Dataset Viewer
Auto-converted to Parquet Duplicate
image
imagewidth (px)
25
7.39k
text
stringlengths
1
12.3k
【共顶点】同向旋转,构造全等或相似.
【例 2】. 如图,在平面直角坐标系中,四边形 \(AOBD\) 的边 \(OB\) 与 \(x\) 轴的正半轴重合,\(AD\parallel OB\),\(DB\perp x\) 轴, 对角线 \(AB\),\(OD\) 交于点 \(M\). 已知 \(AD:OB = 2:3\),\(\triangle AMD\) 的面积为 \(4\). 若反比例函数 \(y = \frac{k}{x}\) 的图象恰好 经过点 \(M\),则 \(k\) 的值为( )
(2)连接\(AE\),当\(AE\)的长最小时,求\(CD\)的长.
典型题训练 3(难度等级$\star$)
4.若$\begin{cases}2020x + 2021y = 2019,\\2021x + 2020y = 2022,\end{cases}$求$(x + y)^{2}+(x - y)^{3}$的值.
【结论】分类讨论:
2. 如图所示, \(\triangle ABC\)为等边三角形, 延长 \(BC\)到点 \(D\), 延长 \(BA\)到点 \(E\),使得 \(AE = BD\), 连接 \(EC、ED\), 求证:\(CE = DE\).
1. 因为\(\angle DAE = \angle BAC = 90^{\circ}\),所以\(\angle DAB=\angle EAC\). 又因为\(AD = AE\),\(AB = AC\),所以\(\triangle DAB\cong\triangle EAC\),所以\(BD = CE\),所以\textcircled{1}正确. 因为\(\triangle DAB\cong\triangle EAC\),所以\(\angle DBA=\angle ECA\). 又因为\(\triangle ABC\)是等腰直角三角形, 所以\(\angle ACE+\angle ECB = 45^{\circ}\),所以\(\angle ABD+\angle ECB = 45^{\circ}\),所以\textcircled{2}正确. 因为\(\angle ABD+\angle ECB = 45^{\circ}\),\(\angle ABC = 45^{\circ}\), 所以\(\angle ABE+\angle ABC+\angle ECB = 90^{\circ}\),所以\(\angle BEC = 90^{\circ}\),即\(BD\perp CE\),所以\textcircled{3}正确. 因为\(\triangle ABC\)和\(\triangle ADE\)都是等腰直角三角形,所以\(BC = \sqrt{2}AB\),\(DE=\sqrt{2}AD\). \(2(AD^{2}+AB^{2})=2AD^{2}+2AB^{2}=BC^{2}+DE^{2}=(BE^{2}+CE^{2})+(CD^{2}-CE^{2})=BE^{2}+CD^{2}\). 所以\(BE^{2}=2(AD^{2}+AB^{2})-CD^{2}\),所以\textcircled{4}正确. 所以正确选项为A项.
1. (1) 如答图 ( a) 所示, 当点 \(C\) 在点 \(B\) 左侧时,\(AD = AB + CD - BC = 10\). 如答图 ( b) 所示, 当点 \(C\) 在点 \(B\) 右侧时,\(AD = AB + BC + CD = 14\).
370. 解:如图,过点\(C\)作\(BD\)的垂线,交\(BD\)的延长线于 点\(E\),则\(\angle E = 90^{\circ}\),\(\because BD\perp AB\),\(CE\perp BD\), \(\therefore AB\parallel CE\),\(\angle ABD = 90^{\circ}\),\(\therefore\triangle ABD\backsim\triangle CED\), \(\therefore\frac{AD}{CD}=\frac{AB}{CE}=\frac{BD}{DE}\), \(\because AD = \frac{4}{7}AC\),\(\therefore\frac{AD}{CD}=\frac{4}{3}=\frac{AB}{CE}\), \(\therefore\frac{2}{CE}=\frac{4}{3}\),则\(CE = \frac{3}{2}\), \(\because\angle ABC = 150^{\circ}\),\(\angle ABD = 90^{\circ}\),\(\therefore\angle CBE = 60^{\circ}\), \(\therefore BE=\frac{\sqrt{3}}{3}CE=\frac{\sqrt{3}}{2}\),\(\therefore BD = \frac{4}{7}BE=\frac{2\sqrt{3}}{7}\), \(\therefore S_{\triangle BCD}=\frac{1}{2}\cdot BD\cdot CE=\frac{1}{2}\times\frac{2\sqrt{3}}{7}\times\frac{3}{2}=\frac{3\sqrt{3}}{14}\). 故选:\(A\).
