Dataset Viewer
Auto-converted to Parquet
id
string
lang
string
label
string
description
string
Q31
el
Βέλγιο
χώρα της δυτικής Ευρώπης
Q31
ay
Bilkiya
null
Q31
pnb
بیلجیئم
لہندا یورپ دا اک دیش
Q31
na
Berdjiyum
null
Q31
mk
Белгија
земја во Европа
Q31
bn
বেলজিয়াম
পশ্চিম ইউরোপের যুক্তরাষ্ট্রীয় সাংবিধানিক রাজতান্ত্রিক রাষ্ট্র
Q31
bpy
বেলজিয়াম
null
Q31
lt
Belgija
null
Q31
jam
Beljiom
null
Q31
sk
Belgicko
štát v Europe
Q31
so
Beljim
null
Q31
tl
Belgium
null
Q31
uk
Бельгія
країна в Західній Європі
Q31
tt
Бельгия
null
Q31
sc
Bèlgiu
null
Q31
bxr
Бельги
null
Q31
ff
Beljik
null
Q31
za
Bijliswz
null
Q31
yo
Bẹ́ljíọ̀m
null
Q31
ext
Bélgica
null
Q31
zea
Belhië
null
Q31
es
Bélgica
país de Europa occidental
Q31
or
ବେଲଜିଅମ
null
Q31
myv
Бельгия Мастор
null
Q31
yi
בעלגיע
null
Q31
ga
an Bheilg
null
Q31
csb
Belgijskô
null
Q31
gag
Belgiya
null
Q31
oc
Belgica
estat federal d'Euròpa Occidentala, membre de l'Union Europèa
Q31
pfl
Belgje
null
Q31
rw
Ububiligi
null
Q31
sco
Belgium
null
Q31
sgs
Belgėjė
null
Q31
ltg
Beļgeja
null
Q31
zh-sg
比利时
西欧国家
Q31
tet
Béljika
rai iha Europa
Q31
az
Belçika
Qərbi Avropada konstusiyalı monarxiya ölkə
Q31
mzn
بلژیک
null
Q31
zh-hk
比利時
西歐國家
Q31
bar
Bäigien
null
Q31
zh
比利時
西歐國家
Q31
nl
België
federale staat in West-Europa
Q31
lez
Бельгия
null
Q31
ast
Bélxica
null
Q31
bm
Bɛliziki
null
Q31
ta
பெல்ஜியம்
மேற்கு ஐரோப்பிய நாடு
Q31
jv
Bélgié
nagara ing Éropah
Q31
inh
Бельги
null
Q31
hi
बेल्जियम
यूरोप महाद्वीप में स्थित एक देश
Q31
co
Belgiu
statu di l'Auropa occidentale
Q31
mn
Бельги
null
Q31
pms
Belgi
null
Q31
om
Beeljiyeem
null
Q31
sl
Belgija
država v Evropi
Q31
crh
Belçika
null
Q31
ms
Belgium
null
Q31
ro
Belgia
țară din Europa de Vest
Q31
bho
बेल्जियम
पच्छिमी यूरोप में एगो संघीय संबैधानिक राजतंत्र
Q31
av
Бельгия
null
Q31
lb
Belsch
Staat a Westeuropa
Q31
en-gb
Belgium
country in Europe
Q31
kaa
Belgiya
Batıs Evropadaǵı mámleket
Q31
ps
بېلجيم
لوېديځي اروپا هېواد
Q31
stq
Belgien
null
Q31
aeb-arab
بلجيكيا
null
Q31
lo
ປະເທດແບນຊິກ
ລາຊະອານາຈັກໃນເອີຣົບຕາເວັນຕົກ
Q31
sw
Ubelgiji
nchi katika Ulaya Magharibi
Q31
nds
Belgien
Staat in Mitteleuropa
Q31
ksh
Belgien
null
Q31
bcl
Belhika
null
Q31
pag
Belhika
null
Q31
da
Belgien
europæisk land
Q31
ca
Bèlgica
país d'Europa
Q31
crh-latn
Belçika
null
Q31
lv
Beļģija
Valsts Eiropā
Q31
rup
Belghia
null
Q31
ady
Белгие
null
Q31
ty
Peretita
null
Q31
gv
y Velg
çheer ayns sheear yn Oarpey
Q31
kbp
Pɛliziki
null
Q31
pt-br
Bélgica
país da Europa
Q31
ar
بلجيكا
دولة في أوروبا الغربية
Q31
srn
Belgikondre
null
Q31
ch
Belgika
null
Q31
diq
Belçıka
null
Q31
pih
Beljum
null
Q31
szl
Belgijŏ
państwo we zachodnij Ojropie
Q31
ace
Bèlgia
null
Q31
cv
Бельги
null
Q31
pt
Bélgica
país da Europa
Q31
io
Belgia
null
Q31
zh-my
比利时
西欧国家
Q31
ru
Бельгия
государство в Западной Европе
Q31
tpi
Beljiam
null
Q31
th
ประเทศเบลเยียม
ราชอาณาจักรในยุโรปตะวันตก
Q31
ha
Beljik
null
Q31
mg
Belzika
null
Q31
azb
بلژیک
null
Q31
an
Belchica
Estau d'Europa
Q31
eml
Bélgi
null
End of preview. Expand in Data Studio

