Dataset Viewer
Auto-converted to Parquet
color
stringclasses
16 values
model
stringlengths
1
26
brand
stringclasses
142 values
car_id
int64
0
230k
view_id
int64
0
99
url
stringlengths
59
65
000000
granta
vaz
0
0
https://storage.yandexcl…arch/mad/0/0.jpg
000000
granta
vaz
0
1
https://storage.yandexcl…arch/mad/0/1.jpg
000000
granta
vaz
0
2
https://storage.yandexcl…arch/mad/0/2.jpg
000000
granta
vaz
0
3
https://storage.yandexcl…arch/mad/0/3.jpg
000000
granta
vaz
0
4
https://storage.yandexcl…arch/mad/0/4.jpg
000000
granta
vaz
0
5
https://storage.yandexcl…arch/mad/0/5.jpg
000000
granta
vaz
0
6
https://storage.yandexcl…arch/mad/0/6.jpg
000000
granta
vaz
0
7
https://storage.yandexcl…arch/mad/0/7.jpg
000000
granta
vaz
0
8
https://storage.yandexcl…arch/mad/0/8.jpg
000000
granta
vaz
0
9
https://storage.yandexcl…arch/mad/0/9.jpg
000000
granta
vaz
0
10
https://storage.yandexcl…rch/mad/0/10.jpg
000000
granta
vaz
0
11
https://storage.yandexcl…rch/mad/0/11.jpg
000000
granta
vaz
0
12
https://storage.yandexcl…rch/mad/0/12.jpg
000000
granta
vaz
0
13
https://storage.yandexcl…rch/mad/0/13.jpg
000000
granta
vaz
0
14
https://storage.yandexcl…rch/mad/0/14.jpg
000000
granta
vaz
0
15
https://storage.yandexcl…rch/mad/0/15.jpg
000000
granta
vaz
0
16
https://storage.yandexcl…rch/mad/0/16.jpg
000000
granta
vaz
0
17
https://storage.yandexcl…rch/mad/0/17.jpg
000000
granta
vaz
0
18
https://storage.yandexcl…rch/mad/0/18.jpg
000000
granta
vaz
0
19
https://storage.yandexcl…rch/mad/0/19.jpg
000000
granta
vaz
0
20
https://storage.yandexcl…rch/mad/0/20.jpg
000000
granta
vaz
0
21
https://storage.yandexcl…rch/mad/0/21.jpg
000000
granta
vaz
0
22
https://storage.yandexcl…rch/mad/0/22.jpg
000000
granta
vaz
0
23
https://storage.yandexcl…rch/mad/0/23.jpg
000000
granta
vaz
0
24
https://storage.yandexcl…rch/mad/0/24.jpg
000000
granta
vaz
0
25
https://storage.yandexcl…rch/mad/0/25.jpg
000000
granta
vaz
0
25
https://storage.yandexcl…rch/mad/0/25.jpg
000000
granta
vaz
0
26
https://storage.yandexcl…rch/mad/0/26.jpg
000000
granta
vaz
0
26
https://storage.yandexcl…rch/mad/0/26.jpg
000000
granta
vaz
0
27
https://storage.yandexcl…rch/mad/0/27.jpg
000000
granta
vaz
0
27
https://storage.yandexcl…rch/mad/0/27.jpg
000000
granta
vaz
0
28
https://storage.yandexcl…rch/mad/0/28.jpg
000000
granta
vaz
0
28
https://storage.yandexcl…rch/mad/0/28.jpg
000000
granta
vaz
0
29
https://storage.yandexcl…rch/mad/0/29.jpg
000000
granta
vaz
0
29
https://storage.yandexcl…rch/mad/0/29.jpg
000000
granta
vaz
0
30
https://storage.yandexcl…rch/mad/0/30.jpg
000000
granta
vaz
0
30
https://storage.yandexcl…rch/mad/0/30.jpg
000000
granta
vaz
0
31
https://storage.yandexcl…rch/mad/0/31.jpg
000000
granta
vaz
0
31
https://storage.yandexcl…rch/mad/0/31.jpg
000000
granta
vaz
0
32
https://storage.yandexcl…rch/mad/0/32.jpg
000000
granta
vaz
0
32
https://storage.yandexcl…rch/mad/0/32.jpg
000000
granta
vaz
0
33
https://storage.yandexcl…rch/mad/0/33.jpg
000000
granta
vaz
0
33
https://storage.yandexcl…rch/mad/0/33.jpg
000000
granta
vaz
0
34
https://storage.yandexcl…rch/mad/0/34.jpg
000000
granta
vaz
0
34
https://storage.yandexcl…rch/mad/0/34.jpg
000000
granta
vaz
0
35
https://storage.yandexcl…rch/mad/0/35.jpg
000000
granta
vaz
0
35
https://storage.yandexcl…rch/mad/0/35.jpg
000000
granta
vaz
0
36
https://storage.yandexcl…rch/mad/0/36.jpg
000000
granta
vaz
0
36
https://storage.yandexcl…rch/mad/0/36.jpg