如图,在矩形\(ABCD\)中,\(E\),\(F\)分别为边\(AB\),\(AD\)的中点,\(BF\)与\(EC、ED\)分别交于点 \(M\),\(N\). 已知\(AB = 4\),\(BC = 6\),则\(MN\)的长为 .
【变式2-1】. 如图,在\(\text{Rt}\triangle ABC\)中,\(\angle A = 90^{\circ}\),\(\angle B = 60^{\circ}\),\(BC = 4\),若\(E\)是\(BC\)上的动点,\(F\)是\(AC\)上的 动点,则\(AE + EF\)的最小值为 .
\(87\)
(1)若点\(D\)在\(AB\)边上(不与\(A\),\(B\)重合)请依题意补全图并证明\(AD = BE\);
如图,所有的四边形都是正方形,所有的 三角形都是直角三角形,其中\(S_{A}=4\),\(S_{B}=2\),\(S_{C}=2\), \(S_{D}=1\),则\(S = (\ \ \ \ \ )\).
181.【\(☆☆\)】(8下)正方形\(ABCD\),\(E\)是\(CD\)中点,\(EF\perp CD\),\(\angle FAC = 30^{\circ}\),求\(\angle AFC\).
二、选择题
两垂一圆 构造直角三角形
\textcircled{3} 如答图( c) 所示, 当 \(OD\) 平分 \(\angle COA\) 时, \(\angle AOD=\angle COD = 40^{\circ}=360^{\circ}-10^{\circ}t\), 解得 \(t = 32\).
【简释】【法1】中位线与中垂线\(OG\),\(\frac{QG}{GN}=\frac{QO}{OC}=\frac{QM}{MP}\),\(GM\parallel NP\Rightarrow\)仨\(\alpha\)
\((2)\begin{cases}5x + 3y = 25,\\2x + 7y - 3z = 19,\\3x + 2y - z = 18.\end{cases}\)
\(\begin{cases}5x + 3y = 25,\end{cases}\)
14. 如图,矩形\(ABCD\)中,\(AB = 4\),\(AD = 3\),点\(E\)在折线\(BCD\)上运动,将\(AE\)绕点\(A\)顺时针旋转得到\(AF\), 旋转角等于\(\angle BAC\),连接\(CF\).
\[ (2)\left\{ \begin{array}{l} 3(x - 1) < 5x + 1\\ \frac{x - 1}{2} \geq 2x - 4 \end{array} \right. \]
\[ \begin{align*} A.&\ \frac{48}{x + 4}+\frac{48}{x - 4}=9\\ B.&\ \frac{48}{4 + x}+\frac{48}{4 - x}=9\\ C.&\ \frac{48}{x}+4 = 9\\ D.&\ \frac{96}{x + 4}+\frac{96}{x - 4}=9 \end{align*} \]
\[ (1)\left\{ \begin{array}{l} 3x - 4y = 10\\ 5x + 6y = 4 \end{array} \right. \]
1. 如图所示,\(\triangle ABC\)是等边三角形,点\(D、E\)分别在边\(BC、AC\)上,且\(CD = CE\),连接\(DE\)并延长至点\(F\),使\(EF = AE\),连接\(AF、BE\)和\(CF\). 求证:
2. (1) 在\(\triangle ABC\)中,因为\(\angle ACB = 90^{\circ}, AC = BC\),所以\(\angle BAC=\angle ABC = 45^{\circ}\). 所以\(BC = AB\cdot\sin\angle BAC=4\sqrt{2}\times\frac{\sqrt{2}}{2}=4\),所以\(AC = BC = 4\). 在\(\text{Rt}\triangle BCE\)中,\(CE=\sqrt{BE^{2}-BC^{2}} = 3\),所以\(AE=AC - CE = 1\).
【例2】. 如图,在平面直角坐标系中,已知\(A(4,0)\),\(B(0,3)\),以\(AB\)为一边在\(\triangle AOB\)外部作等腰直角\(\triangle ABC\). 则点\(C\)的坐标为 .