Wikidata Multilingual Label Maps 2025

Comprehensive multilingual label and description maps extracted from the 2025 Wikidata dump.
This dataset contains labels and descriptions for Wikidata entities (Q-items and P-properties) across 613 languages.

Dataset Overview

  • 📊 Total Records: 725,274,530 label/description pairs
  • 🆔 Unique Entities: 117,229,348 (Q-items and P-properties)
  • 🌍 Languages: 613 unique language codes
  • 📝 With Descriptions: 339,691,043 pairs (46.8% coverage)
  • 📦 File Size: ~9.97 GB compressed

Files

  • qid_labels_desc.parquet - columns: id, len (language code), label, des (description)
    • Q-items: 724,987,441 records (99.96%)
    • P-properties: 287,089 records (0.04%)

Language Distribution

Top 20 Languages by Label Count

Language Count Percentage
en (English) 90,445,991 12.5%
nl (Dutch) 56,171,796 7.7%
ast (Asturian) 19,027,483 2.6%
fr (French) 17,971,824 2.5%
de (German) 17,094,083 2.4%
es (Spanish) 16,174,147 2.2%
mul (Multiple) 15,585,604 2.1%
it (Italian) 11,831,736 1.6%
sq (Albanian) 11,331,135 1.6%
ga (Irish) 10,648,122 1.5%

Note: The dataset includes 613 total languages, from major world languages to regional dialects and constructed languages.

Download Options

A) Hugging Face snapshot to a local folder

from huggingface_hub import snapshot_download
local_dir = snapshot_download(repo_id="yashkumaratri/wikidata-label-maps-2025-all-languages")
print(local_dir)  # contains qid_labels_desc.parquet

B) Git LFS

git lfs install
git clone https://huggingface.co/datasets/yashkumaratri/wikidata-label-maps-2025-all-languages

Citation

If you find this dataset useful in your research or applications, please consider citing it:

@misc{atri2025wikidatamultilingual,
  title        = {Wikidata Multilingual Label Maps (2025 snapshot)},
  author       = {Yash Kumar Atri},
  year         = {2025},
  howpublished = {\url{https://huggingface.co/datasets/yashkumaratri/wikidata-label-maps-2025-all-languages}},
  note         = {Multilingual Dataset on Hugging Face}
}

This dataset is part of ongoing work on large-scale dynamic knowledge resources; a broader benchmark and paper will be released later.

Usage Examples

Hugging Face datasets

from datasets import load_dataset

ds = load_dataset("yashkumaratri/wikidata-label-maps-2025-all-languages", split="train")

print(f"Dataset size: {ds.num_rows:,}")
print("Sample records:")
print(ds.select(range(5)).to_pandas())

# Filter for specific language
english_ds = ds.filter(lambda x: x["len"] == "en")
print(f"English records: {english_ds.num_rows:,}")

# Get entity with most languages
from collections import Counter
entity_counts = Counter(ds["id"])
most_multilingual = entity_counts.most_common(1)[0]
print(f"Most multilingual entity: {most_multilingual[0]} with {most_multilingual[1]} languages")

Polars

Basic usage:

import polars as pl

# Load the full dataset
df = pl.read_parquet("qid_labels_desc.parquet")
print(f"Total records: {df.height:,}")
print(f"Columns: {df.columns}")
print(df.head())

# Get all labels for a specific entity
entity_labels = df.filter(pl.col("id") == "Q31")  # Belgium
print(entity_labels.head(10))

Language-specific queries:

import polars as pl

df = pl.scan_parquet("qid_labels_desc.parquet")

# Get English labels only
english_labels = df.filter(pl.col("len") == "en").collect()
print(f"English labels: {english_labels.height:,}")

# Get labels for multiple languages
multilang = df.filter(pl.col("len").is_in(["en", "fr", "de", "es"])).collect()
print(f"Major European languages: {multilang.height:,}")

# Language statistics
lang_stats = (
    df.group_by("len")
    .agg(pl.count().alias("count"))
    .sort("count", descending=True)
    .collect()
)
print("Top 10 languages:", lang_stats.head(10))

