text
stringlengths
6
947k
repo_name
stringlengths
5
100
path
stringlengths
4
231
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
6
947k
score
float64
0
0.34
#!/usr/bin/env python # -*- encoding: utf-8 -*- import io import re from glob import glob from os.path import basename from os.path import dirname from os.path import join from os.path import splitext from setuptools import find_packages from setuptools import setup def read(*names, **kwargs): return io.open( join(dirname(__file__), *names), encoding=kwargs.get('encoding', 'utf8') ).read() setup( name='hqueue', version='0.2.0', license='BSD', description='asyncio.Queue with history', long_description='%s\n\n%s' % ( re.compile('^.. start-badges.*^.. end-badges', re.M | re.S).sub('', read('README.rst')), re.sub(':[a-z]+:`~?(.*?)`', r'``\1``', read('CHANGELOG.rst')) ), author='Henry S. Harrison', author_email='henry.schafer.harrison@gmail.com', url='https://github.com/hsharrison/history-queue', packages=find_packages('src'), package_dir={'': 'src'}, py_modules=[splitext(basename(path))[0] for path in glob('src/*.py')], include_package_data=True, zip_safe=True, classifiers=[ # complete classifier list: http://pypi.python.org/pypi?%3Aaction=list_classifiers 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python', 'Programming Language :: Python :: 3.5', 'Topic :: Utilities', ], keywords=[ 'asyncio', 'deque', 'queue', 'history', ], extras_require={ 'test': ['pytest', 'pytest-cov', 'hypothesis', 'toolz'], } )
hsharrison/history-queue
setup.py
Python
bsd-2-clause
1,610
0.001242
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.mgmt.core import ARMPipelineClient from msrest import Deserializer, Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Optional from azure.core.credentials import TokenCredential from ._configuration import DataBoxManagementClientConfiguration from .operations import Operations from .operations import JobsOperations from .operations import ServiceOperations from . import models class DataBoxManagementClient(object): """The DataBox Client. :ivar operations: Operations operations :vartype operations: azure.mgmt.databox.operations.Operations :ivar jobs: JobsOperations operations :vartype jobs: azure.mgmt.databox.operations.JobsOperations :ivar service: ServiceOperations operations :vartype service: azure.mgmt.databox.operations.ServiceOperations :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The Subscription Id. :type subscription_id: str :param str base_url: Service URL :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. """ def __init__( self, credential, # type: "TokenCredential" subscription_id, # type: str base_url=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None if not base_url: base_url = 'https://management.azure.com' self._config = DataBoxManagementClientConfiguration(credential, subscription_id, **kwargs) self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._serialize.client_side_validation = False self._deserialize = Deserializer(client_models) self.operations = Operations( self._client, self._config, self._serialize, self._deserialize) self.jobs = JobsOperations( self._client, self._config, self._serialize, self._deserialize) self.service = ServiceOperations( self._client, self._config, self._serialize, self._deserialize) def close(self): # type: () -> None self._client.close() def __enter__(self): # type: () -> DataBoxManagementClient self._client.__enter__() return self def __exit__(self, *exc_details): # type: (Any) -> None self._client.__exit__(*exc_details)
Azure/azure-sdk-for-python
sdk/databox/azure-mgmt-databox/azure/mgmt/databox/v2020_11_01/_data_box_management_client.py
Python
mit
3,173
0.001891
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.db.models.deletion import re import tablemanager.models import django.utils.timezone import borg_utils.resource_status import django.core.validators class Migration(migrations.Migration): dependencies = [ ('tablemanager', '0020_workspace_auth_level'), ] operations = [ migrations.CreateModel( name='Style', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.SlugField(help_text='Name of Publish', max_length=255, validators=[django.core.validators.RegexValidator(re.compile('^[a-z0-9_]+$'), 'Slug can only contain lowercase letters, numbers and underscores', 'invalid')])), ('description', models.CharField(max_length=512, null=True, blank=True)), ('status', models.CharField(default=b'Enabled', max_length=32, choices=[(b'Enabled', b'Enabled'), (b'Disabled', b'Disabled')])), ('sld', tablemanager.models.XMLField(help_text='Styled Layer Descriptor', null=True, blank=True)), ('last_modify_time', models.DateTimeField(default=django.utils.timezone.now, auto_now_add=True)), ('publish', models.ForeignKey(to='tablemanager.Publish')), ], options={ 'ordering': ('publish', 'name'), }, bases=(models.Model, borg_utils.resource_status.ResourceStatusMixin), ), migrations.AlterUniqueTogether( name='style', unique_together=set([('publish', 'name')]), ), migrations.AddField( model_name='publish', name='default_style', field=models.ForeignKey(related_name='+', on_delete=django.db.models.deletion.SET_NULL, to='tablemanager.Style', null=True), preserve_default=True, ), ]
parksandwildlife/borgcollector
tablemanager/migrations/0021_auto_20160219_0803.py
Python
bsd-3-clause
2,007
0.003986
class HostCommands(object): def __new__(cls, host): if host.is_ol6: return HostCommandOL6(host) if host.is_ol7: return HostCommandOL7(host) class HostBaseCommands(object): def __init__(self, host): self.host = host self.infra = host.infra self.engine_name = host.infra.engine.name def exec_service_command(self, service_name, action, no_output=False): cmd = self.command_tmpl.format( service_name=service_name, action=action ) if no_output: cmd += ' > /dev/null' return cmd def init_database_script(self, action, instances, no_output=True): script = '' for instance in instances: script += "{};".format(self.database( action=action )) if instance.is_sentinel: script += "{};".format(self.secondary_service( action=action, no_output=True )) return script def secondary_service(self, action, no_output=True): return self.exec_service_command( service_name=self.SECONDARY_SERVICE_NAME_BY_ENGINE[ self.engine_name ], action=action, no_output=no_output ) def database(self, action, no_output=True): return self.exec_service_command( service_name=self.PRIMARY_SERVICE_NAME_BY_ENGINE[self.engine_name], action=action, no_output=no_output ) def monit_script(self, action='start'): return """ echo ""; echo $(date "+%Y-%m-%d %T") "- Monit" {} """.format( self.exec_service_command( service_name='monit', action=action ) ) def rsyslog(self, action, no_output=False): return self.exec_service_command( service_name='rsyslog', action=action, no_output=no_output ) def telegraf(self, action, no_output=False): return self.exec_service_command( service_name='telegraf', action=action, no_output=no_output ) def httpd(self, action, no_output=False): return self.exec_service_command( service_name='httpd', action=action, no_output=no_output ) def heartbeat(self, action, no_output=False): return self.exec_service_command( service_name='pt-heartbeat', action=action, no_output=no_output ) @property def command_tmpl(self): raise NotImplementedError() class HostCommandOL6(HostBaseCommands): PRIMARY_SERVICE_NAME_BY_ENGINE = { 'mongodb': 'mongodb', 'redis': 'redis', 'mysql': 'mysql', 'mysql_percona': 'mysql' } SECONDARY_SERVICE_NAME_BY_ENGINE = { 'mongodb': 'mongodb', 'redis': 'sentinel', 'mysql': '', 'mysql_percona': '' } command_tmpl = '/etc/init.d/{service_name} {action}' class HostCommandOL7(HostBaseCommands): PRIMARY_SERVICE_NAME_BY_ENGINE = { 'mongodb': 'mongodb', 'redis': 'redis', 'mysql': 'mysql', 'mysql_percona': 'mysql' } SECONDARY_SERVICE_NAME_BY_ENGINE = { 'mongodb': 'mongodb', 'redis': 'sentinel', 'mysql': '', 'mysql_percona': '' } command_tmpl = 'sudo systemctl {action} {service_name}.service'
globocom/database-as-a-service
dbaas/physical/commands.py
Python
bsd-3-clause
3,573
0
# --- job 1/8 & 2/8 : check_etablissements & extract_etablissements DISTINCT_DEPARTEMENTS_HAVING_OFFICES = 15 # --- job 5/8 : compute_scores SCORE_COEFFICIENT_OF_VARIATION_MAX = 8 MINIMUM_OFFICES_REQUIRED_TO_TRAIN_MODEL = 0 MAXIMUM_COMPUTE_SCORE_JOB_FAILURES = 94 # 96 departements == 2 successes + 94 failures RMSE_MAX = 300 # --- job 6/8 : validate_scores SCORE_REDUCING_MINIMUM_THRESHOLD = 0 # SCORE_ALTERNANCE_REDUCING_MINIMUM_THRESHOLD = 0 DEPARTEMENTS_TO_BE_SANITY_CHECKED = ['14', '69']
StartupsPoleEmploi/labonneboite
labonneboite/importer/conf/development.py
Python
agpl-3.0
497
0.002012
from django import forms from ..models import BaseDemographic class BaseDemographicForm(forms.ModelForm): class Meta: model = BaseDemographic fields = ['first_name','last_name','phone','dob']
rdespoiu/QTitan
QTitan/QTSurvey/Controllers/BaseDemographicForm.py
Python
gpl-3.0
214
0.023364
# All the code samples below have one parameter, which is where the protection level name # for that storage type will be inserted, e.g. NSDataWritingFileProtectionCompleteUnlessOpen CODE_SAMPLE_CORE_DATA = """ - (NSPersistentStoreCoordinator *)persistentStoreCoordinator { if (persistentStoreCoordinator_ != nil) { return persistentStoreCoordinator_; } persistentStoreCoordinator_ = [[NSPersistentStoreCoordinator alloc] initWithManagedObjectModel:[self managedObjectModel]]; NSURL *storeURL = [NSURL fileURLWithPath: [[self applicationDocumentsDirectory] stringByAppendingPathComponent: @"MyStore.sqlite"]]; [persistentStoreCoordinator_ addPersistentStoreWithType:NSSQLiteStoreType configuration:nil URL:storeURL options:nil error:&error]; NSDictionary *fileAttributes = [NSDictionary dictionaryWithObject:%s forKey:NSFileProtectionKey]; [[NSFileManager defaultManager] setAttributes:fileAttributes ofItemAtPath:[storeURL path] error: &error]; return persistentStoreCoordinator_; }""" CODE_SAMPLE_SQL = """ int flags = SQLITE_OPEN_CREATE | SQLITE_OPEN_READWRITE | %s; sqlite3_open_v2(path, &database, flags, NULL) // Or, if you prefer FMDB: FMDatabase *database = [FMDatabase databaseWithPath:dbPath]; [database openWithFlags:flags] """ CODE_SAMPLE_RAW_DATA = """ NSData *contents = [@"secret file contents" dataUsingEncoding:NSUTF8StringEncoding]; [contents writeToFile:path options:%s error:&error]; """ CODE_SAMPLE_KEYCHAIN = """ // Note that metadata, like the account name, is not encrypted. NSDictionary *item = @{ (__bridge id)kSecAttrAccount: account, (__bridge id)kSecClass: (__bridge id)kSecClassGenericPassword, (__bridge id)kSecAttrAccessible: (__bridge id)%s, (__bridge id)kSecValueData: data, }; OSStatus error = SecItemAdd((__bridge CFDictionaryRef)item, NULL); """
erikr/howtostoreiosdata
howtostoreiosdata/wizard/code_samples.py
Python
mit
1,995
0.002506
import __init__ import math import numpy as np class Point: '''Point at 3D. Some method for it. ''' def __init__ (self, x=0.0, y=0.0 ,z=0.0): self.x=x self.y=y self.z=z def coors(self): coor=(self.x,self.y,self.z) return coor def dist_to(self,apoint): return math.sqrt(math.pow(self.x - apoint.x,2) + math.pow(self.y - apoint.y,2) + math.pow(self.z - apoint.z,2)) def CopyOf(self): return point(self.x, self.y, self.z) def average_with(self, other_point): return point((self.x + other_point.x) / 2.0, (self.y + other_point.y) / 2.0, (self.z + other_point.z) / 2.0) def dot_product_with(self, other_point): return self.x * other_point.x + self.y * other_point.y + self.z * other_point.z def length(self): return self.dist_to(point(0.0,0.0,0.0)) def minus(self, other_point): return point(self.x - other_point.x, self.y - other_point.y, self.z - other_point.z) def CreatePDBLine(self): #if len(self.atomname) > 1: self.atomname = self.atomname[:1].upper() + self.atomname[1:].lower() output = "ATOM " #output = output + str(index).rjust(6) + self.atomname.rjust(5) + self.residue.rjust(4) output = output + "5".rjust(6) + "X".rjust(5) + "XXX".rjust(4) output = output + ("%.3f" % self.x).rjust(18) output = output + ("%.3f" % self.y).rjust(8) output = output + ("%.3f" % self.z).rjust(8) output = output + "X".rjust(24) # + " " + str(uniqueID) #This last part must be removed return output #######basic function is put here##### def coors_to_point(coors): point=Point(coors[0],coors[1],coors[2]) return point # -------------------------------- Vertor ------------------------- class Vector: pass # -------------------------------- Vertex ------------------------- # -------------------------------- Edge --------------------------- # -------------------------------- Face --------------------------- # -------------------------------- Box ---------------------------- # -------------------------------- Cubic -------------------------- # -------------------------------- Circle ------------------------- # -------------------------------- Ball --------------------------- # -------------------------------- Grid --------------------------- # ----------------------------- MultiGrid ------------------------- # -------------------------- High Dimension ? ---------------------
platinhom/CADDHom
python/basic/HHGeometry.py
Python
gpl-2.0
2,547
0.016097
from collections import namedtuple from cairo import LINE_JOIN_ROUND from zorro.di import di, dependency, has_dependencies from tilenol.groups import GroupManager from tilenol.commands import CommandDispatcher from .base import Widget from tilenol.theme import Theme from tilenol.window import Window GroupState = namedtuple( 'GroupState', ('name', 'empty', 'active', 'visible', 'urgent') ) @has_dependencies class State(object): commander = dependency(CommandDispatcher, 'commander') gman = dependency(GroupManager, 'group-manager') def __init__(self): self._state = None def dirty(self): return self._state != self._read() def update(self): nval = self._read() if nval != self._state: self._state = nval return True def _read(self): cur = self.commander.get('group') visgr = self.gman.current_groups.values() return tuple(GroupState(g.name, g.empty, g is cur, g in visgr, g.has_urgent_windows) for g in self.gman.groups) @property def groups(self): return self._state @has_dependencies class Groupbox(Widget): theme = dependency(Theme, 'theme') def __init__(self, *, filled=False, first_letter=False, right=False): super().__init__(right=right) self.filled = filled self.first_letter = first_letter def __zorro_di_done__(self): self.state = di(self).inject(State()) bar = self.theme.bar self.font = bar.font self.inactive_color = bar.dim_color_pat self.urgent_color = bar.bright_color_pat self.active_color = bar.text_color_pat self.selected_color = bar.active_border_pat self.subactive_color = bar.subactive_border_pat self.padding = bar.text_padding self.border_width = bar.border_width self.state.gman.group_changed.listen(self.bar.redraw.emit) Window.any_window_changed.listen(self.check_state) def check_state(self): if self.state.dirty: self.bar.redraw.emit() def draw(self, canvas, l, r): self.state.update() assert not self.right, "Sorry, right not implemented" self.font.apply(canvas) canvas.set_line_join(LINE_JOIN_ROUND) canvas.set_line_width(self.border_width) x = l between = self.padding.right + self.padding.left for gs in self.state.groups: gname = gs.name if self.first_letter: gname = gname[0] sx, sy, w, h, ax, ay = canvas.text_extents(gname) if gs.active: canvas.set_source(self.selected_color) if self.filled: canvas.rectangle(x, 0, ax + between, self.height) canvas.fill() else: canvas.rectangle( x + 2, 2, ax + between - 4, self.height - 4 ) canvas.stroke() elif gs.visible: canvas.set_source(self.subactive_color) if self.filled: canvas.rectangle(x, 0, ax + between, self.height) canvas.fill() else: canvas.rectangle( x + 2, 2, ax + between - 4, self.height - 4 ) canvas.stroke() if gs.urgent: canvas.set_source(self.urgent_color) elif gs.empty: canvas.set_source(self.inactive_color) else: canvas.set_source(self.active_color) canvas.move_to(x + self.padding.left, self.height - self.padding.bottom) canvas.show_text(gname) x += ax + between return x, r
tailhook/tilenol
tilenol/widgets/groupbox.py
Python
mit
3,880
0.000258
import os import sys import golem from golem.core import (utils, session, suite as suite_module, test, settings_manager, test_directory) from golem.core.project import Project, create_project from golem.gui import gui_start from golem.test_runner.execution_runner import ExecutionRunner from golem.test_runner import interactive as interactive_module from golem.gui.user_management import Users from . import messages def command_dispatcher(args): if args.help: display_help(args.help, args.command) elif args.command == 'run': run_command(args.project, args.test_query, args.browsers, args.processes, args.environments, args.interactive, args.timestamp, args.report, args.report_folder, args.report_name, args.tags, args.cli_log_level) elif args.command == 'gui': gui_command(args.host, args.port, args.debug) elif args.command == 'createproject': createproject_command(args.project) elif args.command == 'createtest': createtest_command(args.project, args.test) elif args.command == 'createsuite': createsuite_command(args.project, args.suite) elif args.command == 'createuser': createuser_command() elif args.command == 'createsuperuser': createsuperuser_command(args.username, args.email, args.password, args.noinput) elif args.command is None: if args.version: display_version() else: print(messages.USAGE_MSG) def display_help(help, command): if help == 'run' or command == 'run': print(messages.RUN_USAGE_MSG) elif help == 'gui' or command == 'gui': print(messages.GUI_USAGE_MSG) elif help == 'createproject' or command == 'createproject': print(messages.CREATEPROJECT_USAGE_MSG) elif help == 'createtest' or command == 'createtest': print(messages.CREATETEST_USAGE_MSG) elif help == 'createsuite' or command == 'createsuite': print(messages.CREATESUITE_USAGE_MSG) elif help == 'createsuperuser' or command == 'createsuperuser': print(messages.CREATESUPERUSER_USAGE_MSG) else: print(messages.USAGE_MSG) def run_command(project='', test_query='', browsers=None, processes=1, environments=None, interactive=False, timestamp=None, reports=None, report_folder=None, report_name=None, tags=None, cli_log_level=None): execution_runner = ExecutionRunner(browsers, processes, environments, interactive, timestamp, reports, report_folder, report_name, tags) if project: if test_directory.project_exists(project): execution_runner.project = project session.settings = settings_manager.get_project_settings(project) # add --interactive value to settings to make # it available from inside a test session.settings['interactive'] = interactive # override cli_log_level setting if provided by the CLI if cli_log_level: session.settings['cli_log_level'] = cli_log_level.upper() if test_query: norm_query = utils.normalize_query(test_query) if suite_module.Suite(project, norm_query).exists: execution_runner.run_suite(norm_query) elif test.Test(project, norm_query).exists: execution_runner.run_test(norm_query) else: if test_query == '.': test_query = '' path = os.path.join(session.testdir, 'projects', project, 'tests', test_query) if os.path.isdir(path): execution_runner.run_directory(test_query) else: msg = ('golem run: error: the value {} does not match ' 'an existing test, suite or directory'.format(test_query)) sys.exit(msg) else: print(messages.RUN_USAGE_MSG) tests = Project(project).test_tree print('Tests:') utils.display_tree_structure_command_line(tests['sub_elements']) suites = Project(project).suite_tree print('\nTest Suites:') # TODO print suites in structure for suite in suites['sub_elements']: print(' ' + suite['name']) else: msg = ('golem run: error: the project {} does not exist'.format(project)) sys.exit(msg) elif interactive: interactive_module.interactive(session.settings, browsers) else: print(messages.RUN_USAGE_MSG) print('Projects:') for project in test_directory.get_projects(): print(' {}'.format(project)) def gui_command(host=None, port=5000, debug=False): gui_start.run_gui(host, port, debug) def createproject_command(project): if test_directory.project_exists(project): msg = ('golem createproject: error: a project with name \'{}\' already exists' .format(project)) sys.exit(msg) else: create_project(project) def createtest_command(project, test_name): if not test_directory.project_exists(project): msg = ('golem createtest: error: a project with name {} ' 'does not exist'.format(project)) sys.exit(msg) test_name = test_name.replace(os.sep, '.') errors = test.create_test(project, test_name) if errors: sys.exit('golem createtest: error: {}'.format(' '.join(errors))) def createsuite_command(project, suite_name): if not test_directory.project_exists(project): msg = ('golem createsuite: error: a project with name {} ' 'does not exist'.format(project)) sys.exit(msg) errors = suite_module.create_suite(project, suite_name) if errors: sys.exit('golem createsuite: error: {}'.format(' '.join(errors))) # TODO deprecated def createuser_command(): sys.exit('Error: createuser command is deprecated. Use createsuperuser instead.') def createsuperuser_command(username, email, password, no_input=False): if no_input: if username is None or password is None: sys.exit('Error: --username and --password are required for --noinput.') else: try: while True: username = input('Username: ').strip() if username: break while True: email = input('Email address (optional): ').strip() if email and not utils.validate_email(email): print('Error: Enter a valid email address.') else: break while True: password = input('Password: ') repeat_password = input('Password (again): ') if not len(password): print('Error: Blank passwords are not allowed.') elif password != repeat_password: print('Error: The passwords did not match.') else: break except KeyboardInterrupt: sys.exit('Cancelled.') errors = Users.create_super_user(username, password, email) if errors: for error in errors: print('Error: {}'.format(error)) exit(1) else: print('Superuser {} was created successfully.'.format(username)) def createdirectory_command(dir_name, no_confirm=False): """Create a new Golem test directory dir_name must be an absolute or relative path. If the path exists and is not empty and no_confirm is False the user will be prompted to continue. """ abspath = os.path.abspath(dir_name) if os.path.exists(abspath) and os.listdir(abspath): # directory is not empty if not no_confirm: msg = 'Directory {} is not empty, continue? [Y/n]'.format(dir_name) if not utils.prompt_yes_no(msg): return if os.path.isfile(os.path.join(abspath, '.golem')): sys.exit('Error: target directory is already an existing Golem test directory') session.testdir = abspath test_directory.create_test_directory(abspath) print('New golem test directory created at {}'.format(abspath)) print('Use credentials to access the GUI module:') print('user: admin') print('password: admin') def display_version(): print('Golem version {}'.format(golem.__version__))
lucianopuccio/golem
golem/cli/commands.py
Python
mit
8,682
0.001497
"""This tutorial introduces the LeNet5 neural network architecture using Theano. LeNet5 is a convolutional neural network, good for classifying images. This tutorial shows how to build the architecture, and comes with all the hyper-parameters you need to reproduce the paper's MNIST results. This implementation simplifies the model in the following ways: - LeNetConvPool doesn't implement location-specific gain and bias parameters - LeNetConvPool doesn't implement pooling by average, it implements pooling by max. - Digit classification is implemented with a logistic regression rather than an RBF network - LeNet5 was not fully-connected convolutions at second layer References: - Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998. http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf """ import os import sys import timeit import numpy import theano import theano.tensor as T from theano.tensor.signal import downsample from theano.tensor.nnet import conv from logistic_sgd import LogisticRegression, load_data from mlp import HiddenLayer class LeNetConvPoolLayer(object): """Pool Layer of a convolutional network """ def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)): """ Allocate a LeNetConvPoolLayer with shared variable internal parameters. :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dtensor4 :param input: symbolic image tensor, of shape image_shape :type filter_shape: tuple or list of length 4 :param filter_shape: (number of filters, num input feature maps, filter height, filter width) :type image_shape: tuple or list of length 4 :param image_shape: (batch size, num input feature maps, image height, image width) :type poolsize: tuple or list of length 2 :param poolsize: the downsampling (pooling) factor (#rows, #cols) """ assert image_shape[1] == filter_shape[1] self.input = input # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = numpy.prod(filter_shape[1:]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize)) # initialize weights with random weights W_bound = numpy.sqrt(6. / (fan_in + fan_out)) self.W = theano.shared( numpy.asarray( rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=theano.config.floatX ), borrow=True ) # the bias is a 1D tensor -- one bias per output feature map b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX) self.b = theano.shared(value=b_values, borrow=True) # convolve input feature maps with filters conv_out = conv.conv2d( input=input, filters=self.W, filter_shape=filter_shape, image_shape=image_shape ) # downsample each feature map individually, using maxpooling pooled_out = downsample.max_pool_2d( input=conv_out, ds=poolsize, ignore_border=True ) # add the bias term. Since the bias is a vector (1D array), we first # reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias will # thus be broadcasted across mini-batches and feature map # width & height self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) # store parameters of this layer self.params = [self.W, self.b] # keep track of model input self.input = input def evaluate_lenet5(learning_rate=0.1, n_epochs=200, dataset='mnist.pkl.gz', nkerns=[20, 50], batch_size=500): """ Demonstrates lenet on MNIST dataset :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset: string :param dataset: path to the dataset used for training /testing (MNIST here) :type nkerns: list of ints :param nkerns: number of kernels on each layer """ rng = numpy.random.RandomState(23455) datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_valid_batches /= batch_size n_test_batches /= batch_size print test_set_x.get_value()[0].shape # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # Reshape matrix of rasterized images of shape (batch_size, 28 * 28) # to a 4D tensor, compatible with our LeNetConvPoolLayer # (28, 28) is the size of MNIST images. layer0_input = x.reshape((batch_size, 1, 28, 28)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24) # maxpooling reduces this further to (24/2, 24/2) = (12, 12) # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12) layer0 = LeNetConvPoolLayer( rng, input=layer0_input, image_shape=(batch_size, 1, 28, 28), filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2) ) # Construct the second convolutional pooling layer # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8) # maxpooling reduces this further to (8/2, 8/2) = (4, 4) # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4) layer1 = LeNetConvPoolLayer( rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 12, 12), filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2) ) # the HiddenLayer being fully-connected, it operates on 2D matrices of # shape (batch_size, num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4), # or (500, 50 * 4 * 4) = (500, 800) with the default values. layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer layer2 = HiddenLayer( rng, input=layer2_input, n_in=nkerns[1] * 4 * 4, n_out=500, activation=T.tanh ) # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) # the cost we minimize during training is the NLL of the model cost = layer3.negative_log_likelihood(y) # create a function to compute the mistakes that are made by the model test_model = theano.function( [index], layer3.errors(y), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size] } ) validate_model = theano.function( [index], layer3.errors(y), givens={ x: valid_set_x[index * batch_size: (index + 1) * batch_size], y: valid_set_y[index * batch_size: (index + 1) * batch_size] } ) # create a list of all model parameters to be fit by gradient descent params = layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i], grads[i]) pairs. updates = [ (param_i, param_i - learning_rate * grad_i) for param_i, grad_i in zip(params, grads) ] train_model = theano.function( [index], cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) # end-snippet-1 ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = timeit.default_timer() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: print 'training @ iter = ', iter cost_ij = train_model(minibatch_index) if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [ test_model(i) for i in xrange(n_test_batches) ] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) if patience <= iter: done_looping = True break end_time = timeit.default_timer() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i, ' 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) if __name__ == '__main__': evaluate_lenet5() def experiment(state, channel): evaluate_lenet5(state.learning_rate, dataset=state.dataset)
webeng/DeepLearningTutorials
code/convolutional_mlp.py
Python
bsd-3-clause
12,771
0.001175
#!/usr/bin/env python # 2015 Copyright (C) White # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 2 of the License. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from white.orm import Backend from white.model import Pair from flask.json import dumps import re class StorageService(object): def __init__(self): self.pair_repo = Backend('storage') def site_meta(self): return self.pair_repo.find('system') def update_site_meta(self, sitename, description, site_page, posts_per_page, auto_published_comments, comment_moderation_keys): meta = self.site_meta() config = meta.json_value() try: sitename = sitename or sitename.strip() if sitename: config['sitename'] = sitename description = description or description.strip() if description: config['description'] = description site_page = int(site_page) if site_page >= 0: config['site_page'] = site_page posts_per_page = int(posts_per_page) if posts_per_page: config['posts_per_page'] = posts_per_page auto_published_comments = bool(auto_published_comments) config['auto_published_comments'] = auto_published_comments if comment_moderation_keys is not None: keys = [key.strip() for key in re.split(' +', comment_moderation_keys) if key.strip()] config['comment_moderation_keys'] = keys meta.value = dumps(config) self.pair_repo.update(meta) return True except: return False
7anshuai/white
white/domain/storage.py
Python
gpl-2.0
2,170
0.001382
#!/usr/bin/python # # Copyright (c) 2016, Nest Labs, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import pexpect import time import unittest import node LEADER = 1 ED = 2 class Cert_6_4_1_LinkLocal(unittest.TestCase): def setUp(self): self.nodes = {} for i in range(1,3): self.nodes[i] = node.Node(i) self.nodes[LEADER].set_panid(0xface) self.nodes[LEADER].set_mode('rsdn') self.nodes[LEADER].add_whitelist(self.nodes[ED].get_addr64()) self.nodes[LEADER].enable_whitelist() self.nodes[ED].set_panid(0xface) self.nodes[ED].set_mode('rsn') self.nodes[ED].add_whitelist(self.nodes[LEADER].get_addr64()) self.nodes[ED].enable_whitelist() def tearDown(self): for node in self.nodes.itervalues(): node.stop() del self.nodes def test(self): self.nodes[LEADER].start() self.nodes[LEADER].set_state('leader') self.assertEqual(self.nodes[LEADER].get_state(), 'leader') self.nodes[ED].start() time.sleep(3) self.assertEqual(self.nodes[ED].get_state(), 'child') addrs = self.nodes[ED].get_addrs() for addr in addrs: if addr[0:4] == 'fe80': self.nodes[LEADER].ping(addr, size=256) self.nodes[LEADER].ping(addr) self.nodes[LEADER].ping('ff02::1', size=256) self.nodes[LEADER].ping('ff02::1') if __name__ == '__main__': unittest.main()
JiahuiZHONG/Internship_Thread
tests/scripts/thread-cert/Cert_6_4_01_LinkLocal.py
Python
bsd-3-clause
2,986
0.001005
# Copyright (c) Mathias Kaerlev 2012. # This file is part of Anaconda. # Anaconda is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # Anaconda is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with Anaconda. If not, see <http://www.gnu.org/licenses/>. from pyglet.window.key import user_key from pyglet.window.mouse import LEFT as MOUSE_LEFT, RIGHT as MOUSE_RIGHT from mmfparser.player.common import PlayerChild from mmfparser.player.eventdispatcher import EventDispatcher DIRECTIONAL_CONTROLS = ('Up', 'Down', 'Left', 'Right') KEY_LIST = ('Up', 'Down', 'Left', 'Right', 'Button1', 'Button2', 'Button3', 'Button4') UP, DOWN, LEFT, RIGHT, BUTTON1, BUTTON2, BUTTON3, BUTTON4 = xrange(8) class Player(PlayerChild, EventDispatcher): name = '' keys = None keyList = None keyNames = None pressed_keys = None lives = None score = None controls_ignored = False use_mouse = False def initialize(self, control): controlType = control.getControlType() if controlType != 'Keyboard': raise NotImplementedError( 'control type %r unsupported' % controlType) keys = control.keys convert = self.player.keyboard.convert self.keyList = keyList = [] self.keyNames = keyNames = [] for key in (keys.up, keys.down, keys.left, keys.right, keys.button1, keys.button2, keys.button3, keys.button4): keyList.append(convert(key.getValue())) keyNames.append(key.getName()) self.keys = keys = {} for index, key in enumerate(KEY_LIST): keys[key] = keyList[index] self.symbol_to_key = dict([(v, k) for k, v in keys.iteritems()]) self.reset() self.player.window.push_handlers( on_key_press = self.key_pressed, on_key_release = self.key_released ) self.player.mouse.push_handlers( on_mouse_press = self.mouse_pressed, on_mouse_release = self.mouse_released ) def mouse_pressed(self, x, y, symbol, modifiers): if self.controls_ignored or not self.use_mouse: return if symbol == MOUSE_LEFT: self.dispatch_event('player_key_pressed', 'Button1') elif symbol == MOUSE_RIGHT: self.dispatch_event('player_key_pressed', 'Button2') def mouse_released(self, x, y, symbol, modifiers): if self.controls_ignored or not self.use_mouse: return if symbol == MOUSE_LEFT: self.dispatch_event('player_key_released', 'Button1') elif symbol == MOUSE_RIGHT: self.dispatch_event('player_key_released', 'Button2') def key_pressed(self, symbol, modifiers): if self.controls_ignored: return try: key = self.symbol_to_key[symbol] if self.use_mouse and key in ('Button1', 'Button2'): return self.dispatch_event('player_key_pressed', key) except KeyError: pass def key_released(self, symbol, modifiers): if self.controls_ignored: return try: key = self.symbol_to_key[symbol] if self.use_mouse and key in ('Button1', 'Button2'): return self.dispatch_event('player_key_released', key) except KeyError: pass def is_down(self, key): if self.controls_ignored: return False if self.use_mouse: if key == 'Button1': return self.player.mouse.left elif key == 'Button2': return self.player.mouse.right return self.player.keyboard[self.keys[key]] def is_down_index(self, value): if self.controls_ignored: return False if self.use_mouse: if value == BUTTON1: return self.player.mouse.left elif value == BUTTON2: return self.player.mouse.right return self.player.keyboard[self.keyList[value]] def set_key(self, index, key): code = self.player.keyboard.convert(key.getValue()) name_key = KEY_LIST[index] name = key.getName() self.keyList[index] = code self.keyNames[index] = name self.keys[name_key] = code self.symbol_to_key[code] = name_key def set_score(self, value): self.score = value self.dispatch_event('score_changed', value) def set_lives(self, value): self.lives = value self.dispatch_event('lives_changed', value) def reset(self, frame = False): self.controls_ignored = False if frame: return header = self.player.gameData.header self.lives = header.initialLives self.score = header.initialScore Player.register_event_type('player_key_pressed') Player.register_event_type('player_key_released') Player.register_event_type('score_changed') Player.register_event_type('lives_changed') class Players(PlayerChild): items = None def initialize(self): header = self.player.gameData.header self.items = items = [] for control in header.controls.items: player = self.new(Player) player.initialize(control) items.append(player) def reset(self, frame = False): for player in self.items: player.reset(frame)
joaormatos/anaconda