由题意可知\(MP = t,BQ = 3t\),所以\(MQ=BM - 3t,AP=AM - t\). 因为\(MQ = 3AP\),所以\(BM - 3t=3(AM - t)\),所以\(BM = 3AM\),所以\(\frac{AM}{BM}=\frac{1}{3}\).
(2) 如图\textcircled{2},若\(E\)是\(AB\)的中点,\(EP\)的延长线交\(BC\)于点\(F\),求\(BF\)的长.
371. 解:\(\because\)四边形\(ABCD\)是正方形,\(\therefore\angle BAC = \angle DAC=45^{\circ}\). \(\because\)在\(\triangle APE\)和\(\triangle AME\)中,\(\begin{cases} \angle PAE=\angle MAE\\ AE = AE\\ \angle AEP=\angle AEM \end{cases}\), \(\therefore\triangle APE\cong\triangle AME\)(\(ASA\)),故\textcircled{1}正确; \(\therefore PE = EM=\frac{1}{2}PM\),同理,\(FP = FN=\frac{1}{2}NP\). \(\because\)正方形\(ABCD\)中\(AC\perp BD\),又\(\because PE\perp AC\),\(PF\perp BD\), \(\therefore\angle PEO=\angle EOF=\angle PFO = 90^{\circ}\),且\(\triangle APE\)中\(AE = PE\) \(\therefore\)四边形\(PEOF\)是矩形. \(\therefore PF = OE\),\(\therefore PE + PF=OA\), 又\(\because PE = EM=\frac{1}{2}PM\),\(FP = FN=\frac{1}{2}NP\),\(OA=\frac{1}{2}AC\), \(\therefore PM + PN=AC\),故\textcircled{2}正确; \(\because\)四边形\(PEOF\)是矩形,\(\therefore PE = OF\),在\(\text{Rt}\triangle OPF\)中,\(OF^{2}+PF^{2}=PO^{2}\),\(\therefore PE^{2}+PF^{2}=PO^{2}\),故\textcircled{3}正确. \(\because\triangle BNF\)是等腰直角三角形,而\(\triangle POF\)不一定是等腰直角三角形,\(\therefore\)两个三角形不一定相似.故\textcircled{4}错误;
如图,在边长为\(2\)的正方形\(ABCD\)中,\(E\),\(F\)分别是\(BC\),\(CD\)上的动点,\(M\),\(N\)分别是\(EF\),\(AF\)的中点,则\(MN\)的最大值为 .
3. 如图所示,\(\text{Rt}\triangle AOB\)中,\(\angle AOB = 90^{\circ}\),顶点\(A\),\(B\)分别在反比例函数\(y=\dfrac{1}{x}(x > 0)\)与\(y = -\dfrac{5}{x}(x < 0)\) 的图象上,则\(\tan\angle BAO\)的值为( )
\(\because AN = ka\),
【变式2-2】. 如图,正方形\(ABCD\)的边长为\(4\),\(\angle DAC\)的平分线交\(DC\)于点\(E\),若点\(P、Q\)分别是\(AD\)和\(AE\)上的动点,则\(DQ + PQ\)的最小值是 .
证明:依题意\(a^{2}+b^{2}=c^{2},S_{1}=a^{2},S_{2}=b^{2},S_{3}=c^{2}\), \(\therefore S_{1}+S_{2}=S_{3}\).
13.甲、乙两同学学习电脑打字,甲打一篇$3000$字的文章与乙打一篇$2400$字的文章所用的时间相同,已知甲每分钟比乙多打$12$个字,问甲、乙两人每分钟各打字多少个?
3. 解下列不等式组,并把解集在数轴上表示出来:
3. 如图所示,$\triangle ABC$是等边三角形,$AB = 1$,$BD = CD$,$\angle BDC = 120^{\circ}$,以点$D$为顶点作$60^{\circ}$的角,交$AB$于点$M$,交$AC$于点$N$,连接$MN$,求$\triangle AMN$的周长.
如图所示,过点\(A\)作\(AG \perp BC\),交\(EF\)于点\(H\). 因为\(EF\parallel BC\),所以\(\triangle AEF\backsim \triangle ABC\). 又因为\(BC = 12\),\(AG = h = 6\),所以\(\frac{EF}{BC}=\frac{AH}{AG}\),即\(\frac{EF}{12}=\frac{6 - x}{6}\),所以 \(EF = 12 - 2x\). 所以 \(y=\frac{1}{2}EF\cdot x=\frac{1}{2}x(12 - 2x)=-x^{2}+6x=-(x - 3)^{2}+9(0<x<6)\). 所以\(y\)关于\(x\)的函数图像为抛物线的一部分,其开口向下,对称轴为\(x = 3\). 所以正确选项为\(D\)项.