Entity resolution with preferred language fallback:

import polars as pl

def get_entity_label(entity_id: str, preferred_langs: list = ["en", "fr", "de"]) -> str:
    """Get entity label with language preference fallback"""
    df = pl.scan_parquet("qid_labels_desc.parquet")
    
    entity_labels = (
        df.filter(pl.col("id") == entity_id)
        .filter(pl.col("label").is_not_null())
        .collect()
    )
    
    # Try preferred languages in order
    for lang in preferred_langs:
        label = entity_labels.filter(pl.col("len") == lang)
        if label.height > 0:
            return label.select("label").item()
    
    # Fallback to any available label
    if entity_labels.height > 0:
        return entity_labels.select("label").item()
    
    return entity_id  # Return ID if no label found

# Example usage
print(get_entity_label("Q31", ["es", "en"]))  # Try Spanish first, then English

pandas

import pandas as pd

# Load with specific columns for memory efficiency
df = pd.read_parquet("qid_labels_desc.parquet", columns=["id", "len", "label"])

# Basic statistics
print(f"Total records: {len(df):,}")
print(f"Unique entities: {df['id'].nunique():,}")
print(f"Unique languages: {df['len'].nunique():,}")

# Language distribution
lang_counts = df['len'].value_counts()
print("Top 10 languages:")
print(lang_counts.head(10))

# Get multilingual labels for specific entities
entities_of_interest = ["Q31", "Q142", "Q183"]  # Belgium, France, Germany
multilingual = df[df['id'].isin(entities_of_interest)]
pivot_table = multilingual.pivot_table(
    index='id', 
    columns='len', 
    values='label', 
    aggfunc='first'
)
print(pivot_table[['en', 'fr', 'de', 'es']].head())

DuckDB SQL

-- in duckdb shell or via Python duckdb.execute
INSTALL httpfs; LOAD httpfs;
PRAGMA threads=16;

-- Create view
CREATE VIEW multilingual_labels AS 
SELECT * FROM parquet_scan('qid_labels_desc.parquet');

-- Language statistics
SELECT len as language, COUNT(*) as label_count, 
       ROUND(COUNT(*) * 100.0 / SUM(COUNT(*)) OVER (), 2) as percentage
FROM multilingual_labels
GROUP BY len
ORDER BY label_count DESC
LIMIT 20;

-- Find entities with most language coverage
SELECT id, COUNT(DISTINCT len) as num_languages,
       STRING_AGG(DISTINCT len, ', ' ORDER BY len) as languages
FROM multilingual_labels
WHERE label IS NOT NULL
GROUP BY id
ORDER BY num_languages DESC
LIMIT 10;

-- Pivot table for specific entities across major languages
SELECT id,
       MAX(CASE WHEN len = 'en' THEN label END) as english,
       MAX(CASE WHEN len = 'fr' THEN label END) as french,
       MAX(CASE WHEN len = 'de' THEN label END) as german,
       MAX(CASE WHEN len = 'es' THEN label END) as spanish,
       MAX(CASE WHEN len = 'zh' THEN label END) as chinese
FROM multilingual_labels
WHERE id IN ('Q31', 'Q142', 'Q183', 'Q148')
GROUP BY id;

PySpark

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, count, desc

spark = SparkSession.builder.getOrCreate()
df = spark.read.parquet("qid_labels_desc.parquet")

# Basic statistics
print(f"Total records: {df.count():,}")
df.select("len").distinct().count()  # Number of languages

# Language distribution
lang_dist = (
    df.groupBy("len")
    .agg(count("*").alias("count"))
    .orderBy(desc("count"))
)
lang_dist.show(20)

# Entity multilingual coverage
entity_coverage = (
    df.filter(col("label").isNotNull())
    .groupBy("id")
    .agg(count("len").alias("num_languages"))
    .orderBy(desc("num_languages"))
)
entity_coverage.show(10)

Fast Lookup Helpers

Multilingual dictionary maps

import polars as pl
from collections import defaultdict

# Load and create language-specific dictionaries
df = pl.read_parquet("qid_labels_desc.parquet", columns=["id", "len", "label"])

# Create nested dictionary: {language: {entity_id: label}}
MULTILANG_LABELS = defaultdict(dict)
for row in df.iter_rows():
    entity_id, lang, label = row
    if label:  # Skip null labels
        MULTILANG_LABELS[lang][entity_id] = label

# Usage examples
print(MULTILANG_LABELS["en"].get("Q31", "Unknown"))  # English
print(MULTILANG_LABELS["fr"].get("Q31", "Unknown"))  # French
print(MULTILANG_LABELS["zh"].get("Q31", "Unknown"))  # Chinese

# Get all available languages for an entity
entity_id = "Q31"
available_langs = [lang for lang in MULTILANG_LABELS if entity_id in MULTILANG_LABELS[lang]]
print(f"Q31 available in: {len(available_langs)} languages")

