-1874)
Q46631
Vazzola
Italian comune
Q47092
rape
type of sexual assault usually involving sexual intercourse without consent
Q47978
Hatana
islet in Rotuma, a dependency of Fiji
Q48481
Torri del Benaco
commune in Province of Verona
Q49278
Order of Railroad Telegraphers
United States labor union established in the late nineteenth century to promote the interests of telegraph operators working for the railroads
Q49393
projectile
any object thrown into space (empty or not) by the exertion of a force
Q49751
voiced pharyngeal fricative
type of consonantal sound used in some spoken languages
Q51269
?
episode of Lost (S2 E21)
Q52103
Talla
Italian comune
Q53553
Alexa Glatch
American tennis player
Q53793
Siedenbollentin
municipality of Germany
Q54232
Oreol 1
Q54414
1992 Brazilian Grand Prix
Formula One motor race held at Interlagos
Q55191
Katherine Pulaski
fictional character, chief medical officer in Star Trek: The Next Generation
Q55339
Pichanges
commune in Côte-d'Or, France
Q55937
Polish politician
Q56075
Monsampolo del Tronto
Italian comune
Q56143
Chosun University
private university in Gwangju, South Korea
Q56168
Timucua
Native American people
Q56251
Kera
Chadic language of Chad and Cameroon
Q56373
Zeme
Tibetan–Burman language of Northeastern India
Q56587
Feylis
Kurdish tribe
Q57531
Princess Ludovika, Duchess in Bavaria
Bavarian Royal and Noble (1808-1892)
Q57534
Mohammed Magariaf
Libyan politician
Q58393
Dodonaea viscosa
species of plant
End of preview. Expand in Data Studio

Wikidata Label Maps 2025-08-20

Label maps extracted from the 2025-08-20 Wikidata dump.
Use these to resolve Q and P identifiers to English labels quickly.

Files

  • entity_map.parquet - columns: id, label, description
    Q items. 77.4M rows.
  • prop_map.parquet - columns: id, label, description, datatype
    P items. 11,568 rows.

All files are Parquet with Zstandard compression.

Download Options

A) Hugging Face snapshot to a local folder

from huggingface_hub import snapshot_download
local_dir = snapshot_download(repo_id="yashkumaratri/wikidata-label-maps-20250820")
print(local_dir)  # contains entity_map.parquet and prop_map.parquet

B) Git LFS

git lfs install
git clone https://huggingface.co/datasets/yashkumaratri/wikidata-label-maps-20250820

Citation

If you find this dataset useful in your research or applications, please consider citing it:

@misc{atri2025wikidatalabelmaps,
  title        = {Wikidata Label Maps (20250820 snapshot)},
  author       = {Yash Kumar Atri},
  year         = {2025},
  howpublished = {\url{https://huggingface.co/datasets/yashkumaratri/wikidata-label-maps-20250820}},
  note         = {Dataset on Hugging Face}
}

This dataset is part of ongoing work on large-scale dynamic knowledge resources; a broader benchmark and paper will be released later.

Usage Examples

Polars

Basic usage:

import polars as pl

pq = pl.read_parquet("entity_map.parquet")
pp = pl.read_parquet("prop_map.parquet")

print(pq.shape, pp.shape)
print(pq.head(3))
print(pp.filter(pl.col("id") == "P31"))

Lazy joins for speed and low memory:

import polars as pl

events = pl.scan_parquet("events_sample.parquet")  # needs subj_id, pred_id, maybe obj_id
pp = pl.scan_parquet("prop_map.parquet").select("id","label","datatype").rename({"id":"pred_id","label":"predicate_label","datatype":"predicate_datatype"})
pq = pl.scan_parquet("entity_map.parquet").select("id","label").rename({"id":"subj_id","label":"subject_label"})

resolved = (
    events
    .join(pp, on="pred_id", how="left")
    .join(pq, on="subj_id", how="left")
).collect(streaming=True)

print(resolved.head())

pandas

import pandas as pd

pq = pd.read_parquet("entity_map.parquet", columns=["id","label"])
pp = pd.read_parquet("prop_map.parquet", columns=["id","label","datatype"])

events = pd.read_parquet("events_sample.parquet", columns=["subj_id","pred_id"])

events = events.merge(pp.rename(columns={"id":"pred_id","label":"predicate_label","datatype":"predicate_datatype"}), on="pred_id", how="left")
events = events.merge(pq.rename(columns={"id":"subj_id","label":"subject_label"}), on="subj_id", how="left")
print(events.head())

Hugging Face datasets

from datasets import load_dataset

ds_q = load_dataset("yashkumaratri/wikidata-label-maps-20250820", data_files="entity_map.parquet", split="train")
ds_p = load_dataset("yashkumaratri/wikidata-label-maps-20250820", data_files="prop_map.parquet", split="train")

print(ds_q.num_rows, ds_p.num_rows)
print(ds_p.filter(lambda x: x["id"] == "P31")[:1])