16. \(A\), \(B\)两地相距\(300km\),甲、乙两车同时从\(A\)地出发驶向\(B\)地,甲车到达\(B\)地后立即返回.如图是两车离\(A\)地的距离\(y\)(\(km\))与行驶时间\(x\)(\(h\))之间的函数图象.
369. 解:如图,过点\(G\)作\(GT\perp CF\)交\(CF\)的延长线于\(T\),设\(BH\)交\(CF\)于\(M\),\(AE\)交\(DF\)于\(N\). 设\(BE = AN = CM = DF = a\),则\(AE = BM = CF = DN = 2a\), \(\therefore EN = EM = MF = FN = a\),\(\because\)四边形\(ENFM\)是正方形, \(\therefore\angle EFH=\angle TFG = 45^{\circ}\),\(\angle NFE=\angle DFG = 45^{\circ}\), \(\because GT\perp TF\),\(DF\perp DG\), \(\therefore\angle TGF=\angle TFG=\angle DFG=\angle DGF = 45^{\circ}\), \(\therefore TG = FT = DF = DG = a\), \(\therefore CT = 3a\),\(CG=\sqrt{(3a)^{2}+a^{2}}=\sqrt{10}a\), \(\because MH\parallel TG\), \(\therefore\triangle CMH\backsim\triangle CTG\),\(\therefore CM\):\(CT = MH\):\(TG = 1\):\(3\), \(\therefore MH=\frac{1}{3}a\),\(\therefore BH = 2a+\frac{1}{3}a=\frac{7}{3}a\), \(\therefore\frac{CG}{BH}=\frac{\sqrt{10}a}{\frac{7}{3}a}=\frac{3\sqrt{10}}{7}\),选:\(C\).
已知:如图,\(\text{Rt}\triangle ABC\)中,\(\angle ABC = 90^{\circ}\),\(AB = 4\),\(BC = 3\),两直角顶点\(A\)、\(B\)分别在\(x\)轴、\(y\)轴的正半轴上滑动,点\(C\)在第一象限,连接\(OC\),则\(OC\)长的最大值是 .
\(\triangle ADE\),其中\(\angle DAE = 90^{\circ}\),\(AD = AE\).
\textcircled{3} 如答图(f)所示,当\(OC\)停止运动,\(OB\)重新回到\(ED\)上方,即\(27<t<36\)时,\(\angle BOD = 10(t - 27)^{\circ}\),\(\angle COD = 40^{\circ}\). 因为\(OC\)平分\(\angle BOD\),所以\(\angle BOD = 2\angle COD\),所以\(10(t - 27)^{\circ}=80^{\circ}\),解得\(t = 35\). 综上所述,当射线\(OC\)平分\(\angle BOD\)时,\(t = 0.5\)或\(18.5\)或\(35\).
【变式2-3】. 如图,四边形\(ABCD\)中,\(\angle BAD = 130^{\circ}\),\(\angle B=\angle D = 90^{\circ}\),在\(BC、CD\)上分别找一点\(M、N\),使\(\triangle AMN\)周长最小时,则\(\angle AMN+\angle ANM\)的度数为 .
在直角三角形外,以直角三角形的三边向外作正方形,则\(S_{1}+S_{2}=S_{3}\).
14.某煤矿现在平均每天比原计划多采\(330\)吨煤,已知现在采\(33000\)吨煤所需的时间和原计划采\(23100\)吨煤的时间相同. 问现在平均每天采煤多少吨?
5. 先化简,再求值:\(3x^{2}y-\left[2x^{2}-(x^{2}y - 3x^{2}y)-4xy^{2}\right]\),其中\(\vert x\vert = 2\),\(y = \frac{1}{2}\),且\(xy<0\).