000000
granta
vaz
0
37
https://storage.yandexcl…rch/mad/0/37.jpg
000000
granta
vaz
0
37
https://storage.yandexcl…rch/mad/0/37.jpg
000000
granta
vaz
0
38
https://storage.yandexcl…rch/mad/0/38.jpg
000000
granta
vaz
0
38
https://storage.yandexcl…rch/mad/0/38.jpg
000000
granta
vaz
0
39
https://storage.yandexcl…rch/mad/0/39.jpg
000000
granta
vaz
0
39
https://storage.yandexcl…rch/mad/0/39.jpg
000000
granta
vaz
0
40
https://storage.yandexcl…rch/mad/0/40.jpg
000000
granta
vaz
0
40
https://storage.yandexcl…rch/mad/0/40.jpg
000000
granta
vaz
0
41
https://storage.yandexcl…rch/mad/0/41.jpg
000000
granta
vaz
0
41
https://storage.yandexcl…rch/mad/0/41.jpg
000000
granta
vaz
0
42
https://storage.yandexcl…rch/mad/0/42.jpg
000000
granta
vaz
0
42
https://storage.yandexcl…rch/mad/0/42.jpg
000000
granta
vaz
0
43
https://storage.yandexcl…rch/mad/0/43.jpg
000000
granta
vaz
0
43
https://storage.yandexcl…rch/mad/0/43.jpg
000000
granta
vaz
0
44
https://storage.yandexcl…rch/mad/0/44.jpg
000000
granta
vaz
0
44
https://storage.yandexcl…rch/mad/0/44.jpg
000000
granta
vaz
0
45
https://storage.yandexcl…rch/mad/0/45.jpg
000000
granta
vaz
0
45
https://storage.yandexcl…rch/mad/0/45.jpg
000000
granta
vaz
0
46
https://storage.yandexcl…rch/mad/0/46.jpg
000000
granta
vaz
0
46
https://storage.yandexcl…rch/mad/0/46.jpg
000000
granta
vaz
0
47
https://storage.yandexcl…rch/mad/0/47.jpg
000000
granta
vaz
0
47
https://storage.yandexcl…rch/mad/0/47.jpg
000000
granta
vaz
0
48
https://storage.yandexcl…rch/mad/0/48.jpg
000000
granta
vaz
0
48
https://storage.yandexcl…rch/mad/0/48.jpg
000000
granta
vaz
0
49
https://storage.yandexcl…rch/mad/0/49.jpg
000000
granta
vaz
0
49
https://storage.yandexcl…rch/mad/0/49.jpg
000000
granta
vaz
0
50
https://storage.yandexcl…rch/mad/0/50.jpg
000000
granta
vaz
0
50
https://storage.yandexcl…rch/mad/0/50.jpg
000000
granta
vaz
0
51
https://storage.yandexcl…rch/mad/0/51.jpg
000000
granta
vaz
0
51
https://storage.yandexcl…rch/mad/0/51.jpg
000000
granta
vaz
0
52
https://storage.yandexcl…rch/mad/0/52.jpg
000000
granta
vaz
0
52
https://storage.yandexcl…rch/mad/0/52.jpg
000000
granta
vaz
0
53
https://storage.yandexcl…rch/mad/0/53.jpg
000000
granta
vaz
0
53
https://storage.yandexcl…rch/mad/0/53.jpg
000000
granta
vaz
0
54
https://storage.yandexcl…rch/mad/0/54.jpg
000000
granta
vaz
0
55
https://storage.yandexcl…rch/mad/0/55.jpg
000000
granta
vaz
0
56
https://storage.yandexcl…rch/mad/0/56.jpg
000000
granta
vaz
0
57
https://storage.yandexcl…rch/mad/0/57.jpg
000000
granta
vaz
0
58
https://storage.yandexcl…rch/mad/0/58.jpg
000000
granta
vaz
0
59
https://storage.yandexcl…rch/mad/0/59.jpg
000000
granta
vaz
0
60
https://storage.yandexcl…rch/mad/0/60.jpg
000000
granta
vaz
0
61
https://storage.yandexcl…rch/mad/0/61.jpg
000000
granta
vaz
0
62
https://storage.yandexcl…rch/mad/0/62.jpg
000000
granta
vaz
0
63
https://storage.yandexcl…rch/mad/0/63.jpg
000000
granta
vaz
0
64
https://storage.yandexcl…rch/mad/0/64.jpg
000000
granta
vaz
0
65
https://storage.yandexcl…rch/mad/0/65.jpg
000000
granta
vaz
0
66
https://storage.yandexcl…rch/mad/0/66.jpg
000000
granta
vaz
0
67
https://storage.yandexcl…rch/mad/0/67.jpg
000000
granta
vaz
0
68
https://storage.yandexcl…rch/mad/0/68.jpg
000000
granta
vaz
0
69
https://storage.yandexcl…rch/mad/0/69.jpg
000000
granta
vaz
0
70
https://storage.yandexcl…rch/mad/0/70.jpg
End of preview. Expand in Data Studio