mmfparser/player/players.py
Python
gpl-3.0
6,005
0.006828
import inspect import pytest def parametrize(tests, arity=None): '''Helper for parametrizing pytest tests. Expects a list of lambdas, one per test. Each lambda must return the parameters for its respective test. Test identifiers will be automatically generated, from the test number and its lambda definition line (1.10, 2.12, 3.20, ...). If arity is None, the arguments being parametrized will be automatically set from the function's last arguments, according to the numbers of parameters for each test. ''' ids = [] argvalues = [] for n, t in enumerate(tests): line = inspect.getsourcelines(t)[1] ids.append('%u:%u' % (n+1, line)) argvalues.append(t()) if arity is None: arity = len(argvalues[0]) assert arity > 0 def decorator(fn): argnames = list( parameter.name for parameter in inspect.signature(fn).parameters.values() if parameter.default is inspect.Parameter.empty )[-arity:] if arity == 1: argnames = argnames[0] return pytest.mark.parametrize(argnames, argvalues, ids=ids)(fn) return decorator
stanographer/plover
plover_build_utils/testing/parametrize.py
Python
gpl-2.0
1,189
0.000841
#!/usr/bin/python2.7 # cuon_server install import os, sys, platform import subprocess, shlex, shutil import commands import locale import pwd, grp from gi.repository import Gtk import ConfigParser class cssi(): def __init__(self, user=None): self.user = user self.win = None self.grid = None self.CalendarDir="/usr/local/iCal" self.program_names = ["Postgres", "Subversion", "ssh"] self.programs = [] self.programs_gentoo = ["/usr/bin/postmaster", "/usr/bin/svn", "/usr/bin/ssh-keygen"] self.programs_ubuntu = ["/usr/bin/pg_ctlcluster", "/usr/bin/svn", "/usr/bin/ssh-keygen"] self.programs_debian = ["/usr/bin/pg_ctlcluster", "/usr/bin/svn", "/usr/bin/ssh-keygen"] self.program_installer_gentoo = [{"Postgres":["dev-db/postgresql-server", "app-admin/eselect-postgresql", "dev-db/postgresql-docs"]}, {"Subversion":["dev-vcs/subversion"]}, {"ssh":["virtual/ssh"]}] self.program_installer_ubuntu = [{"Postgres":["postgresql-9.1", "postgresql-client-9.1"]},{"Subversion":["subversion"]}, {"ssh":["ssh"]}] self.program_installer_debian = [{"Postgres":["postgresql-9.1", "postgresql-client-9.1"]},{"ssh":["ssh"]} ] self.program_installer = [] self.programs_exist = [] self.python_modules = ["PIL", "reportlab", "twisted.web", "twisted.words", "pygments", "webkit", "pg"] self.python_modules_exist = [] self.python_installer = [] self.python_installer_gentoo = [{"PIL":["dev-python/imaging"]}, {"reportlab":["dev-python/reportlab"]}, {"twisted.web":["dev-python/twisted-web"]}, {"twisted.words":[]}, {"pygments":[]}, {"webkit":["dev-python/pywebkitgtk"]},{"pg":[]} ] self.python_installer_ubuntu = [{"PIL":["python-imaging", "python-imaging-sane"]}, {"reportlab":["python-reportlab"]} , {"twisted.web":["python-twisted-web" ]}, {"twisted.words":["python-twisted-words"]}, {"pygments":["python-pygments"]}, {"webkit":["python-webkit"]},{"pg":["python-pygresql"]} ] self.python_installer_debian = [] self.OS_Installer = None self.OS = None self.Sudo = "" # or gksu self.Terminals = ["gnome-terminal", "konsole", "xfce4-terminal", "terminal", "xterm"] self.Terminal = None self.cpServer = ConfigParser.ConfigParser() self.CUON_FS = "/etc/cuon" self.dia = MessageDialogWindow() def checkOS(self): print "start check OS" if sys.platform.startswith('linux'): # Linux-specific code here... os_desc = os.uname()[1].upper() os_name = os.uname()[2].upper() os_machine = os.uname()[3].upper() os_type = os.uname()[4].upper() os_dist = platform.linux_distribution()[0].upper() print os_dist, os_name, os_machine, os_type if os_dist.find("GENTOO")>= 0: if os.path.exists("/usr/bin/emerge"): self.OS = "GENTOO" self.program_installer = self.program_installer_gentoo self.python_installer = self.python_installer_gentoo self.programs = self.programs_gentoo print 'Check1', self.programs , self.programs_gentoo self.OS_Installer = "/usr/bin/emerge " elif os_dist.find("UBUNTU")>= 0: if os.path.exists("/usr/bin/apt-get"): self.OS = "UBUNTU" self.program_installer = self.program_installer_ubuntu self.python_installer = self.python_installer_ubuntu self.programs = self.programs_ubuntu self.OS_Installer = "/usr/bin/apt-get install " elif os_dist.find("DEBIAN")>= 0: if os.path.exists("/usr/bin/apt-get"): self.OS = "DEBIAN" self.program_installer = self.program_installer_debian self.python_installer = self.python_installer_debian self.programs = self.programs_debian self.OS_Installer = "/usr/bin/apt-get install " print "OS = ", self.OS for j in self.Terminals: if os.path.exists("/usr/bin/" + j): self.Terminal = "/usr/bin/" + j print "Terminal = " + self.Terminal break def checkEnvironment(self): self.programs_exist = [] self.python_modules_exist = [] print 'programs = ', self.programs for program in self.programs: print program if os.path.exists(program): self.programs_exist.append(True) else: self.programs_exist.append(False) print 'Exist 8', self.programs, self.programs_exist for python_module in self.python_modules: try: print python_module if python_module == "webkit": if os.path.exists("/usr/lib/python2.7/site-packages/webkit/webkit.so"): self.python_modules_exist.append(True) elif os.path.exists("/usr/lib/python2.7/dist-packages/webkit/webkit.so"): self.python_modules_exist.append(True) else: self.python_modules_exist.append(False) else: if __import__(python_module): self.python_modules_exist.append(True) except ImportError: self.python_modules_exist.append(False) except: self.python_modules_exist.append(False) print 'Exist 9', self.python_modules, self.python_modules_exist def on_button_clicked(self, widget): print "Hello World" self.dia.wrong_requirement() def start(self, again=False): print 'again', again self.checkOS() self.checkEnvironment() if not again: self.win = Gtk.Window() self.win.connect("delete-event", Gtk.main_quit) self.button = Gtk.Button(label="Next") self.button.connect("clicked", self.on_check_missing) if again: self.win.remove(self.grid) self.grid = Gtk.Table(10, 4, True) z= 0 print self.programs_exist for name in self.program_names: print z, self.programs_exist[z] self.grid.attach(Gtk.Label(name), 0, 1, z, z+1) self.grid.attach(Gtk.Label(`self.programs_exist[z]`), 1, 2, z,z+1) z += 1 z = 0 for pName in self.python_modules: l1 = Gtk.Label(pName) l1.set_justify(Gtk.Justification.LEFT) self.grid.attach(l1, 3, 4, z,z+1, 0, 0.5, 0, 0.5) self.grid.attach(Gtk.Label(`self.python_modules_exist[z]`), 4, 5,z, z+1, 0, 0.5, 0, 0.5) z += 1 if not again: self.grid.attach(self.button, 4, 5, 9 , 10) self.win.add(self.grid) self.win.show_all() self.dia.warn(self.user) if self.dia.Q2 == False: sys.exit(0) if not again: Gtk.main() def on_check_missing(self, widget, again=False): if again: self.start(again) if not self.Terminal: self.dia.AbortInfo1() sys.exit(0) if False in self.python_modules_exist or False in self.programs_exist: if again: self.dia.error1() sys.exit(0) self.dia.wrong_requirement() print 'q1', self.dia.Q1 if self.dia.Q1: self.try_install_missing_programs() else: # All is ok, next step ssh self.configure_ssh() def try_install_missing_programs(self): s = "" for i in range(len(self.programs_exist)): if not self.programs_exist[i]: print self.programs_exist print self.program_installer print self.program_names print self.program_names[i] for j in self.program_installer[i][self.program_names[i]]: s += j + " " if s: s = self.Terminal + ' -e "' + self.Sudo + " " + self.OS_Installer +" " + s +'"' print s #shellcommand = shlex.split('"' + s + '"') liStatus = subprocess.call(args = s, shell = True) s = "" for i in range(len(self.python_modules_exist)): if not self.python_modules_exist[i]: try: print i, self.python_modules[i], self.python_installer[i] print self.python_installer[i][self.python_modules[i]] for j in self.python_installer[i][self.python_modules[i]]: s += j + " " except: pass if s: s = self.Terminal + ' -e "' + self.Sudo + " " +self.OS_Installer +' ' + s +'"' print "start Terminal with " + s #shellcommand = shlex.split(s ) #print shellcommand liStatus = subprocess.call(args=s, shell=True ) print liStatus self.checkEnvironment() self.on_check_missing(None, again=True) def configure_ssh(self): self.dia.sshInfo1() print 'open ssh terminal 1' # generate key s = self.Terminal + ' -e "' + " /usr/bin/ssh-keygen -t rsa -f /root/cuon_server_key" + '"' liStatus = subprocess.call(args=s, shell=True ) print 'ok, done', s #copy to user .ssh as id_rsa s = self.Terminal + ' -e "' + self.Sudo +" mkdir /home/" + self.user + "/.ssh ; mv /root/cuon_server_key /home/" + self.user + "/.ssh/id_rsa ; mv /root/cuon_server_key.pub /home/" + self.user + "/.ssh/id_rsa.pub ; chown " + self.user + ":" + self.user + " /home/" + self.user + "/.ssh/id_rsa* ; /mkdir /root/.ssh " + '"' print s liStatus = subprocess.call(args=s, shell=True ) # insert them to the authorized_keys s = self.Terminal + ' -e "' + self.Sudo +" cat /home/" + self.user + "/.ssh/cuon_server_key.pub >> /root/.ssh/authorized_keys " + '"' print s liStatus = subprocess.call(args=s, shell=True ) # next Step postgres self.configure_postgres() def configure_postgres(self): # insert line at pg_hba.conf # at a line to the pg_hba.conf # check different locations, very bad ( h = None z=0 for j in ["/etc/postgresql/9.1/main/pg_hba.conf", "/etc/postgresql-9.1/pg_hba.conf", "/etc/postgresql-9.1/pg_hba.conf", "/etc/postgresql-9.0/pg_hba.conf"]: if os.path.exists(j): h= j break z+= 1 if h: f = open(h, 'r') s = f.readline() newConf = "" while s: #print s #print s[0:5] if s[0:5]== "local": print "local found", s, s.find("postgres") if s.find("postgres") > 0: print "postgres in local found" s = s.replace("peer", "trust") print "replaced = ", s newConf += s s = f.readline() #print newConf f.close() f = open(h, 'w') f.write(newConf) f.close() f = open(h, 'a') f.write("# NEW generated Line for the cuon Database \nlocal cuon all trust\n") f.close() #s = self.Terminal + ' -e ' + self.Sudo + ' echo "# NEW generated Line for the cuon Database \nlocal cuon all trust \n" >> ' + h #print s #iStatus = subprocess.call(args=s, shell=True ) s = None if self.OS in ["DEBIAN", "UBUNTU"]: #s = self.Terminal + ' -e ' + "/etc/init.d/postgresql restart " s = self.Terminal + ' -e ' + '"/etc/init.d/postgresql restart"' if self.OS == "GENTOO": if z == 2: s = self.Terminal + ' -e ' + '"/etc/init.d/postgresql-9.1 restart" ' elif z == 3: s = self.Terminal + ' -e ' + '"/etc/init.d/postgresql-9.0 restart " ' if s: print s iStatus = subprocess.call(args=s, shell=True ) else: sys.exit(0) #ok, create database and user #set the path pa = "" for j in ["/usr/lib/postgresql-9.1/bin", "/usr/lib/postgresql-9.0/bin","/usr/lib/postgresql/9.0/bin", "/usr/lib/postgresql/9.1/bin" ]: if os.path.exists(j): pa = j + "/" break s = self.Terminal + ' -e ' + pa + '"createdb -Upostgres -E utf-8 cuon" ' print "create database = " , s liStatus = subprocess.call(args=s, shell=True ) s = self.Terminal + ' -e ' + pa + '"createlang -Upostgres -d cuon plpgsql"' liStatus = subprocess.call(args=s, shell=True ) s = self.Terminal + ' -e ' + pa + '"createuser -Upostgres -d -s cuon_admin"' liStatus = subprocess.call(args=s, shell=True ) s = self.Terminal + ' -e ' + pa + '"createuser -Upostgres -D -S -R zope"' liStatus = subprocess.call(args=s, shell=True ) self.configure_cuon() def configure_cuon(self): # version 83 setupDir = "/home/" + self.user+ "/Projekte/" setupStartDir = setupDir + "cuon/cuon_client" try: sLocale = locale.getdefaultlocale()[0].split("_")[0] except Exception, params: print Exception, params sLocale = "us" if not os.path.exists(setupDir): os.mkdir(setupDir) os.chdir(setupDir) s = self.Terminal + ' -e ' + '"svn co -r 83 https://cuon.svn.sourceforge.net/svnroot/cuon cuon "' print s liStatus = subprocess.call(args=s, shell=True ) print "get svn ", liStatus # now write the setup.ini os.chdir(setupStartDir) f = open("cuon_setup.ini", "w") s = "[local]\nxmlrpc_port = 7080\nprotocol = http\ndescription = Install on Localhost\nssh_port = 22\nip = 127.0.0.1\ndefault = True\nlocale = " + sLocale + "\ncuonadmin = cuon_admin" f.write(s) f.close() os.chdir(setupDir +"cuon/LGPL") s = self.Terminal + ' -e ' + '"tar -xvzf iCalendar-0.11.tgz ; cd iCalendar ; python setup.py install"' print s liStatus = subprocess.call(args=s, shell=True ) dirList=os.listdir(setupDir) os.chown(setupDir, pwd.getpwnam(self.user).pw_gid ,grp.getgrnam( self.user).gr_gid ) for fname in dirList: os.chown(fname, pwd.getpwnam(self.user).pw_gid ,grp.getgrnam( self.user).gr_gid ) # now write install config files # Now write the config files server_ini = self.CUON_FS + "/server.ini" if not os.path.exists(server_ini): shutil.copy(setupDir +"cuon/cuon_server/examples/server.ini", self.CUON_FS ) shutil.copy(setupDir +"cuon/cuon_server/examples/user_cfg", self.CUON_FS ) shutil.copy(setupDir +"cuon/cuon_server/examples/clients.ini", self.CUON_FS ) shutil.copy(setupDir +"cuon/cuon_server/examples/menus.ini", self.CUON_FS ) try: self.cpServer, f = self.getParser(self.CUON_FS + "/server.ini") # Instances value = self.getConfigOption('INSTANCES','XMLRPC') if value: self.XMLRPC_INSTANCES = int(value) except: pass class MessageDialogWindow(Gtk.Window): def __init__(self): self.Q1 = False self.Q2 = False def AbortInfo1(self): dialog = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO, Gtk.ButtonsType.OK, "A valid terminal is missing, we must abort, sorry.") dialog.format_secondary_text( "Install a Terminal Emulator like Gnome-Terminal, Konsole, terminal or similar") dialog.run() print "INFO dialog closed" dialog.destroy() def sshInfo1(self): dialog = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO, Gtk.ButtonsType.OK, "We install now a pgp key for root access to the cuon-server") dialog.format_secondary_text( "Please, press ONLY Enter in the terminal window !! No Passphrase is allowed !!") dialog.run() print "INFO dialog closed" dialog.destroy() def sshInfo2(self): dialog = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO, Gtk.ButtonsType.OK, "We install now a pgp key at the authorized_keys file") dialog.format_secondary_text( "Perhaps you must enter a password for su or sudo.") dialog.run() print "INFO dialog closed" dialog.destroy() def error1(self): dialog = Gtk.MessageDialog(self, 0, Gtk.MessageType.ERROR, Gtk.ButtonsType.CANCEL, "There are again missing program files") dialog.format_secondary_text( "Sorry, you shall try manually install the missing files") dialog.run() print "ERROR dialog closed" dialog.destroy() def warn(self, user ): self.Q2 = False dialog = Gtk.MessageDialog(self, 0, Gtk.MessageType.WARNING, Gtk.ButtonsType.OK_CANCEL, "WARNING Warning WARNING") dialog.format_secondary_text( "This setup install a cuon-server on this computer. To do this, the user " + user + " get lasting root access\n Please, press cancel if you are not sure that you want this !!! PLEASE !!!!") response = dialog.run() if response == Gtk.ResponseType.OK: print "WARN dialog closed by clicking OK button" self.Q2 = True elif response == Gtk.ResponseType.CANCEL: print "WARN dialog closed by clicking CANCEL button" dialog.destroy() def wrong_requirement(self): self.Q1 = False dialog = Gtk.MessageDialog(self, 0, Gtk.MessageType.QUESTION, Gtk.ButtonsType.YES_NO, "Some Programs or Python Module are missing!") dialog.format_secondary_text( "Shall I try to install them ?") response = dialog.run() if response == Gtk.ResponseType.YES: print "QUESTION dialog closed by clicking YES button" self.Q1 = True elif response == Gtk.ResponseType.NO: print "QUESTION dialog closed by clicking NO button" dialog.destroy() # #if [ -d $CalendarDir ]; then # echo "dir iCal ok" # cd $CalendarDir/iCalendar # sudo python ./setup.py install # # ## create database # #sudo su postgres # #createdb -E utf-8 cuon # #createlang -d cuon plpgsql # #echo "now creating the user "zope" with no Rights" # #createuser zope # #echo "and this is your cuonadmin user with superrights" # #createuser cuonadmin # #else # echo " No Calendar found, something wrong! We stop it." #fi # def getConfigOption(self, section, option, configParser = None): value = None if configParser: cps = configParser else: cps = self.cpServer if cps.has_option(section,option): try: value = cps.get(section, option).strip() #print 'options = ',option, value except: value = None #print 'getConfigOption', section + ', ' + option + ' = ' + value return value def getParser(self, sFile): cpParser = ConfigParser.ConfigParser() f = open(sFile) #print 'f1 = ', f cpParser.readfp(f) #print 'cpp', cpParser return cpParser, f print sys.argv if len(sys.argv) > 1: print sys.argv[1] t1 = cssi(user=sys.argv[1]) t1.start()
CuonDeveloper/cuon
Distributionen/CuonServer/cuon-simple-server-install.py
Python
gpl-3.0
21,083
0.014846
# # (c) 2018 Extreme Networks Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible.compat.tests.mock import patch from ansible.modules.network.exos import exos_config from units.modules.utils import set_module_args from .exos_module import TestExosModule, load_fixture class TestExosConfigModule(TestExosModule): module = exos_config def setUp(self): super(TestExosConfigModule, self).setUp() self.mock_get_config = patch('ansible.modules.network.exos.exos_config.get_config') self.get_config = self.mock_get_config.start() self.mock_load_config = patch('ansible.modules.network.exos.exos_config.load_config') self.load_config = self.mock_load_config.start() self.mock_run_commands = patch('ansible.modules.network.exos.exos_config.run_commands') self.run_commands = self.mock_run_commands.start() def tearDown(self): super(TestExosConfigModule, self).tearDown() self.mock_get_config.stop() self.mock_load_config.stop() self.mock_run_commands.stop() def load_fixtures(self, commands=None): config_file = 'exos_config_config.cfg' self.get_config.return_value = load_fixture(config_file) self.load_config.return_value = None def test_exos_config_unchanged(self): src = load_fixture('exos_config_config.cfg') set_module_args(dict(src=src)) self.execute_module() def test_exos_config_src(self): src = load_fixture('exos_config_src.cfg') set_module_args(dict(src=src)) commands = ['configure ports 1 description-string "IDS"', 'configure snmp sysName "marble"'] self.execute_module(changed=True, commands=commands) def test_exos_config_backup(self): set_module_args(dict(backup=True)) result = self.execute_module() self.assertIn('__backup__', result) def test_exos_config_save_always(self): self.run_commands.return_value = 'configure snmp sysName "marble"' set_module_args(dict(save_when='always')) self.execute_module(changed=True) self.assertEqual(self.run_commands.call_count, 1) self.assertEqual(self.get_config.call_count, 0) self.assertEqual(self.load_config.call_count, 0) args = self.run_commands.call_args[0][1] self.assertIn('save configuration', args['command']) def test_exos_config_save_changed_true(self): src = load_fixture('exos_config_src.cfg') set_module_args(dict(src=src, save_when='changed')) commands = ['configure ports 1 description-string "IDS"', 'configure snmp sysName "marble"'] self.execute_module(changed=True, commands=commands) self.assertEqual(self.run_commands.call_count, 1) self.assertEqual(self.get_config.call_count, 1) self.assertEqual(self.load_config.call_count, 1) args = self.run_commands.call_args[0][1] self.assertIn('save configuration', args['command']) def test_exos_config_save_changed_true_check_mode(self): src = load_fixture('exos_config_src.cfg') set_module_args(dict(src=src, save_when='changed', _ansible_check_mode=True)) commands = ['configure ports 1 description-string "IDS"', 'configure snmp sysName "marble"'] self.execute_module(changed=True, commands=commands) self.assertEqual(self.run_commands.call_count, 0) self.assertEqual(self.get_config.call_count, 1) self.assertEqual(self.load_config.call_count, 0) def test_exos_config_save_changed_false(self): set_module_args(dict(save_when='changed')) self.execute_module(changed=False) self.assertEqual(self.run_commands.call_count, 0) self.assertEqual(self.get_config.call_count, 0) self.assertEqual(self.load_config.call_count, 0) def test_exos_config_save_modified_false(self): mock_get_startup_config_text = patch('ansible.modules.network.exos.exos_config.get_startup_config_text') get_startup_config_text = mock_get_startup_config_text.start() get_startup_config_text.return_value = load_fixture('exos_config_config.cfg') set_module_args(dict(save_when='modified')) self.execute_module(changed=False) self.assertEqual(self.run_commands.call_count, 0) self.assertEqual(self.get_config.call_count, 1) self.assertEqual(get_startup_config_text.call_count, 1) self.assertEqual(self.load_config.call_count, 0) mock_get_startup_config_text.stop() def test_exos_config_save_modified_true(self): mock_get_startup_config_text = patch('ansible.modules.network.exos.exos_config.get_startup_config_text') get_startup_config_text = mock_get_startup_config_text.start() get_startup_config_text.return_value = load_fixture('exos_config_modified.cfg') set_module_args(dict(save_when='modified')) self.execute_module(changed=True) self.assertEqual(self.run_commands.call_count, 1) self.assertTrue(self.get_config.call_count > 0) self.assertEqual(get_startup_config_text.call_count, 1) self.assertEqual(self.load_config.call_count, 0) mock_get_startup_config_text.stop() def test_exos_config_lines(self): set_module_args(dict(lines=['configure snmp sysName "marble"'])) commands = ['configure snmp sysName "marble"'] self.execute_module(changed=True, commands=commands) def test_exos_config_before(self): set_module_args(dict(lines=['configure snmp sysName "marble"'], before=['test1', 'test2'])) commands = ['test1', 'test2', 'configure snmp sysName "marble"'] self.execute_module(changed=True, commands=commands, sort=False) def test_exos_config_after(self): set_module_args(dict(lines=['hostname foo'], after=['test1', 'test2'])) commands = ['hostname foo', 'test1', 'test2'] set_module_args(dict(lines=['configure snmp sysName "marble"'], after=['test1', 'test2'])) commands = ['configure snmp sysName "marble"', 'test1', 'test2'] self.execute_module(changed=True, commands=commands, sort=False) def test_exos_config_before_after_no_change(self): set_module_args(dict(lines=['configure snmp sysName "x870"'], before=['test1', 'test2'], after=['test3', 'test4'])) self.execute_module() def test_exos_config_config(self): config = 'hostname localhost' set_module_args(dict(lines=['configure snmp sysName "x870"'], config=config)) commands = ['configure snmp sysName "x870"'] self.execute_module(changed=True, commands=commands) def test_exos_config_match_none(self): lines = ['configure snmp sysName "x870"'] set_module_args(dict(lines=lines, match='none')) self.execute_module(changed=True, commands=lines) def test_exos_config_src_and_lines_fails(self): args = dict(src='foo', lines='foo') set_module_args(args) self.execute_module(failed=True) def test_exos_config_match_exact_requires_lines(self): args = dict(match='exact') set_module_args(args) self.execute_module(failed=True) def test_exos_config_match_strict_requires_lines(self): args = dict(match='strict') set_module_args(args) self.execute_module(failed=True) def test_exos_config_replace_block_requires_lines(self): args = dict(replace='block') set_module_args(args) self.execute_module(failed=True) def test_exos_config_replace_config_requires_src(self): args = dict(replace='config') set_module_args(args) self.execute_module(failed=True) def test_exos_diff_running_unchanged(self): args = dict(diff_against='running', _ansible_diff=True) set_module_args(args) self.execute_module(changed=False) def test_exos_diff_running_unchanged_check(self): args = dict(diff_against='running', _ansible_diff=True, _ansible_check_mode=True) set_module_args(args) self.execute_module(changed=False) def test_exos_diff_startup_unchanged(self): mock_get_startup_config_text = patch('ansible.modules.network.exos.exos_config.get_startup_config_text') get_startup_config_text = mock_get_startup_config_text.start() get_startup_config_text.return_value = load_fixture('exos_config_config.cfg') args = dict(diff_against='startup', _ansible_diff=True) set_module_args(args) self.execute_module(changed=False) self.assertEqual(get_startup_config_text.call_count, 1) mock_get_startup_config_text.stop() def test_exos_diff_startup_changed(self): mock_get_startup_config_text = patch('ansible.modules.network.exos.exos_config.get_startup_config_text') get_startup_config_text = mock_get_startup_config_text.start() get_startup_config_text.return_value = load_fixture('exos_config_modified.cfg') args = dict(diff_against='startup', _ansible_diff=True) set_module_args(args) self.execute_module(changed=True) self.assertEqual(get_startup_config_text.call_count, 1) mock_get_startup_config_text.stop() def test_exos_diff_intended_unchanged(self): args = dict(diff_against='intended', intended_config=load_fixture('exos_config_config.cfg'), _ansible_diff=True) set_module_args(args) self.execute_module(changed=False) def test_exos_diff_intended_modified(self): args = dict(diff_against='intended', intended_config=load_fixture('exos_config_modified.cfg'), _ansible_diff=True) set_module_args(args) self.execute_module(changed=True)
maartenq/ansible
test/units/modules/network/exos/test_exos_config.py
Python
gpl-3.0
10,664
0.001407
from __future__ import unicode_literals import datetime import types import os from importlib import import_module from django.utils import six from django.db import models from django.db.models.loading import cache from django.db.migrations.loader import MigrationLoader from django.utils.encoding import force_text from django.utils.functional import Promise class MigrationWriter(object): """ Takes a Migration instance and is able to produce the contents of the migration file from it. """ def __init__(self, migration): self.migration = migration def as_string(self): """ Returns a string of the file contents. """ items = { "dependencies": repr(self.migration.dependencies), } imports = set() # Deconstruct operations operation_strings = [] for operation in self.migration.operations: name, args, kwargs = operation.deconstruct() arg_strings = [] for arg in args: arg_string, arg_imports = self.serialize(arg) arg_strings.append(arg_string) imports.update(arg_imports) for kw, arg in kwargs.items(): arg_string, arg_imports = self.serialize(arg) imports.update(arg_imports) arg_strings.append("%s = %s" % (kw, arg_string)) operation_strings.append("migrations.%s(%s\n )" % (name, "".join("\n %s," % arg for arg in arg_strings))) items["operations"] = "[%s\n ]" % "".join("\n %s," % s for s in operation_strings) # Format imports nicely imports.discard("from django.db import models") if not imports: items["imports"] = "" else: items["imports"] = "\n".join(imports) + "\n" return (MIGRATION_TEMPLATE % items).encode("utf8") @property def filename(self): return "%s.py" % self.migration.name @property def path(self): migrations_module_name = MigrationLoader.migrations_module(self.migration.app_label) app_module = cache.get_app(self.migration.app_label) # See if we can import the migrations module directly try: migrations_module = import_module(migrations_module_name) basedir = os.path.dirname(migrations_module.__file__) except ImportError: # Alright, see if it's a direct submodule of the app oneup = ".".join(migrations_module_name.split(".")[:-1]) app_oneup = ".".join(app_module.__name__.split(".")[:-1]) if oneup == app_oneup: basedir = os.path.join(os.path.dirname(app_module.__file__), migrations_module_name.split(".")[-1]) else: raise ImportError("Cannot open migrations module %s for app %s" % (migrations_module_name, self.migration.app_label)) return os.path.join(basedir, self.filename) @classmethod def serialize_deconstructed(cls, path, args, kwargs): module, name = path.rsplit(".", 1) if module == "django.db.models": imports = set(["from django.db import models"]) name = "models.%s" % name else: imports = set(["import %s" % module]) name = path arg_strings = [] for arg in args: arg_string, arg_imports = cls.serialize(arg) arg_strings.append(arg_string) imports.update(arg_imports) for kw, arg in kwargs.items(): arg_string, arg_imports = cls.serialize(arg) imports.update(arg_imports) arg_strings.append("%s=%s" % (kw, arg_string)) return "%s(%s)" % (name, ", ".join(arg_strings)), imports @classmethod def serialize(cls, value): """ Serializes the value to a string that's parsable by Python, along with any needed imports to make that string work. More advanced than repr() as it can encode things like datetime.datetime.now. """ # Sequences if isinstance(value, (list, set, tuple)): imports = set() strings = [] for item in value: item_string, item_imports = cls.serialize(item) imports.update(item_imports) strings.append(item_string) if isinstance(value, set): format = "set([%s])" elif isinstance(value, tuple): format = "(%s,)" else: format = "[%s]" return format % (", ".join(strings)), imports # Dictionaries elif isinstance(value, dict): imports = set() strings = [] for k, v in value.items(): k_string, k_imports = cls.serialize(k) v_string, v_imports = cls.serialize(v) imports.update(k_imports) imports.update(v_imports) strings.append((k_string, v_string)) return "{%s}" % (", ".join("%s: %s" % (k, v) for k, v in strings)), imports # Datetimes elif isinstance(value, (datetime.datetime, datetime.date)): return repr(value), set(["import datetime"]) # Simple types elif isinstance(value, six.integer_types + (float, six.binary_type, six.text_type, bool, type(None))): return repr(value), set() # Promise elif isinstance(value, Promise): return repr(force_text(value)), set() # Django fields elif isinstance(value, models.Field): attr_name, path, args, kwargs = value.deconstruct() return cls.serialize_deconstructed(path, args, kwargs) # Functions elif isinstance(value, (types.FunctionType, types.BuiltinFunctionType)): # Special-cases, as these don't have im_class special_cases = [ (datetime.datetime.now, "datetime.datetime.now", ["import datetime"]), (datetime.datetime.utcnow, "datetime.datetime.utcnow", ["import datetime"]), (datetime.date.today, "datetime.date.today", ["import datetime"]), ] for func, string, imports in special_cases: if func == value: # For some reason "utcnow is not utcnow" return string, set(imports) # Method? if hasattr(value, "im_class"): klass = value.im_class module = klass.__module__ return "%s.%s.%s" % (module, klass.__name__, value.__name__), set(["import %s" % module]) elif hasattr(value, 'deconstruct'): return cls.serialize_deconstructed(*value.deconstruct()) elif value.__name__ == '<lambda>': raise ValueError("Cannot serialize function: lambda") elif value.__module__ is None: raise ValueError("Cannot serialize function %r: No module" % value) else: module = value.__module__ return "%s.%s" % (module, value.__name__), set(["import %s" % module]) # Classes elif isinstance(value, type): special_cases = [ (models.Model, "models.Model", []), ] for case, string, imports in special_cases: if case is value: return string, set(imports) if hasattr(value, "__module__"): module = value.__module__ return "%s.%s" % (module, value.__name__), set(["import %s" % module]) # Uh oh. else: raise ValueError("Cannot serialize: %r" % value) MIGRATION_TEMPLATE = """# encoding: utf8 from django.db import models, migrations %(imports)s class Migration(migrations.Migration): dependencies = %(dependencies)s operations = %(operations)s """
ZhaoCJ/django
django/db/migrations/writer.py
Python
bsd-3-clause
7,931
0.001891
from __future__ import absolute_import from mock import patch from datadog.util.hostname import get_hostname from sentry.metrics.datadog import DatadogMetricsBackend from sentry.testutils import TestCase class DatadogMetricsBackendTest(TestCase): def setUp(self): self.backend = DatadogMetricsBackend(prefix='sentrytest.') @patch('datadog.threadstats.base.ThreadStats.increment') def test_incr(self, mock_incr): self.backend.incr('foo', instance='bar') mock_incr.assert_called_once_with( 'sentrytest.foo', 1, tags=['instance:bar'], host=get_hostname(), ) @patch('datadog.threadstats.base.ThreadStats.timing') def test_timing(self, mock_timing): self.backend.timing('foo', 30, instance='bar') mock_timing.assert_called_once_with( 'sentrytest.foo', 30, sample_rate=1, tags=['instance:bar'], host=get_hostname(), )
Kryz/sentry
tests/sentry/metrics/test_datadog.py
Python
bsd-3-clause
979
0