典型题训练 79(难度等级★★★★)
(2) 如图所示,过点\(C\)作\(CM\perp CF\)交\(BD\)于点\(M\),所以\(\angle FCM = 90^{\circ}\). 因为\(\angle ACB = 90^{\circ}\),所以\(\angle FCA=\angle MCB\). 因为\(AF\perp BD\),所以\(\angle AFB = 90^{\circ}\),所以\(\angle AFE=\angle ACB\). 因为\(\angle AEF=\angle BEC\),所以\(\angle CAF=\angle CBM\). 在\(\triangle ACF\)和\(\triangle BCM\)中,因为\(\angle FCA=\angle MCB\),\(AC = BC\),\(\angle CAF=\angle CBM\),所以\(\triangle ACF\cong\triangle BCM\),所以 \(FC = MC\). 又因为\(\angle FCM = 90^{\circ}\),所以\(\angle CFM=\angle CMF = 45^{\circ}\). 所以\(\angle AFC=\angle AFB+\angle CFM = 135^{\circ}\),\(\angle DFC = 180^{\circ}-\angle CFM = 135^{\circ}\),所以\(\angle AFC=\angle DFC\). 在\(\triangle ACF\)和\(\triangle DCF\)中,因为\(AF = DF\),\(\angle AFC=\angle DFC\),\(CF = CF\),所以\(\triangle ACF\cong\triangle DCF\),所以 \(AC = DC\). 因为\(AC = BC\),所以 \(DC = BC\). 第2(2)题答图
2. (1) \textcircled{1} 如答图(a)所示, 当点 \(P\) 为线段 \(DE\) 上靠近点 \(D\) 的三等分点时, \(DP = \frac{1}{3}DE = 5\mathrm{cm}\). \textcircled{2} 如答图(b)所示, 当点 \(P\) 为线段 \(DE\) 上靠近点 \(E\) 的三等分点时, \(DP=\frac{2}{3}DE = 10\mathrm{cm}\).
【变式 2-1】. 如图,在 \(5\times4\) 的正方形网格中,每个小正方形的边长均为 1,点 \(A、B\) 均在格点上.在格点 上确定点 \(C\),使\(\triangle ABC\) 为直角三角形,且面积为 4,则这样的点 \(C\) 的共有( )
(1)在图\textcircled{1}中,画出当点\(D\)从点\(B\)运动到点\(C\)的过程中,点\(E\)的运动轨迹;
连接 \(OM\),\(ON\),\(\because OA\) 垂直平分线段 \(PM\). \(OB\) 垂直平分线段 \(PN\),\(\therefore OM = OP\),\(ON = OP\),\(\therefore OM = OP = ON\), \(\therefore\) 点 \(M、O、N\) 三点共圆, \(\because\angle MPN = 90^{\circ}\),\(\therefore\angle MON = 180^{\circ}\),\(\therefore M\),\(O\),\(N\) 共线, 故 \textcircled{5}正确. 故选:\(B\).
推论:在直角三角形外,以直角三角形的三边向外作等边三 角形,半圆,等腰直角三角形,则 \(S_{1} + S_{2} = S_{3}\).
285. (2020•金华)三角形折叠 求角度 求线段的长(初二)
183. 【★★】正方形 \(ABCD\),\(M、N\) 分别是 \(AB、CD\) 中点,\(P\) 在 \(CB\) 延长线上,\(PM\) 延长线 交 \(AC\) 于 \(Q\),求证:\(MN\) 平分\(\angle PNQ\).
11. \(\frac{x}{x - 2}-\frac{1 - x^{2}}{(x - 2)(x - 3)}=\frac{2x}{x - 3}\) 12. \(5+\frac{8x}{x^{2}-16}=\frac{2x - 1}{x + 4}-\frac{3x - 1}{4 - x}\)
2. 解下列方程组:
(1) \(\triangle ABE\cong\triangle ACF\); (2) \(AF = BD\).
