color
stringclasses 16
values | model
stringlengths 1
26
⌀ | brand
stringclasses 142
values | car_id
int64 0
230k
| view_id
int64 0
99
| url
stringlengths 59
65
|
---|---|---|---|---|---|
000000 | granta | vaz | 0 | 0 | |
000000 | granta | vaz | 0 | 1 | |
000000 | granta | vaz | 0 | 2 | |
000000 | granta | vaz | 0 | 3 | |
000000 | granta | vaz | 0 | 4 | |
000000 | granta | vaz | 0 | 5 | |
000000 | granta | vaz | 0 | 6 | |
000000 | granta | vaz | 0 | 7 | |
000000 | granta | vaz | 0 | 8 | |
000000 | granta | vaz | 0 | 9 | |
000000 | granta | vaz | 0 | 10 | |
000000 | granta | vaz | 0 | 11 | |
000000 | granta | vaz | 0 | 12 | |
000000 | granta | vaz | 0 | 13 | |
000000 | granta | vaz | 0 | 14 | |
000000 | granta | vaz | 0 | 15 | |
000000 | granta | vaz | 0 | 16 | |
000000 | granta | vaz | 0 | 17 | |
000000 | granta | vaz | 0 | 18 | |
000000 | granta | vaz | 0 | 19 | |
000000 | granta | vaz | 0 | 20 | |
000000 | granta | vaz | 0 | 21 | |
000000 | granta | vaz | 0 | 22 | |
000000 | granta | vaz | 0 | 23 | |
000000 | granta | vaz | 0 | 24 | |
000000 | granta | vaz | 0 | 25 | |
000000 | granta | vaz | 0 | 25 | |
000000 | granta | vaz | 0 | 26 | |
000000 | granta | vaz | 0 | 26 | |
000000 | granta | vaz | 0 | 27 | |
000000 | granta | vaz | 0 | 27 | |
000000 | granta | vaz | 0 | 28 | |
000000 | granta | vaz | 0 | 28 | |
000000 | granta | vaz | 0 | 29 | |
000000 | granta | vaz | 0 | 29 | |
000000 | granta | vaz | 0 | 30 | |
000000 | granta | vaz | 0 | 30 | |
000000 | granta | vaz | 0 | 31 | |
000000 | granta | vaz | 0 | 31 | |
000000 | granta | vaz | 0 | 32 | |
000000 | granta | vaz | 0 | 32 | |
000000 | granta | vaz | 0 | 33 | |
000000 | granta | vaz | 0 | 33 | |
000000 | granta | vaz | 0 | 34 | |
000000 | granta | vaz | 0 | 34 | |
000000 | granta | vaz | 0 | 35 | |
000000 | granta | vaz | 0 | 35 | |
000000 | granta | vaz | 0 | 36 | |
000000 | granta | vaz | 0 | 36 | |
000000 | granta | vaz | 0 | 37 | |
000000 | granta | vaz | 0 | 37 | |
000000 | granta | vaz | 0 | 38 | |
000000 | granta | vaz | 0 | 38 | |
000000 | granta | vaz | 0 | 39 | |
000000 | granta | vaz | 0 | 39 | |
000000 | granta | vaz | 0 | 40 | |
000000 | granta | vaz | 0 | 40 | |
000000 | granta | vaz | 0 | 41 | |
000000 | granta | vaz | 0 | 41 | |
000000 | granta | vaz | 0 | 42 | |
000000 | granta | vaz | 0 | 42 | |
000000 | granta | vaz | 0 | 43 | |
000000 | granta | vaz | 0 | 43 | |
000000 | granta | vaz | 0 | 44 | |
000000 | granta | vaz | 0 | 44 | |
000000 | granta | vaz | 0 | 45 | |
000000 | granta | vaz | 0 | 45 | |
000000 | granta | vaz | 0 | 46 | |
000000 | granta | vaz | 0 | 46 | |
000000 | granta | vaz | 0 | 47 | |
000000 | granta | vaz | 0 | 47 | |
000000 | granta | vaz | 0 | 48 | |
000000 | granta | vaz | 0 | 48 | |
000000 | granta | vaz | 0 | 49 | |
000000 | granta | vaz | 0 | 49 | |
000000 | granta | vaz | 0 | 50 | |
000000 | granta | vaz | 0 | 50 | |
000000 | granta | vaz | 0 | 51 | |
000000 | granta | vaz | 0 | 51 | |
000000 | granta | vaz | 0 | 52 | |
000000 | granta | vaz | 0 | 52 | |
000000 | granta | vaz | 0 | 53 | |
000000 | granta | vaz | 0 | 53 | |
000000 | granta | vaz | 0 | 54 | |
000000 | granta | vaz | 0 | 55 | |
000000 | granta | vaz | 0 | 56 | |
000000 | granta | vaz | 0 | 57 | |
000000 | granta | vaz | 0 | 58 | |
000000 | granta | vaz | 0 | 59 | |
000000 | granta | vaz | 0 | 60 | |
000000 | granta | vaz | 0 | 61 | |
000000 | granta | vaz | 0 | 62 | |
000000 | granta | vaz | 0 | 63 | |
000000 | granta | vaz | 0 | 64 | |
000000 | granta | vaz | 0 | 65 | |
000000 | granta | vaz | 0 | 66 | |
000000 | granta | vaz | 0 | 67 | |
000000 | granta | vaz | 0 | 68 | |
000000 | granta | vaz | 0 | 69 | |
000000 | granta | vaz | 0 | 70 |
MAD-Cars: Multi-view Auto Dataset 🚗
Dataset Description
MAD-Cars is a large-scale collection of 360° car videos. It comprises ~70,000 car instances with diverse brands, car types, colors, and lighting conditions. Each instance contains an average of ~85 frames, with most car instances available at a resolution of 1920x1080. The dataset statistics are presented in the figure below. The data is carefully curated by filtering the frames and entire car instances that can negatively affect 3D reconstruction.
This dataset is introduced in the research paper:
"MADrive: Memory-Augmented Driving Scene Modeling"
Data Fields
Each instance in the dataset contains:
car_id
: Unique identifier for a single car instance.view_id
: Identifier for a specific view of the car.url
: URL to download the corresponding single car view.color
: RGB color value representing the car's color.brand
: Manufacturer or brand of the car.model
: Specific model name or designation of the car.
Note that view_id
is not aligned with a particular camera position or angle.
Data Splits
The dataset contains a single split:
train
: 5,884,329 samples.
Usage
The MAD dataset is designed for novel-view synthesis of cars. MADrive exploits this data for the retrieval-augmented driving scene reconstruction.
Getting Started
Loading the dataset:
from datasets import load_dataset
dataset = load_dataset("yandex/mad-cars", split="train")
Exracting the first view:
from PIL import Image
import requests
from io import BytesIO
response = requests.get(dataset[0]['url'])
image = Image.open(BytesIO(response.content))
Grouping by car_id
:
car_id_to_urls = dataset.to_pandas().groupby("car_id")['url'].agg(list)
Citation
@artcile{TODO}
- Downloads last month
- 10