DuckDB SQL

-- in duckdb shell or via Python duckdb.execute
INSTALL httpfs; LOAD httpfs; -- if reading from remote
PRAGMA threads=16;

-- Point to local files if already downloaded
CREATE VIEW entity_map AS SELECT * FROM parquet_scan('entity_map.parquet');
CREATE VIEW prop_map   AS SELECT * FROM parquet_scan('prop_map.parquet');

-- Sample lookup
SELECT e.id AS qid, e.label AS q_label, e.description
FROM entity_map e
WHERE e.id IN ('Q155','Q42')
LIMIT 10;

-- Join against an events parquet
SELECT ev.*, p.label AS predicate_label, q.label AS subject_label
FROM parquet_scan('events_sample.parquet') ev
LEFT JOIN prop_map p ON ev.pred_id = p.id
LEFT JOIN entity_map q ON ev.subj_id = q.id
LIMIT 20;

PySpark

from pyspark.sql import SparkSession

spark = SparkSession.builder.getOrCreate()
pq = spark.read.parquet("entity_map.parquet").selectExpr("id as subj_id", "label as subject_label")
pp = spark.read.parquet("prop_map.parquet").selectExpr("id as pred_id", "label as predicate_label", "datatype as predicate_datatype")
ev = spark.read.parquet("events_sample.parquet")  # must have subj_id, pred_id

resolved = ev.join(pp, "pred_id", "left").join(pq, "subj_id", "left")
resolved.show(5, truncate=False)

Fast Lookup Helpers

Polars dictionary maps

For very fast lookups when you need to resolve many IDs:

import polars as pl

pq = pl.read_parquet("entity_map.parquet", columns=["id","label"])
pp = pl.read_parquet("prop_map.parquet", columns=["id","label","datatype"])

Q_LABEL = dict(zip(pq["id"].to_list(), pq["label"].to_list()))
P_LABEL = dict(zip(pp["id"].to_list(), pp["label"].to_list()))
P_TYPE  = dict(zip(pp["id"].to_list(), pp["datatype"].to_list()))

print(Q_LABEL.get("Q155","Q155"))
print(P_LABEL.get("P31","P31"), P_TYPE.get("P31"))

Minimal resolver class

import polars as pl

class WDResolver:
    def __init__(self, entity_parquet: str, prop_parquet: str):
        self.q = pl.read_parquet(entity_parquet).select(["id","label"]).rename({"id":"qid"})
        self.p = pl.read_parquet(prop_parquet).select(["id","label","datatype"]).rename({"id":"pid"})

    def resolve_subjects(self, df: pl.DataFrame, subj_col="subj_id") -> pl.DataFrame:
        return (
            df.lazy()
            .join(self.q.rename({"qid": subj_col, "label": "subject_label"}), on=subj_col, how="left")
            .collect(streaming=True)
        )

    def resolve_predicates(self, df: pl.DataFrame, pred_col="pred_id") -> pl.DataFrame:
        return (
            df.lazy()
            .join(self.p.rename({"pid": pred_col, "label": "predicate_label", "datatype": "predicate_datatype"}), on=pred_col, how="left")
            .collect(streaming=True)
        )

Utility Functions

Simple quantity unit display example

For displaying Wikidata quantity values with proper unit labels:

def display_quantity(text: str, qlabel_map: dict) -> str:
    # Examples: "+267106 1" or "+1234 Q11573" where second token may be a unit QID
    if not isinstance(text, str):
        return str(text)
    parts = text.strip().split()
    if not parts:
        return text
    amt = parts[0].lstrip("+")
    if len(parts) == 1:
        return amt
    unit = parts[1]
    if unit.startswith("Q"):
        return f"{amt} {qlabel_map.get(unit, unit)}"
    return f"{amt} {unit}"

Validator script

To validate the downloaded files:

# validate_maps.py
import polars as pl, os
root = os.path.dirname(__file__) or "."
q = pl.read_parquet(os.path.join(root, "entity_map.parquet"), columns=["id","label","description"])
p = pl.read_parquet(os.path.join(root, "prop_map.parquet"), columns=["id","label","description","datatype"])
print(f"[ok] entity_map rows={q.height:,} unique ids={q.select(pl.col('id').n_unique()).item():,}")
print(f"[ok] prop_map   rows={p.height:,} unique ids={p.select(pl.col('id').n_unique()).item():,}")
print("[sample] P31:", p.filter(pl.col("id")=="P31").to_dicts())
print(q.sample(3, seed=42).to_dicts())

Common Use Cases

  • Knowledge Graph Processing: Join these maps with your Wikidata triples to get human-readable labels
  • Data Analysis: Convert Q/P identifiers in your datasets to meaningful names
  • Search & Discovery: Build search indices with proper entity and property names
  • Data Validation: Check if your Q/P identifiers exist and get their descriptions

Performance Tips

  • Use lazy evaluation with Polars .scan_parquet() for large datasets
  • Create dictionary lookups for frequent ID resolution
  • Use streaming collection for memory-efficient processing
  • Consider loading only the columns you need with columns=["id","label"]
Downloads last month
39