# -*- coding: utf-8 -*- # A WordPress compiler plugin for Nikola # # Copyright (C) 2014-2015 by Felix Fontein # Copyright (C) by the WordPress contributors # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. from __future__ import unicode_literals import os import io import json import re import sys from nikola.plugin_categories import PageCompiler from nikola.utils import makedirs, write_metadata from nikola.utils import get_logger, STDERR_HANDLER from . import default_filters, php, plugin_interface, shortcodes _LOGGER = get_logger('compile_wordpress', STDERR_HANDLER) class Context(object): id = None def __init__(self, id, name=None, additional_data=None): self.id = id self.name = name self.__file_deps_fragment = set() self.__file_deps_page = set() self.__uptodate_deps_fragment = list() self.__uptodate_deps_page = list() self.__additional_data = additional_data or {} self.__plugin_data = {} def get_name(self): return "(unknown:{0})".format(self.id) if self.name is None else self.name def add_file_dependency(self, filename, add='both'): if add not in {'fragment', 'page', 'both'}: raise Exception("Add parameter is '{0}', but must be either 'fragment', 'page', or 'both'.".format(add)) if add == 'fragment' or add == 'both': self.__file_deps_fragment.add(filename) if add == 'page' or add == 'both': self.__file_deps_page.add(filename) def add_uptodate_dependency(self, uptodate_dependency, add='both'): if add not in {'fragment', 'page', 'both'}: raise Exception("Add parameter is '{0}', but must be either 'fragment', 'page', or 'both'.".format(add)) if add == 'fragment' or add == 'both': self.__uptodate_deps_fragment.append(uptodate_dependency) if add == 'page' or add == 'both': self.__uptodate_deps_page.append(uptodate_dependency) def has_dependencies(self): return (len(self.__file_deps_fragment) > 0 or len(self.__file_deps_page) > 0 or len(self.__uptodate_deps_fragment) > 0 or len(self.__uptodate_deps_page) > 0) def get_file_dependencies_fragment(self): return sorted(list(self.__file_deps_fragment)) def get_file_dependencies_page(self): return sorted(list(self.__file_deps_page)) def get_uptodate_dependencies_fragment(self): return self.__uptodate_deps_fragment def get_uptodate_dependencies_page(self): return self.__uptodate_deps_page def get_additional_data(self, name): return self.__additional_data.get(name) def store_plugin_data(self, plugin_name, key, data): if plugin_name not in self.__plugin_data: self.__plugin_data[plugin_name] = {} self.__plugin_data[plugin_name][key] = data def get_plugin_data(self, plugin_name, key, default_value=None): plugin_data = self.__plugin_data.get(plugin_name) return default_value if plugin_data is None else plugin_data.get(key, default_value) def inc_plugin_counter(self, plugin_name, key): counter = self.get_plugin_data(plugin_name, key, 0) counter += 1 self.store_plugin_data(plugin_name, key, counter) return counter def __str__(self): return "Context<" + str(self.id) + ">(" + str(self.__file_deps_fragment) + ", " + str(self.__file_deps_page) + ", " + str(self.__uptodate_deps_fragment) + ", " + str(self.__uptodate_deps_page) + ")" class CompileWordpress(PageCompiler): """Compiles a subset of Wordpress into HTML.""" name = "wordpress" demote_headers = True site = None def __init__(self): super(CompileWordpress, self).__init__() self.__filters = dict() self.__shortcodes = shortcodes.ShortCodes() self.__default_wordpress_filters = default_filters.DefaultWordpressFilters(self.__shortcodes) self.add_filter("the_content", lambda data, context: self.__default_wordpress_filters.wptexturize(data)) self.add_filter("the_content", lambda data, context: self.__default_wordpress_filters.convert_smilies(data)) self.add_filter("the_content", lambda data, context: self.__default_wordpress_filters.convert_chars(data)) self.add_filter("the_content", lambda data, context: self.__default_wordpress_filters.wpautop(data)) self.add_filter("the_content", lambda data, context: self.__default_wordpress_filters.shortcode_unautop(data)) self.add_filter('the_content', lambda data, context: self.__shortcodes.do_shortcode(data, context), 11) # AFTER wpautop() def _register_plugins(self): # collect plugins count = 0 modules = { 'default_filters': default_filters, 'php': php, 'plugin_interface': plugin_interface, 'shortcodes': shortcodes, 'wordpress': sys.modules[__name__] } for plugin in self.get_compiler_extensions(): _LOGGER.info("Registered WordPress plugin {0}".format(plugin.name)) plugin.plugin_object.register(self, modules) count += 1 _LOGGER.info("Registered {0} WordPress plugin{1}".format(count, "s" if count != 1 else "")) def register_head_code(self, head_function): # FIXME: implement # (not even sure if it's really implementable...) raise NotImplementedError() def add_filter(self, tag, filter_function, priority=10): if tag not in self.__filters: self.__filters[tag] = list() f = self.__filters[tag] # find where to insert priority i = 0 while i < len(f) and f[i][0] < priority: i += 1 if i < len(f) and f[i][0] > priority: f.insert(i, (priority, list())) elif i == len(f): f.append((priority, list())) f[i][1].append(filter_function) def filter(self, tag, data, context): if tag not in self.__filters: return data for prio, fs in self.__filters[tag]: for f in fs: data = f(data, context) return data def register_shortcode(self, tag, function): self.__shortcodes.register_shortcode(tag, function) def unregister_shortcode(self, tag): self.__shortcodes.unregister_shortcode(tag) def do_shortcode(self, data): return self.__shortcodes.do_shortcode(data) def set_site(self, site): super(CompileWordpress, self).set_site(site) self._register_plugins() def __formatData(self, data, context, source=None): output = self.filter("the_content", data, context) left_shortcodes = self.__shortcodes.get_containing_shortcodes_set(output) if len(left_shortcodes) > 0 and source is not None: _LOGGER.warning("The post '" + source + "' still contains shortcodes: " + str(left_shortcodes)) return output def compile_to_string(self, source_data, name=None, additional_data=None): context = Context(hash(source_data), name=name, additional_data=additional_data) return self.__formatData(source_data, context) def _read_extra_deps(self, post): dep_path = post.base_path + '.dep' if os.path.isfile(dep_path): with io.open(dep_path, 'rb') as file: result = json.loads(file.read().decode('utf-8')) if type(result) == list and len(result) == 4: return result return ([], [], [], []) def register_extra_dependencies(self, post): post.add_dependency(lambda: self._read_extra_deps(post)[0], 'fragment') post.add_dependency(lambda: self._read_extra_deps(post)[1], 'page') post.add_dependency_uptodate(lambda: self._read_extra_deps(post)[2], True, 'fragment') post.add_dependency_uptodate(lambda: self._read_extra_deps(post)[3], True, 'page') def _write_deps(self, context, dest): deps_path = dest + '.dep' if context.has_dependencies(): data = (context.get_file_dependencies_fragment(), context.get_file_dependencies_page(), context.get_uptodate_dependencies_fragment(), context.get_uptodate_dependencies_page()) with io.open(deps_path, "wb") as file: file.write(json.dumps(data).encode('utf-8')) else: if os.path.isfile(deps_path): os.unlink(deps_path) def _read_similar_file(self, source, suffix): path, filename = os.path.split(source) filename_parts = filename.split('.') for i in range(len(filename_parts), 0, -1): candidate = os.path.join(path, '.'.join(filename_parts[:i]) + suffix) try: with open(candidate, "rb") as in_file: # _LOGGER.info("Found file {0} for {1}.".format(candidate, source)) return in_file.read(), candidate except: pass return None, None def load_additional_data(self, source): result = {} dependent_files = set() attachments, filename = self._read_similar_file(source, ".attachments.json") if attachments is not None: try: attachments = json.loads(attachments.decode('utf-8')) result['attachments'] = attachments dependent_files.add(filename) except Exception as e: _LOGGER.error("Could not load attachments for {0}! (Exception: {1})".format(source, e)) return result, dependent_files def compile_html(self, source, dest, is_two_file=False): makedirs(os.path.dirname(dest)) with io.open(dest, "w+", encoding="utf8") as out_file: # Read post with io.open(source, "r", encoding="utf8") as in_file: data = in_file.read() if not is_two_file: data = re.split('(\n\n|\r\n\r\n)', data, maxsplit=1)[-1] # Read additional data additional_data, dependent_files = self.load_additional_data(source) # Process post context = Context(hash(data), name=source, additional_data=additional_data) for filename in dependent_files: context.add_file_dependency(filename, 'fragment') output = self.__formatData(data, context) # Write result out_file.write(output) self._write_deps(context, dest) def create_post(self, path, content=None, onefile=False, is_page=False, **kw): content = kw.pop('content', None) onefile = kw.pop('onefile', False) kw.pop('is_page', False) metadata = {} metadata.update(self.default_metadata) metadata.update(kw) makedirs(os.path.dirname(path)) if not content.endswith('\n'): content += '\n' with io.open(path, "w+", encoding="utf8") as fd: if onefile: fd.write(write_metadata(metadata)) fd.write('\n') fd.write(content)
pluser/nikola_plugins
v7/wordpress_compiler/wordpress/wordpress.py
Python
mit
11,780
0.002547
from __future__ import division import math as m import numpy as np import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as pl from scipy.optimize import fmin, fmin_powell, minimize from numpy import (any, array, asarray, ones, ones_like, zeros, isfinite, inf, concatenate, arange, unique, delete, dot, median, abs, std, nan, diag, log, where, identity, s_, sqrt) from numpy.random import permutation from matplotlib.pyplot import subplots, setp from numpy.linalg.linalg import LinAlgError from .gp import GeorgeGP, SplitGP from .kernels import BasicKernel from .utils import medsig from .dtdata import DtData class Detrender(object): def __init__(self, flux, inputs, mask=None, p0=None, kernel=None, splits=[], tr_nrandom=200, tr_bspan=50, tr_nblocks=6): self.data = DtData(flux, inputs, mask) self.kernel = kernel or BasicKernel() self.gp = SplitGP(self.kernel, splits) if splits is not None else GeorgeGP(self.kernel) self.tr_data = self.data.create_training_set(tr_nrandom, tr_bspan, tr_nblocks) self.gp.set_inputs(self.tr_data.masked_inputs) ## ====================== ## Convenience routines ## ====================== @property def flux(self): return self.data.masked_flux @property def time(self): return self.data.masked_time ## ===================== ## Detrending routines ## ===================== def covariance_matrix(self, pv=None, inputs=None, separate=False): inputs = inputs if inputs is not None else self.tr_data.masked_inputs self.gp.compute(inputs, pv) return self.gp._covariance_matrix(inputs, separate=separate) def neglnposterior(self, pv, training=True): if any(pv < self.kernel.lims[0]) or any(self.kernel.lims[1] < pv): return inf ds = self.tr_data if training else self.data try: lnlike = self.gp.lnlikelihood(pv, ds.masked_normalised_flux, ds.masked_inputs) return -(self.kernel.ln_prior(pv) + lnlike) except LinAlgError: return inf def train(self, pv0=None, disp=False): pv0 = pv0 if pv0 is not None else self.kernel.pv0 mres = minimize(self.neglnposterior, pv0, method='Powell') self.tr_pv = mres.x.copy() return self.tr_pv, mres.success def predict(self, pv, inputs=None, components=False, mean_only=True): inputs = inputs if inputs is not None else self.data.unmasked_inputs self.gp.compute(self.data.masked_inputs, pv) self.gp._compute_alpha(self.data.masked_normalised_flux) if components: mu_time, mu_pos = self.gp.predict_components(inputs) return ((1. + mu_time) * self.data._fm, (1. + mu_pos) * self.data._fm) else: return self.gp.predict(inputs, mean_only=mean_only) def detrend_spatial(self, pv): mt, mp = self.compute_components(pv) flux = self.data.unmasked_flux.copy() flux[self.data.mask] += -mp + median(mp) flux[~self.data.mask] = nan return flux ## =================== ## Plotting routines ## =================== def plot_xy(self, pv=None, ax=None, plot_wireframe=False): """Plot the x and y points for the whole dataset and the training set. """ if ax is None: fig,ax = subplots(1,1, figsize=(10,10)) if pv is None: ax.tripcolor(self.data.mx, self.data.my, ones(self.data.nptm), vmin=0, vmax=1) if plot_wireframe: ax.triplot(self.data.mx, self.data.my, color='w') else: mt, mp = self.compute_components(pv) ax.tripcolor(self.data.mx, self.data.my, mp) ax.plot(self.tr_data.mx, self.tr_data.my, 'o', ms=3, c='k', mec='w') return ax def plot_t(self, pv=None, ax=None): """ Plot the flux as a function of time for the whole dataset and the training set. """ if ax is None: fig, ax = subplots(1,1) fm = self.data.flux_median fmin = self.data.masked_flux.min() fmax = self.data.masked_flux.max() fptp = self.data.masked_flux.ptp() ax.plot(self.data.mt, self.data.mf, c='0.75', lw=1) ax.plot(self.tr_data.ut, self.tr_data.uf, '.k', ms=6) setp(ax, ylim=(0.999*fmin,1.001*fmax)) if pv is not None: fd = self.detrend_spatial(pv) fd += fm - np.nanmedian(fd) mm = isfinite(fd) ax.plot(self.data.unmasked_time[mm], fd[mm] - 0.7*fptp, alpha=0.75, lw=1) setp(ax, ylim=(0.999*(fmin-0.7*fptp), 1.001*fmax)) setp(ax, xlim=self.data.mt[[0,-1]], xlabel='Time', ylabel='Flux') return ax def plot_report(self, pv, tid, fname=None, maxpt=350): lmargin, rmargin = 0.12, 0.03 fig = pl.figure(figsize=(8.3,11.7)) fig.text(0.04, 0.965, 'EPIC {:9d}'.format(tid), va='top', size=24, color='w', weight='bold') ax = fig.add_axes([0,0,1,1]) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) ax.set_zorder(-1000) ax.add_patch(pl.Rectangle((0,0.92), 1, 0.08, fill=True)) ax_a = fig.add_axes([lmargin,0.25,1-lmargin-rmargin,0.3]) ax_x = fig.add_axes([lmargin,0.05,1-lmargin-rmargin,0.1]) ax_y = fig.add_axes([lmargin,0.15,1-lmargin-rmargin,0.1]) ax_c = fig.add_axes([0.55,0.6,0.45-rmargin, 0.3]) ax_x.plot(self.data.masked_time, self.data.mx, lw=1) ax_y.plot(self.data.masked_time, self.data.my, lw=1) ## Compute stuff ## ------------- fm = median(self.data.masked_flux) fmin = self.data.masked_flux.min() fmax = self.data.masked_flux.max() fptp = self.data.masked_flux.ptp() mt, mp = self.compute_components(pv) ms = self.data.mask fd = self.data.unmasked_flux.copy() fd[ms] += -mp + median(mp) fd[~ms] = nan fd += fm - np.nanmedian(fd) ## Plot A ## ------ ax_a.plot(self.data.masked_time, self.data.masked_flux/fm, c='0.75', lw=1) ax_a.plot(self.tr_data.unmasked_time, self.tr_data.unmasked_flux/fm, '.k', ms=6) ax_a.plot(*self.data.outliers, ls='', marker='o', ms=6) ax_a.plot(self.data.unmasked_time[ms], (fd[ms] - 0.7*fptp)/fm, lw=1) ax_a.plot(self.time, (mp-1.4*fptp)/fm, lw=1) samples = permutation(self.time.size)[:maxpt] ax_c.tripcolor(self.data.mx[samples], self.data.my[samples], mp[samples]) ax_c.plot(self.tr_data.mx, self.tr_data.my, '.', ms=3, c='w', alpha=0.8) ax_c.plot(self.tr_data.mx, self.tr_data.my, '.', ms=1.5, c='k') setp(ax_a, ylim=(0.999*(fmin-1.4*fptp)/fm, 1.001*fmax/fm)) setp(ax_a.get_xticklabels()+ax_y.get_xticklabels(), visible=False) setp(ax_x, xlabel='Time', ylabel='X') setp(ax_c, xlabel='X', ylabel='Y') setp([ax_a,ax_x,ax_y], xlim=self.time[[0,-1]]) setp(ax_a, ylabel='Normalised flux') setp(ax_y, ylabel='Y') if fname: fig.savefig(fname)
OxES/k2sc
src/detrender.py
Python
gpl-3.0
7,258
0.012951
# -*- coding: utf-8 -*- """ Created on Sat Sep 17 17:19:10 2016 @author: Michael """ from PyQt5 import QtWidgets class AboutWindow(QtWidgets.QTextEdit): def __init__(self, parent=None): super().__init__(parent) self.setReadOnly(True) self.setHtml( """ <h1 id="kano">Kano</h1> <p>Copyright (c) 2017, Michael Schreier <br> All rights reserved.</p> <p>This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.</p> <p>This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.</p> <p>You should have received a copy of the GNU General Public License along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a></p> <hr> <p>Kano has been built using the following libraries:</p> <h3 id="entypo">Entypo+</h3> <blockquote> <p>All icons used by Kano are taken from the “Entypo+” library by Daniel Bruce, available under the Creative Commons license CC BY-SA 4.0.</p> </blockquote> <h3 id="pyqt5">PyQt5</h3> <blockquote> <p>Copyright (c) 2017, Riverbank Computing Limited <br> All rights reserved.</p> <p>This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by &gt;the Free Software Foundation, either version 3 of the License, or (at your option) any later version.</p> <p>This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.</p> <p>You should have received a copy of the GNU General Public License along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a></p> </blockquote> <h3 id="fuzzywuzzy">FuzzyWuzzy</h3> <blockquote> <p>Copyright (c) 2017, SeatGeak <br> All rights reserved.</p> <p>This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.</p> <p>This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.</p> <p>You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA</p> </blockquote> <h3 id="pyyaml">PyYAML</h3> <blockquote> <p>Copyright (c) 2006, Kirill Simonov <br> All rights reserved.</p> <p>Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:</p> <p>The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.</p> <p>THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.</p> </blockquote> """ )
MichaelSchreier/Kano
class_UI_aboutWindow.py
Python
gpl-3.0
4,429
0.029153
# -*- coding: utf8 -*- """ Physical and Chemical data """ from csv import reader as csvreader from mathics.builtin.base import Builtin from mathics.core.expression import (Expression, from_python, Symbol, String, strip_context) from mathics.settings import ROOT_DIR def load_element_data(): element_file = open(ROOT_DIR + 'data/element.csv', 'rb') reader = csvreader(element_file, delimiter='\t') element_data = [] for row in reader: element_data.append([value for value in row]) element_file.close() return element_data _ELEMENT_DATA = load_element_data() class ElementData(Builtin): """ <dl> <dt>'ElementData["$name$", "$property$"] <dd>gives the value of the $property$ for the chemical specified by $name$". <dt>'ElementData[$n$, "$property$"] <dd>gives the value of the $property$ for the $n$th chemical element". </dl> >> ElementData[74] = Tungsten >> ElementData["He", "AbsoluteBoilingPoint"] = 4.22 >> ElementData["Carbon", "IonizationEnergies"] = {1086.5, 2352.6, 4620.5, 6222.7, 37831, 47277.} >> ElementData[16, "ElectronConfigurationString"] = [Ne] 3s2 3p4 >> ElementData[73, "ElectronConfiguration"] = {{2}, {2, 6}, {2, 6, 10}, {2, 6, 10, 14}, {2, 6, 3}, {2}} The number of known elements: >> Length[ElementData[All]] = 118 Some properties are not appropriate for certain elements: >> ElementData["He", "ElectroNegativity"] = Missing[NotApplicable] Some data is missing: >> ElementData["Tc", "SpecificHeat"] = Missing[NotAvailable] All the known properties: >> ElementData["Properties"] = {Abbreviation, AbsoluteBoilingPoint, AbsoluteMeltingPoint, AtomicNumber, AtomicRadius, AtomicWeight, Block, BoilingPoint, BrinellHardness, BulkModulus, CovalentRadius, CrustAbundance, Density, DiscoveryYear, ElectroNegativity, ElectronAffinity, ElectronConfiguration, ElectronConfigurationString, ElectronShellConfiguration, FusionHeat, Group, IonizationEnergies, LiquidDensity, MeltingPoint, MohsHardness, Name, Period, PoissonRatio, Series, ShearModulus, SpecificHeat, StandardName, ThermalConductivity, VanDerWaalsRadius, VaporizationHeat, VickersHardness, YoungModulus} >> ListPlot[Table[ElementData[z, "AtomicWeight"], {z, 118}]] = -Graphics- """ rules = { 'ElementData[n_]': 'ElementData[n, "StandardName"]', 'ElementData[]': 'ElementData[All]', 'ElementData["Properties"]': 'ElementData[All, "Properties"]', } messages = { 'noent': ('`1` is not a known entity, class, or tag for ElementData. ' 'Use ElementData[] for a list of entities.'), 'noprop': ('`1` is not a known property for ElementData. ' 'Use ElementData["Properties"] for a list of properties.'), } def apply_all(self, evaluation): 'ElementData[All]' iprop = _ELEMENT_DATA[0].index('StandardName') return from_python([element[iprop] for element in _ELEMENT_DATA[1:]]) def apply_all_properties(self, evaluation): 'ElementData[All, "Properties"]' return from_python(sorted(_ELEMENT_DATA[0])) def apply_name(self, name, prop, evaluation): "ElementData[name_?StringQ, prop_]" py_name = name.to_python().strip('"') names = ['StandardName', 'Name', 'Abbreviation'] iprops = [_ELEMENT_DATA[0].index(s) for s in names] indx = None for iprop in iprops: try: indx = [element[iprop] for element in _ELEMENT_DATA[1:]].index(py_name) + 1 except ValueError: pass if indx is None: evaluation.message("ElementData", "noent", name) return return self.apply_int(from_python(indx), prop, evaluation) def apply_int(self, n, prop, evaluation): "ElementData[n_?IntegerQ, prop_]" from mathics.core.parser import parse py_n = n.to_python() py_prop = prop.to_python() # Check element specifier n or "name" if isinstance(py_n, int): if not 1 <= py_n <= 118: evaluation.message("ElementData", "noent", n) return elif isinstance(py_n, unicode): pass else: evaluation.message("ElementData", "noent", n) return # Check property specifier if isinstance(py_prop, str) or isinstance(py_prop, unicode): py_prop = str(py_prop) if py_prop == '"Properties"': result = [] for i, p in enumerate(_ELEMENT_DATA[py_n]): if p not in ["NOT_AVAILABLE", "NOT_APPLICABLE", "NOT_KNOWN"]: result.append(_ELEMENT_DATA[0][i]) return from_python(sorted(result)) if not (isinstance(py_prop, str) and py_prop[0] == py_prop[-1] == '"' and py_prop.strip('"') in _ELEMENT_DATA[0]): evaluation.message("ElementData", "noprop", prop) return iprop = _ELEMENT_DATA[0].index(py_prop.strip('"')) result = _ELEMENT_DATA[py_n][iprop] if result == "NOT_AVAILABLE": return Expression("Missing", "NotAvailable") if result == "NOT_APPLICABLE": return Expression("Missing", "NotApplicable") if result == "NOT_KNOWN": return Expression("Missing", "Unknown") result = parse(result, evaluation.definitions) if isinstance(result, Symbol): result = String(strip_context(result.get_name())) return result
benley/Mathics
mathics/builtin/physchemdata.py
Python
gpl-3.0
5,698
0.000527
# # (c) 2016 Red Hat Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # from __future__ import (absolute_import, division, print_function) __metaclass__ = type import copy import re import sys from ansible import constants as C from ansible.plugins.action.network import ActionModule as ActionNetworkModule from ansible.module_utils.network.common.utils import load_provider from ansible.module_utils.network.nxos.nxos import nxos_provider_spec from ansible.utils.display import Display display = Display() class ActionModule(ActionNetworkModule): def run(self, tmp=None, task_vars=None): del tmp # tmp no longer has any effect module_name = self._task.action.split('.')[-1] self._config_module = True if module_name == 'nxos_config' else False persistent_connection = self._play_context.connection.split('.')[-1] warnings = [] if (self._play_context.connection in ('httpapi', 'local') or self._task.args.get('provider', {}).get('transport') == 'nxapi') \ and module_name in ('nxos_file_copy', 'nxos_nxapi'): return {'failed': True, 'msg': "Transport type 'nxapi' is not valid for '%s' module." % (module_name)} if module_name == 'nxos_file_copy': self._task.args['host'] = self._play_context.remote_addr self._task.args['password'] = self._play_context.password if self._play_context.connection == 'network_cli': self._task.args['username'] = self._play_context.remote_user elif self._play_context.connection == 'local': self._task.args['username'] = self._play_context.connection_user if module_name == 'nxos_install_os': connection = self._connection if connection.transport == 'local': persistent_command_timeout = C.PERSISTENT_COMMAND_TIMEOUT persistent_connect_timeout = C.PERSISTENT_CONNECT_TIMEOUT else: persistent_command_timeout = connection.get_option('persistent_command_timeout') persistent_connect_timeout = connection.get_option('persistent_connect_timeout') display.vvvv('PERSISTENT_COMMAND_TIMEOUT is %s' % str(persistent_command_timeout), self._play_context.remote_addr) display.vvvv('PERSISTENT_CONNECT_TIMEOUT is %s' % str(persistent_connect_timeout), self._play_context.remote_addr) if persistent_command_timeout < 600 or persistent_connect_timeout < 600: msg = 'PERSISTENT_COMMAND_TIMEOUT and PERSISTENT_CONNECT_TIMEOUT' msg += ' must be set to 600 seconds or higher when using nxos_install_os module.' msg += ' Current persistent_command_timeout setting:' + str(persistent_command_timeout) msg += ' Current persistent_connect_timeout setting:' + str(persistent_connect_timeout) return {'failed': True, 'msg': msg} if persistent_connection in ('network_cli', 'httpapi'): provider = self._task.args.get('provider', {}) if any(provider.values()): display.warning('provider is unnecessary when using %s and will be ignored' % self._play_context.connection) del self._task.args['provider'] if self._task.args.get('transport'): display.warning('transport is unnecessary when using %s and will be ignored' % self._play_context.connection) del self._task.args['transport'] elif self._play_context.connection == 'local': provider = load_provider(nxos_provider_spec, self._task.args) transport = provider['transport'] or 'cli' display.vvvv('connection transport is %s' % transport, self._play_context.remote_addr) if transport == 'cli': pc = copy.deepcopy(self._play_context) pc.connection = 'ansible.netcommon.network_cli' pc.network_os = 'cisco.nxos.nxos' pc.remote_addr = provider['host'] or self._play_context.remote_addr pc.port = int(provider['port'] or self._play_context.port or 22) pc.remote_user = provider['username'] or self._play_context.connection_user pc.password = provider['password'] or self._play_context.password pc.private_key_file = provider['ssh_keyfile'] or self._play_context.private_key_file pc.become = provider['authorize'] or False if pc.become: pc.become_method = 'enable' pc.become_pass = provider['auth_pass'] connection = self._shared_loader_obj.connection_loader.get('ansible.netcommon.persistent', pc, sys.stdin, task_uuid=self._task._uuid) # TODO: Remove below code after ansible minimal is cut out if connection is None: pc.connection = 'network_cli' pc.network_os = 'nxos' connection = self._shared_loader_obj.connection_loader.get('persistent', pc, sys.stdin, task_uuid=self._task._uuid) display.vvv('using connection plugin %s (was local)' % pc.connection, pc.remote_addr) command_timeout = int(provider['timeout']) if provider['timeout'] else connection.get_option('persistent_command_timeout') connection.set_options(direct={'persistent_command_timeout': command_timeout}) socket_path = connection.run() display.vvvv('socket_path: %s' % socket_path, pc.remote_addr) if not socket_path: return {'failed': True, 'msg': 'unable to open shell. Please see: ' + 'https://docs.ansible.com/ansible/network_debug_troubleshooting.html#unable-to-open-shell'} task_vars['ansible_socket'] = socket_path else: self._task.args['provider'] = ActionModule.nxapi_implementation(provider, self._play_context) warnings.append(['connection local support for this module is deprecated and will be removed in version 2.14,' ' use connection either httpapi or ansible.netcommon.httpapi (whichever is applicable)']) else: return {'failed': True, 'msg': 'Connection type %s is not valid for this module' % self._play_context.connection} result = super(ActionModule, self).run(task_vars=task_vars) if warnings: if 'warnings' in result: result['warnings'].extend(warnings) else: result['warnings'] = warnings return result @staticmethod def nxapi_implementation(provider, play_context): provider['transport'] = 'nxapi' if provider.get('host') is None: provider['host'] = play_context.remote_addr if provider.get('port') is None: if provider.get('use_ssl'): provider['port'] = 443 else: provider['port'] = 80 if provider.get('timeout') is None: provider['timeout'] = C.PERSISTENT_COMMAND_TIMEOUT if provider.get('username') is None: provider['username'] = play_context.connection_user if provider.get('password') is None: provider['password'] = play_context.password if provider.get('use_ssl') is None: provider['use_ssl'] = False if provider.get('validate_certs') is None: provider['validate_certs'] = True return provider
mikewiebe-ansible/ansible
lib/ansible/plugins/action/nxos.py
Python
gpl-3.0
8,307
0.003732
# # Implements encrypting functions. # # Copyright (c) 2008, F S 3 Consulting Inc. # # Maintainer: # Alec Joseph Rivera (agi<at>fs3.ph) # refactored by Antony Lesuisse <al<at>openerp.com> # import hashlib import hmac import logging from random import sample from string import ascii_letters, digits import openerp from openerp.osv import fields, osv _logger = logging.getLogger(__name__) magic_md5 = '$1$' magic_sha256 = '$5$' openerp.addons.base.res.res_users.USER_PRIVATE_FIELDS.append('password_crypt') def gen_salt(length=8, symbols=None): if symbols is None: symbols = ascii_letters + digits return ''.join(sample(symbols, length)) def md5crypt( raw_pw, salt, magic=magic_md5 ): """ md5crypt FreeBSD crypt(3) based on but different from md5 The md5crypt is based on Mark Johnson's md5crypt.py, which in turn is based on FreeBSD src/lib/libcrypt/crypt.c (1.2) by Poul-Henning Kamp. Mark's port can be found in ActiveState ASPN Python Cookbook. Kudos to Poul and Mark. -agi Original license: * "THE BEER-WARE LICENSE" (Revision 42): * * <phk@login.dknet.dk> wrote this file. As long as you retain this * notice you can do whatever you want with this stuff. If we meet some * day, and you think this stuff is worth it, you can buy me a beer in * return. * * Poul-Henning Kamp """ raw_pw = raw_pw.encode('utf-8') salt = salt.encode('utf-8') hash = hashlib.md5() hash.update( raw_pw + magic + salt ) st = hashlib.md5() st.update( raw_pw + salt + raw_pw) stretch = st.digest() for i in range( 0, len( raw_pw ) ): hash.update( stretch[i % 16] ) i = len( raw_pw ) while i: if i & 1: hash.update('\x00') else: hash.update( raw_pw[0] ) i >>= 1 saltedmd5 = hash.digest() for i in range( 1000 ): hash = hashlib.md5() if i & 1: hash.update( raw_pw ) else: hash.update( saltedmd5 ) if i % 3: hash.update( salt ) if i % 7: hash.update( raw_pw ) if i & 1: hash.update( saltedmd5 ) else: hash.update( raw_pw ) saltedmd5 = hash.digest() itoa64 = './0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' rearranged = '' for a, b, c in ((0, 6, 12), (1, 7, 13), (2, 8, 14), (3, 9, 15), (4, 10, 5)): v = ord( saltedmd5[a] ) << 16 | ord( saltedmd5[b] ) << 8 | ord( saltedmd5[c] ) for i in range(4): rearranged += itoa64[v & 0x3f] v >>= 6 v = ord( saltedmd5[11] ) for i in range( 2 ): rearranged += itoa64[v & 0x3f] v >>= 6 return magic + salt + '$' + rearranged def sh256crypt(cls, password, salt, magic=magic_sha256): iterations = 1000 # see http://en.wikipedia.org/wiki/PBKDF2 result = password.encode('utf8') for i in xrange(cls.iterations): result = hmac.HMAC(result, salt, hashlib.sha256).digest() # uses HMAC (RFC 2104) to apply salt result = result.encode('base64') # doesnt seem to be crypt(3) compatible return '%s%s$%s' % (magic_sha256, salt, result) class res_users(osv.osv): _inherit = "res.users" def init(self, cr): """Encrypt all passwords at module installation""" cr.execute("SELECT id, password FROM res_users WHERE password IS NOT NULL and password != ''") for user in cr.fetchall(): self._set_encrypted_password(cr, user[0], user[1]) def _set_encrypted_password(self, cr, uid, plain_password): """Set an encrypted password for a given user""" salt = gen_salt() stored_password_crypt = md5crypt(plain_password, salt) cr.execute("UPDATE res_users SET password = '', password_crypt = %s WHERE id = %s", (stored_password_crypt, uid)) def set_pw(self, cr, uid, id, name, value, args, context): if value: self._set_encrypted_password(cr, id, value) del value def get_pw( self, cr, uid, ids, name, args, context ): cr.execute('select id, password from res_users where id in %s', (tuple(map(int, ids)),)) stored_pws = cr.fetchall() res = {} for id, stored_pw in stored_pws: res[id] = stored_pw return res _columns = { 'password': fields.function(get_pw, fnct_inv=set_pw, type='char', string='Password', invisible=True, store=True), 'password_crypt': fields.char(string='Encrypted Password', invisible=True), } def check_credentials(self, cr, uid, password): # convert to base_crypt if needed cr.execute('SELECT password, password_crypt FROM res_users WHERE id=%s AND active', (uid,)) if cr.rowcount: stored_password, stored_password_crypt = cr.fetchone() if stored_password and not stored_password_crypt: self._set_encrypted_password(cr, uid, stored_password) try: return super(res_users, self).check_credentials(cr, uid, password) except openerp.exceptions.AccessDenied: # check md5crypt if stored_password_crypt: if stored_password_crypt[:len(magic_md5)] == magic_md5: salt = stored_password_crypt[len(magic_md5):11] if stored_password_crypt == md5crypt(password, salt): return elif stored_password_crypt[:len(magic_md5)] == magic_sha256: salt = stored_password_crypt[len(magic_md5):11] if stored_password_crypt == md5crypt(password, salt): return # Reraise password incorrect raise # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
jaggu303619/asylum
openerp/addons/auth_crypt/auth_crypt.py
Python
agpl-3.0
5,849
0.009574
sabor = input() quantidade = int(input()) if sabor.lower() == "morango" or sabor.lower() == "cereja": total = quantidade*4.50 elif sabor.lower() == "damasco" or sabor.lower() == "siriguela": total = quantidade*3.80 else: total = quantidade*2.75 print("%.2f"%total) if quantidade > 2: print ("COM CALDA") else: print("SEM CALDA")
SANDEISON/The-Huxley
Python/Sorveteria Tropical,py.py
Python
gpl-3.0
351
0.005698
from todoman import version # type: ignore __version__ = version.version __documentation__ = "https://todoman.rtfd.org/en/latest/"
pimutils/todoman
todoman/__init__.py
Python
isc
133
0
#!/usr/bin/python3 from . tkLEDTable import * try: import serial except: import sys print("Install the serial module width '{} -m pip install PySerial'.".format(sys.executable)) raise import threading try: from queue import Queue except ImportError: from Queue import Queue import itertools def list_serial_ports(): ## got the code from ## http://stackoverflow.com/questions/12090503/listing-available-com-ports-with-python import os from serial.tools import list_ports # Windows if os.name == 'nt': # Scan for available ports. available = [] for i in range(256): try: s = serial.Serial(i) available.append('COM'+str(i + 1)) s.close() except serial.SerialException: pass return available else: # Mac / Linux return [port[0] for port in list_ports.comports()] class SerialLEDTable(threading.Thread): COMMAND_CHARACTER = b"!" def __init__(self, led_table, file): super(SerialLEDTable, self).__init__() self.led_table = led_table self.file = file def run(self): for line in self.file: if not line.startswith(self.COMMAND_CHARACTER): self.default_line(line) else: self.command_line(line[1:]) def default_line(self, line): if line.endswith(b"\n"): line = line[:-1] if line.endswith(b"\r"): line = line[:-1] try: line = line.decode("ASCII") except UnicodeDecodeError: pass print(line) def command_line(self, line): command = line.split() if command[0] == b"p": height = int(command[1]) self.set_pixels(height) elif command[0] == b"o": height = int(command[1]) self.set_pixel_order(height) else: print("Invalid Command: {}".format(command)) def set_pixel_order(self, height): indices = [[(int(i), x, y) for x, i in enumerate(self.file.readline().rstrip().split())] for y in range(height)] indices = list(itertools.chain.from_iterable(indices)) indices.sort() coordinates = [(x, y) for i, x, y in indices] self.set_pixel_order_on_ledtable(coordinates) def set_pixel_order_on_ledtable(self, coordinates): self.led_table.show_pixel_order(coordinates) def set_pixels(self, height): for y in range(height): line = self.file.readline().rstrip() pixels = line.decode("ASCII").split("#")[1:] for x, pixel in enumerate(pixels): self.set_pixel(x, y, pixel) def set_pixel(self, x, y, color): if not color: return # nothing happened if len(color) > 6: color = color[-6:] else: color = color.rjust(6, "0") color = "#" + color self.set_pixel_on_ledtable(x, y, color) def set_pixel_on_ledtable(self, x, y, color): if x >= self.led_table.width: self.led_table.width = x + 1 if y >= self.led_table.height: self.led_table.height = y + 1 self.led_table.set_pixel_color(x, y, color) class TkSerialLEDTable(SerialLEDTable): def __init__(self, *args, **kw): super(TkSerialLEDTable, self).__init__(*args, **kw) self.queue = Queue() self.led_table.after(1, self.loop) def set_pixel_on_ledtable(self, *args): self.queue.put((super(TkSerialLEDTable, self).set_pixel_on_ledtable, args, {})) def set_pixel_order_on_ledtable(self, *args): self.queue.put((super(TkSerialLEDTable, self).set_pixel_order_on_ledtable, args, {})) def loop(self): while not self.queue.empty(): func, args, kw = self.queue.get(block = False) func(*args, **kw) self.led_table.after(1, self.loop) if __name__ == "__main__": import sys if not sys.argv[1:]: ports = list_serial_ports() if not ports: print("No serial ports detected. You should pass one as argument.") else: print('The first argument should be a serial port, e.g. "{}"'.format( "\", \"".join(map(str, ports)))) print("The second argument can be the baud rate of the serial connection.") print("If there is no second argument we assume 9600.") exit(1) port = sys.argv[1] if len(sys.argv) >= 3: baudrate = sys.argv[2] else: baudrate = 9600 s = serial.serial_for_url(port, baudrate = baudrate) t = LEDTk() t.title(port) ts = TkSerialLEDTable(t, s) ts.deamon = True ts.start() try: t.mainloop() finally: s.close()