Multilingual resolver class

import polars as pl
from typing import List, Optional, Dict

class MultilingualWDResolver:
    def __init__(self, parquet_file: str):
        self.df = pl.read_parquet(parquet_file)
        self._build_indices()
    
    def _build_indices(self):
        """Build language-specific lookup indices"""
        self.lang_maps = {}
        for lang in self.df.select("len").unique().to_series():
            lang_df = self.df.filter(pl.col("len") == lang)
            self.lang_maps[lang] = dict(zip(
                lang_df.select("id").to_series(),
                lang_df.select("label").to_series()
            ))
    
    def get_label(self, entity_id: str, lang: str = "en") -> Optional[str]:
        """Get label for entity in specific language"""
        return self.lang_maps.get(lang, {}).get(entity_id)
    
    def get_multilingual_labels(self, entity_id: str, langs: List[str] = None) -> Dict[str, str]:
        """Get labels in multiple languages"""
        if langs is None:
            langs = ["en", "fr", "de", "es", "zh"]
        
        result = {}
        for lang in langs:
            label = self.get_label(entity_id, lang)
            if label:
                result[lang] = label
        return result
    
    def get_best_label(self, entity_id: str, preferred_langs: List[str] = ["en", "fr", "de"]) -> str:
        """Get best available label with fallback"""
        for lang in preferred_langs:
            label = self.get_label(entity_id, lang)
            if label:
                return label
        
        # Try any available language
        for lang_map in self.lang_maps.values():
            if entity_id in lang_map:
                return lang_map[entity_id]
        
        return entity_id  # Fallback to ID

# Usage
resolver = MultilingualWDResolver("qid_labels_desc.parquet")
print(resolver.get_label("Q31", "en"))  # English
print(resolver.get_multilingual_labels("Q31"))  # Multiple languages
print(resolver.get_best_label("Q31", ["ja", "ko", "en"]))  # With preference

Language Coverage Analysis

Find entities with best multilingual coverage

import polars as pl

def analyze_multilingual_coverage(parquet_file: str, top_n: int = 20):
    df = pl.read_parquet(parquet_file)
    
    # Entities with most language coverage
    coverage = (
        df.filter(pl.col("label").is_not_null())
        .group_by("id")
        .agg([
            pl.count("len").alias("num_languages"),
            pl.col("label").first().alias("sample_label")
        ])
        .sort("num_languages", descending=True)
        .limit(top_n)
    )
    
    print(f"Top {top_n} entities by language coverage:")
    for row in coverage.iter_rows(named=True):
        print(f"  {row['id']}: {row['num_languages']} languages | {row['sample_label']}")
    
    return coverage

analyze_multilingual_coverage("qid_labels_desc.parquet")

Language family analysis

import polars as pl

# Define language families (simplified)
LANGUAGE_FAMILIES = {
    "Germanic": ["en", "de", "nl", "sv", "no", "da"],
    "Romance": ["fr", "es", "it", "pt", "ro", "ca"],
    "Slavic": ["ru", "pl", "cs", "sk", "uk", "bg"],
    "East Asian": ["zh", "ja", "ko"],
    "Arabic": ["ar", "fa", "ur"],
}

def analyze_by_language_family(parquet_file: str):
    df = pl.read_parquet(parquet_file)
    
    for family, languages in LANGUAGE_FAMILIES.items():
        family_count = (
            df.filter(pl.col("len").is_in(languages))
            .filter(pl.col("label").is_not_null())
            .height
        )
        print(f"{family}: {family_count:,} labels")

analyze_by_language_family("qid_labels_desc.parquet")

Use Cases

Cross-lingual Knowledge Graph Analysis

  • Build multilingual knowledge graphs with proper labels
  • Analyze entity coverage across different languages
  • Create language-specific views of Wikidata

Machine Translation & NLP

  • Training data for multilingual named entity recognition
  • Cross-lingual entity linking datasets
  • Evaluation of translation quality for entity names

Internationalization (i18n)

  • Localize applications with proper entity names
  • Build multilingual search interfaces
  • Create region-specific content

Research Applications

  • Study linguistic diversity in knowledge representation
  • Analyze cultural bias in knowledge coverage
  • Cross-cultural studies of entity naming patterns

Performance Tips

  • Memory Management: Load only required columns (columns=["id", "len", "label"])
  • Language Filtering: Filter by language early to reduce data size
  • Lazy Loading: Use .scan_parquet() with Polars for large-scale processing
  • Indexing: Build language-specific dictionaries for frequent lookups
  • Batch Processing: Process entities in batches for memory efficiency

Data Quality Notes

  • Some labels may be missing (NULL values) for certain language-entity combinations
  • Description coverage is 46.8% across all language-entity pairs
  • The dataset includes both major world languages and regional/minority languages
  • Language codes follow ISO standards but may include some Wikidata-specific codes
Downloads last month
63