MAD-Cars: Multi-view Auto Dataset 🚗

Dataset Description

MAD-Cars is a large-scale collection of 360° car videos. It comprises ~70,000 car instances with diverse brands, car types, colors, and lighting conditions. Each instance contains an average of ~85 frames, with most car instances available at a resolution of 1920x1080. The dataset statistics are presented in the figure below. The data is carefully curated by filtering the frames and entire car instances that can negatively affect 3D reconstruction.

This dataset is introduced in the research paper:
"MADrive: Memory-Augmented Driving Scene Modeling"

MADstats

Data Fields

Each instance in the dataset contains:

  • car_id: Unique identifier for a single car instance.
  • view_id: Identifier for a specific view of the car.
  • url: URL to download the corresponding single car view.
  • color: RGB color value representing the car's color.
  • brand: Manufacturer or brand of the car.
  • model: Specific model name or designation of the car.

Note that view_id is not aligned with a particular camera position or angle.

Data Splits

The dataset contains a single split:

  • train:  5,884,329 samples.

Usage

The MAD dataset is designed for novel-view synthesis of cars. MADrive exploits this data for the retrieval-augmented driving scene reconstruction.

Getting Started

Loading the dataset:

from datasets import load_dataset

dataset = load_dataset("yandex/mad-cars", split="train") 

Exracting the first view:

from PIL import Image
import requests
from io import BytesIO
response = requests.get(dataset[0]['url'])
image = Image.open(BytesIO(response.content))

Grouping by car_id:

car_id_to_urls = dataset.to_pandas().groupby("car_id")['url'].agg(list)

Citation

@artcile{TODO}
Downloads last month
10