niccokunzmann/ledtable
python/ledtable/SerialLEDTable.py
Python
mit
4,859
0.004322
from Alignment import Alignment import sys,time,os import pf,func from Var import var from Glitch import Glitch class Data: """All the alignments that you want to work with, in one place. Initialize this with one of - nothing (or None), - a list of Alignment objects, or - a single Alignment object. If you initialize with nothing (or None), then all alignments in var.alignments are used. If you initialize with a list of alignments, then that is used. You can initialize with an empty list to get an empty Data object. """ #def __del__(self, freeData=pf.freeData, dp_freeData=pf.dp_freeData): def __del__(self, freeData=pf.freeData): if self.alignments: for a in self.alignments: a.parts = [] self.alignments = None if self.parts: #print len(self.parts) for p in self.parts: #if p.cPart: # freePart(p.cPart) # this is not as good as p.__del__(), as it leaves some memory un-freed p.__del__() #else: # print 0 if self.cData: if self.doDataPart: dp_freeData(self.cData) else: freeData(self.cData) self.cData = None self.parts = None self.taxNames = None ## ##Ignore ## def wipe(self): ## if self.cData: ## freeData(self.cData) ## self.cData = None ## for p in self.parts: ## if p.cPart: ## pf.freePart(p.cPart) ## p.cPart = None ## del(p) ## self.taxNames = None ## for a in self.alignments: ## del(a) ## self.alignments = None def __init__(self, alignments=None): gm = ['Data.__init__()'] self.nParts = 0 self.parts = [] self.alignments = [] self.nTax = 0 self.taxNames = [] self.cData = None self.unconstrainedLogLikelihood = None if alignments: if isinstance(alignments, Alignment): #Passed in a single alignment object not a list alignments = [alignments] else: if type(alignments) != type([]): gm.append("The 'alignments' arg should be a list or a single Alignment object.") raise Glitch, gm for a in alignments: if isinstance(a, Alignment): pass else: gm.append("Something in the 'alignments' arg was not an Alignment.") raise Glitch, gm self._fill(alignments) elif alignments == []: pass elif var.alignments: self._fill(var.alignments) # temporary! Only used in __del__() self.doDataPart = var.doDataPart def dump(self): """Print rubbish about self.""" print "Data dump" if self.nParts == 1: if var.doDataPart: print " There is 1 dataPart" else: print " There is 1 part" else: if var.doDataPart: print " There are %i dataParts" % self.nParts else: print " There are %i parts" % self.nParts for p in self.parts: print " name=%s, nChar %i, dataType %s, cPart %s" % \ (p.name, p.nChar, p.dataType, p.cPart) print " There are %i taxa" % self.nTax if len(self.alignments) == 1: print " There is 1 alignment" else: print " There are %i alignments" % len(self.alignments) if self.cData: print " The cData is %s" % self.cData else: print " There is no cData" if self.unconstrainedLogLikelihood: print " The unconstrainedLogLikelihood is %s" % self.unconstrainedLogLikelihood else: pass def _fill(self, alignments): # Fill self with Parts from all alignments. # # This method is called from __init__(), and it is generally # not needed on its own. If we get here, we can be fairly sure # that arg alignments is a non-empty list of Alignment # objects. This method calls the Alignment method _initParts() gm = ["Data._fill()"] self.alignments = alignments # Make a part out of the first alignment. if not len(self.alignments): gm.append("There are no alignments") raise Glitch, gm a = self.alignments[0] if var.doDataPart: a.initDataParts() else: a._initParts() if not len(a.parts): gm.append("First alignment failed to make a part") raise Glitch, gm self.taxNames = a.taxNames self.nTax = len(self.taxNames) for p in a.parts: self.parts.append(p) self.nParts = len(self.parts) # Now do subsequent alignments ... for aligNum in range(len(self.alignments))[1:]: a = self.alignments[aligNum] if self.nTax != len(a.sequences): gm.append("Additional alignment is not the same size as the first alignment.") if a.fName: gm.append('(New alignment from file %s.)' % a.fName) gm.append("From the first alignment, nTax is %s." % self.nTax) gm.append("However, (zero-based) alignment %i has %i sequences." % (aligNum, len(a.sequences))) raise Glitch, gm if self.nTax != len(a.taxNames): gm.append("Additional alignment appears to be not the same size as the first alignment.") if a.fName: gm.append('(New alignment from file %s.)' % a.fName) gm.append("From the first alignment, nTax is %s." % self.nTax) gm.append("However, (zero-based) alignment %i has %i taxNames." % (aligNum, len(a.taxNames))) raise Glitch, gm for i in range(self.nTax): if self.taxNames[i] != a.taxNames[i]: gm.append("Name mis-match in (zero-based) taxon number %i," % i) gm.append("in (zero-based) alignment %i." % aligNum) if a.fName: gm.append('(New alignment from file %s.)' % a.fName) gm.append("Newly-added alignment taxname %s is not the" % a.taxNames[i]) gm.append(" same as first alignment taxname %s" % self.taxNames[i]) raise Glitch, gm if var.doDataPart: a.initDataParts() else: a._initParts() if not len(a.parts): gm.append("Additional alignment failed to make a part.") if a.fName: gm.append('(New alignment from file %s.)' % a.fName) raise Glitch, gm for p in a.parts: self.parts.append(p) self.nParts = len(self.parts) def calcUnconstrainedLogLikelihood1(self): """Calculate likelihood under the multinomial model. This calculates the unconstrained (multinomial) log like without regard to character partitions. The result is placed in the data variable unconstrainedLogLikelihood. If there is more than one partition, it makes a new temporary alignment and puts all the sequences in one part in that alignment. So it ultimately only works on one data partition. If there is more than one alignment, there is possibly more than one datatype, and so this method will refuse to do it. Note that the unconstrained log like of the combined data is not the sum of the unconstrained log likes of the separate partitions. See also calcUnconstrainedLogLikelihood2 """ if len(self.alignments) > 1: gm = ["Data.calcUnconstrainedLogLikelihood()"] gm.append("This method is not implemented for more than one alignment.") raise Glitch, gm if self.nParts == 1: # no problem self.unconstrainedLogLikelihood = pf.getUnconstrainedLogLike(self.parts[0].cPart) else: a = self.alignments[0] import copy newAlig = Alignment() newAlig.dataType = a.dataType newAlig.symbols = a.symbols newAlig.dim = a.dim newAlig.equates = a.equates newAlig.taxNames = a.taxNames for s in a.sequences: newAlig.sequences.append(copy.deepcopy(s)) newAlig.checkLengthsAndTypes() newAlig._initParts() #newAlig.dump() self.unconstrainedLogLikelihood = pf.getUnconstrainedLogLike(newAlig.parts[0].cPart) del(newAlig) def calcUnconstrainedLogLikelihood2(self): """Calculate likelihood under the multinomial model. This calculates the unconstrained log like of each data partition and places the sum in the Data (self) variable unconstrainedLogLikelihood. Note that the unconstrained log like of the combined data is not the sum of the unconstrained log likes of the separate partitions. See also calcUnconstrainedLogLikelihood1 """ uncon = 0.0 for p in self.parts: #print " %i %f" % (p.cPart, pf.getUnconstrainedLogLike(p.cPart)) uncon = uncon + pf.getUnconstrainedLogLike(p.cPart) self.unconstrainedLogLikelihood = uncon def _setCStuff(self): if self.cData: gm = ["Data._setCStuff()"] gm.append("This should only be called if self.cData does not exist!") raise Glitch, gm else: if var.doDataPart: self.cData = pf.dp_newData(self.nTax, self.nParts) for i in range(self.nParts): p = self.parts[i] pf.dp_pokeDataPartInData(p.cPart, self.cData, i) else: self.cData = pf.newData(self.nTax, self.nParts) for i in range(self.nParts): p = self.parts[i] pf.pokePartInData(p.cPart, self.cData, i) #print "Made Data.cData = %s" % self.cData def writeNexus(self, fName=None, writeDataBlock=0, interleave=0, flat=0, append=0): """Write all the alignments in self to a Nexus file. If writeDataBlock=1, then taxa and characters are written to a 'data' block, rather than the default, which is to write separate 'taxa' and 'characters' blocks. Arg 'flat' gives sequences all on one line. Arg 'append', if 0, writes #NEXUS first. If 1, does not write #NEXUS. """ # There may be more than one alignment, and we need to do the first # one first, because it may or may not be appended, while the remaining # alignments are appended for sure. if len(self.alignments): a = self.alignments[0] #if a.parts and len(a.parts): # a.resetSequencesFromParts() # simulate should be responsible for this a.writeNexus(fName, writeDataBlock, interleave, flat, append) for a in self.alignments[1:]: #if a.parts and len(a.parts): # a.resetSequencesFromParts() a.writeNexus(fName, writeDataBlock, interleave, flat, append=1) def resetSequencesFromParts(self): for a in self.alignments: if a.parts: a.resetSequencesFromParts() else: raise Glitch, "Alignment has no parts." def compoSummary(self): """A verbose composition summary, one for each data partition.""" print "\n\nData composition summary" print "========================\n" # Make a name format (eg '%12s') that is long enough for the longest name longestNameLen = 7 # to start for i in self.taxNames: if len(i) > longestNameLen: longestNameLen = len(i) nameFormat = '%' + '%i' % (longestNameLen + 1) + 's' for i in range(len(self.parts)): p = self.parts[i] print "Part %i" % i print "%s" % (' ' * (longestNameLen + 1)), for j in range(len(p.symbols)): print "%10s" % p.symbols[j], print "%10s" % 'nSites' #print '' #cumulativeComps = [0.0] * len(p.symbols) grandTotalNSites = 0 for k in range(p.nTax): c = p.composition([k]) #print "tax %s, part.composition() returns %s" % (k, c) nSites = pf.partSequenceSitesCount(p.cPart, k) grandTotalNSites = grandTotalNSites + nSites print nameFormat % self.taxNames[k], # Usually sum(c) will be 1.0, unless the sequence is # empty. We don't want to test "if sum(c) == 0.0:" or # "if sum(c):" cuz of small numbers. if sum(c) > 0.99: for j in range(len(p.symbols)): print "%10.4f" % c[j], #cumulativeComps[j] = cumulativeComps[j] + (c[j] * nSites) else: # Empty sequence, all zeros. Write dashes. for j in range(len(p.symbols)): print "%10s" % '-', print "%10s" % nSites c = p.composition() print nameFormat % 'mean', for j in range(len(p.symbols)): print "%10.4f" % c[j], #print "%10s" % grandTotalNSites print "%10.4f" % (float(grandTotalNSites)/self.nTax) print "\n" def compoChiSquaredTest(self, verbose=1, skipColumnZeros=0, useConstantSites=1, skipTaxNums=None, getRows=0): """A chi square composition test for each data partition. So you could do, for example:: read('myData.nex') # Calling Data() with no args tells it to make a Data object # using all the alignments in var.alignments d = Data() # Do the test. By default it is verbose, and prints results. # Additionally, a list of lists is returned ret = d.compoChiSquaredTest() # With verbose on, it might print something like --- # Part 0: Chi-square = 145.435278, (dof=170) P = 0.913995 print ret # The list of lists that it returns might be something like --- # [[145.43527849758556, 170, 0.91399521077908041]] # which has the same numbers as above, with one # inner list for each data partition. If your data has more than one partition:: read('first.nex') read('second.nex') d = Data() d.compoChiSquaredTest() # Output something like --- # Part 0: Chi-square = 200.870463, (dof=48) P = 0.000000 # Part 1: Chi-square = 57.794704, (dof=80) P = 0.971059 # [[200.87046313430443, 48, 0.0], [57.794704451018163, 80, 0.97105866938683427]] where the last line is returned. With *verbose* turned off, the ``Part N`` lines are not printed. This method returns a list of lists, one for each data partition. If *getRows* is off, the default, then it is a list of 3-item lists, and if *getRows* is turned on then it is a list of 4-item lists. In each inner list, the first is the X-squared statistic, the second is the degrees of freedom, and the third is the probability from chi-squared. (The expected comes from the data.) If *getRows* is turned on, the 4th item is a list of X-sq contributions from individual rows (ie individual taxa), that together sum to the X-sq for the whole partition as found in the first item. This latter way is the way that Tree-Puzzle does it. Note that this ostensibly tests whether the data are homogeneous in composition, but it does not work on sequences that are related. That is, testing whether the X^2 stat is significant using the chi^2 curve has a high probability of type II error for phylogenetic sequences. However, the X-squared stat can be used in valid ways. You can simulate data under the tree and model, and so generate a valid null distribution of X^2 values from the simulations, by which to assess the significance of the original X^2. You can use this method to generate X^2 values. A problem arises when a composition of a character is zero. If that happens, we can't calculate X-squared because there will be a division by zero. If *skipColumnZeros* is set to 1, then those columns are simply skipped. They are silently skipped unless verbose is turned on. So lets say that your original data have all characters, but one of them has a very low value. That is reflected in the model, and when you do simulations based on the model you occasionally get zeros for that character. Here it is up to you: you could say that the the data containing the zeros are validly part of the possibilities and so should be included, or you could say that the data containing the zeros are not valid and should be excluded. You choose between these by setting *skipColumnZeros*. Note that if you do not set *skipColumnZeros*, and then you analyse a partition that has column zeros, the result is None for that partition. Another problem occurs when a partition is completely missing a sequence. Of course that sequence does not contribute to the stat. However, in any simulations that you might do, that sequence *will* be there, and *will* contribute to the stat. So you will want to skip that sequence when you do your calcs from the simulation. You can do that with the *skipTaxNums* arg, which is a list of lists. The outer list is nParts long, and each inner list is a list of taxNums to exclude. """ if not useConstantSites: newData = Data([]) aligs = [] for a in self.alignments: #aligs.append(a.removeConstantSites()) aligs.append(a.subsetUsingMask(a.constantMask(), theMaskChar='1', inverse=1)) newData._fill(aligs) theResult = newData.compoChiSquaredTest(verbose=verbose, skipColumnZeros=skipColumnZeros, useConstantSites=1, skipTaxNums=skipTaxNums, getRows=getRows) del(newData) return theResult gm = ['Data.compoChiSquaredTest()'] nColumnZeros = 0 results = [] # check skipTaxNums if skipTaxNums != None: if type(skipTaxNums) != type([]): gm.append("skipTaxNums should be a list of lists.") raise Glitch, gm if len(skipTaxNums) != self.nParts: gm.append("skipTaxNums should be a list of lists, nParts long.") raise Glitch, gm for s in skipTaxNums: if type(s) != type([]): gm.append("skipTaxNums should be a list of lists.") raise Glitch, gm for i in s: if type(i) != type(1): gm.append("skipTaxNums inner list items should be tax numbers.") gm.append("Got %s" % i) raise Glitch, gm # Check for blank sequences. Its a pain to force the user to do this. hasBlanks = False blankSeqNums = [] for partNum in range(self.nParts): p = self.parts[partNum] partBlankSeqNums = [] for taxNum in range(self.nTax): if skipTaxNums and skipTaxNums[partNum] and taxNum in skipTaxNums[partNum]: pass else: nSites = pf.partSequenceSitesCount(p.cPart, taxNum) # no gaps, no missings if not nSites: partBlankSeqNums.append(taxNum) if partBlankSeqNums: hasBlanks = True blankSeqNums.append(partBlankSeqNums) if hasBlanks: gm.append("These sequence numbers were found to be blank. They should be excluded.") gm.append("%s" % blankSeqNums) gm.append("Set the arg skipTaxNums to this list.") raise Glitch, gm for partNum in range(self.nParts): gm = ['Data.compoChiSquaredTest() Part %i' % partNum] p = self.parts[partNum] comps = [] for taxNum in range(self.nTax): if skipTaxNums and skipTaxNums[partNum] and taxNum in skipTaxNums[partNum]: pass else: oneComp = p.composition([taxNum]) nSites = pf.partSequenceSitesCount(p.cPart, taxNum) # no gaps, no missings #print "tax %i, nSites=%i, oneComp=%s" % (taxNum, nSites, oneComp) if nSites: for k in range(len(oneComp)): oneComp[k] = oneComp[k] * nSites comps.append(oneComp) else: gm.append("(Zero-based) sequence %i is blank, and should be excluded." % taxNum) gm.append("You need to add the number %i to the arg skipTaxNums list of lists." % taxNum) gm.append("(I could do that automatically, but it is best if *you* do it, explicitly.)") gm.append("You can use the Alignment method checkForBlankSequences(listSeqNumsOfBlanks=True)") gm.append("to help you get those inner lists.") raise Glitch, gm #print "comps=", comps # Here we calculate the X^2 stat. But we want to check # for columns summing to zero. So we can't use # func.xSquared() nRows = len(comps) nCols = len(comps[0]) theSumOfRows = func._sumOfRows(comps) # I could have just kept nSites, above theSumOfCols = func._sumOfColumns(comps) #print theSumOfCols isOk = 1 columnZeros = [] for j in range(len(theSumOfRows)): if theSumOfRows[j] == 0.0: gm.append("Zero in a row sum. Programming error.") raise Glitch, gm for j in range(len(theSumOfCols)): if theSumOfCols[j] == 0.0: if skipColumnZeros: columnZeros.append(j) else: if verbose: print gm[0] print " Zero in a column sum." print " And skipColumnZeros is not set, so I am refusing to do it at all." isOk = 0 nColumnZeros += 1 theExpected = func._expected(theSumOfRows, theSumOfCols) #print "theExpected = ", theExpected #print "columnZeros = ", columnZeros if isOk: if getRows: xSq_rows = [] xSq = 0.0 alreadyGivenZeroWarning = 0 k = 0 for taxNum in range(self.nTax): if skipTaxNums and skipTaxNums[partNum] and taxNum in skipTaxNums[partNum]: if getRows: xSq_rows.append(0.0) # this taxon is not in comps. Add a placeholder else: # k is the counter for comps and theExpected, taxNum without the skips xSq_row = 0.0 for j in range(nCols): if j in columnZeros: if skipColumnZeros: if verbose and not alreadyGivenZeroWarning: print gm[0] print " Skipping (zero-based) column number(s) %s, which sum to zero." % columnZeros alreadyGivenZeroWarning = 1 else: gm.append("Programming error.") raise Glitch, gm else: theDiff = comps[k][j] - theExpected[k][j] xSq_row += (theDiff * theDiff) / theExpected[k][j] xSq += xSq_row if getRows: xSq_rows.append(xSq_row) k += 1 #print xSq_rows dof = (p.dim - len(columnZeros) - 1) * (len(comps) - 1) prob = pf.chiSquaredProb(xSq, dof) if verbose: print "Part %i: Chi-square = %f, (dof=%i) P = %f" % (partNum, xSq, dof, prob) if getRows: #print " rows = %s" % xSq_rows print "%20s %7s %s" % ('taxName', 'xSq_row', 'P (like puzzle)') for tNum in range(self.nTax): if not skipTaxNums or tNum not in skipTaxNums[partNum]: thisProb = pf.chiSquaredProb(xSq_rows[tNum], self.parts[partNum].dim - 1) print "%20s %7.5f %7.5f" % (self.taxNames[tNum], xSq_rows[tNum], thisProb) else: print "%20s --- ---" % self.taxNames[tNum] if getRows: results.append([xSq, dof, prob, xSq_rows]) else: results.append([xSq, dof, prob]) else: # ie not isOk, ie there is a zero in a column sum results.append(None) # Maybe a bad idea. Maybe it should just die, above. if nColumnZeros and verbose: print "There were %i column zeros." % nColumnZeros return results def simpleBigXSquared(self): """No frills calculation of bigXSquared. As in :meth:`Data.Data.compoChiSquaredTest`, but with no options, and hopefully faster. It can't handle gaps or ambiguities. It should be ok for simulations. It returns a list of bigXSquared numbers, one for each data partition. If a character happens to not be there, then a column will be zero, and so it can't be calculated. In that case -1.0 is returned for that part. """ l = [] for p in self.parts: l.append(pf.partBigXSquared(p.cPart)) return l def simpleConstantSitesCount(self): """No frills constant sites count. It can't handle gaps or ambiguities. It should be ok for simulations. It returns a list of constant sites counts, one for each data partition. For each part, of the sites that are not all gaps+ambigs, if the sites that are not gaps or ambigs are all the same, then it is considered here to be a constant site. """ l = [] for p in self.parts: l.append(pf.partSimpleConstantSitesCount(p.cPart)) return l def dupe(self): """Copy, making new cParts.""" import copy aligListCopy = copy.deepcopy(self.alignments) for alig in aligListCopy: # We do not want the cPart's, but neither do we want to free the originals. for p in alig.parts: p.cPart = None del(alig.parts) alig.parts = [] return Data(aligListCopy) def bootstrap(self, seed=None): """Returns a new data object, filled with bootstrapped data. It is a non-parametric bootstrap. Data partitions are handled properly, that is if your data has a charpartition, the bootstrap has the same charpartition, and sites are sampled only from the appropriate charpartition subset. """ gm = ['Data.bootstrap()'] import copy aligListCopy = copy.deepcopy(self.alignments) for alig in aligListCopy: # We do not want the cPart's, but neither do we want to free the originals. for p in alig.parts: p.cPart = None del(alig.parts) alig.parts = [] d = Data([]) d._fill(aligListCopy) if not self.cData: self._setCStuff() d._setCStuff() if 0: print "\nSELF\n====" self.dump() print "\n\nNEW DATA\n========" d.dump() raise Glitch isNewGSL_RNG = 0 if not var.gsl_rng: var.gsl_rng = pf.get_gsl_rng() isNewGSL_RNG = 1 #print "got var.gsl_rng = %i" % var.gsl_rng # Set the GSL random number generator seed, only if it is a new GSL_RNG if isNewGSL_RNG: if seed != None: try: newSeed = int(seed) pf.gsl_rng_set(var.gsl_rng, newSeed) except ValueError: print gm[0] print " The seed should be convertable to an integer" print " Using the process id instead." pf.gsl_rng_set(var.gsl_rng, os.getpid()) else: pf.gsl_rng_set(var.gsl_rng, os.getpid()) pf.bootstrapData(self.cData, d.cData, var.gsl_rng) # Data.resetSequencesFromParts() uses # Alignment.resetSequencesFromParts(), which uses # partSeq = pf.symbolSequences(self.parts[i].cPart) # which uses thePart->sequences d.resetSequencesFromParts() return d def meanNCharsPerSite(self): """Mean number of different characters per site, of variable sites only. Constant sites are ignored. Ambiguities and gaps are ignored. This is implemented in C, allowing multiple parts. It is also implemented in pure Python in the Alignment class, for single parts (which also optionally gives you a distribution in addition to the mean); see :meth:`Alignment.Alignment.meanNCharsPerSite`. """ l = [] for p in self.parts: l.append(pf.partMeanNCharsPerSite(p.cPart)) return l
Linhua-Sun/p4-phylogenetics
p4/Data.py
Python
gpl-2.0
31,372
0.005355
from sys import argv script, user_name = argv prompt = '> ' print "Hi %s, I'm the %s script." % (user_name, script) print "I'd like to ask you a few questions." print "Do you like me %s?" % user_name likes = raw_input(prompt) print "Where do you live %s?" % user_name lives = raw_input(prompt) print "What kind of computer do you have?" computer = raw_input(prompt) print """ Alright, so you said %r about liking me. You live in %r. Not sure where that is. And you have a %r computer. Nice. """ % (likes, lives, computer)
Skreex/LPTHW
ex14.py
Python
mit
529
0.00189
import string, copy def joinHeaders(first, second, joined, on): joined.headers = first.headers[:] mappedHeaders = {} for header in second.headers: if header == on: continue i = 0 newHeader = header while newHeader in first.headers: newHeader = '{0}_{1}'.format(newHeader, i) i += 1 if i > 0: mappedHeaders[header] = newHeader joined.headers.append(newHeader) return mappedHeaders def mergeRow(row, toMerge, mappedHeaders): for header in toMerge: if header in mappedHeaders: row[mappedHeaders[header]] = toMerge[header] else: row[header] = toMerge[header] def mergeRows(first, second, joined, on, mappedHeaders): joined.rows = copy.deepcopy(first.rows) secondRows = copy.deepcopy(second.rows) for secondRow in secondRows: pivot = secondRow[on] for row in joined.rows: if row[on] == pivot: mergeRow(row, secondRow, mappedHeaders) break else: newRow = {} mergeRow(newRow, secondRow, mappedHeaders) joined.rows.append(newRow) class Dataset: def __init__(self, filename = '', separator=',', header=True): self.headers = [] self.rows = [] try: infile = file(filename, 'r') if header: self.headers = infile.readline().strip().split(separator) for line in infile: row = line.strip().split(separator) if not header and not self.headers: self.headers = ["V{0}".format(i) for i in range(len(row))] self.rows.append({self.headers[i]:row[i] for i in range(len(row))}) infile.close() except IOError: pass def export(self, filename): outfile = file(filename, 'w') outfile.write(','.join(self.headers)) for row in self.rows: outfile.write('\n') outfile.write(','.join([row[x] for x in self.headers])) outfile.close() def join(self, other, on): """Join self dataset with another dataset, creating a new dataset. The original datasets remain unchanged. The third argument is the header on which to join""" # check for correct join if not (on in self.headers or on in other.headers): print "Error: header '{0}' not found in both collections".format(on) return None # create new dataset joined = Dataset() # fill new dataset with combined data mappedHeaders = joinHeaders(self, other, joined, on) mergeRows(self, other, joined, on, mappedHeaders) joined.ensureFilled() # return newly created dataset return joined def pivot(self): """Pivot this dataset into a new one, discarding current headers, using first column as new headers""" pivoted = Dataset() for (index, header) in enumerate(self.headers): for row in self.rows: if index == 0: pivoted.headers.append(row[header]) else: if len(pivoted.rows) < index: pivoted.rows.extend([{} for x in range(index - len(pivoted.rows))]) pivoted.rows[index - 1][row[self.headers[0]]] = row[header] return pivoted def ensureFilled(self): for row in self.rows: for header in self.headers: if not header in row: row[header] = None def append(self, other, ensureFilled = True): """Append rows of another dataset to this one, leaving the other dataset unchanged""" self.rows.extend(other.rows) self.headers.extend([x for x in other.headers if not x in self.headers]) if(ensureFilled): self.ensureFilled() return self
dwilmer/rcpsp-testing-framework
dataset.py
Python
mit
3,291
0.036159
"""Auto-generated file, do not edit by hand. 881 metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_881 = PhoneMetadata(id='001', country_code=881, international_prefix=None, general_desc=PhoneNumberDesc(national_number_pattern='[0-36-9]\\d{8}', possible_length=(9,)), mobile=PhoneNumberDesc(national_number_pattern='[0-36-9]\\d{8}', example_number='612345678', possible_length=(9,)), number_format=[NumberFormat(pattern='(\\d)(\\d{3})(\\d{5})', format='\\1 \\2 \\3', leading_digits_pattern=['[0-36-9]'])])
daviddrysdale/python-phonenumbers
python/phonenumbers/data/region_881.py
Python
apache-2.0
569
0.008787
# Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Handlers that are not directly related to course content.""" __author__ = 'Saifu Angto (saifu@google.com)' import base64 import hmac import os import time import urlparse import webapp2 import appengine_config from common import jinja_utils from models import models from models import transforms from models.config import ConfigProperty from models.config import ConfigPropertyEntity from models.courses import Course from models.models import Student from models.models import StudentProfileDAO from models.models import TransientStudent from models.roles import Roles from google.appengine.api import namespace_manager from google.appengine.api import users # The name of the template dict key that stores a course's base location. COURSE_BASE_KEY = 'gcb_course_base' # The name of the template dict key that stores data from course.yaml. COURSE_INFO_KEY = 'course_info' TRANSIENT_STUDENT = TransientStudent() XSRF_SECRET_LENGTH = 20 XSRF_SECRET = ConfigProperty( 'gcb_xsrf_secret', str, ( 'Text used to encrypt tokens, which help prevent Cross-site request ' 'forgery (CSRF, XSRF). You can set the value to any alphanumeric text, ' 'preferably using 16-64 characters. Once you change this value, the ' 'server rejects all subsequent requests issued using an old value for ' 'this variable.'), 'course builder XSRF secret') # Whether to record page load/unload events in a database. CAN_PERSIST_PAGE_EVENTS = ConfigProperty( 'gcb_can_persist_page_events', bool, ( 'Whether or not to record student page interactions in a ' 'datastore. Without event recording, you cannot analyze student ' 'page interactions. On the other hand, no event recording reduces ' 'the number of datastore operations and minimizes the use of Google ' 'App Engine quota. Turn event recording on if you want to analyze ' 'this data.'), False) # Whether to record tag events in a database. CAN_PERSIST_TAG_EVENTS = ConfigProperty( 'gcb_can_persist_tag_events', bool, ( 'Whether or not to record student tag interactions in a ' 'datastore. Without event recording, you cannot analyze student ' 'tag interactions. On the other hand, no event recording reduces ' 'the number of datastore operations and minimizes the use of Google ' 'App Engine quota. Turn event recording on if you want to analyze ' 'this data.'), False) # Whether to record events in a database. CAN_PERSIST_ACTIVITY_EVENTS = ConfigProperty( 'gcb_can_persist_activity_events', bool, ( 'Whether or not to record student activity interactions in a ' 'datastore. Without event recording, you cannot analyze student ' 'activity interactions. On the other hand, no event recording reduces ' 'the number of datastore operations and minimizes the use of Google ' 'App Engine quota. Turn event recording on if you want to analyze ' 'this data.'), False) # Date format string for displaying datetimes in UTC. # Example: 2013-03-21 13:00 UTC HUMAN_READABLE_DATETIME_FORMAT = '%Y-%m-%d, %H:%M UTC' # Date format string for displaying dates. Example: 2013-03-21 HUMAN_READABLE_DATE_FORMAT = '%Y-%m-%d' # Time format string for displaying times. Example: 01:16:40 UTC. HUMAN_READABLE_TIME_FORMAT = '%H:%M:%S UTC' class PageInitializer(object): """Abstract class that defines an interface to initialize page headers.""" @classmethod def initialize(cls, template_value): raise NotImplementedError class DefaultPageInitializer(PageInitializer): """Implements default page initializer.""" @classmethod def initialize(cls, template_value): pass class PageInitializerService(object): """Installs the appropriate PageInitializer.""" _page_initializer = DefaultPageInitializer @classmethod def get(cls): return cls._page_initializer @classmethod def set(cls, page_initializer): cls._page_initializer = page_initializer class ReflectiveRequestHandler(object): """Uses reflection to handle custom get() and post() requests. Use this class as a mix-in with any webapp2.RequestHandler to allow request dispatching to multiple get() and post() methods based on the 'action' parameter. Open your existing webapp2.RequestHandler, add this class as a mix-in. Define the following class variables: default_action = 'list' get_actions = ['default_action', 'edit'] post_actions = ['save'] Add instance methods named get_list(self), get_edit(self), post_save(self). These methods will now be called automatically based on the 'action' GET/POST parameter. """ def create_xsrf_token(self, action): return XsrfTokenManager.create_xsrf_token(action) def get(self): """Handles GET.""" action = self.request.get('action') if not action: action = self.default_action if action not in self.get_actions: self.error(404) return handler = getattr(self, 'get_%s' % action) if not handler: self.error(404) return return handler() def post(self): """Handles POST.""" action = self.request.get('action') if not action or action not in self.post_actions: self.error(404) return handler = getattr(self, 'post_%s' % action) if not handler: self.error(404) return # Each POST request must have valid XSRF token. xsrf_token = self.request.get('xsrf_token') if not XsrfTokenManager.is_xsrf_token_valid(xsrf_token, action): self.error(403) return return handler() class ApplicationHandler(webapp2.RequestHandler): """A handler that is aware of the application context.""" @classmethod def is_absolute(cls, url): return bool(urlparse.urlparse(url).scheme) @classmethod def get_base_href(cls, handler): """Computes current course <base> href.""" base = handler.app_context.get_slug() if not base.endswith('/'): base = '%s/' % base # For IE to work with the <base> tag, its href must be an absolute URL. if not cls.is_absolute(base): parts = urlparse.urlparse(handler.request.url) base = urlparse.urlunparse( (parts.scheme, parts.netloc, base, None, None, None)) return base def __init__(self, *args, **kwargs): super(ApplicationHandler, self).