\(+CD)-\left(\frac{1}{2}BC + CD\right)=\frac{1}{2}(AB - CD)=2.\)
367. 解:\(\because\angle CDB = \angle A = 45^{\circ}\),\(\therefore\angle ABC=\angle A = 45^{\circ}\) \(\because\angle BCE=\angle DCB\),\(\therefore\triangle BCE\sim\triangle DCB\), \(\therefore BC^{2}=CE\times CD\),设 \(DE = x\),则 \(CE = 2x\), \(\therefore(6\sqrt{2})^{2}=2x\times3x\), \(\because x > 0\),\(\therefore x = 2\sqrt{3}\),\(\therefore CE = 4\sqrt{3}\),故选:\(D\). 368. 解:设 \(AB = AD = BC = CD = 3a\), \(\because\)四边形 \(ABCD\) 是正方形, \(\therefore\angle DAE=\angle DCF = 45^{\circ}\),\(\angle DAM=\angle DCN = 90^{\circ}\), 在\(\triangle DAE\) 和\(\triangle DCF\) 中,\(\begin{cases}DA = DG\\\angle DAE=\angle DCF\\AE = CF\end{cases}\), \(\therefore\triangle DAE\cong\triangle DCF\)(\(SAS\)),\(\therefore\angle ADE=\angle CDF\), 在\(\triangle DAM\) 和\(\triangle DCN\) 中,\(\begin{cases}\angle ADM=\angle CDN\\DA = DC\\\angle DAM=\angle DCN\end{cases}\), \(\therefore\triangle DAM\cong\triangle DCN\)(\(ASA\)),\(\therefore AM = CN\), \(\because AB = BC\),\(\therefore BM = BN\), \(\because CN\parallel AD\),\(\therefore\frac{CN}{AD}=\frac{CF}{AF}=\frac{1}{3}\), \(\therefore CN = AM = a\),\(BM = BN = 2a\), \(\therefore\frac{S_{\triangle AMD}}{S_{\triangle MBN}}=\frac{\frac{1}{2}\times AD\times AM}{\frac{1}{2}\times BM\times BN}=\frac{3a\times a}{2a\times 2a}=\frac{3}{4}\),故选:\(A\)
(2)如图\textcircled{2},若\(AB = 6\),点\(F\)为\(AB\)的中点,连接\(EF\),求\(EF\)的最小值.
0)并且与 \(x\) 轴垂直于点 \(D\),请你在直线 \(l\) 上找一点 \(C\),使\(\triangle ABC\) 为直角三角形,并求出点 \(C\) 的坐标.
如图,在平面直角坐标系中,直线 \(y = - x\) 与双曲线 \(y = \frac{k}{x}\) 交于 \(A\),\(B\) 两点,\(P\) 是 以点 \(C(2,2)\) 为圆心,半径长为 \(1\) 的圆上一动点,连接 \(AP\),\(Q\) 为 \(AP\) 的中点.若 线段 \(OQ\) 长度的最大值为 \(2\),则 \(k\) 的值为 \_\_\_\_\_.
考点三、线段差最大值模型
【法 3】【平行比例】$\frac{\sqrt{3}k + EF}{2\sqrt{3}k}=\frac{\sqrt{2}k}{(\sqrt{6}-\sqrt{2})k},EF = 3k,\angle CFE = 30^{\circ},\angle AFC = 45^{\circ}$
三、解方程
A. 图象具有对称性,对称轴是直线\(x = 1.5\) B. 有且只有 - \(1\leqslant x\leqslant1\) 时,函数值 \(y\) 随 \(x\) 值的增大而增大 C. 若 \(a<0\),则 \(8a + c>0\) D. 若 \(a<0\),则 \(a + b\geqslant m(am + b)\)(\(m\) 为任意实数)
(2)$$\frac{2}{3}\times\left(-\sqrt{2\frac{1}{4}}\right)-\sqrt[3]{-3\frac{3}{8}}.$$
综上所述,当点 \(P\) 是线段 \(AQ\) 的三等分点时,运动时间 \(t = 3\) 或\(\frac{30}{7}\)或 \(10\).
\(\therefore\triangle APQ\backsim\triangle ABH,\ \therefore\frac{AP}{AB}=\frac{PQ}{BH},\) \(\therefore\frac{2}{4}=\frac{PQ}{\sqrt{7}},\ \therefore PQ = \frac{\sqrt{7}}{2},\) 故选:\(A\).
1. (1) \(\angle MON=\angle MOB + \angle BON=\dfrac{1}{2}\angle AOB+\dfrac{1}{2}\angle BOD=\dfrac{1}{2}\angle AOD = 30^{\circ}\).
219.(2020•泸州)矩形延长类中线求线段的值 中点模型(初三)
A. \(25\) B. \(20\) C. \(9\) D. \(5\)
【变式 2-2】. 如图,在平面直角坐标系\(xOy\)中,点\(A\),\(B\)的坐标分别为\(A(0,2)\),\(B(8,8)\),点\(C(m,0)\)为\(x\)轴正半轴上一个动点.