__init__(*args, **kwargs) self.template_value = {} def get_template(self, template_file, additional_dirs=None): """Computes location of template files for the current namespace.""" self.template_value[COURSE_INFO_KEY] = self.app_context.get_environ() self.template_value['is_course_admin'] = Roles.is_course_admin( self.app_context) self.template_value[ 'is_read_write_course'] = self.app_context.fs.is_read_write() self.template_value['is_super_admin'] = Roles.is_super_admin() self.template_value[COURSE_BASE_KEY] = self.get_base_href(self) template_environ = self.app_context.get_template_environ( self.template_value[COURSE_INFO_KEY]['course']['locale'], additional_dirs ) template_environ.filters[ 'gcb_tags'] = jinja_utils.get_gcb_tags_filter(self) return template_environ.get_template(template_file) def canonicalize_url(self, location): """Adds the current namespace URL prefix to the relative 'location'.""" is_relative = ( not self.is_absolute(location) and not location.startswith(self.app_context.get_slug())) has_slug = ( self.app_context.get_slug() and self.app_context.get_slug() != '/') if is_relative and has_slug: location = '%s%s' % (self.app_context.get_slug(), location) return location def redirect(self, location, normalize=True): if normalize: location = self.canonicalize_url(location) super(ApplicationHandler, self).redirect(location) class BaseHandler(ApplicationHandler): """Base handler.""" def __init__(self, *args, **kwargs): super(BaseHandler, self).__init__(*args, **kwargs) self.course = None def get_course(self): if not self.course: self.course = Course(self) return self.course def find_unit_by_id(self, unit_id): """Gets a unit with a specific id or fails with an exception.""" return self.get_course().find_unit_by_id(unit_id) def get_units(self): """Gets all units in the course.""" return self.get_course().get_units() def get_lessons(self, unit_id): """Gets all lessons (in order) in the specific course unit.""" return self.get_course().get_lessons(unit_id) def get_progress_tracker(self): """Gets the progress tracker for the course.""" return self.get_course().get_progress_tracker() def get_user(self): """Get the current user.""" return users.get_current_user() def personalize_page_and_get_user(self): """If the user exists, add personalized fields to the navbar.""" user = self.get_user() PageInitializerService.get().initialize(self.template_value) if hasattr(self, 'app_context'): self.template_value['can_register'] = self.app_context.get_environ( )['reg_form']['can_register'] if user: self.template_value['email'] = user.email() self.template_value['logoutUrl'] = ( users.create_logout_url(self.request.uri)) self.template_value['transient_student'] = False # configure page events self.template_value['record_tag_events'] = ( CAN_PERSIST_TAG_EVENTS.value) self.template_value['record_page_events'] = ( CAN_PERSIST_PAGE_EVENTS.value) self.template_value['record_events'] = ( CAN_PERSIST_ACTIVITY_EVENTS.value) self.template_value['event_xsrf_token'] = ( XsrfTokenManager.create_xsrf_token('event-post')) else: self.template_value['loginUrl'] = users.create_login_url( self.request.uri) self.template_value['transient_student'] = True return None return user def personalize_page_and_get_enrolled( self, supports_transient_student=False): """If the user is enrolled, add personalized fields to the navbar.""" user = self.personalize_page_and_get_user() if user is None: student = TRANSIENT_STUDENT else: student = Student.get_enrolled_student_by_email(user.email()) if not student: self.template_value['transient_student'] = True student = TRANSIENT_STUDENT if student.is_transient: if supports_transient_student and ( self.app_context.get_environ()['course']['browsable']): return TRANSIENT_STUDENT elif user is None: self.redirect( users.create_login_url(self.request.uri), normalize=False ) return None else: self.redirect('/preview') return None # Patch Student models which (for legacy reasons) do not have a user_id # attribute set. if not student.user_id: student.user_id = user.user_id() student.put() return student def assert_xsrf_token_or_fail(self, request, action): """Asserts the current request has proper XSRF token or fails.""" token = request.get('xsrf_token') if not token or not XsrfTokenManager.is_xsrf_token_valid(token, action): self.error(403) return False return True def render(self, template_file): """Renders a template.""" template = self.get_template(template_file) self.response.out.write(template.render(self.template_value)) class BaseRESTHandler(BaseHandler): """Base REST handler.""" def assert_xsrf_token_or_fail(self, token_dict, action, args_dict): """Asserts that current request has proper XSRF token or fails.""" token = token_dict.get('xsrf_token') if not token or not XsrfTokenManager.is_xsrf_token_valid(token, action): transforms.send_json_response( self, 403, 'Bad XSRF token. Please reload the page and try again', args_dict) return False return True def validation_error(self, message, key=None): """Deliver a validation message.""" if key: transforms.send_json_response( self, 412, message, payload_dict={'key': key}) else: transforms.send_json_response(self, 412, message) class PreviewHandler(BaseHandler): """Handler for viewing course preview.""" def get(self): """Handles GET requests.""" user = self.personalize_page_and_get_user() if user is None: student = TRANSIENT_STUDENT else: student = Student.get_enrolled_student_by_email(user.email()) if not student: student = TRANSIENT_STUDENT # If the course is browsable, or the student is logged in and # registered, redirect to the main course page. if ((student and not student.is_transient) or self.app_context.get_environ()['course']['browsable']): self.redirect('/course') return self.template_value['transient_student'] = True self.template_value['can_register'] = self.app_context.get_environ( )['reg_form']['can_register'] self.template_value['navbar'] = {'course': True} self.template_value['units'] = self.get_units() self.template_value['show_registration_page'] = True course = self.app_context.get_environ()['course'] self.template_value['video_exists'] = bool( 'main_video' in course and 'url' in course['main_video'] and course['main_video']['url']) self.template_value['image_exists'] = bool( 'main_image' in course and 'url' in course['main_image'] and course['main_image']['url']) if user: profile = StudentProfileDAO.get_profile_by_user_id(user.user_id()) additional_registration_fields = self.app_context.get_environ( )['reg_form']['additional_registration_fields'] if profile is not None and not additional_registration_fields: self.template_value['show_registration_page'] = False self.template_value['register_xsrf_token'] = ( XsrfTokenManager.create_xsrf_token('register-post')) self.render('preview.html') class RegisterHandler(BaseHandler): """Handler for course registration.""" def get(self): """Handles GET request.""" user = self.personalize_page_and_get_user() if not user: self.redirect( users.create_login_url(self.request.uri), normalize=False) return student = Student.get_enrolled_student_by_email(user.email()) if student: self.redirect('/course') return can_register = self.app_context.get_environ( )['reg_form']['can_register'] if not can_register: self.redirect('/course#registration_closed') return # pre-fill nick name from the profile if available self.template_value['current_name'] = '' profile = StudentProfileDAO.get_profile_by_user_id(user.user_id()) if profile and profile.nick_name: self.template_value['current_name'] = profile.nick_name self.template_value['navbar'] = {} self.template_value['transient_student'] = True self.template_value['register_xsrf_token'] = ( XsrfTokenManager.create_xsrf_token('register-post')) self.render('register.html') def post(self): """Handles POST requests.""" user = self.personalize_page_and_get_user() if not user: self.redirect( users.create_login_url(self.request.uri), normalize=False) return if not self.assert_xsrf_token_or_fail(self.request, 'register-post'): return can_register = self.app_context.get_environ( )['reg_form']['can_register'] if not can_register: self.redirect('/course#registration_closed') return if 'name_from_profile' in self.request.POST.keys(): profile = StudentProfileDAO.get_profile_by_user_id(user.user_id()) name = profile.nick_name else: name = self.request.get('form01') Student.add_new_student_for_current_user( name, transforms.dumps(self.request.POST.items())) # Render registration confirmation page self.redirect('/course#registration_confirmation') class ForumHandler(BaseHandler): """Handler for forum page.""" def get(self): """Handles GET requests.""" student = self.personalize_page_and_get_enrolled( supports_transient_student=True) if not student: return self.template_value['navbar'] = {'forum': True} self.render('forum.html') class AnuncioHandler(BaseHandler): """Handler for forum page.""" def get(self): """Handles GET requests.""" student = self.personalize_page_and_get_enrolled( supports_transient_student=True) if not student: return self.template_value['navbar'] = {'plataforma': True} self.render('plataform.html') class CursosHandler(BaseHandler): """Handler for forum page.""" def get(self): """Handles GET requests.""" student = self.personalize_page_and_get_enrolled( supports_transient_student=True) if not student: return self.template_value['navbar'] = {'plataforma': True} self.render('home.html') class StudentProfileHandler(BaseHandler): """Handles the click to 'Progress' link in the nav bar.""" def get(self): """Handles GET requests.""" student = self.personalize_page_and_get_enrolled() if not student: return course = self.get_course() name = student.name profile = student.profile if profile: name = profile.nick_name self.template_value['navbar'] = {'progress': True} self.template_value['student'] = student self.template_value['student_name'] = name self.template_value['date_enrolled'] = student.enrolled_on.strftime( HUMAN_READABLE_DATE_FORMAT) self.template_value['score_list'] = course.get_all_scores(student) self.template_value['overall_score'] = course.get_overall_score(student) self.template_value['student_edit_xsrf_token'] = ( XsrfTokenManager.create_xsrf_token('student-edit')) self.template_value['can_edit_name'] = ( not models.CAN_SHARE_STUDENT_PROFILE.value) self.render('student_profile.html') class StudentEditStudentHandler(BaseHandler): """Handles edits to student records by students.""" def post(self): """Handles POST requests.""" student = self.personalize_page_and_get_enrolled() if not student: return if not self.assert_xsrf_token_or_fail(self.request, 'student-edit'): return Student.rename_current(self.request.get('name')) self.redirect('/student/home') class StudentUnenrollHandler(BaseHandler): """Handler for students to unenroll themselves.""" def get(self): """Handles GET requests.""" student = self.personalize_page_and_get_enrolled() if not student: return self.template_value['student'] = student self.template_value['navbar'] = {} self.template_value['student_unenroll_xsrf_token'] = ( XsrfTokenManager.create_xsrf_token('student-unenroll')) self.render('unenroll_confirmation_check.html') def post(self): """Handles POST requests.""" student = self.personalize_page_and_get_enrolled() if not student: return if not self.assert_xsrf_token_or_fail(self.request, 'student-unenroll'): return Student.set_enrollment_status_for_current(False) self.template_value['navbar'] = {} self.template_value['transient_student'] = True self.render('unenroll_confirmation.html') class XsrfTokenManager(object): """Provides XSRF protection by managing action/user tokens in memcache.""" # Max age of the token (4 hours). XSRF_TOKEN_AGE_SECS = 60 * 60 * 4 # Token delimiters. DELIMITER_PRIVATE = ':' DELIMITER_PUBLIC = '/' # Default nickname to use if a user does not have a nickname, USER_ID_DEFAULT = 'default' @classmethod def init_xsrf_secret_if_none(cls): """Verifies that non-default XSRF secret exists; creates one if not.""" # Any non-default value is fine. if XSRF_SECRET.value and XSRF_SECRET.value != XSRF_SECRET.default_value: return # All property manipulations must run in the default namespace. old_namespace = namespace_manager.get_namespace() try: namespace_manager.set_namespace( appengine_config.DEFAULT_NAMESPACE_NAME) # Look in the datastore directly. entity = ConfigPropertyEntity.get_by_key_name(XSRF_SECRET.name) if not entity: entity = ConfigPropertyEntity(key_name=XSRF_SECRET.name) # Any non-default non-None value is fine. if (entity.value and not entity.is_draft and (str(entity.value) != str(XSRF_SECRET.default_value))): return # Initialize to random value. entity.value = base64.urlsafe_b64encode( os.urandom(XSRF_SECRET_LENGTH)) entity.is_draft = False entity.put() finally: namespace_manager.set_namespace(old_namespace) @classmethod def _create_token(cls, action_id, issued_on): """Creates a string representation (digest) of a token.""" cls.init_xsrf_secret_if_none() # We have decided to use transient tokens stored in memcache to reduce # datastore costs. The token has 4 parts: hash of the actor user id, # hash of the action, hash of the time issued and the plain text of time # issued. # Lookup user id. user = users.get_current_user() if user: user_id = user.user_id() else: user_id = cls.USER_ID_DEFAULT # Round time to seconds. issued_on = long(issued_on) digester = hmac.new(str(XSRF_SECRET.value)) digester.update(str(user_id)) digester.update(cls.DELIMITER_PRIVATE) digester.update(str(action_id)) digester.update(cls.DELIMITER_PRIVATE) digester.update(str(issued_on)) digest = digester.digest() token = '%s%s%s' % ( issued_on, cls.DELIMITER_PUBLIC, base64.urlsafe_b64encode(digest)) return token @classmethod def create_xsrf_token(cls, action): return cls._create_token(action, time.time()) @classmethod def is_xsrf_token_valid(cls, token, action): """Validate a given XSRF token by retrieving it from memcache.""" try: parts = token.split(cls.DELIMITER_PUBLIC) if len(parts) != 2: return False issued_on = long(parts[0]) age = time.time() - issued_on if age > cls.XSRF_TOKEN_AGE_SECS: return False authentic_token = cls._create_token(action, issued_on) if authentic_token == token: return True return False except Exception: # pylint: disable=broad-except return False
chessco/cursus
controllers/utils.py
Python
apache-2.0
25,293
0.000474
#!/usr/bin/env python import re,urllib2 class Get_public_ip: def getip(self): try: myip = self.visit("http://www.whereismyip.com/") except: try: myip = self.visit("http://www.ip138.com/ip2city.asp") except: myip = "So sorry!!!" return myip def visit(self,url): opener = urllib2.urlopen(url) if url == opener.geturl(): str = opener.read() return re.search('\d+\.\d+\.\d+\.\d+',str).group(0) if __name__ == "__main__": getmyip = Get_public_ip() print getmyip.getip()
ielnehc/ltmh
tools/get_public_ip.py
Python
mit
610
0.02623
""" Copyright (C) 2017-2021 Vanessa Sochat. This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/. """ from django.contrib.sitemaps import Sitemap from shub.apps.main.models import Container, Collection class BaseSitemap(Sitemap): priority = 0.5 def location(self, obj): return obj.get_absolute_url() class ContainerSitemap(BaseSitemap): changefreq = "weekly" def lastmod(self, obj): return obj.build_date def items(self): return [x for x in Container.objects.all() if x.collection.private is False] class CollectionSitemap(BaseSitemap): changefreq = "weekly" def lastmod(self, obj): return obj.modify_date def items(self): return [x for x in Collection.objects.all() if x.private is False]
singularityhub/sregistry
shub/apps/base/sitemap.py
Python
mpl-2.0
917
0.001091
'''This folder contains various example scripts demonstrating MAVLink functionality.'''
AndreasAntener/mavlink
pymavlink/examples/__init__.py
Python
lgpl-3.0
88
0.011364
from NVDAObjects.IAccessible import IAccessible import nvwave import speech import os class AutocompleteList(IAccessible): def event_selection(self): speech.cancelSpeech() speech.speakText(self.name)
ThomasStivers/nvda-notepadPlusPlus
addon/appModules/notepad++/autocomplete.py
Python
gpl-2.0
210
0.033333
"""file_parser.py reads text file and parse the item into a list.""" def file_to_list(input_file): data_list_trim = [] try: with open(input_file) as in_put: input_data = in_put.readlines() if len(input_data) == 1: print() data_list = input_data[0].replace('"', '').strip() data_list_trim = data_list.split(',') elif len(input_data) > 1: print() for row in input_data: row_list = row.replace('"', '').strip() row_list_trim = row_list.split(',') data_list_trim = data_list_trim + row_list_trim else: print('no content is the file') except OSError as err: print('Failed to open file', err) return data_list_trim
roy-boy/python_scripts
file_parser.py
Python
gpl-3.0
847
0
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RBigmemorySri(RPackage): """This package provides a shared resource interface for the bigmemory and synchronicity packages.""" homepage = "https://cloud.r-project.org/web/packages/bigmemory.sri/index.html" url = "https://cloud.r-project.org/src/contrib/bigmemory.sri_0.1.3.tar.gz" list_url = "https://cloud.r-project.org/src/contrib/Archive/bigmemory.sri" version('0.1.3', sha256='55403252d8bae9627476d1f553236ea5dc7aa6e54da6980526a6cdc66924e155')
iulian787/spack
var/spack/repos/builtin/packages/r-bigmemory-sri/package.py
Python
lgpl-2.1
708
0.00565
import pytest from .utils import digit_float import numpy as np vowel_data_y_dimension = 11 @pytest.fixture def vowel_data(): from esl_model.datasets import VowelDataSet data = VowelDataSet() return data.return_all() @pytest.fixture def SAHeart_data(): from esl_model.datasets import SAHeartDataSet data = SAHeartDataSet() return data.return_all() def test_vowel_data(): from esl_model.datasets import VowelDataSet data = VowelDataSet() assert list(data.train_y[:5]) == list(range(1, 6)) data.select_features = data.feature_names[:2] assert np.array_equal(data.train_x[:1], data._train_x.iloc[:1, :2].values) ft = list(range(3)) data.select_features = ft assert np.array_equal(data.train_x[:1], data._train_x.iloc[:1, ft].values) def test_indicator_matrix(vowel_data): from esl_model.ch4.models import LinearRegressionIndicatorMatrix train_x, train_y, test_x, test_y, features = vowel_data lrm = LinearRegressionIndicatorMatrix(train_x=train_x, train_y=train_y, n_class=vowel_data_y_dimension) lrm.pre_processing() lrm.train() print(lrm.error_rate) test_result = lrm.test(test_x, test_y) print(test_result.error_rate) assert digit_float(lrm.error_rate) == 0.477 assert digit_float(test_result.error_rate) == 0.667 def test_LDA(vowel_data): from esl_model.ch4.models import LDAModel train_x, train_y, test_x, test_y, features = vowel_data lda = LDAModel(train_x=train_x, train_y=train_y, n_class=vowel_data_y_dimension) lda.pre_processing() lda.train() print(lda.y_hat[:10]) print(lda.error_rate) te = lda.test(test_x, test_y) print(te.error_rate) assert digit_float(lda.error_rate) == 0.316 assert digit_float(te.error_rate) == 0.556 def test_QDA(vowel_data): from esl_model.ch4.models import QDAModel train_x, train_y, test_x, test_y, features = vowel_data qda = QDAModel(train_x=train_x, train_y=train_y, n_class=vowel_data_y_dimension) qda.pre_processing() qda.train() print(qda.y_hat[:10]) print(qda.error_rate) te = qda.test(test_x, test_y).error_rate print(te) assert digit_float(qda.error_rate) == 0.011 assert digit_float(te) == 0.528 def test_RDA(vowel_data): from esl_model.ch4.models import RDAModel train_x, train_y, test_x, test_y, features = vowel_data # http://waxworksmath.com/Authors/G_M/Hastie/WriteUp/weatherwax_epstein_hastie_solutions_manual.pdf # pp 60 model = RDAModel(train_x=train_x, train_y=train_y, n_class=vowel_data_y_dimension, alpha=0.969697) model.pre_processing() model.train() print(model.error_rate) te = model.test(test_x, test_y) print(te.error_rate) assert digit_float(te.error_rate) == 0.478 def test_LDA_computation(vowel_data): from esl_model.ch4.models import LDAForComputation train_x, train_y, test_x, test_y, features = vowel_data model = LDAForComputation(train_x=train_x, train_y=train_y, n_class=vowel_data_y_dimension) model.pre_processing() model.train() from esl_model.ch4.models import LDAModel lda = LDAModel(train_x=train_x, train_y=train_y, n_class=vowel_data_y_dimension) lda.pre_processing() lda.train() print(model.error_rate) assert np.isclose(model.error_rate, lda.error_rate) assert np.isclose(model.test(test_x, test_y).error_rate, lda.test(test_x, test_y).error_rate) def test_RRLDA(vowel_data): from esl_model.ch4.models import ReducedRankLDAModel train_x, train_y, test_x, test_y, features = vowel_data model = ReducedRankLDAModel(train_x=train_x, train_y=train_y, n_class=vowel_data_y_dimension, L=2) model.pre_processing() model.train() print(model.y_hat[:5]) print(model.error_rate) te = model.test(test_x, test_y) print(te.error_rate) assert digit_float(model.error_rate) == 0.350 assert digit_float(te.error_rate) == 0.491 def test_SAHeart_data_set(SAHeart_data): x, y, *_ = SAHeart_data assert x[1, 2] == 4.41 assert list(y[:4]) == [1, 1, 0, 1] def test_binary_logistic_regression(SAHeart_data): from esl_model.datasets import SAHeartDataSet data = SAHeartDataSet(select_features=[1, 2, 4, 8]) from esl_model.ch4.models import BinaryLogisticRegression train_x = data.train_x train_y = data.train_y model = BinaryLogisticRegression(train_x=train_x, train_y=train_y, n_class=2, do_standardization=False) model.pre_processing() model.train() print(model.beta_hat) print(model.error_rate) print('yhat', model.y_hat[:5]) print(repr(model.std_err)) print('z score', model.z_score) eq_beta_hat = np.array([[-4.20427542], [0.08070059], [0.16758415], [0.92411669], [0.04404247]]) eq_std_err = np.array([0.498348, 0.02551477, 0.05418979, 0.22318295, 0.00974321]) assert np.allclose(model.beta_hat, eq_beta_hat) assert digit_float(model.error_rate) == 0.268 assert np.allclose(model.std_err, eq_std_err) data = SAHeartDataSet(select_features=[0, 1, 2, 4, 6, 7, 8]) train_x = data.train_x train_y = data.train_y model = BinaryLogisticRegression(train_x=train_x, train_y=train_y, n_class=2, do_standardization=False) model.pre_processing() model.train() assert digit_float(model.error_rate) == 0.271
littlezz/ESL-Model
tests/test_ch4.py
Python
mit
5,437
0.002391
import os import sys from pathlib import Path class Setup: CONFIGURATION_FILE = os.path.join(Path(__file__).parents[1], "config", "server.cfg") VLC_DEFAULT_COMMAND = "vlc -f" POSIX = 'posix' in sys.builtin_module_names VLC_PLAYLIST_END = "vlc://quit"
danfr/RemoteTV
Server/bin/Setup.py
Python
mit
269
0.003717
""" Proposal Target Operator selects foreground and background roi and assigns label, bbox_transform to them. """ from __future__ import print_function import mxnet as mx import numpy as np from distutils.util import strtobool from rcnn.io.rcnn import sample_rois DEBUG = False class ProposalTargetOperator(mx.operator.CustomOp): def __init__(self, num_classes, batch_images, batch_rois, fg_fraction): super(ProposalTargetOperator, self).__init__() self._num_classes = num_classes self._batch_images = batch_images self._batch_rois = batch_rois self._fg_fraction = fg_fraction if DEBUG: self._count = 0 self._fg_num = 0 self._bg_num = 0 def forward(self, is_train, req, in_data, out_data, aux): assert self._batch_rois % self._batch_images == 0, \ 'BATCHIMAGES {} must devide BATCH_ROIS {}'.format(self._batch_images, self._batch_rois) rois_per_image = self._batch_rois / self._batch_images fg_rois_per_image = np.round(self._fg_fraction * rois_per_image).astype(int) all_rois = in_data[0].asnumpy() gt_boxes = in_data[1].asnumpy() # Include ground-truth boxes in the set of candidate rois zeros = np.zeros((gt_boxes.shape[0], 1), dtype=gt_boxes.dtype) all_rois = np.vstack((all_rois, np.hstack((zeros, gt_boxes[:, :-1])))) # Sanity check: single batch only assert np.all(all_rois[:, 0] == 0), 'Only single item batches are supported' rois, labels, bbox_targets, bbox_weights = \ sample_rois(all_rois, fg_rois_per_image, rois_per_image, self._num_classes, gt_boxes=gt_boxes) if DEBUG: print("labels=", labels) print('num fg: {}'.format((labels > 0).sum())) print('num bg: {}'.format((labels == 0).sum())) self._count += 1 self._fg_num += (labels > 0).sum() self._bg_num += (labels == 0).sum() print("self._count=", self._count) print('num fg avg: {}'.format(self._fg_num / self._count)) print('num bg avg: {}'.format(self._bg_num / self._count)) print('ratio: {:.3f}'.format(float(self._fg_num) / float(self._bg_num))) for ind, val in enumerate([rois, labels, bbox_targets, bbox_weights]): self.assign(out_data[ind], req[ind], val) def backward(self, req, out_grad, in_data, out_data, in_grad, aux): self.assign(in_grad[0], req[0], 0) self.assign(in_grad[1], req[1], 0) @mx.operator.register('proposal_target') class ProposalTargetProp(mx.operator.CustomOpProp): def __init__(self, num_classes, batch_images, batch_rois, fg_fraction='0.25'): super(ProposalTargetProp, self).__init__(need_top_grad=False) self._num_classes = int(num_classes) self._batch_images = int(batch_images) self._batch_rois = int(batch_rois) self._fg_fraction = float(fg_fraction) def list_arguments(self): return ['rois', 'gt_boxes'] def list_outputs(self): return ['rois_output', 'label', 'bbox_target', 'bbox_weight'] def infer_shape(self, in_shape): rpn_rois_shape = in_shape[0] gt_boxes_shape = in_shape[1] output_rois_shape = (self._batch_rois, 5) label_shape = (self._batch_rois, ) bbox_target_shape = (self._batch_rois, self._num_classes * 4) bbox_weight_shape = (self._batch_rois, self._num_classes * 4) return [rpn_rois_shape, gt_boxes_shape], \ [output_rois_shape, label_shape, bbox_target_shape, bbox_weight_shape] def create_operator(self, ctx, shapes, dtypes): return ProposalTargetOperator(self._num_classes, self._batch_images, self._batch_rois, self._fg_fraction) def declare_backward_dependency(self, out_grad, in_data, out_data): return []
likelyzhao/mxnet
example/rcnn/rcnn/symbol/proposal_target.py
Python
apache-2.0
3,893
0.002312
""" Tests for structural time series models Author: Chad Fulton License: Simplified-BSD """ from __future__ import division, absolute_import, print_function import numpy as np import pandas as pd import os import warnings from statsmodels.datasets import macrodata from statsmodels.tsa.statespace import structural from statsmodels.tsa.statespace.structural import UnobservedComponents from .results import results_structural from statsmodels.tools import add_constant from numpy.testing import assert_equal, assert_almost_equal, assert_raises, assert_allclose from nose.exc import SkipTest try: import matplotlib.pyplot as plt have_matplotlib = True except ImportError: have_matplotlib = False dta = macrodata.load_pandas().data dta.index = pd.date_range(start='1959-01-01', end='2009-07-01', freq='QS') def run_ucm(name): true = getattr(results_structural, name) for model in true['models']: kwargs = model.copy() kwargs.update(true['kwargs']) # Make a copy of the data values = dta.copy() freq = kwargs.pop('freq', None) if freq is not None: values.index = pd.date_range(start='1959-01-01', periods=len(dta), freq=freq) # Test pandas exog if 'exog' in kwargs: # Default value here is pd.Series object exog = np.log(values['realgdp']) # Also allow a check with a 1-dim numpy array if kwargs['exog'] == 'numpy': exog = exog.values.squeeze() kwargs['exog'] = exog # Create the model mod = UnobservedComponents(values['unemp'], **kwargs) # Smoke test for starting parameters, untransform, transform # Also test that transform and untransform are inverses mod.start_params assert_allclose(mod.start_params, mod.transform_params(mod.untransform_params(mod.start_params))) # Fit the model at the true parameters res_true = mod.filter(true['params']) # Check that the cycle bounds were computed correctly freqstr = freq[0] if freq is not None else values.index.freqstr[0] if freqstr == 'A': cycle_period_bounds = (1.5, 12) elif freqstr == 'Q': cycle_period_bounds = (1.5*4, 12*4) elif freqstr == 'M': cycle_period_bounds = (1.5*12, 12*12) else: # If we have no information on data frequency, require the # cycle frequency to be between 0 and pi cycle_period_bounds = (2, np.inf) # Test that the cycle frequency bound is correct assert_equal(mod.cycle_frequency_bound, (2*np.pi / cycle_period_bounds[1], 2*np.pi / cycle_period_bounds[0]) ) # Test that the likelihood is correct rtol = true.get('rtol', 1e-7) atol = true.get('atol', 0) assert_allclose(res_true.llf, true['llf'], rtol=rtol, atol=atol) # Smoke test for plot_components if have_matplotlib: fig = res_true.plot_components() plt.close(fig) # Now fit the model via MLE with warnings.catch_warnings(record=True) as w: res = mod.fit(disp=-1) # If we found a higher likelihood, no problem; otherwise check # that we're very close to that found by R if res.llf <= true['llf']: assert_allclose(res.llf, true['llf'], rtol=1e-4) # Smoke test for summary res.summary() def test_irregular(): run_ucm('irregular') def test_fixed_intercept(): warnings.simplefilter("always") with warnings.catch_warnings(record=True) as w: run_ucm('fixed_intercept') message = ("Specified model does not contain a stochastic element;" " irregular component added.") assert_equal(str(w[0].message), message) def test_deterministic_constant(): run_ucm('deterministic_constant') def test_random_walk(): run_ucm('random_walk') def test_local_level(): run_ucm('local_level') def test_fixed_slope(): run_ucm('fixed_slope') def test_fixed_slope(): warnings.simplefilter("always") with warnings.catch_warnings(record=True) as w: run_ucm('fixed_slope') message = ("Specified model does not contain a stochastic element;" " irregular component added.") assert_equal(str(w[0].message), message) def test_deterministic_trend(): run_ucm('deterministic_trend') def test_random_walk_with_drift(): run_ucm('random_walk_with_drift') def test_local_linear_deterministic_trend(): run_ucm('local_linear_deterministic_trend') def test_local_linear_trend(): run_ucm('local_linear_trend') def test_smooth_trend(): run_ucm('smooth_trend') def test_random_trend(): run_ucm('random_trend') def test_cycle(): run_ucm('cycle') def test_seasonal(): run_ucm('seasonal') def test_reg(): run_ucm('reg') def test_rtrend_ar1(): run_ucm('rtrend_ar1') def test_lltrend_cycle_seasonal_reg_ar1(): run_ucm('lltrend_cycle_seasonal_reg_ar1') def test_mle_reg(): endog = np.arange(100)*1.0 exog = endog*2 # Make the fit not-quite-perfect endog[::2] += 0.01 endog[1::2] -= 0.01 with warnings.catch_warnings(record=True) as w: mod1 = UnobservedComponents(endog, irregular=True, exog=exog, mle_regression=False) res1 = mod1.fit(disp=-1) mod2 = UnobservedComponents(endog, irregular=True, exog=exog, mle_regression=True) res2 = mod2.fit(disp=-1) assert_allclose(res1.regression_coefficients.filtered[0, -1], 0.5, atol=1e-5) assert_allclose(res2.params[1], 0.5, atol=1e-5) def test_specifications(): endog = [1, 2] # Test that when nothing specified, a warning is issued and the model that # is fit is one with irregular=True and nothing else. warnings.simplefilter("always") with warnings.catch_warnings(record=True) as w: mod = UnobservedComponents(endog) message = ("Specified model does not contain a stochastic element;" " irregular component added.") assert_equal(str(w[0].message), message) assert_equal(mod.trend_specification, 'irregular') # Test an invalid string trend specification assert_raises(ValueError, UnobservedComponents, endog, 'invalid spec') # Test that if a trend component is specified without a level component, # a warning is issued and a deterministic level component is added with warnings.catch_warnings(record=True) as w: mod = UnobservedComponents(endog, trend=True, irregular=True) message = ("Trend component specified without level component;" " deterministic level component added.") assert_equal(str(w[0].message), message) assert_equal(mod.trend_specification, 'deterministic trend') # Test that if a string specification is provided, a warning is issued if # the boolean attributes are also specified trend_attributes = ['irregular', 'trend', 'stochastic_level', 'stochastic_trend'] for attribute in trend_attributes: with warnings.catch_warnings(record=True) as w: kwargs = {attribute: True} mod = UnobservedComponents(endog, 'deterministic trend', **kwargs) message = ("Value of `%s` may be overridden when the trend" " component is specified using a model string." % attribute) assert_equal(str(w[0].message), message) # Test that a seasonal with period less than two is invalid assert_raises(ValueError, UnobservedComponents, endog, seasonal=1) def test_start_params(): # Test that the behavior is correct for multiple exogenous and / or # autoregressive components # Parameters nobs = int(1e4) beta = np.r_[10, -2] phi = np.r_[0.5, 0.1] # Generate data np.random.seed(1234) exog = np.c_[np.ones(nobs), np.arange(nobs)*1.0] eps = np.random.normal(size=nobs) endog = np.zeros(nobs+2) for t in range(1, nobs): endog[t+1] = phi[0] * endog[t] + phi[1] * endog[t-1] + eps[t] endog = endog[2:] endog += np.dot(exog, beta) # Now just test that the starting parameters are approximately what they # ought to be (could make this arbitrarily precise by increasing nobs, # but that would slow down the test for no real gain) mod = UnobservedComponents(endog, exog=exog, autoregressive=2) assert_allclose(mod.start_params, [1., 0.5, 0.1, 10, -2], atol=1e-1) def test_forecast(): endog = np.arange(50) + 10 exog = np.arange(50) mod = UnobservedComponents(endog, exog=exog, level='dconstant') res = mod.smooth([1e-15, 1]) actual = res.forecast(10, exog=np.arange(50,60)[:,np.newaxis]) desired = np.arange(50,60) + 10 assert_allclose(actual, desired)
saketkc/statsmodels
statsmodels/tsa/statespace/tests/test_structural.py
Python
bsd-3-clause
9,003
0.001666
from __future__ import absolute_import from .base import Filter from six.moves.urllib.parse import urlparse from sentry.utils.data_filters import FilterStatKeys LOCAL_IPS = frozenset(['127.0.0.1', '::1']) LOCAL_DOMAINS = frozenset(['127.0.0.1', 'localhost']) class LocalhostFilter(Filter): id = FilterStatKeys.LOCALHOST name = 'Filter out events coming from localhost' description = 'This applies to both IPv4 (``127.0.0.1``) and IPv6 (``::1``) addresses.' def get_ip_address(self, data): try: return data['sentry.interfaces.User']['ip_address'] except KeyError: return '' def get_url(self, data): try: return data['sentry.interfaces.Http']['url'] or '' except KeyError: return '' def get_domain(self, data): return urlparse(self.get_url(data)).hostname def test(self, data): return self.get_ip_address(data) in LOCAL_IPS or self.get_domain(data) in LOCAL_DOMAINS
ifduyue/sentry
src/sentry/filters/localhost.py
Python
bsd-3-clause
996
0.002008
''' Puck: FreeBSD virtualization guest configuration server Copyright (C) 2011 The Hotel Communication Network inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import os.path import cherrypy from libs.controller import * import models from models import Users class RootController(Controller): crumbs = [Crumb("/", "Home")] def __init__(self, lookup): Controller.__init__(self, lookup) self._lookup = lookup self._routes = {} @cherrypy.expose @cherrypy.tools.myauth() def index(self): return self.render("index.html", self.crumbs[:-1]) @cherrypy.expose def login(self, **post): if post: self._login(post) return self.render("login.html", self.crumbs[:-1]) @cherrypy.expose def logout(self, **post): cherrypy.session.delete() raise cherrypy.HTTPRedirect("/login") def add(self, route, cls): self._routes[route] = cls def load(self): [setattr(self, route, self._routes[route](self._lookup)) for route in self._routes] def _login(self, post): fields = ['user.username', 'user.password'] for f in fields: if not f in post: cherrypy.session['flash'] = "Invalid form data." return False hash_password = Users.hash_password(post['user.password']) user = Users.first(username=post['user.username'], password=hash_password) if not user: cherrypy.session['flash'] = 'Invalid username or password.' return False creds = user.generate_auth() cherrypy.session['user.id'] = user.id cherrypy.session['user.group'] = user.user_group cherrypy.session['credentials'] = creds raise cherrypy.HTTPRedirect('/index')
masom/Puck
server/controllers/root.py
Python
lgpl-3.0
2,450
0.002041
# -*- coding: utf-8 -*- # This code is part of Amoco # Copyright (C) 2014 Axel Tillequin (bdcht3@gmail.com) # published under GPLv2 license from amoco.arch.avr.env import * from amoco.cas.mapper import mapper # ------------------------------------------------------------------------------ # low level functions : def _push_(fmap, x): fmap[sp] = fmap[sp] - x.length fmap[mem(sp, x.size)] = x def _pop_(fmap, _l): fmap[_l] = fmap(mem(sp, _l.size)) fmap[sp] = fmap[sp] + _l.length def __pc(f): def pcnpc(i, fmap): fmap[pc] = fmap[pc] + i.length if len(fmap.conds) > 0: cond = fmap.conds.pop() m = mapper() f(i, m) for l, v in m: fmap[l] = tst(cond, v, fmap(l)) else: f(i, fmap) return pcnpc def __nopc(f): return f.__closure__[0].cell_contents def __nopc(f): return f.__closure__[0].cell_contents # flags for arithmetic operations: def __setflags__A(i, fmap, a, b, x, neg=False): fmap[zf] = x == 0 fmap[nf] = x.bit(7) if neg: a, x = ~a, ~x fmap[cf] = ( ((a.bit(7)) & (b.bit(7))) | ((b.bit(7)) & (~x.bit(7))) | ((a.bit(7)) & (~x.bit(7))) ) fmap[vf] = ((a.bit(7)) & (b.bit(7)) & (~x.bit(7))) | ( (~a.bit(7)) & (~b.bit(7)) & (x.bit(7)) ) fmap[sf] = fmap[nf] ^ fmap[vf] fmap[hf] = ( ((a.bit(3)) & (b.bit(3))) | ((b.bit(3)) & (~x.bit(3))) | ((a.bit(3)) & (~x.bit(3))) ) # flags for logical operations: def __setflags__L(i, fmap, a, b, x): fmap[zf] = x == 0 fmap[nf] = x.bit(7) fmap[vf] = bit0 fmap[sf] = fmap[nf] ^ fmap[vf] # flags for shift operations: def __setflags__S(i, fmap, a, x): # cf must be set before calling this function. fmap[zf] = x == 0 fmap[nf] = x.bit(7) fmap[vf] = fmap[nf] ^ fmap[cf] fmap[sf] = fmap[nf] ^ fmap[vf] # ixxx is the translation of AVR instruction xxx. # ------------------------------------------------------------------------------ @__pc def i_NOP(i, fmap): pass def i_SLEEP(i, fmap): fmap[pc] = ext("SLEEP", size=pc.size).call(fmap) def i_BREAK(i, fmap): fmap[pc] = ext("BREAK", size=pc.size).call(fmap) def i_IN(i, fmap): r, port = i.operands fmap[pc] = ext("IN", size=pc.size).call(fmap) def i_OUT(i, fmap): port, r = i.operands fmap[pc] = ext("OUT", size=pc.size).call(fmap) # arithmetic & logic instructions: ################################## @__pc def i_ADD(i, fmap): dst, src = i.operands a = fmap(dst) b = fmap(src) x = a + b __setflags__A(i, fmap, a, b, x) fmap[dst] = x @__pc def i_ADIW(i, fmap): dst, src = i.operands if i.misc["W"]: assert dst is R[24] a = fmap(composer([dst, R[25]])) else: a = fmap(dst) b = fmap(src) x = a + b __setflags__A(i, fmap, a, b, x) fmap[dst] = x[0 : dst.size] if i.misc["W"]: assert x.size == 16 fmap[R[25]] = x[8:16] @__pc def i_ADC(i, fmap): dst, src = i.operands _c = fmap[cf] __nopc(i_ADD)(i, fmap) a = fmap(dst) b = tst(_c, cst(1, a.size), cst(0, a.size)) x = a + b __setflags__A(i, fmap, a, b, x) fmap[dst] = x @__pc def i_INC(i, fmap): dst = i.operands[0] a = fmap(dst) b = cst(1, dst.size) x = a + b fmap[zf] = x == 0 fmap[nf] = x.bit(7) fmap[vf] = a == cst(0x7F, 8) fmap[sf] = fmap[nf] ^ fmap[vf] fmap[dst] = x @__pc def i_CP(i, fmap): dst, src = i.operands a = fmap(dst) b = fmap(src) x = a - b __setflags__A(i, fmap, a, b, x, neg=True) @__pc def i_CPSE(i, fmap): rd, rr = i.operands fmap.conds[fmap(rd == rr)] @__pc def i_SBRC(i, fmap): b = i.operands[0] fmap.conds[fmap(b == bit0)] @__pc def i_SBRS(i, fmap): b = i.operands[0] fmap.conds[fmap(b == bit1)] @__pc def i_SUB(i, fmap): dst, src = i.operands a = fmap(dst) b = fmap(src) x = a - b __setflags__A(i, fmap, a, b, x, neg=True) fmap[dst] = x i_SUBI = i_SUB @__pc def i_SBIW(i, fmap): dst, src = i.operands if i.misc["W"]: assert dst is R[24] a = fmap(composer([dst, R[25]])) else: a = fmap(dst) b = fmap(src) x = a - b __setflags__A(i, fmap, a, b, x, neg=True) fmap[dst] = x[0 : dst.size] if i.misc["W"]: assert x.size == 16 fmap[R[25]] = x[8:16] @__pc def i_COM(i, fmap): dst, src = i.operands a = cst(0xFF, 8) b = fmap(dst) x = a - b __setflags__A(i, fmap, a, b, x, neg=True) fmap[dst] = x @__pc def i_NEG(i, fmap): dst = i.operands[0] a = cst(0, dst.size) b = fmap(dst) x = a - b __setflags__A(i, fmap, a, b, x, neg=True) fmap[dst] = x @__pc def i_DEC(i, fmap): dst = i.operands[0] a = fmap(dst) b = cst(1, dst.size) x = a - b fmap[zf] = x == 0 fmap[nf] = x.bit(7) fmap[vf] = a == cst(0x80, 8) fmap[sf] = fmap[nf] ^ fmap[vf] fmap[dst] = x @__pc def i_CPC(i, fmap): dst, src = i.operands a = fmap(dst) b = fmap(src) _c = fmap[cf] __nopc(i_CP)(i, fmap) a = fmap(a - b) b = tst(_c, cst(1, a.size), cst(0, a.size)) x = a - b __setflags__A(i, fmap, a, b, x, neg=True) @__pc def i_SBC(i, fmap): dst, src = i.operands _c = fmap[cf] __nopc(i_SUB)(i, fmap) a = fmap(dst) b = tst(_c, cst(1, a.size), cst(0, a.size)) x = a - b __setflags__A(i, fmap, a, b, x, neg=True) fmap[dst] = x i_SBCI = i_SBC @__pc def i_AND(i, fmap): dst, src = i.operands a = fmap(dst) b = fmap(src) x = a & b __setflags__L(i, fmap, a, b, x) fmap[dst] = x i_ANDI = i_AND @__pc def i_OR(i, fmap): dst, src = i.operands a = fmap(dst) b = fmap(src) x = a | b __setflags__L(i, fmap, a, b, x) fmap[dst] = x i_ORI = i_OR @__pc def i_EOR(i, fmap): dst, src = i.operands a = fmap(dst) b = fmap(src) x = a ^ b __setflags__L(i, fmap, a, b, x) fmap[dst] = x @__pc def i_MUL(i, fmap): dst, src = i.operands a = fmap(dst) b = fmap(src) x = a ** b fmap[cf] = x[15:16] fmap[zf] = x == 0 fmap[R[0]] = x[0:8] fmap[R[1]] = x[8:16] # shift/rotate instructions: ############################ @__pc def i_LSL(i, fmap): dst = i.operands[0] a = fmap(dst) fmap[cf] = a.bit(7) x = a << 1 __setflags__S(i, fmap, a, x) fmap[dst] = x @__pc def i_LSR(i, fmap): dst = i.operands[0] a = fmap(dst) fmap[cf] = a.bit(0) x = a >> 1 __setflags__S(i, fmap, a, x) fmap[dst] = x @__pc def i_ASR(i, fmap): dst = i.operands[0] a = fmap(dst) fmap[cf] = a.bit(0) x = a & 0x80 x |= a >> 1 __setflags__S(i, fmap, a, x) fmap[dst] = x @__pc def i_ROL(i, fmap): dst = i.operands[0] a = fmap(dst) c = fmap[cf].zeroextend(a.size) fmap[cf] = a.bit(7) x = a << 1 x |= c __setflags__S(i, fmap, a, x) fmap[dst] = x @__pc def i_ROR(i, fmap): dst = i.operands[0] a = fmap(dst) c = fmap[cf] fmap[cf] = a.bit(0) x = composer([cst(0, 7), c]) x |= a >> 1 __setflags__S(i, fmap, a, x) fmap[dst] = x # bit instructions: ################### @__pc def i_SWAP(i, fmap): b = i.operands[0] x = fmap(b) fmap[b] = composer([x[4:8], x[0:4]]) @__pc def i_BCLR(i, fmap): b = i.operands[0] fmap[b] = bit0 @__pc def i_BSET(i, fmap): b = i.operands[0] fmap[b] = bit1 @__pc def i_BST(i, fmap): b = i.operands[0] fmap[tf] = fmap(b) @__pc def i_BLD(i, fmap): b = i.operands[0] fmap[b] = fmap(tf) # stack instructions: ##################### @__pc def i_POP(i, fmap): dst = i.operands[0] _pop_(fmap, dst) @__pc def i_PUSH(i, fmap): src = i.operands[0] _push_(fmap, src) # load-store instructions: ########################## @__pc def i_LD(i, fmap): dst, src = i.operands if i.misc["flg"] == -1: fmap[src] = fmap(src - 1) fmap[dst] = fmap(mem(src, dst.size)) if i.misc["flg"] == 1: fmap[src] = fmap(src + 1) i_LDS = i_LD i_LDD = i_LD @__pc def i_ST(i, fmap): dst, src = i.operands if i.misc["flg"] == -1: fmap[dst] = fmap(dst - 1) adr = fmap(dst) fmap[ptr(adr)] = fmap(src) if i.misc["flg"] == 1: fmap[dst] = fmap(dst + 1) i_STS = i_ST i_STD = i_ST @__pc def i_MOV(i, fmap): dst, src = i.operands fmap[dst] = fmap(src) i_LDI = i_MOV @__pc def i_MOVW(i, fmap): dst, src = i.operands fmap[dst] = fmap(src) nd = R[R.index(dst) + 1] nr = R[R.index(src) + 1] fmap[nd] = fmap(nr) @__pc def i_SPM(i, fmap): fmap[mem(Z, 16)] = fmap(composer([R[0], R[1]])) @__pc def i_LPM(i, fmap): try: dst, src = i.operands except ValueError: dst, src = R[0], Z fmap[dst] = fmap(Z) if i.misc["flg"] == 1: fmap[Z] = fmap(Z + 1) # control-flow instructions: ############################ @__pc def i_BRBC(i, fmap): b, offset = i.operands fmap[pc] = fmap(tst(b == bit0, pc + (2 * offset), pc)) @__pc def i_BRBS(i, fmap): b, offset = i.operands fmap[pc] = fmap(tst(b == bit1, pc + (2 * offset), pc)) @__pc def i_CALL(i, fmap): adr = i.operands[0] _push_(fmap, fmap(pc)) fmap[pc] = fmap(2 * adr) @__pc def i_JMP(i, fmap): adr = i.operands[0] fmap[pc] = fmap(2 * adr) @__pc def i_RET(i, fmap): _pop_(fmap, pc) @__pc def i_RETI(i, fmap): _pop_(fmap, pc) fmap[i_] = bit1 @__pc def i_RCALL(i, fmap): offset = i.operands[0] _push_(fmap, fmap(pc)) fmap[pc] = fmap(pc + (2 * offset)) @__pc def i_RJMP(i, fmap): offset = i.operands[0] fmap[pc] = fmap(pc + (2 * offset)) @__pc def i_EICALL(i, fmap): raise NotImplementedError @__pc def i_EIJMP(i, fmap): raise NotImplementedError @__pc def i_ICALL(i, fmap): _push_(fmap, fmap(pc)) fmap[pc] = fmap(Z) @__pc def i_IJMP(i, fmap): fmap[pc] = fmap(Z)
LRGH/amoco
amoco/arch/avr/asm.py
Python
gpl-2.0
10,020
0.000499
"""T2W modality class.""" import warnings import numpy as np import SimpleITK as sitk from .standalone_modality import StandaloneModality from ..utils.validation import check_path_data class T2WModality(StandaloneModality): """Class to handle T2W-MRI modality. Parameters ---------- path_data : str, optional (default=None) The folder in which the data are stored. Attributes ---------- path_data_ : string Location of the data. data_ : ndarray, shape (Y, X, Z) The different volume of the T2W volume. The data are saved in Y, X, Z ordered. metadata_ : dict Dictionnary which contain the MRI sequence information. Note that the information are given in the original ordering (X, Y, Z), which is different from the organisation of `data_` which is (Y, X, Z). pdf_ : list, length (n_serie) List of the PDF for each serie. bin_ : list of ndarray, length (n_serie) List of the bins used to plot the pdfs. max_ : float Maximum intensity of the T2W-MRI volume. min_ : float Minimum intensity of the T2W-MRI volume. """ def __init__(self, path_data=None): super(T2WModality, self).__init__(path_data=path_data) def get_pdf(self, roi_data=None, nb_bins='auto'): """ Extract the a list of pdf related with the data. Parameters ---------- roi_data : tuple Indices of elements to consider while computing the histogram. The ROI is a 3D volume which will be used for each time serie. nb_bins : list of int or str, optional (default='auto') The numbers of bins to use to compute the histogram. The possibilities are: - If 'auto', the number of bins is found at fitting time. - If None, the number of bins used is the one at the last call of update histogram. - Otherwise, a list of integer needs to be given. Returns ------- pdf_data : ndarray, length (n_serie) List of the pdf with the associated series. bin_data : list of ndarray, length (n_series + 1) List of the bins associated with the list of pdf. """ # Check that the data have been read if self.data_ is None: raise ValueError('You need to load the data first. Refer to the' ' function read_data_from_path().') # Build the histogram corresponding to the current volume # Find how many bins do we need if isinstance(nb_bins, basestring): if nb_bins == 'auto': nb_bins = int(np.round(self.max_ - self.min_)) else: raise ValueError('Unknown parameters for `nb_bins.`') elif isinstance(nb_bins, int): pass elif nb_bins is None: nb_bins = self.nb_bins_ else: raise ValueError('Unknown type for the parameters `nb_bins`.') if roi_data is None: pdf_data, bin_data = np.histogram(self.data_, bins=nb_bins, density=True) else: pdf_data, bin_data = np.histogram(self.data_[roi_data], bins=nb_bins, density=True) return pdf_data, bin_data def update_histogram(self, nb_bins=None): """Update the PDF and the first-order statistics. Parameters ---------- nb_bins : int or None, optional (default=None) The numbers of bins to use to compute the histogram. The possibilities are: - If None, the number of bins found at reading will be used. - If 'auto', the number of bins is found at fitting time. - Otherwise, an integer needs to be given. Returns ------- self : object Returns self. Notes ----- There is the possibility to redifine the number of bins to use for the histogram since it can be tricky to play with normalized data. """ # Check if the data have been read if self.data_ is None: raise ValueError('You need to read the data first. Call the' ' function read_data_from_path()') # Compute the min and max from the T2W volume self.max_ = np.ndarray.max(self.data_) self.min_ = np.ndarray.min(self.data_) # Build the histogram corresponding to the current volume # Find how many bins do we need if isinstance(nb_bins, basestring): if nb_bins == 'auto': nb_bins = int(np.round(self.max_ - self.min_)) else: raise ValueError('Unknown parameters for `nb_bins.`') elif nb_bins is None: nb_bins = self.nb_bins_ self.pdf_, self.bin_ = np.histogram(self.data_, bins=nb_bins, density=True) return self def read_data_from_path(self, path_data=None): """Read T2W images which represent a single 3D volume. Parameters ---------- path_data : str or None, optional (default=None) Path to the standalone modality data. Returns ------- self : object Returns self. """ # Check the consistency of the path data if self.path_data_ is not None and path_data is not None: # We will overide the path and raise a warning warnings.warn('The data path will be overriden using the path' ' given in the function.') self.path_data_ = check_path_data(path_data) elif self.path_data_ is None and path_data is not None: self.path_data_ = check_path_data(path_data) elif self.path_data_ is None and path_data is None: raise ValueError('You need to give a path_data from where to read' ' the data.') # Create a reader object reader = sitk.ImageSeriesReader() # Find the different series present inside the folder series = np.array(reader.GetGDCMSeriesIDs(self.path_data_)) # Check that you have more than one serie if len(series) > 1: raise ValueError('The number of series should not be larger than' ' 1 with standalone modality.') # The data can be read dicom_names_serie = reader.GetGDCMSeriesFileNames(self.path_data_) # Set the list of files to read the volume reader.SetFileNames(dicom_names_serie) # Read the data for the current volume vol = reader.Execute() # Get a numpy volume vol_numpy = sitk.GetArrayFromImage(vol) # The Matlab convention is (Y, X, Z) # The Numpy convention is (Z, Y, X) # We have to swap these axis # Swap Z and X vol_numpy = np.swapaxes(vol_numpy, 0, 2) vol_numpy = np.swapaxes(vol_numpy, 0, 1) # Convert the volume to float vol_numpy = vol_numpy.astype(np.float64) # We can create a numpy array self.data_ = vol_numpy # Compute the information regarding the T2W images # Set the number of bins that will be later used to compute # the histogram self.nb_bins_ = int(np.round(np.ndarray.max(self.data_) - np.ndarray.min(self.data_))) self.update_histogram() # Store the DICOM metadata self.metadata_ = {} # Get the information that have been created by SimpleITK # Information about data reconstruction self.metadata_['size'] = vol.GetSize() self.metadata_['origin'] = vol.GetOrigin() self.metadata_['direction'] = vol.GetDirection() self.metadata_['spacing'] = vol.GetSpacing() # Information about the MRI sequence # Read the first image for the sequence im = sitk.ReadImage(dicom_names_serie[0]) self.metadata_['TR'] = float(im.GetMetaData('0018|0080')) self.metadata_['TE'] = float(im.GetMetaData('0018|0081')) self.metadata_['flip-angle'] = float(im.GetMetaData('0018|1314')) return self
glemaitre/protoclass
protoclass/data_management/t2w_modality.py
Python
gpl-2.0
8,496
0
import os import errno def delete_file(file_name, dry=False): if dry: print(' DRY DELETED: {}'.format(file_name)) else: os.remove(file_name) try: dirname = os.path.dirname(file_name) os.rmdir(dirname) print(' DELETED DIR: {}'.format(dirname)) except OSError as ex: if ex.errno != errno.ENOTEMPTY: raise print(' DELETED: {}'.format(file_name)) def run_dircmpdel(dircmp_file, prompt=True, dry=False): """ Parse dircmp file for groups of file names to be deleted. """ with open(dircmp_file) as fp: lines = fp.read() groups = lines.strip().split('\n\n') print('Found {} duplicate groups'.format(len(groups))) groups = (group.split('\n') for group in groups) checked_proper_cwd = False for group in groups: for i, file_name in enumerate(group): if not i: if not checked_proper_cwd: if not os.path.exists(file_name): raise RuntimeError('File {} could not be found. ' 'Please ensure you are in the ' 'correct directory.' ''.format(file_name)) checked_proper_cwd = True print('Deleting duplicates of {}'.format(file_name)) else: if prompt: while True: resp = input(' Delete {}? '.format(file_name)) resp = resp.lower() if resp not in ('yes', 'no'): print('Please answer "yes" or "no".') elif resp == 'yes': delete_file(file_name, dry=dry) break elif resp == 'no': print(' Not deleted: {}'.format(file_name)) break else: delete_file(file_name, dry=dry) print() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser( description='Utility for deleting duplicate files found by dircmp' ) parser.add_argument('file') parser.add_argument('--no-prompt', action='store_false', default=True, dest='prompt') parser.add_argument('-d', '--dry', action='store_true', default=False, dest='dry') args = parser.parse_args() run_dircmpdel(args.file, prompt=args.prompt, dry=args.dry)
logston/python-dircmp
dircmppy/dircmpdel.py
Python
bsd-2-clause
2,648
0.000755
''' This component package and its subpackages contain wrapper and glue code for database operations. '''
exratione/thywill-python
thywill_server/src/thywill_server/database/__init__.py
Python
mit
105
0.028571
#!/usr/bin/env python # -*- coding: utf-8 -*- # # king_phisher/client/tabs/campaign.py # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of the project nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import logging import threading import time from king_phisher import errors from king_phisher import find from king_phisher import ipaddress from king_phisher import utilities from king_phisher.client import export from king_phisher.client import graphs from king_phisher.client import gui_utilities from king_phisher.client.widget import extras from king_phisher.client.widget import managers import advancedhttpserver from gi.repository import GdkPixbuf from gi.repository import GLib from gi.repository import Gtk import rule_engine from smoke_zephyr.utilities import parse_timespan UNKNOWN_LOCATION_STRING = 'N/A (Unknown)' def _dt_field(value): return value if value is None else utilities.datetime_utc_to_local(value) class CampaignViewGenericTab(gui_utilities.GladeGObject): """ This object is meant to be subclassed by all of the tabs which load and display information about the current campaign. """ label_text = 'Unknown' """The label of the tab for display in the GUI.""" top_gobject = 'box' def __init__(self, *args, **kwargs): super(CampaignViewGenericTab, self).__init__(*args, **kwargs) self.label = Gtk.Label(label=self.label_text) """The :py:class:`Gtk.Label` representing this tab with text from :py:attr:`~.CampaignViewGenericTab.label_text`.""" self.is_destroyed = threading.Event() getattr(self, self.top_gobject).connect('destroy', self.signal_destroy) self.last_load_time = float('-inf') """The last time the data was loaded from the server.""" self.refresh_frequency = parse_timespan(str(self.config.get('gui.refresh_frequency', '5m'))) """The lifetime in seconds to wait before refreshing the data from the server.""" self.loader_thread = None """The thread object which loads the data from the server.""" self.loader_thread_lock = threading.Lock() """The :py:class:`threading.Lock` object used for synchronization between the loader and main threads.""" self.loader_thread_stop = threading.Event() """The :py:class:`threading.Event` object used to request that the loader thread stop before completion.""" self.application.connect('campaign-set', self.signal_kpc_campaign_set) def _sync_loader_thread(self): """ Synchronize the loader thread by ensuring that it is stopped. If it is currently running, this will use :py:attr:`~.loader_thread_stop` to request that the loader stops early. """ if not self.loader_thread_is_running: return # it's alive so tell it to stop, wait for it, then proceed self.loader_thread_stop.set() while self.loader_thread.is_alive(): gui_utilities.gtk_sync() self.loader_thread.join(1) @property def rpc(self): return self.application.rpc @property def loader_thread_is_running(self): if self.loader_thread is None: return False return self.loader_thread.is_alive() def load_campaign_information(self, force=True): raise NotImplementedError() def signal_button_clicked_refresh(self, button): self.load_campaign_information() def signal_destroy(self, gobject): self.is_destroyed.set() self.loader_thread_stop.set() if isinstance(self.loader_thread, threading.Thread) and self.loader_thread.is_alive(): self.logger.debug("waiting on thread: {0}.loader_thread (tid: 0x{1:x})".format(self.__class__.__name__, self.loader_thread.ident)) while self.loader_thread.is_alive(): gui_utilities.gtk_sync() self.logger.debug("joined thread: {0}.loader_thread (tid: 0x{1:x})".format(self.__class__.__name__, self.loader_thread.ident)) def signal_kpc_campaign_set(self, *_): self.load_campaign_information() class CampaignViewGenericTableTab(CampaignViewGenericTab): """ This object is meant to be subclassed by tabs which will display campaign information of different types from specific database tables. The data in this object is refreshed when multiple events occur and it uses an internal timer to represent the last time the data was refreshed. """ dependencies = gui_utilities.GladeDependencies( children=( 'button_refresh', 'entry_filter', 'label_filter_summary', 'revealer_filter', 'treeview_campaign' ) ) node_query = None """ The GraphQL query used to load a particular node from the remote table. This query is provided with a single parameter of the node's id. """ table_name = '' """The database table represented by this tab.""" table_query = None """ The GraphQL query used to load the desired information from the remote table. This query is provided with the following three parameters: campaign, count and cursor. """ secret_columns = () view_columns = () xlsx_worksheet_options = None def __init__(self, *args, **kwargs): super(CampaignViewGenericTableTab, self).__init__(*args, **kwargs) treeview = self.gobjects['treeview_campaign'] self.treeview_manager = managers.TreeViewManager( treeview, selection_mode=Gtk.SelectionMode.MULTIPLE, cb_delete=self._prompt_to_delete_row, cb_refresh=self.load_campaign_information ) self.treeview_manager.set_column_titles( self.view_column_titles, column_offset=1, renderers=tuple(column.cell_renderer() for column in self.view_columns) ) for column in self.view_columns: if isinstance(column, extras.ColumnDefinitionDatetime): self.treeview_manager.column_views[column.title].set_fixed_width(150) self.popup_menu = self.treeview_manager.get_popup_menu() """The :py:class:`Gtk.Menu` object which is displayed when right-clicking in the view area.""" treeview = self.gobjects['treeview_campaign'] self._rule = None self._rule_context = rule_engine.Context(type_resolver=rule_engine.type_resolver_from_dict( dict((column.name, rule_engine.DataType.from_type(column.python_type)) for column in self.view_columns) )) view_column_types = tuple(column.g_type for column in self.view_columns) self._tv_model = Gtk.ListStore(str, *view_column_types) self._tv_model_filter = self._tv_model.filter_new() self._tv_model_filter.set_visible_func(self._tv_filter) tree_model_sort = Gtk.TreeModelSort(model=self._tv_model_filter) for idx, column in enumerate(self.view_columns, 1): if column.sort_function is not None: tree_model_sort.set_sort_func(idx, column.sort_function, idx) treeview.set_model(tree_model_sort) self.application.connect('server-connected', self.signal_kp_server_connected) tab_config = self._tab_config filter_revealer = self.gobjects['revealer_filter'] filter_revealer.set_reveal_child(tab_config['filter.show']) menu_item = Gtk.CheckMenuItem.new_with_label('Show Filter') menu_item.set_active(filter_revealer.get_reveal_child()) menu_item.connect('toggled', self.signal_toggled_show_filter) menu_item.show() self.popup_menu.append(menu_item) submenu = Gtk.Menu.new() menu_item = Gtk.MenuItem.new_with_label('Show Columns') menu_item.set_submenu(submenu) menu_item.show() self.popup_menu.append(menu_item) visisble_columns = tab_config['columns.show'] for column in self.view_columns: if column.title in self.secret_columns: continue visible = visisble_columns.get(column.title, True) self.treeview_manager.column_views[column.title].set_visible(visible) menu_item = Gtk.CheckMenuItem.new_with_label(column.title) menu_item.set_active(visible) menu_item.connect('toggled', self.signal_toggled_show_column, column) menu_item.show() submenu.append(menu_item) visisble_columns[column.title] = visible def __async_rpc_cb_server_event_db_inserted(self, results): node = results['db']['node'] row_data = (str(node['id']),) + tuple(self.format_node_data(node)) self._tv_model.append(row_data) def __async_rpc_cb_server_event_db_updated(self, results): node = results['db']['node'] if node is None: self.logger.warning('received server db event: updated but could not fetch the remote data') return node_id = str(node['id']) ti = gui_utilities.gtk_list_store_search(self._tv_model, node_id) if ti is None: self.logger.warning("received server db event: updated for non-existent row {0}:{1}".format(self.table_name, node_id)) return row_data = tuple(self.format_node_data(node)) for idx, cell_data in enumerate(row_data, 1): self._tv_model[ti][idx] = cell_data @property def _tab_config(self): name = 'campaign.tab.' + self.table_name if name not in self.config: self.config[name] = { 'columns.show': {column.title: True for column in self.view_columns}, 'filter.show': False } return self.config[name] def signal_entry_changed_filter(self, entry): text = entry.get_text() self._rule = None label = self.gobjects['label_filter_summary'] if text: try: self._rule = rule_engine.Rule(text, context=self._rule_context) except rule_engine.EngineError: entry.set_property('secondary-icon-stock', 'gtk-dialog-warning') return entry.set_property('secondary-icon-stock', None) self._tv_model_filter.refilter() visible_records = len(self._tv_model_filter) all_records = len(self._tv_model) label.set_text("Showing {:,} of {:,} {} ({:.1f}%)".format( visible_records, all_records, self.label_text.lower(), ((visible_records / all_records) if all_records > 0 else 1.0) * 100 )) def signal_toggled_show_column(self, widget, column): visible = widget.get_active() self.treeview_manager.column_views[column.title].set_visible(visible) self._tab_config['columns.show'][column.title] = visible def signal_toggled_show_filter(self, widget): active = widget.get_active() self.gobjects['revealer_filter'].set_reveal_child(active) if active: self.gobjects['entry_filter'].grab_focus() self._tab_config['filter.show'] = active def signal_kp_server_connected(self, _): event_id = 'db-' + self.table_name.replace('_', '-') server_events = self.application.server_events if not server_events: return server_events.subscribe(event_id, ('deleted', 'inserted', 'updated'), ('id', 'campaign_id')) server_events.connect(event_id, self.signal_server_event_db) def signal_server_event_db(self, _, event_type, rows): for row in rows: if str(row.campaign_id) != self.config['campaign_id']: continue if event_type == 'deleted': ti = gui_utilities.gtk_list_store_search(self._tv_model, str(row.id)) if ti is None: self.logger.warning("received server db event: deleted for non-existent row {0}:{1}".format(self.table_name, str(row.id))) else: gui_utilities.glib_idle_add_wait(self._tv_model.remove, ti) elif event_type == 'inserted': self.rpc.async_graphql( self.node_query, query_vars={'id': str(row.id)}, on_success=self.__async_rpc_cb_server_event_db_inserted, when_idle=True ) elif event_type == 'updated': self.rpc.async_graphql( self.node_query, query_vars={'id': str(row.id)}, on_success=self.__async_rpc_cb_server_event_db_updated, when_idle=True ) def _export_lock(self): show_dialog_warning = lambda: gui_utilities.show_dialog_warning('Export Failed', self.parent, 'Can not export data while loading.') if not self.loader_thread_lock.acquire(False): show_dialog_warning() return False if isinstance(self.loader_thread, threading.Thread) and self.loader_thread.is_alive(): self.loader_thread_lock.release() show_dialog_warning() return False return True def _prompt_to_delete_row(self, treeview, _): if isinstance(self.loader_thread, threading.Thread) and self.loader_thread.is_alive(): gui_utilities.show_dialog_warning('Can Not Delete Rows While Loading', self.parent) return model = treeview.get_model() row_ids = [model.get_value(ti, 0) for ti in gui_utilities.gtk_treeview_selection_iterate(treeview)] if len(row_ids) == 0: return elif len(row_ids) == 1: message = 'Delete This Row?' else: message = "Delete These {0:,} Rows?".format(len(row_ids)) if not gui_utilities.show_dialog_yes_no(message, self.parent, 'This information will be lost.'): return self.application.emit(self.table_name[:-1].replace('_', '-') + '-delete', row_ids) def _tv_filter(self, model, tree_iter, _): if self._rule is None: return True model_row = model[tree_iter] row = {} for idx, column in enumerate(self.view_columns, 1): row[column.name] = model_row[idx] try: return self._rule.matches(row) except rule_engine.EngineError: return True def format_node_data(self, node): """ This method is overridden by subclasses to format the raw node data returned from the server. The length of the list must equal the number of columns in the table. This method is called for each node in the remote table by the loader thread. :param dict node: The node from a GraphQL query representing data for this table. :return: The formatted row data. :rtype: list """ raise NotImplementedError() def load_campaign_information(self, force=True): """ Load the necessary campaign information from the remote server. Unless *force* is True, the :py:attr:`~.CampaignViewGenericTab.last_load_time` is compared with the :py:attr:`~.CampaignViewGenericTab.refresh_frequency` to check if the information is stale. If the local data is not stale, this function will return without updating the table. :param bool force: Ignore the load life time and force loading the remote data. """ if not force and ((time.time() - self.last_load_time) < self.refresh_frequency): return with self.loader_thread_lock: self._sync_loader_thread() self.loader_thread_stop.clear() self._tv_model.clear() self.loader_thread = utilities.Thread(target=self.loader_thread_routine, args=(self._tv_model,)) self.loader_thread.daemon = True self.loader_thread.start() return def loader_thread_routine(self, store): """ The loading routine to be executed within a thread. :param store: The store object to place the new data. :type store: :py:class:`Gtk.ListStore` """ gui_utilities.glib_idle_add_wait(lambda: self.gobjects['treeview_campaign'].set_property('sensitive', False)) campaign_id = self.config['campaign_id'] count = 500 page_info = {'endCursor': None, 'hasNextPage': True} while page_info['hasNextPage']: if self.rpc is None: break try: results = self.rpc.graphql(self.table_query, {'campaign': campaign_id, 'count': count, 'cursor': page_info['endCursor']}) except errors.KingPhisherGraphQLQueryError as error: self.logger.error('graphql error: ' + error.message) raise if self.loader_thread_stop.is_set(): break if self.is_destroyed.is_set(): break for edge in results['db']['campaign'][self.table_name]['edges']: node = edge['node'] row_data = (str(node['id']),) + tuple(self.format_node_data(node)) gui_utilities.glib_idle_add_wait(store.append, row_data) page_info = results['db']['campaign'][self.table_name]['pageInfo'] if self.is_destroyed.is_set(): return gui_utilities.glib_idle_add_wait(lambda: self.gobjects['treeview_campaign'].set_property('sensitive', True)) self.last_load_time = time.time() def signal_button_clicked_export(self, button): self.export_table_to_csv(filtered=True) def export_table_to_csv(self, filtered=False): """Export the data represented by the view to a CSV file.""" if not self._export_lock(): return dialog = extras.FileChooserDialog('Export Data', self.parent) file_name = self.config['campaign_name'] + '.csv' response = dialog.run_quick_save(file_name) dialog.destroy() if not response: self.loader_thread_lock.release() return destination_file = response['target_path'] if filtered: store = self._tv_model_filter else: store = self._tv_model columns = dict(enumerate(('UID',) + self.view_column_titles)) export.liststore_to_csv(store, destination_file, columns) self.loader_thread_lock.release() def export_table_to_xlsx_worksheet(self, worksheet, title_format): """ Export the data represented by the view to an XLSX worksheet. :param worksheet: The destination sheet for the store's data. :type worksheet: :py:class:`xlsxwriter.worksheet.Worksheet` :param title_format: The formatting to use for the title row. :type title_format: :py:class:`xlsxwriter.format.Format` """ if not self._export_lock(): return store = self._tv_model columns = dict(enumerate(('UID',) + self.view_column_titles)) xlsx_worksheet_options = export.XLSXWorksheetOptions( column_widths=(20,) + tuple(column.width for column in self.view_columns), title=self.label_text ) export.liststore_to_xlsx_worksheet(store, worksheet, columns, title_format, xlsx_options=xlsx_worksheet_options) self.loader_thread_lock.release() @property def view_column_titles(self): return tuple(column.title for column in self.view_columns) class CampaignViewDeaddropTab(CampaignViewGenericTableTab): """Display campaign information regarding dead drop connections.""" table_name = 'deaddrop_connections' label_text = 'Deaddrop Connections' node_query = """\ query getDeaddropConnection($id: String!) { db { node: deaddropConnection(id: $id) { id deaddropDeployment { destination } count ip localUsername localHostname localIpAddresses firstSeen lastSeen } } } """ table_query = """\ query getDeaddropConnections($campaign: String!, $count: Int!, $cursor: String) { db { campaign(id: $campaign) { deaddrop_connections: deaddropConnections(first: $count, after: $cursor) { total edges { node { id deaddropDeployment { id destination } count ip localUsername localHostname localIpAddresses firstSeen lastSeen } } pageInfo { endCursor hasNextPage } } } } } """ view_columns = ( extras.ColumnDefinitionString('Destination'), extras.ColumnDefinitionInteger('Visit Count'), extras.ColumnDefinitionString('IP Address', width=25), extras.ColumnDefinitionString('Username'), extras.ColumnDefinitionString('Hostname'), extras.ColumnDefinitionString('Local IP Addresses'), extras.ColumnDefinitionDatetime('First Hit'), extras.ColumnDefinitionDatetime('Last Hit'), ) def format_node_data(self, connection): deaddrop_destination = connection['deaddropDeployment']['destination'] if not deaddrop_destination: return None row = ( deaddrop_destination, connection['count'], connection['ip'], connection['localUsername'], connection['localHostname'], connection['localIpAddresses'], _dt_field(connection['firstSeen']), _dt_field(connection['lastSeen']) ) return row class CampaignViewCredentialsTab(CampaignViewGenericTableTab): """Display campaign information regarding submitted credentials.""" table_name = 'credentials' label_text = 'Credentials' node_query = """\ query getCredential($id: String!) { db { node: credential(id: $id) { id submitted message { targetEmail } username password mfaToken regexValidated } } } """ table_query = """\ query getCredentials($campaign: String!, $count: Int!, $cursor: String) { db { campaign(id: $campaign) { credentials(first: $count, after: $cursor) { total edges { node { id message { targetEmail } submitted username password mfaToken regexValidated } } pageInfo { endCursor hasNextPage } } } } } """ secret_columns = ('Password', 'MFA Token') view_columns = ( extras.ColumnDefinitionString('Email Address'), extras.ColumnDefinitionDatetime('Submitted'), extras.ColumnDefinitionString('Validation', width=20), extras.ColumnDefinitionString('Username'), extras.ColumnDefinitionString('Password'), extras.ColumnDefinitionString('MFA Token', width=20), ) def __init__(self, *args, **kwargs): super(CampaignViewCredentialsTab, self).