四、列方程解应用题
(1)\(-3^{2}+1\div4\times\frac{1}{4}-\left|-1\frac{1}{4}\right|\times(-0.5)^{2};\)
2. 设 \(BC = x,BD = y.\)
(2) 由题意可知 \(PD = \frac{1}{2}AD,QC=\frac{1}{2}BC,\) 所以 \(PQ = PD - QD=\frac{1}{2}AD-(QC + CD)=\frac{1}{2}(AB + BC\)
【变 3-1】. 我们定义一种新函数:形如 \(y = |ax^{2}+bx + c|\)(\(a\neq0\),\(b^{2}-4ac>0\))的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数 \(y = |ax^{2}+bx + c|\)的图象(如图所示),下列结论正确的是( )
218.(2021•深圳模拟)动点构造三角形中位线求最值 中点模型(初三)
\(\therefore\triangle EFM\cong\triangle POA\ (\text{ASA}),\ \therefore EM = AP = x\).
模型 23 “勾股树”模型
【法 2】【369$\triangle ACG$】正$\triangle OGC$,$\angle AFO = 15^{\circ}=\angle GOF$,$GF = GO = GC$,$\angle AFC = 45^{\circ}$
\[(1)\begin{cases}9x + 5<8x + 7,\\\frac{4}{3}x + 2>1-\frac{2}{3}x;\end{cases}\]
(3)当点 \(C\) 在运动时,是否存在点 \(C\) 使\(\triangle ABC\) 为直角三角形,如果存在,请求出这个三角形的面积;如果不存在,请说明理由.
(2) \textcircled{1} 当点 \(P、Q\) 重合时,\(AP + PB=AB\),所以 \(t + 2t = 15\),解得 \(t = 5\).
220.(2020•翔安区模拟)梯子滑动型最值问题 取斜边上的中线(初二)
【法 2】\(N、M\) 对称,【美人鱼】\(\triangle NAM\sim\triangle NEA\)【AA】\(EM = k\),\(AE = 5k=BC + CE\)
ii. 在点 \(P、Q\) 重合后,\(AQ = 5 + 2(t - 5)=(2t - 5)\text{cm}\),\(AP = t\text{ cm}\). 当 \(AP=\dfrac{1}{3}AQ\) 时,\(t=\dfrac{2t - 5}{3}\),解得 \(t = - 5\)( 不符合题意,舍去). 当 \(AP=\dfrac{2}{3}AQ\) 时,\(t=\dfrac{2(2t - 5)}{3}\),解得 \(t = 10\).
217.(2023•广西)动点构造三角形中位线求最值 中点模型(初二)
(1)当点\(E\)在\(BC\)上时,作\(FM\perp AC\),垂足为\(M\),求证:\(AM = AB\);
【法 1】【\(15^{\circ}\)模型】\(15^{\circ}\text{Rt}\triangle\),斜边中垂线出“\(369\triangle\)” 中垂线 \(FEH\),\(\angle AFH = 15^{\circ}\),作\(\angle AGH = 30^{\circ}\),\(GF = GA = 2AH = 2k\),\(HG=\sqrt{3}k\) \(HF = HG + GF=\sqrt{3}k + 2k\),\(EF = HF - HE=\sqrt{3}k\),\(\angle CFE = 30^{\circ}\),\(\angle AFC = 45^{\circ}\)
【变 3-2】. 已知抛物线 \(y = ax^{2}+c\) 过点 \(A( - 2,0)\) 和 \(D( - 1,3)\) 两点,交 \(x\) 轴于另一点 \(B\).
【变 2-1】. 如图,抛物线 \(y = ax^{2}+bx - 1\)(\(a\neq0\))交 \(x\) 轴于 \(A\),\(B\)(\(1\),\(0\))两点,交 \(y\) 轴于点 \(C\),一次函数 \(y\) \(=x + 3\) 的图象交坐标轴于 \(A\),\(D\) 两点,\(E\) 为直线 \(AD\) 上一点,作 \(EF\perp x\) 轴,交抛物线于点 \(F\)
考点三:二次函数背景下的矩形存在性问题
$\because \overline {CF}=\frac {}{2}$
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
104