__init__(*args, **kwargs) treeview = self.gobjects['treeview_campaign'] for column_name in self.secret_columns: treeview.get_column(self.view_column_titles.index(column_name)).set_property('visible', False) def format_node_data(self, node): regex_validated = '' if node['regexValidated'] is not None: regex_validated = 'Pass' if node['regexValidated'] else 'Fail' row = ( node['message']['targetEmail'], _dt_field(node['submitted']), regex_validated, node['username'], node['password'], node['mfaToken'] ) return row def signal_button_toggled_show_secrets(self, button): treeview = self.gobjects['treeview_campaign'] visible = button.get_property('active') for column_name in self.secret_columns: treeview.get_column(self.view_column_titles.index(column_name)).set_property('visible', visible) class CampaignViewDashboardTab(CampaignViewGenericTab): """Display campaign information on a graphical dash board.""" dependencies = gui_utilities.GladeDependencies( children=( 'box_top_left', 'box_top_right', 'box_bottom', 'scrolledwindow_top_left', 'scrolledwindow_top_right', 'scrolledwindow_bottom' ) ) label_text = 'Dashboard' """The tabs label for display in the GUI.""" def __init__(self, *args, **kwargs): super(CampaignViewDashboardTab, self).__init__(*args, **kwargs) self.graphs = [] """The :py:class:`.CampaignGraph` classes represented on the dash board.""" dash_ports = { # dashboard position, (width, height) 'top_left': (380, 200), 'top_right': (380, 200), 'bottom': (760, 200) } for dash_port, details in dash_ports.items(): graph_name = self.config['dashboard.' + dash_port] cls = graphs.get_graph(graph_name) if not cls: self.logger.warning('could not get graph: ' + graph_name) logo_file_path = find.data_file('king-phisher-icon.svg') if logo_file_path: image = Gtk.Image.new_from_pixbuf(GdkPixbuf.Pixbuf.new_from_file_at_size(logo_file_path, 128, 128)) image.show() self.gobjects['scrolledwindow_' + dash_port].add(image) continue graph_inst = cls(self.application, details, getattr(self, self.top_gobject).get_style_context()) self.gobjects['scrolledwindow_' + dash_port].add(graph_inst.canvas) self.gobjects['box_' + dash_port].pack_end(graph_inst.navigation_toolbar, False, False, 0) self.graphs.append(graph_inst) self.logger.debug("dashboard refresh frequency set to {0} seconds".format(self.refresh_frequency)) GLib.timeout_add_seconds(self.refresh_frequency, self.loader_idle_routine) def load_campaign_information(self, force=True): """ Load the necessary campaign information from the remote server. Unless *force* is True, the :py:attr:`~.last_load_time` is compared with the :py:attr:`~.refresh_frequency` to check if the information is stale. If the local data is not stale, this function will return without updating the table. :param bool force: Ignore the load life time and force loading the remote data. """ if not force and ((time.time() - self.last_load_time) < self.refresh_frequency): return if not self.application.rpc: self.logger.warning('skipping load_campaign_information because rpc is not initialized') return with self.loader_thread_lock: self._sync_loader_thread() self.loader_thread_stop.clear() self.loader_thread = utilities.Thread(target=self.loader_thread_routine) self.loader_thread.daemon = True self.loader_thread.start() def loader_idle_routine(self): """The routine which refreshes the campaign data at a regular interval.""" if self.rpc and not self.loader_thread_is_running: self.logger.debug('idle loader routine called') self.load_campaign_information() return True def loader_thread_routine(self): """The loading routine to be executed within a thread.""" if not 'campaign_id' in self.config: return try: campaign = self.application.get_graphql_campaign() except (ConnectionError, advancedhttpserver.RPCConnectionError): return if campaign is None: return info_cache = {} for graph in self.graphs: if self.loader_thread_stop.is_set(): break if self.is_destroyed.is_set(): break info_cache.update(gui_utilities.glib_idle_add_wait(lambda g=graph: g.refresh(info_cache, self.loader_thread_stop))) else: self.last_load_time = time.time() class CampaignViewVisitsTab(CampaignViewGenericTableTab): """Display campaign information regarding incoming visitors.""" table_name = 'visits' label_text = 'Visits' node_query = """\ query getVisit($id: String!) { db { node: visit(id: $id) { id message { targetEmail } ip count userAgent ipGeoloc { city } firstSeen lastSeen } } } """ table_query = """\ query getVisits($campaign: String!, $count: Int!, $cursor: String) { db { campaign(id: $campaign) { visits(first: $count, after: $cursor) { total edges { node { id message { targetEmail } ip count userAgent ipGeoloc { city } firstSeen lastSeen } } pageInfo { endCursor hasNextPage } } } } } """ view_columns = ( extras.ColumnDefinitionString('Email Address'), extras.ColumnDefinitionString('IP Address', width=25), extras.ColumnDefinitionInteger('Visit Count'), extras.ColumnDefinitionString('Visitor User Agent', width=90), extras.ColumnDefinitionString('Visitor Location'), extras.ColumnDefinitionDatetime('First Visit'), extras.ColumnDefinitionDatetime('Last Visit'), ) def format_node_data(self, node): geo_location = UNKNOWN_LOCATION_STRING visitor_ip = node['ip'] if visitor_ip is None: visitor_ip = '' else: visitor_ip = ipaddress.ip_address(visitor_ip) if visitor_ip.is_loopback: geo_location = 'N/A (Loopback)' elif visitor_ip.is_private: geo_location = 'N/A (Private)' elif isinstance(visitor_ip, ipaddress.IPv6Address): geo_location = 'N/A (IPv6 Address)' elif node['ipGeoloc']: geo_location = node['ipGeoloc']['city'] row = ( node['message']['targetEmail'], str(visitor_ip), node['count'], node['userAgent'], geo_location, _dt_field(node['firstSeen']), _dt_field(node['lastSeen']) ) return row class CampaignViewMessagesTab(CampaignViewGenericTableTab): """Display campaign information regarding sent messages.""" table_name = 'messages' label_text = 'Messages' node_query = """\ query getMessage($id: String!) { db { node: message(id: $id) { id targetEmail sent trained companyDepartment { name } opened openerIp openerUserAgent deliveryStatus deliveryDetails } } } """ table_query = """\ query getMessages($campaign: String!, $count: Int!, $cursor: String) { db { campaign(id: $campaign) { messages(first: $count, after: $cursor) { total edges { node { id targetEmail sent trained companyDepartment { name } opened openerIp openerUserAgent deliveryStatus deliveryDetails } } pageInfo { endCursor hasNextPage } } } } } """ view_columns = ( extras.ColumnDefinitionString('Email Address'), extras.ColumnDefinitionDatetime('Sent'), extras.ColumnDefinitionString('Trained', width=15), extras.ColumnDefinitionString('Department'), extras.ColumnDefinitionDatetime('Opened'), extras.ColumnDefinitionString('Opener IP Address', width=25), extras.ColumnDefinitionString('Opener User Agent', width=90), extras.ColumnDefinitionString('Delivery Status'), extras.ColumnDefinitionString('Delivery Details') ) def format_node_data(self, node): department = node['companyDepartment'] if department: department = department['name'] row = ( node['targetEmail'], _dt_field(node['sent']), ('Yes' if node['trained'] else ''), department, _dt_field(node['opened']), node['openerIp'], node['openerUserAgent'], node['deliveryStatus'], node['deliveryDetails'] ) return row class CampaignViewTab(object): """ The King Phisher client top-level 'View Campaign' tab. This object manages the sub-tabs which display all the information regarding the current campaign. """ def __init__(self, parent, application): """ :param parent: The parent window for this object. :type parent: :py:class:`Gtk.Window` :param application: The main client application instance. :type application: :py:class:`Gtk.Application` """ self.parent = parent self.application = application self.config = application.config self.logger = logging.getLogger('KingPhisher.Client.' + self.__class__.__name__) self.box = Gtk.Box() self.box.set_property('orientation', Gtk.Orientation.VERTICAL) self.box.show() self.label = Gtk.Label(label='View Campaign') """The :py:class:`Gtk.Label` representing this tabs name.""" self.notebook = Gtk.Notebook() """ The :py:class:`Gtk.Notebook` for holding sub-tabs.""" self.notebook.connect('switch-page', self.signal_notebook_switch_page) self.notebook.set_scrollable(True) self.box.pack_start(self.notebook, True, True, 0) self.tabs = utilities.FreezableDict() """A dict object holding the sub tabs managed by this object.""" current_page = self.notebook.get_current_page() self.last_page_id = current_page if graphs.has_matplotlib: self.logger.info('matplotlib is installed, dashboard will be available') dashboard_tab = CampaignViewDashboardTab(application) self.tabs['dashboard'] = dashboard_tab self.notebook.append_page(dashboard_tab.box, dashboard_tab.label) else: self.logger.warning('matplotlib is not installed, dashboard will not be available') messages_tab = CampaignViewMessagesTab(application) self.tabs['messages'] = messages_tab self.notebook.append_page(messages_tab.box, messages_tab.label) visits_tab = CampaignViewVisitsTab(application) self.tabs['visits'] = visits_tab self.notebook.append_page(visits_tab.box, visits_tab.label) credentials_tab = CampaignViewCredentialsTab(application) self.tabs['credentials'] = credentials_tab self.notebook.append_page(credentials_tab.box, credentials_tab.label) if self.config.get('gui.show_deaddrop', False): deaddrop_connections_tab = CampaignViewDeaddropTab(application) self.tabs['deaddrop_connections'] = deaddrop_connections_tab self.notebook.append_page(deaddrop_connections_tab.box, deaddrop_connections_tab.label) self.tabs.freeze() for tab in self.tabs.values(): tab.box.show() self.notebook.show() def signal_notebook_switch_page(self, notebook, current_page, index): if not hasattr(self.parent, 'rpc'): return #previous_page = notebook.get_nth_page(self.last_page_id) self.last_page_id = index for tab in self.tabs.values(): if current_page != tab.box: continue if hasattr(tab, 'load_campaign_information'): tab.load_campaign_information(force=False)
securestate/king-phisher
king_phisher/client/tabs/campaign.py
Python
bsd-3-clause
32,510
0.027592
# Copyright 2013-2015 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from wlauto.core.resource import Resource class FileResource(Resource): """ Base class for all resources that are a regular file in the file system. """ def delete(self, instance): os.remove(instance) class File(FileResource): name = 'file' def __init__(self, owner, path, url=None): super(File, self).__init__(owner) self.path = path self.url = url def __str__(self): return '<{}\'s {} {}>'.format(self.owner, self.name, self.path or self.url) class ExtensionAsset(File): name = 'extension_asset' def __init__(self, owner, path): super(ExtensionAsset, self).__init__(owner, os.path.join(owner.name, path)) class Executable(FileResource): name = 'executable' def __init__(self, owner, platform, filename): super(Executable, self).__init__(owner) self.platform = platform self.filename = filename def __str__(self): return '<{}\'s {} {}>'.format(self.owner, self.platform, self.filename)
Sticklyman1936/workload-automation
wlauto/common/resources.py
Python
apache-2.0
1,635
0.001223
"""This module implements the Lovins stemming algorithm. Use the ``stem()`` function:: stemmed_word = stem(word) """ from whoosh.util.collections2 import defaultdict # Conditions def A(base): # A No restrictions on stem return True def B(base): # B Minimum stem length = 3 return len(base) > 2 def C(base): # C Minimum stem length = 4 return len(base) > 3 def D(base): # D Minimum stem length = 5 return len(base) > 4 def E(base): # E Do not remove ending after e return base[-1] != "e" def F(base): # F Minimum stem length = 3 and do not remove ending after e return len(base) > 2 and base[-1] != "e" def G(base): # G Minimum stem length = 3 and remove ending only after f return len(base) > 2 and base[-1] == "f" def H(base): # H Remove ending only after t or ll c1, c2 = base[-2:] return c2 == "t" or (c2 == "l" and c1 == "l") def I(base): # I Do not remove ending after o or e c = base[-1] return c != "o" and c != "e" def J(base): # J Do not remove ending after a or e c = base[-1] return c != "a" and c != "e" def K(base): # K Minimum stem length = 3 and remove ending only after l, i or u*e c = base[-1] cc = base[-3] return len(base) > 2 and (c == "l" or c == "i" or (c == "e" and cc == "u")) def L(base): # L Do not remove ending after u, x or s, unless s follows o c1, c2 = base[-2:] return c2 != "u" and c2 != "x" and (c2 != "s" or c1 == "o") def M(base): # M Do not remove ending after a, c, e or m c = base[-1] return c != "a" and c!= "c" and c != "e" and c != "m" def N(base): # N Minimum stem length = 4 after s**, elsewhere = 3 return len(base) > 3 or (len(base) == 3 and base[-1] != "s") def O(base): # O Remove ending only after l or i c = base[-1] return c == "l" or c == "i" def P(base): # P Do not remove ending after c return base[-1] != "c" def Q(base): # Q Minimum stem length = 3 and do not remove ending after l or n c = base[-1] return len(base) > 2 and (c != "l" and c != "n") def R(base): # R Remove ending only after n or r c = base[-1] return c == "n" or c == "r" def S(base): # S Remove ending only after dr or t, unless t follows t l2 = base[-2] return l2 == "rd" or (base[-1] == "t" and l2 != "tt") def T(base): # T Remove ending only after s or t, unless t follows o c1, c2 = base[-2:] return c2 == "s" or (c2 == "t" and c1 != "o") def U(base): # U Remove ending only after l, m, n or r c = base[-1] return c == "l" or c == "m" or c == "n" or c == "r" def V(base): # V Remove ending only after c return base[-1] == "c" def W(base): # W Do not remove ending after s or u c = base[-1] return c != "s" and c != "u" def X(base): # X Remove ending only after l, i or u*e c = base[-1] cc = base[-3] return c == "l" or c == "i" or (c == "e" and cc == "u") def Y(base): # Y Remove ending only after in return base[-2:] == "in" def Z(base): # Z Do not remove ending after f return base[-1] != "f" def a(base): # a Remove ending only after d, f, ph, th, l, er, or, es or t c = base[-1] l2 = base[-2:] return (c == "d" or c == "f" or l2 == "ph" or l2 == "th" or c == "l" or l2 == "er" or l2 == "or" or l2 == "es" or c == "t") def b(base): # b Minimum stem length = 3 and do not remove ending after met or ryst return len(base) > 2 and not (base.endswith("met") or base.endswith("ryst")) def c(base): # c Remove ending only after l return base[-1] == "l" # Endings m = [None] * 12 m[11] = dict(( ("alistically", B), ("arizability", A), ("izationally", B))) m[10] = dict(( ("antialness", A), ("arisations", A), ("arizations", A), ("entialness", A))) m[9] = dict(( ("allically", C), ("antaneous", A), ("antiality", A), ("arisation", A), ("arization", A), ("ationally", B), ("ativeness", A), ("eableness", E), ("entations", A), ("entiality", A), ("entialize", A), ("entiation", A), ("ionalness", A), ("istically", A), ("itousness", A), ("izability", A), ("izational", A))) m[8] = dict(( ("ableness", A), ("arizable", A), ("entation", A), ("entially", A), ("eousness", A), ("ibleness", A), ("icalness", A), ("ionalism", A), ("ionality", A), ("ionalize", A), ("iousness", A), ("izations", A), ("lessness", A))) m[7] = dict(( ("ability", A), ("aically", A), ("alistic", B), ("alities", A), ("ariness", E), ("aristic", A), ("arizing", A), ("ateness", A), ("atingly", A), ("ational", B), ("atively", A), ("ativism", A), ("elihood", E), ("encible", A), ("entally", A), ("entials", A), ("entiate", A), ("entness", A), ("fulness", A), ("ibility", A), ("icalism", A), ("icalist", A), ("icality", A), ("icalize", A), ("ication", G), ("icianry", A), ("ination", A), ("ingness", A), ("ionally", A), ("isation", A), ("ishness", A), ("istical", A), ("iteness", A), ("iveness", A), ("ivistic", A), ("ivities", A), ("ization", F), ("izement", A), ("oidally", A), ("ousness", A))) m[6] = dict(( ("aceous", A), ("acious", B), ("action", G), ("alness", A), ("ancial", A), ("ancies", A), ("ancing", B), ("ariser", A), ("arized", A), ("arizer", A), ("atable", A), ("ations", B), ("atives", A), ("eature", Z), ("efully", A), ("encies", A), ("encing", A), ("ential", A), ("enting", C), ("entist", A), ("eously", A), ("ialist", A), ("iality", A), ("ialize", A), ("ically", A), ("icance", A), ("icians", A), ("icists", A), ("ifully", A), ("ionals", A), ("ionate", D), ("ioning", A), ("ionist", A), ("iously", A), ("istics", A), ("izable", E), ("lessly", A), ("nesses", A), ("oidism", A))) m[5] = dict(( ("acies", A), ("acity", A), ("aging", B), ("aical", A), ("alist", A), ("alism", B), ("ality", A), ("alize", A), ("allic", b), ("anced", B), ("ances", B), ("antic", C), ("arial", A), ("aries", A), ("arily", A), ("arity", B), ("arize", A), ("aroid", A), ("ately", A), ("ating", I), ("ation", B), ("ative", A), ("ators", A), ("atory", A), ("ature", E), ("early", Y), ("ehood", A), ("eless", A), ("elily", A), ("ement", A), ("enced", A), ("ences", A), ("eness", E), ("ening", E), ("ental", A), ("ented", C), ("ently", A), ("fully", A), ("ially", A), ("icant", A), ("ician", A), ("icide", A), ("icism", A), ("icist", A), ("icity", A), ("idine", I), ("iedly", A), ("ihood", A), ("inate", A), ("iness", A), ("ingly", B), ("inism", J), ("inity", c), ("ional", A), ("ioned", A), ("ished", A), ("istic", A), ("ities", A), ("itous", A), ("ively", A), ("ivity", A), ("izers", F), ("izing", F), ("oidal", A), ("oides", A), ("otide", A), ("ously", A))) m[4] = dict(( ("able", A), ("ably", A), ("ages", B), ("ally", B), ("ance", B), ("ancy", B), ("ants", B), ("aric", A), ("arly", K), ("ated", I), ("ates", A), ("atic", B), ("ator", A), ("ealy", Y), ("edly", E), ("eful", A), ("eity", A), ("ence", A), ("ency", A), ("ened", E), ("enly", E), ("eous", A), ("hood", A), ("ials", A), ("ians", A), ("ible", A), ("ibly", A), ("ical", A), ("ides", L), ("iers", A), ("iful", A), ("ines", M), ("ings", N), ("ions", B), ("ious", A), ("isms", B), ("ists", A), ("itic", H), ("ized", F), ("izer", F), ("less", A), ("lily", A), ("ness", A), ("ogen", A), ("ward", A), ("wise", A), ("ying", B), ("yish", A))) m[3] = dict(( ("acy", A), ("age", B), ("aic", A), ("als", b), ("ant", B), ("ars", O), ("ary", F), ("ata", A), ("ate", A), ("eal", Y), ("ear", Y), ("ely", E), ("ene", E), ("ent", C), ("ery", E), ("ese", A), ("ful", A), ("ial", A), ("ian", A), ("ics", A), ("ide", L), ("ied", A), ("ier", A), ("ies", P), ("ily", A), ("ine", M), ("ing", N), ("ion", Q), ("ish", C), ("ism", B), ("ist", A), ("ite", a), ("ity", A), ("ium", A), ("ive", A), ("ize", F), ("oid", A), ("one", R), ("ous", A))) m[2] = dict(( ("ae", A), ("al", b), ("ar", X), ("as", B), ("ed", E), ("en", F), ("es", E), ("ia", A), ("ic", A), ("is", A), ("ly", B), ("on", S), ("or", T), ("um", U), ("us", V), ("yl", R), ("s'", A), ("'s", A))) m[1] = dict(( ("a", A), ("e", A), ("i", A), ("o", A), ("s", W), ("y", B))) def remove_ending(word): length = len(word) el = 11 while el > 0: if length - el > 1: ending = word[length-el:] cond = m[el].get(ending) if cond: base = word[:length-el] if cond(base): return base el -= 1 return word _endings = (("iev", "ief"), ("uct", "uc"), ("iev", "ief"), ("uct", "uc"), ("umpt", "um"), ("rpt", "rb"), ("urs", "ur"), ("istr", "ister"), ("metr", "meter"), ("olv", "olut"), ("ul", "l", "aoi"), ("bex", "bic"), ("dex", "dic"), ("pex", "pic"), ("tex", "tic"), ("ax", "ac"), ("ex", "ec"), ("ix", "ic"), ("lux", "luc"), ("uad", "uas"), ("vad", "vas"), ("cid", "cis"), ("lid", "lis"), ("erid", "eris"), ("pand", "pans"), ("end", "ens", "s"), ("ond", "ons"), ("lud", "lus"), ("rud", "rus"), ("her", "hes", "pt"), ("mit", "mis"), ("ent", "ens", "m"), ("ert", "ers"), ("et", "es", "n"), ("yt", "ys"), ("yz", "ys")) # Hash the ending rules by the last letter of the target ending _endingrules = defaultdict(list) for rule in _endings: _endingrules[rule[0][-1]].append(rule) _doubles = frozenset(("dd", "gg", "ll", "mm", "nn", "pp", "rr", "ss", "tt")) def fix_ending(word): if word[-2:] in _doubles: word = word[:-1] for endingrule in _endingrules[word[-1]]: target, newend = endingrule[:2] if word.endswith(target): if len(endingrule) > 2: exceptafter = endingrule[2] c = word[0-(len(target)+1)] if c in exceptafter: return word return word[:0-len(target)] + newend return word def stem(word): """Returns the stemmed version of the argument string. """ return fix_ending(remove_ending(word))
archatas/whoosh
whoosh/lang/lovins.py
Python
apache-2.0
12,657
0.003871
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ P1 tests for Snapshots """ #Import Local Modules import marvin from marvin.cloudstackTestCase import * from marvin.cloudstackAPI import * from integration.lib.utils import * from integration.lib.base import * from integration.lib.common import * from marvin import remoteSSHClient class Services: """Test Snapshots Services """ def __init__(self): self.services = { "account": { "email": "test@test.com", "firstname": "Test", "lastname": "User", "username": "test", # Random characters are appended for unique # username "password": "fr3sca", }, "service_offering": { "name": "Tiny Instance", "displaytext": "Tiny Instance", "cpunumber": 1, "cpuspeed": 200, # in MHz "memory": 256, # In MBs }, "disk_offering": { "displaytext": "Small Disk", "name": "Small Disk", "disksize": 1 }, "server": { "displayname": "TestVM", "username": "root", "password": "password", "ssh_port": 22, "hypervisor": 'XenServer', "privateport": 22, "publicport": 22, "protocol": 'TCP', }, "mgmt_server": { "ipaddress": '192.168.100.21', "username": "root", "password": "fr3sca", "port": 22, }, "recurring_snapshot": { "intervaltype": 'HOURLY', # Frequency of snapshots "maxsnaps": 1, # Should be min 2 "schedule": 1, "timezone": 'US/Arizona', # Timezone Formats - http://cloud.mindtouch.us/CloudStack_Documentation/Developer's_Guide%3A_CloudStack }, "templates": { "displaytext": 'Template', "name": 'Template', "ostypeid": '144f66aa-7f74-4cfe-9799-80cc21439cb3', "templatefilter": 'self', }, "diskdevice": "/dev/xvda", "diskname": "TestDiskServ", "size": 1, # GBs "mount_dir": "/mnt/tmp", "sub_dir": "test", "sub_lvl_dir1": "test1", "sub_lvl_dir2": "test2", "random_data": "random.data", "ostypeid": '144f66aa-7f74-4cfe-9799-80cc21439cb3', # Cent OS 5.3 (64 bit) "sleep": 60, "timeout": 10, "mode" : 'advanced', # Networking mode: Advanced, Basic } class TestCreateVMsnapshotTemplate(cloudstackTestCase): @classmethod def setUpClass(cls): cls.api_client = super(TestCreateVMsnapshotTemplate, cls).getClsTestClient().getApiClient() cls.services = Services().services # Get Zone, Domain and templates cls.domain = get_domain(cls.api_client, cls.services) cls.zone = get_zone(cls.api_client, cls.services) cls.template = get_template( cls.api_client, cls.zone.id, cls.services["ostypeid"] ) cls.services["domainid"] = cls.domain.id cls.services["server"]["zoneid"] = cls.zone.id cls.services["template"] = cls.template.id # Create VMs, NAT Rules etc cls.account = Account.create( cls.api_client, cls.services["account"], domainid=cls.domain.id ) cls.services["account"] = cls.account.account.name cls.service_offering = ServiceOffering.create( cls.api_client, cls.services["service_offering"] ) cls._cleanup = [ cls.service_offering, cls.account, ] return @classmethod def tearDownClass(cls): try: #Cleanup resources used cleanup_resources(cls.api_client, cls._cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return def setUp(self): self.apiclient = self.testClient.getApiClient() self.dbclient = self.testClient.getDbConnection() self.cleanup = [] return def tearDown(self): try: #Clean up, terminate the created instance, volumes and snapshots cleanup_resources(self.apiclient, self.cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return def test_01_createVM_snapshotTemplate(self): """Test create VM, Snapshot and Template """ # Validate the following # 1. Deploy VM using default template, small service offering # and small data disk offering. # 2. Perform snapshot on the root disk of this VM. # 3. Create a template from snapshot. # 4. Create a instance from above created template. # 5. listSnapshots should list the snapshot that was created. # 6. verify that secondary storage NFS share contains the reqd # volume under /secondary/snapshots/$accountid/$volumeid/$snapshot_uuid # 7. verify backup_snap_id was non null in the `snapshots` table # 8. listTemplates() should return the newly created Template, # and check for template state as READY" # 9. listVirtualMachines() command should return the deployed VM. # State of this VM should be Running. #Create Virtual Machine self.virtual_machine = VirtualMachine.create( self.apiclient, self.services["server"], templateid=self.template.id, accountid=self.account.account.name, domainid=self.account.account.domainid, serviceofferingid=self.service_offering.id ) self.debug("Created VM with ID: %s" % self.virtual_machine.id) # Get the Root disk of VM volumes = list_volumes( self.apiclient, virtualmachineid=self.virtual_machine.id, type='ROOT', listall=True ) volume = volumes[0] # Create a snapshot from the ROOTDISK snapshot = Snapshot.create(self.apiclient, volumes[0].id) self.debug("Snapshot created: ID - %s" % snapshot.id) self.cleanup.append(snapshot) snapshots = list_snapshots( self.apiclient, id=snapshot.id ) self.assertEqual( isinstance(snapshots, list), True, "Check list response returns a valid list" ) self.assertNotEqual( snapshots, None, "Check if result exists in list snapshots call" ) self.assertEqual( snapshots[0].id, snapshot.id, "Check snapshot id in list resources call" ) self.debug("select backup_snap_id, account_id, volume_id from snapshots where uuid = '%s';" \ % snapshot.id) # Verify backup_snap_id is not NULL qresultset = self.dbclient.execute( "select backup_snap_id, account_id, volume_id from snapshots where uuid = '%s';" \ % snapshot.id ) self.assertNotEqual( len(qresultset), 0, "Check DB Query result set" ) qresult = qresultset[0] snapshot_uuid = qresult[0] # backup_snap_id = snapshot UUID account_id = qresult[1] volume_id = qresult[2] # Generate template from the snapshot template = Template.create_from_snapshot( self.apiclient, snapshot, self.services["templates"] ) self.debug("Created template from snapshot: %s" % template.id) self.cleanup.append(template) templates = list_templates( self.apiclient, templatefilter=\ self.services["templates"]["templatefilter"], id=template.id ) self.assertNotEqual( templates, None, "Check if result exists in list item call" ) self.assertEqual( templates[0].isready, True, "Check new template state in list templates call" ) # Deploy new virtual machine using template new_virtual_machine = VirtualMachine.create( self.apiclient, self.services["server"], templateid=template.id, accountid=self.account.account.name, domainid=self.account.account.domainid, serviceofferingid=self.service_offering.id ) self.debug("Created VM with ID: %s from template: %s" % ( new_virtual_machine.id, template.id )) self.cleanup.append(new_virtual_machine) # Newly deployed VM should be 'Running' virtual_machines = list_virtual_machines( self.apiclient, id=new_virtual_machine.id, account=self.account.account.name, domainid=self.account.account.domainid ) self.assertEqual( isinstance(virtual_machines, list), True, "Check list response returns a valid list" ) self.assertNotEqual( len(virtual_machines), 0, "Check list virtual machines response" ) for virtual_machine in virtual_machines: self.assertEqual( virtual_machine.state, 'Running', "Check list VM response for Running state" ) # Get the Secondary Storage details from list Hosts hosts = list_hosts( self.apiclient, type='SecondaryStorage', zoneid=self.zone.id ) self.assertEqual( isinstance(hosts, list), True, "Check list response returns a valid list" ) uuids = [] for host in hosts: # hosts[0].name = "nfs://192.168.100.21/export/test" parse_url = (host.name).split('/') # parse_url = ['nfs:', '', '192.168.100.21', 'export', 'test'] # Split IP address and export path from name sec_storage_ip = parse_url[2] # Sec Storage IP: 192.168.100.21 export_path = '/'.join(parse_url[3:]) # Export path: export/test # Sleep to ensure that snapshot is reflected in sec storage time.sleep(self.services["sleep"]) try: # Login to VM to check snapshot present on sec disk ssh_client = remoteSSHClient.remoteSSHClient( self.services["mgmt_server"]["ipaddress"], self.services["mgmt_server"]["port"], self.services["mgmt_server"]["username"], self.services["mgmt_server"]["password"], ) cmds = [ "mkdir -p %s" % self.services["mount_dir"], "mount %s/%s %s" % ( sec_storage_ip, export_path, self.services["mount_dir"] ), "ls %s/snapshots/%s/%s" % ( self.services["mount_dir"], account_id, volume_id ), ] for c in cmds: self.debug("command: %s" % c) result = ssh_client.execute(c) self.debug("Result: %s" % result) except Exception as e: self.fail("SSH failed for Management server: %s" % self.services["mgmt_server"]["ipaddress"]) uuids.append(result) # Unmount the Sec Storage cmds = [ "umount %s" % (self.services["mount_dir"]), ] try: for c in cmds: self.debug("command: %s" % c) result = ssh_client.execute(c) self.debug("Result: %s" % result) except Exception as e: self.fail("SSH failed for Management server: %s" % self.services["mgmt_server"]["ipaddress"]) res = str(uuids) self.assertEqual( res.count(snapshot_uuid), 1, "Check snapshot UUID in secondary storage and database" ) return class TestAccountSnapshotClean(cloudstackTestCase): @classmethod def setUpClass(cls): cls.api_client = super(TestAccountSnapshotClean, cls).getClsTestClient().getApiClient() cls.services = Services().services # Get Zone, Domain and templates cls.domain = get_domain(cls.api_client, cls.services) cls.zone = get_zone(cls.api_client, cls.services) template = get_template( cls.api_client, cls.zone.id, cls.services["ostypeid"] ) cls.services["server"]["zoneid"] = cls.zone.id cls.services["template"] = template.id # Create VMs, NAT Rules etc cls.account = Account.create( cls.api_client, cls.services["account"], domainid=cls.domain.id ) cls.services["account"] = cls.account.account.name cls.service_offering = ServiceOffering.create( cls.api_client, cls.services["service_offering"] ) cls.virtual_machine = VirtualMachine.create( cls.api_client, cls.services["server"], templateid=template.id, accountid=cls.account.account.name, domainid=cls.account.account.domainid, serviceofferingid=cls.service_offering.id ) # Get the Root disk of VM volumes = list_volumes( cls.api_client, virtualmachineid=cls.virtual_machine.id, type='ROOT', listall=True ) volume = volumes[0] # Create a snapshot from the ROOTDISK cls.snapshot = Snapshot.create(cls.api_client, volumes[0].id) cls._cleanup = [ cls.service_offering, ] return @classmethod def tearDownClass(cls): try: #Cleanup resources used cleanup_resources(cls.api_client, cls._cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return def setUp(self): self.apiclient = self.testClient.getApiClient() self.dbclient = self.testClient.getDbConnection() self.cleanup = [] return def tearDown(self): try: #Clean up, terminate the created instance, volumes and snapshots cleanup_resources(self.apiclient, self.cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return def test_02_accountSnapshotClean(self): """Test snapshot cleanup after account deletion """ # Validate the following # 1. listAccounts API should list out the newly created account # 2. listVirtualMachines() command should return the deployed VM. # State of this VM should be "Running" # 3. a)listSnapshots should list the snapshot that was created. # b)verify that secondary storage NFS share contains the reqd volume # under /secondary/snapshots/$accountid/$volumeid/$snapshot_uuid # 4. a)listAccounts should not list account that is deleted # b) snapshot image($snapshot_uuid) should be deleted from the # /secondary/snapshots/$accountid/$volumeid/ accounts = list_accounts( self.apiclient, id=self.account.account.id ) self.assertEqual( isinstance(accounts, list), True, "Check list response returns a valid list" ) self.assertNotEqual( len(accounts), 0, "Check list Accounts response" ) # VM should be in 'Running' state virtual_machines = list_virtual_machines( self.apiclient, id=self.virtual_machine.id ) self.assertEqual( isinstance(virtual_machines, list), True, "Check list response returns a valid list" ) self.assertNotEqual( len(virtual_machines), 0, "Check list virtual machines response" ) for virtual_machine in virtual_machines: self.debug("VM ID: %s, VM state: %s" % ( virtual_machine.id, virtual_machine.state )) self.assertEqual( virtual_machine.state, 'Running', "Check list VM response for Running state" ) # Verify the snapshot was created or not snapshots = list_snapshots( self.apiclient, id=self.snapshot.id ) self.assertEqual( isinstance(snapshots, list), True, "Check list response returns a valid list" ) self.assertNotEqual( snapshots, None, "Check if result exists in list snapshots call" ) self.assertEqual( snapshots[0].id, self.snapshot.id, "Check snapshot id in list resources call" ) # Fetch values from database qresultset = self.dbclient.execute( "select backup_snap_id, account_id, volume_id from snapshots where uuid = '%s';" \ % self.snapshot.id ) self.assertEqual( isinstance(qresultset, list), True, "Check DB response returns a valid list" ) self.assertNotEqual( len(qresultset), 0, "Check DB Query result set" ) qresult = qresultset[0] snapshot_uuid = qresult[0] # backup_snap_id = snapshot UUID account_id = qresult[1] volume_id = qresult[2] # Get the Secondary Storage details from list Hosts hosts = list_hosts( self.apiclient, type='SecondaryStorage', zoneid=self.zone.id ) self.assertEqual( isinstance(hosts, list), True, "Check list response returns a valid list" ) uuids = [] for host in hosts: # hosts[0].name = "nfs://192.168.100.21/export/test" parse_url = (host.name).split('/') # parse_url = ['nfs:', '', '192.168.100.21', 'export', 'test'] # Split IP address and export path from name sec_storage_ip = parse_url[2] # Sec Storage IP: 192.168.100.21 export_path = '/'.join(parse_url[3:]) # Export path: export/test # Sleep to ensure that snapshot is reflected in sec storage time.sleep(self.services["sleep"]) try: # Login to Secondary storage VM to check snapshot present on sec disk ssh_client = remoteSSHClient.remoteSSHClient( self.services["mgmt_server"]["ipaddress"], self.services["mgmt_server"]["port"], self.services["mgmt_server"]["username"], self.services["mgmt_server"]["password"], ) cmds = [ "mkdir -p %s" % self.services["mount_dir"], "mount %s/%s %s" % ( sec_storage_ip, export_path, self.services["mount_dir"] ), "ls %s/snapshots/%s/%s" % ( self.services["mount_dir"], account_id, volume_id ), ] for c in cmds: self.debug("command: %s" % c) result = ssh_client.execute(c) self.debug("Result: %s" % result) uuids.append(result) # Unmount the Sec Storage cmds = [ "umount %s" % (self.services["mount_dir"]), ] for c in cmds: result = ssh_client.execute(c) except Exception: self.fail("SSH failed for management server: %s" % self.services["mgmt_server"]["ipaddress"]) res = str(uuids) self.assertEqual( res.count(snapshot_uuid), 1, "Check snapshot UUID in secondary storage and database" ) self.debug("Deleting account: %s" % self.account.account.name) # Delete account self.account.delete(self.apiclient) interval = list_configurations( self.apiclient, name='account.cleanup.interval' ) self.assertEqual( isinstance(interval, list), True, "Check list response returns a valid list" ) self.debug("account.cleanup.interval: %s" % interval[0].value) # Wait for account cleanup interval time.sleep(int(interval[0].value) * 2) accounts = list_accounts( self.apiclient, id=self.account.account.id ) self.assertEqual( accounts, None, "List accounts should return empty list after account deletion" ) uuids = [] for host in hosts: # hosts[0].name = "nfs://192.168.100.21/export/test" parse_url = (host.name).split('/') # parse_url = ['nfs:', '', '192.168.100.21', 'export', 'test'] # Split IP address and export path from name sec_storage_ip = parse_url[2] # Sec Storage IP: 192.168.100.21 export_path = '/'.join(parse_url[3:]) # Export path: export/test try: cmds = [ "mount %s/%s %s" % ( sec_storage_ip, export_path, self.services["mount_dir"] ), "ls %s/snapshots/%s/%s" % ( self.services["mount_dir"], account_id, volume_id ), ] for c in cmds: self.debug("command: %s" % c) result = ssh_client.execute(c) self.debug("Result: %s" % result) uuids.append(result) # Unmount the Sec Storage cmds = [ "umount %s" % (self.services["mount_dir"]), ] for c in cmds: self.debug("command: %s" % c) result = ssh_client.execute(c) self.debug("Result: %s" % result) except Exception: self.fail("SSH failed for management server: %s" % self.services["mgmt_server"]["ipaddress"]) res = str(uuids) self.assertNotEqual( res.count(snapshot_uuid), 1, "Check snapshot UUID in secondary storage and database" ) return class TestSnapshotDetachedDisk(cloudstackTestCase): @classmethod def setUpClass(cls): cls.api_client = super(TestSnapshotDetachedDisk, cls).getClsTestClient().getApiClient() cls.services = Services().services # Get Zone, Domain and templates cls.domain = get_domain(cls.api_client, cls.services) cls.zone = get_zone(cls.api_client, cls.services) cls.disk_offering = DiskOffering.create( cls.api_client, cls.services["disk_offering"] ) template = get_template( cls.api_client, cls.zone.id, cls.services["ostypeid"] ) cls.services["server"]["zoneid"] = cls.zone.id cls.services["server"]["diskoffering"] = cls.disk_offering.id cls.services["template"] = template.id # Create VMs, NAT Rules etc cls.account = Account.create( cls.api_client, cls.services["account"], domainid=cls.domain.id ) cls.services["account"] = cls.account.account.name cls.service_offering = ServiceOffering.create( cls.api_client, cls.services["service_offering"] ) cls.virtual_machine = VirtualMachine.create( cls.api_client, cls.services["server"], templateid=template.id, accountid=cls.account.account.name, domainid=cls.account.account.domainid, serviceofferingid=cls.service_offering.id, mode=cls.services["mode"] ) cls._cleanup = [ cls.service_offering, cls.disk_offering, cls.account, ] return @classmethod def tearDownClass(cls): try: #Cleanup resources used cleanup_resources(cls.api_client, cls._cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return def setUp(self): self.apiclient = self.testClient.getApiClient() self.dbclient = self.testClient.getDbConnection() self.cleanup = [] return def tearDown(self): try: #Clean up, terminate the created instance, volumes and snapshots cleanup_resources(self.apiclient, self.cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return def test_03_snapshot_detachedDisk(self): """Test snapshot from detached disk """ # Validate the following # 1. login in VM and write some data on data disk(use fdisk to # partition datadisk,fdisk /dev/sdb, and make filesystem using # mkfs.ext3) # 2. Detach the data disk and write some data on data disk # 3. perform the snapshot on the detached volume # 4. listvolumes with VM id shouldn't show the detached volume # 5. listSnapshots should list the snapshot that was created # 6. verify that secondary storage NFS share contains the reqd volume # under /secondary/snapshots/$accountid/$volumeid/$snapshot_uuid # 7. verify backup_snap_id was non null in the `snapshots` table volumes = list_volumes( self.apiclient, virtualmachineid=self.virtual_machine.id, type='DATADISK', listall=True ) self.assertEqual( isinstance(volumes, list), True, "Check list response returns a valid list" ) volume = volumes[0] random_data_0 = random_gen(100) random_data_1 = random_gen(100) try: ssh_client = self.virtual_machine.get_ssh_client() #Format partition using ext3 format_volume_to_ext3( ssh_client, self.services["diskdevice"] ) cmds = [ "mkdir -p %s" % self.services["mount_dir"], "mount %s1 %s" % ( self.services["diskdevice"], self.services["mount_dir"] ), "pushd %s" % self.services["mount_dir"], "mkdir -p %s/{%s,%s} " % ( self.services["sub_dir"], self.services["sub_lvl_dir1"], self.services["sub_lvl_dir2"] ), "echo %s > %s/%s/%s" % ( random_data_0, self.services["sub_dir"], self.services["sub_lvl_dir1"], self.services["random_data"] ), "echo %s > %s/%s/%s" % ( random_data_1, self.services["sub_dir"], self.services["sub_lvl_dir2"], self.services["random_data"] ), "sync", ] for c in cmds: self.debug(ssh_client.execute(c)) #detach volume from VM cmd = detachVolume.detachVolumeCmd() cmd.id = volume.id self.apiclient.detachVolume(cmd) #Create snapshot from detached volume snapshot = Snapshot.create(self.apiclient, volume.id) self.cleanup.append(snapshot) volumes = list_volumes( self.apiclient, virtualmachineid=self.virtual_machine.id, type='DATADISK', listall=True ) self.assertEqual( volumes, None, "Check Volume is detached" ) # Verify the snapshot was created or not snapshots = list_snapshots( self.apiclient, id=snapshot.id ) self.assertNotEqual( snapshots, None, "Check if result exists in list snapshots call" ) self.assertEqual( snapshots[0].id, snapshot.id, "Check snapshot id in list resources call" ) except Exception as e: self.fail("SSH failed for VM with IP: %s" % self.virtual_machine.ipaddress) # Fetch values from database qresultset = self.dbclient.execute( "select backup_snap_id, account_id, volume_id from snapshots where uuid = '%s';" \ % snapshot.id ) self.assertNotEqual( len(qresultset), 0, "Check DB Query result set" ) qresult = qresultset[0] snapshot_uuid = qresult[0] # backup_snap_id = snapshot UUID account_id = qresult[1] volume_id = qresult[2] self.assertNotEqual( str(qresult[0]), 'NULL', "Check if backup_snap_id is not null" ) # Get the Secondary Storage details from list Hosts hosts = list_hosts( self.apiclient, type='SecondaryStorage', zoneid=self.zone.id ) self.assertEqual( isinstance(hosts, list), True, "Check list response returns a valid list" ) uuids = [] for host in hosts: # hosts[0].name = "nfs://192.168.100.21/export/test" parse_url = (host.name).split('/') # parse_url = ['nfs:', '', '192.168.100.21', 'export', 'test'] # Split IP address and export path from name sec_storage_ip = parse_url[2] # Sec Storage IP: 192.168.100.21 export_path = '/'.join(parse_url[3:]) # Export path: export/test # Sleep to ensure that snapshot is reflected in sec storage time.sleep(self.services["sleep"]) try: # Login to Management server to check snapshot present on # sec disk ssh_client = remoteSSHClient.remoteSSHClient( self.services["mgmt_server"]["ipaddress"], self.services["mgmt_server"]["port"], self.services["mgmt_server"]["username"], self.services["mgmt_server"]["password"], ) cmds = [ "mkdir -p %s" % self.services["mount_dir"], "mount %s/%s %s" % ( sec_storage_ip, export_path, self.services["mount_dir"] ), "ls %s/snapshots/%s/%s" % ( self.services["mount_dir"], account_id, volume_id ), ] for c in cmds: result = ssh_client.execute(c) uuids.append(result) # Unmount the Sec Storage cmds = [ "umount %s" % (self.services["mount_dir"]), ] for c in cmds: result = ssh_client.execute(c) except Exception as e: self.fail("SSH failed for management server: %s" % self.services["mgmt_server"]["ipaddress"]) res = str(uuids) self.assertEqual( res.count(snapshot_uuid), 1, "Check snapshot UUID in secondary storage and database" ) return class TestSnapshotLimit(cloudstackTestCase): @classmethod def setUpClass(cls): cls.api_client = super(TestSnapshotLimit, cls).getClsTestClient().getApiClient() cls.services = Services().services # Get Zone, Domain and templates cls.domain = get_domain(cls.api_client, cls.services) cls.zone = get_zone(cls.api_client, cls.services) template = get_template( cls.api_client, cls.zone.id, cls.services["ostypeid"] ) cls.services["server"]["zoneid"] = cls.zone.id cls.services["template"] = template.id # Create VMs, NAT Rules etc cls.account = Account.create( cls.api_client, cls.services["account"], domainid=cls.domain.id ) cls.services["account"] = cls.account.account.name cls.service_offering = ServiceOffering.create( cls.api_client, cls.services["service_offering"] ) cls.virtual_machine = VirtualMachine.create( cls.api_client, cls.services["server"], templateid=template.id, accountid=cls.account.account.name, domainid=cls.account.account.domainid, serviceofferingid=cls.service_offering.id ) cls._cleanup = [ cls.service_offering, cls.account, ] return @classmethod def tearDownClass(cls): try: #Cleanup resources used cleanup_resources(cls.api_client, cls._cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return def setUp(self): self.apiclient = self.testClient.getApiClient() self.dbclient = self.testClient.getDbConnection() self.cleanup = [] return def tearDown(self): try: #Clean up, terminate the created instance, volumes and snapshots cleanup_resources(self.apiclient, self.cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return def test_04_snapshot_limit(self): """Test snapshot limit in snapshot policies """ # Validate the following # 1. Perform hourly recurring snapshot on the root disk of VM and keep # the maxsnapshots as 1 # 2. listSnapshots should list the snapshot that was created # snapshot folder in secondary storage should contain only one # snapshot image(/secondary/snapshots/$accountid/$volumeid/) # Get the Root disk of VM volumes = list_volumes( self.apiclient, virtualmachineid=self.virtual_machine.id, type='ROOT', listall=True ) self.assertEqual( isinstance(volumes, list), True, "Check list response returns a valid list" ) volume = volumes[0] # Create a snapshot policy recurring_snapshot = SnapshotPolicy.create( self.apiclient, volume.id, self.services["recurring_snapshot"] ) self.cleanup.append(recurring_snapshot) snapshot_policy = list_snapshot_policy( self.apiclient, id=recurring_snapshot.id, volumeid=volume.id ) self.assertEqual( isinstance(snapshot_policy, list), True, "Check list response returns a valid list" ) self.assertNotEqual( snapshot_policy, None, "Check if result exists in list item call" ) self.assertEqual( snapshot_policy[0].id, recurring_snapshot.id, "Check recurring snapshot id in list resources call" ) self.assertEqual( snapshot_policy[0].maxsnaps, self.services["recurring_snapshot"]["maxsnaps"], "Check interval type in list resources call" ) # Sleep for (maxsnaps+1) hours to verify # only maxsnaps snapshots are retained time.sleep( (self.services["recurring_snapshot"]["maxsnaps"]) * 3600 ) # Verify the snapshot was created or not snapshots = list_snapshots( self.apiclient, volumeid=volume.id, intervaltype=\ self.services["recurring_snapshot"]["intervaltype"], snapshottype='RECURRING', listall=True ) self.assertEqual( isinstance(snapshots, list), True, "Check list response returns a valid list" ) self.assertEqual( len(snapshots), self.services["recurring_snapshot"]["maxsnaps"], "Check maximum number of recurring snapshots retained" ) snapshot = snapshots[0] # Sleep to ensure that snapshot is reflected in sec storage time.sleep(self.services["sleep"]) # Fetch values from database qresultset = self.dbclient.execute( "select backup_snap_id, account_id, volume_id from snapshots where uuid = '%s';" \ % snapshot.id ) self.assertEqual( isinstance(qresultset, list), True, "Check DBQuery returns a valid list" ) self.assertNotEqual( len(qresultset), 0, "Check DB Query result set" ) qresult = qresultset[0] snapshot_uuid = qresult[0] # backup_snap_id = snapshot UUID account_id = qresult[1] volume_id = qresult[2] # Get the Secondary Storage details from list Hosts hosts = list_hosts( self.apiclient, type='SecondaryStorage', zoneid=self.zone.id ) self.assertEqual( isinstance(hosts, list), True, "Check list response returns a valid list" ) uuids = [] for host in hosts: # hosts[0].name = "nfs://192.168.100.21/export/test" parse_url = (host.name).split('/') # parse_url = ['nfs:', '', '192.168.100.21', 'export', 'test'] # Split IP address and export path from name sec_storage_ip = parse_url[2] # Sec Storage IP: 192.168.100.21 export_path = '/'.join(parse_url[3:]) # Export path: export/test try: # Login to VM to check snapshot present on sec disk ssh_client = remoteSSHClient.remoteSSHClient( self.services["mgmt_server"]["ipaddress"], self.services["mgmt_server"]["port"], self.services["mgmt_server"]["username"], self.services["mgmt_server"]["password"], ) cmds = [ "mkdir -p %s" % self.services["mount_dir"], "mount %s/%s %s" % ( sec_storage_ip, export_path, self.services["mount_dir"] ), "ls %s/snapshots/%s/%s" % ( self.services["mount_dir"], account_id, volume_id ), ] for c in cmds: result = ssh_client.execute(c) uuids.append(result) # Unmount the Sec Storage cmds = [ "umount %s" % (self.services["mount_dir"]), ] for c in cmds: result = ssh_client.execute(c) except Exception as e: raise Exception( "SSH access failed for management server: %s" % self.services["mgmt_server"]["ipaddress"]) res = str(uuids) self.assertEqual( res.count(snapshot_uuid), 1, "Check snapshot UUID in secondary storage and database" ) return class TestSnapshotEvents(cloudstackTestCase): @classmethod def setUpClass(cls): cls.api_client = super(TestSnapshotEvents, cls).getClsTestClient().getApiClient() cls.services = Services().services # Get Zone, Domain and templates cls.domain = get_domain(cls.api_client, cls.services) cls.zone = get_zone(cls.api_client, cls.services) template = get_template( cls.api_client, cls.zone.id, cls.services["ostypeid"] ) cls.services["server"]["zoneid"] = cls.zone.id cls.services["template"] = template.id # Create VMs, NAT Rules etc cls.account = Account.create( cls.api_client, cls.services["account"], domainid=cls.domain.id ) cls.services["account"] = cls.account.account.name cls.service_offering = ServiceOffering.create( cls.api_client, cls.services["service_offering"] ) cls.virtual_machine = VirtualMachine.create( cls.api_client, cls.services["server"], templateid=template.id, accountid=cls.account.account.name, domainid=cls.account.account.domainid, serviceofferingid=cls.service_offering.id ) cls._cleanup = [ cls.service_offering, cls.account, ] return @classmethod def tearDownClass(cls): try: #Cleanup resources used cleanup_resources(cls.api_client, cls._cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return def setUp(self): self.apiclient = self.testClient.getApiClient() self.dbclient = self.testClient.getDbConnection() self.cleanup = [] return def tearDown(self): try: #Clean up, terminate the created instance, volumes and snapshots cleanup_resources(self.apiclient, self.cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return def test_05_snapshot_events(self): """Test snapshot events """ # Validate the following # 1. Perform snapshot on the root disk of this VM and check the events/alerts. # 2. delete the snapshots and check the events/alerts # 3. listEvents() shows created/deleted snapshot events # Get the Root disk of VM volumes = list_volumes( self.apiclient, virtualmachineid=self.virtual_machine.id, type='ROOT', listall=True ) self.assertEqual( isinstance(volumes, list), True, "Check list response returns a valid list" ) volume = volumes[0] # Create a snapshot from the ROOTDISK snapshot = Snapshot.create(self.apiclient, volumes[0].id) self.debug("Snapshot created with ID: %s" % snapshot.id) snapshots = list_snapshots( self.apiclient, id=snapshot.id ) self.assertEqual( isinstance(snapshots, list), True, "Check list response returns a valid list" ) self.assertNotEqual( snapshots, None, "Check if result exists in list snapshots call" ) self.assertEqual( snapshots[0].id, snapshot.id, "Check snapshot id in list resources call" ) snapshot.delete(self.apiclient) # Sleep to ensure that snapshot is deleted properly time.sleep(self.services["sleep"]) events = list_events( self.apiclient, account=self.account.account.name, domainid=self.account.account.domainid, type='SNAPSHOT.DELETE' ) self.assertEqual( isinstance(events, list), True, "Check list response returns a valid list" ) self.assertNotEqual( events, None, "Check if event exists in list events call" ) self.assertIn( events[0].state, ['Completed', 'Scheduled'], "Check events state in list events call" ) return
cinderella/incubator-cloudstack
test/integration/component/test_snapshots.py
Python
apache-2.0
57,945
0.001778
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse class CustomHelpAction(argparse.Action): '''Allows defining custom help actions. Help actions can run even when the parser would otherwise fail on missing arguments. The first help or custom help command mentioned on the command line will have its help text displayed. Usage: parser = argparse.ArgumentParser(...) CustomHelpAction.EnableFor(parser) parser.add_argument('--foo-help', action='custom_help', custom_help_text='this is the help message', help='What this helps with') ''' # Derived from argparse._HelpAction from # https://github.com/python/cpython/blob/master/Lib/argparse.py # pylint: disable=redefined-builtin # (complains about 'help' being redefined) def __init__(self, option_strings, dest=argparse.SUPPRESS, default=argparse.SUPPRESS, custom_help_text=None, help=None): super().__init__(option_strings=option_strings, dest=dest, default=default, nargs=0, help=help) if not custom_help_text: raise ValueError('custom_help_text is required') self._help_text = custom_help_text def __call__(self, parser, namespace, values, option_string=None): print(self._help_text) parser.exit() @staticmethod def EnableFor(parser): parser.register('action', 'custom_help', CustomHelpAction)
ric2b/Vivaldi-browser
chromium/build/android/pylib/utils/argparse_utils.py
Python
bsd-3-clause
1,695
0.00649
import pytest from marshmallow import ValidationError from skylines.schemas import ClubSchema def test_deserialization_fails_for_empty_name(): with pytest.raises(ValidationError) as e: ClubSchema(only=("name",)).load(dict(name="")) errors = e.value.messages assert "name" in errors assert "Must not be empty." in errors.get("name") def test_deserialization_fails_for_spaced_name(): with pytest.raises(ValidationError) as e: ClubSchema(only=("name",)).load(dict(name=" ")) errors = e.value.messages assert "name" in errors assert "Must not be empty." in errors.get("name") def test_deserialization_passes_for_valid_name(): data = ClubSchema(only=("name",)).load(dict(name=" foo ")).data assert data["name"] == "foo" def test_deserialization_passes_for_valid_website(): data = ClubSchema(partial=True).load(dict(website="https://skylines.aero")).data assert data["website"] == "https://skylines.aero" def test_deserialization_passes_for_empty_website(): data = ClubSchema(partial=True).load(dict(website="")).data assert data["website"] == "" def test_deserialization_passes_for_null_website(): data = ClubSchema(partial=True).load(dict(website=None)).data assert data["website"] is None def test_deserialization_fails_for_invalid_website(): with pytest.raises(ValidationError) as e: ClubSchema(partial=True).load(dict(website="foo")) errors = e.value.messages assert "website" in errors assert "Not a valid URL." in errors.get("website") def test_serialization_passes_for_invalid_website(): data = ClubSchema().dump(dict(website="foobar")).data assert data["website"] == "foobar"
skylines-project/skylines
tests/schemas/schemas/test_club.py
Python
agpl-3.0
1,722
0.000581
# -*- coding: utf-8 -*- """ *************************************************************************** lasinfoPro.py --------------------- Date : October 2014 and May 2016 Copyright : (C) 2014 by Martin Isenburg Email : martin near rapidlasso point com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Martin Isenburg' __date__ = 'October 2014' __copyright__ = '(C) 2014, Martin Isenburg' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import os from .LAStoolsUtils import LAStoolsUtils from .LAStoolsAlgorithm import LAStoolsAlgorithm from processing.core.parameters import ParameterSelection from processing.core.parameters import ParameterBoolean from processing.core.parameters import ParameterNumber class lasinfoPro(LAStoolsAlgorithm): COMPUTE_DENSITY = "COMPUTE_DENSITY" REPAIR_BB = "REPAIR_BB" REPAIR_COUNTERS = "REPAIR_COUNTERS" HISTO1 = "HISTO1" HISTO2 = "HISTO2" HISTO3 = "HISTO3" HISTOGRAM = ["---", "x", "y", "z", "intensity", "classification", "scan_angle", "user_data", "point_source", "gps_time", "X", "Y", "Z"] HISTO1_BIN = "HISTO1_BIN" HISTO2_BIN = "HISTO2_BIN" HISTO3_BIN = "HISTO3_BIN" def defineCharacteristics(self): self.name, self.i18n_name = self.trAlgorithm('lasinfoPro') self.group, self.i18n_group = self.trAlgorithm('LAStools Production') self.addParametersPointInputFolderGUI() self.addParameter(ParameterBoolean(lasinfoPro.COMPUTE_DENSITY, self.tr("compute density"), False)) self.addParameter(ParameterBoolean(lasinfoPro.REPAIR_BB, self.tr("repair bounding box"), False)) self.addParameter(ParameterBoolean(lasinfoPro.REPAIR_COUNTERS, self.tr("repair counters"), False)) self.addParameter(ParameterSelection(lasinfoPro.HISTO1, self.tr("histogram"), lasinfoPro.HISTOGRAM, 0)) self.addParameter(ParameterNumber(lasinfoPro.HISTO1_BIN, self.tr("bin size"), 0, None, 1.0)) self.addParameter(ParameterSelection(lasinfoPro.HISTO2, self.tr("histogram"), lasinfoPro.HISTOGRAM, 0)) self.addParameter(ParameterNumber(lasinfoPro.HISTO2_BIN, self.tr("bin size"), 0, None, 1.0)) self.addParameter(ParameterSelection(lasinfoPro.HISTO3, self.tr("histogram"), lasinfoPro.HISTOGRAM, 0)) self.addParameter(ParameterNumber(lasinfoPro.HISTO3_BIN, self.tr("bin size"), 0, None, 1.0)) self.addParametersOutputDirectoryGUI() self.addParametersOutputAppendixGUI() self.addParametersAdditionalGUI() self.addParametersCoresGUI() self.addParametersVerboseGUI() def processAlgorithm(self, progress): if (LAStoolsUtils.hasWine()): commands = [os.path.join(LAStoolsUtils.LAStoolsPath(), "bin", "lasinfo.exe")] else: commands = [os.path.join(LAStoolsUtils.LAStoolsPath(), "bin", "lasinfo")] self.addParametersVerboseCommands(commands) self.addParametersPointInputFolderCommands(commands) if self.getParameterValue(lasinfoPro.COMPUTE_DENSITY): commands.append("-cd") if self.getParameterValue(lasinfoPro.REPAIR_BB): commands.append("-repair_bb") if self.getParameterValue(lasinfoPro.REPAIR_COUNTERS): commands.append("-repair_counters") histo = self.getParameterValue(lasinfoPro.HISTO1) if histo != 0: commands.append("-histo") commands.append(lasinfoPro.HISTOGRAM[histo]) commands.append(unicode(self.getParameterValue(lasinfoPro.HISTO1_BIN))) histo = self.getParameterValue(lasinfoPro.HISTO2) if histo != 0: commands.append("-histo") commands.append(lasinfoPro.HISTOGRAM[histo]) commands.append(unicode(self.getParameterValue(lasinfoPro.HISTO2_BIN))) histo = self.getParameterValue(lasinfoPro.HISTO3) if histo != 0: commands.append("-histo") commands.append(lasinfoPro.HISTOGRAM[histo]) commands.append(unicode(self.getParameterValue(lasinfoPro.HISTO3_BIN))) self.addParametersOutputDirectoryCommands(commands) self.addParametersOutputAppendixCommands(commands) commands.append("-otxt") self.addParametersAdditionalCommands(commands) self.addParametersCoresCommands(commands) LAStoolsUtils.runLAStools(commands, progress)
AsgerPetersen/QGIS
python/plugins/processing/algs/lidar/lastools/lasinfoPro.py
Python
gpl-2.0
5,416
0.001846
import asyncio import datetime import logging import signal import yaml import passlib.context from merc import config from merc import config_format from merc import channel from merc import feature from merc import server from merc import user from merc import util logger = logging.getLogger(__name__) class Application(object): def __init__(self, config_filename, loop=None): if loop is None: loop = asyncio.get_event_loop() self.loop = loop self.creation_time = datetime.datetime.now() self.features = feature.FeatureLoader(self) self.users = user.UserStore(self) self.channels = channel.ChannelStore(self) self.network = server.Network(self) self.crypt_context = None self.config = None self.config_filename = config_filename self.reload_config() self.register_signal_handlers() @property def server(self): return self.network.local def check_config(self, cfg): config.validate(cfg, config_format.Config) def reload_config(self): self.features.unload_all() with open(self.config_filename, "r") as f: config = yaml.safe_load(f) try: self.check_config(config) for feature_name in config["features"]: self.features.load(feature_name) self.features.check_config(config) except Exception: logger.critical("Configuration invalid.") self.features.unload_all() if self.config: logger.critical("Reloading old configuration.") for feature_name in self.config["features"]: self.features.load(feature_name) raise else: self.config = config finally: if self.config: self.update_from_config() def update_from_config(self): self.network.update_local( self.loop, self.config["server"]["name"], self.config["server"]["description"], self.config["server"]["sid"]) self.crypt_context = passlib.context.CryptContext( schemes=self.config["crypto"]["hash_schemes"]) def rehash(self): @asyncio.coroutine def coro(): yield from self.unbind() self.reload_config() yield from self.bind() return asyncio.async(coro(), loop=self.loop) @asyncio.coroutine def bind(self): yield from self.network.local.bind(self, self.config["bind"]) @asyncio.coroutine def unbind(self): yield from self.network.local.unbind() @property def version(self): return util.get_version() @property def network_name(self): return self.config["server"]["network_name"] @property def admin_location(self): return self.config["admin"]["location"] @property def admin_location_fine(self): return self.config["admin"]["location_fine"] @property def admin_name(self): return self.config["admin"]["name"] @property def admin_email(self): return self.config["admin"]["email"] def register_signal_handlers(self): signal.signal(signal.SIGHUP, lambda signum, frame: self.rehash()) def run_hooks(self, hook_name, *args, **kwargs): for hook in self.features.get_hooks(hook_name): hook(self, *args, **kwargs) def get_feature_locals(self, feature): return self.features[feature.NAME].server_locals def start(self): logger.info("Welcome to merc-{}, running for {} ({}) on network {}.".format( util.get_version(), self.config["server"]["name"], self.config["server"]["sid"], self.config["server"]["network_name"])) self.loop.run_until_complete(self.bind()) self._autoconnect_links() try: self.loop.run_forever() except KeyboardInterrupt: pass self.loop.run_until_complete(self.unbind()) self.loop.close() def _autoconnect_links(self): for server_name, link_spec in self.config["links"].items(): if link_spec["autoconnect"]: self.network.connect(server_name) def main(): import argparse import coloredlogs parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--config", "-c", help="file to load configuration from", default="merc.conf") parser.add_argument("--verbose", "-v", help="enable verbose (debug) logging", action="store_true", default=False) args = parser.parse_args() coloredlogs.install(level=logging.DEBUG if args.verbose else logging.INFO) logging.getLogger("asyncio").setLevel(logging.WARN) try: app = Application(args.config) app.start() except config.ParseError as e: logger.fatal('Could not load configuration file, aborting.') logger.fatal(e) except Exception as e: logger.fatal('Could not initialize merc, aborting.') logger.fatal(e)
merc-devel/merc
merc/application.py
Python
mit
4,731
0.013316
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Creature() result.template = "object/mobile/shared_dressed_deathstar_debris_cultist_hum_m_02.iff" result.attribute_template_id = 9 result.stfName("obj_n","unknown_creature") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
anhstudios/swganh
data/scripts/templates/object/mobile/shared_dressed_deathstar_debris_cultist_hum_m_02.py
Python
mit
464
0.047414
#!/usr/bin/python import sys print "divsum_analysis.py DivsumFile NumberOfNucleotides" try: file = sys.argv[1] except: file = raw_input("Introduce RepeatMasker's Divsum file: ") try: nucs = sys.argv[2] except: nucs = raw_input("Introduce number of analysed nucleotides: ") nucs = int(nucs) data = open(file).readlines() s_matrix = data.index("Coverage for each repeat class and divergence (Kimura)\n") matrix = [] elements = data[s_matrix+1] elements = elements.split() for element in elements[1:]: matrix.append([element,[]]) n_el = len(matrix) for line in data[s_matrix+2:]: # print line info = line.split() info = info[1:] for n in range(0,n_el): matrix[n][1].append(int(info[n])) abs = open(file+".abs", "w") rel = open(file+".rel", "w") for n in range(0,n_el): abs.write("%s\t%s\n" % (matrix[n][0], sum(matrix[n][1]))) rel.write("%s\t%s\n" % (matrix[n][0], round(1.0*sum(matrix[n][1])/nucs,100)))
fjruizruano/ngs-protocols
divsum_analysis.py
Python
gpl-3.0
974
0.011294
""" This script is responsible for generating recommendations for the users. The general flow is as follows: The best_model saved in HDFS is loaded with the help of model_id which is fetched from model_metadata_df. `spark_user_id` and `recording_id` are fetched from top_artist_candidate_set_df and are given as input to the recommender. An RDD of `user`, `product` and `rating` is returned from the recommender which is later converted to a dataframe by filtering top X (an int supplied as an argument to the script) recommendations for all users sorted on rating and fields renamed as `spark_user_id`, `recording_id` and `rating`. The ratings are scaled so that they lie between 0 and 1. This dataframe is joined with recordings_df on recording_id to get the recording mbids which are then sent over the queue. The same process is done for similar artist candidate set. """ import logging import time from py4j.protocol import Py4JJavaError import listenbrainz_spark from listenbrainz_spark import utils, path from listenbrainz_spark.exceptions import (PathNotFoundException, FileNotFetchedException, SparkSessionNotInitializedException, RecommendationsNotGeneratedException, EmptyDataframeExcpetion) from listenbrainz_spark.recommendations.recording.train_models import get_model_path from listenbrainz_spark.recommendations.recording.candidate_sets import _is_empty_dataframe from pyspark.sql import Row import pyspark.sql.functions as func from pyspark.sql.window import Window from pyspark.sql.functions import col, udf, row_number from pyspark.sql.types import DoubleType from pyspark.mllib.recommendation import MatrixFactorizationModel logger = logging.getLogger(__name__) class RecommendationParams: def __init__(self, recordings_df, model, top_artist_candidate_set_df, similar_artist_candidate_set_df, recommendation_top_artist_limit, recommendation_similar_artist_limit): self.recordings_df = recordings_df self.model = model self.top_artist_candidate_set_df = top_artist_candidate_set_df self.similar_artist_candidate_set_df = similar_artist_candidate_set_df self.recommendation_top_artist_limit = recommendation_top_artist_limit self.recommendation_similar_artist_limit = recommendation_similar_artist_limit def get_most_recent_model_id(): """ Get model id of recently created model. Returns: model_id (str): Model identification string. """ try: model_metadata = utils.read_files_from_HDFS(path.RECOMMENDATION_RECORDING_MODEL_METADATA) except PathNotFoundException as err: logger.error(str(err), exc_info=True) raise except FileNotFetchedException as err: logger.error(str(err), exc_info=True) raise latest_ts = model_metadata.select(func.max('model_created').alias('model_created')).take(1)[0].model_created model_id = model_metadata.select('model_id') \ .where(col('model_created') == latest_ts).take(1)[0].model_id return model_id def load_model(): """ Load model from given path in HDFS. """ model_id = get_most_recent_model_id() dest_path = get_model_path(model_id) try: model = MatrixFactorizationModel.load(listenbrainz_spark.context, dest_path) return model except Py4JJavaError as err: logger.error('Unable to load model "{}"\n{}\nAborting...'.format(model_id, str(err.java_exception)), exc_info=True) raise def get_recording_mbids(params: RecommendationParams, recommendation_df, users_df): """ Get recording mbids corresponding to recommended recording ids sorted on rating. Args: params: RecommendationParams class object. recommendation_df: Dataframe of spark_user_id, recording id and rating. users_df : user_id and spark_user_id of active users. Returns: dataframe of recommended recording mbids and related info. """ df = params.recordings_df.join(recommendation_df, 'recording_id', 'inner') \ .select('rating', 'recording_mbid', 'spark_user_id') recording_mbids_df = df.join(users_df, 'spark_user_id', 'inner') window = Window.partitionBy('user_id').orderBy(col('rating').desc()) df = recording_mbids_df.withColumn('rank', row_number().over(window)) \ .select('recording_mbid', 'rank', 'rating', 'spark_user_id', 'user_id') return df def filter_recommendations_on_rating(df, limit): """ Filter top X recommendations for each user on rating where X = limit. Args: df: Dataframe of user, product and rating. limit (int): Number of recommendations to be filtered for each user. Returns: recommendation_df: Dataframe of spark_user_id, recording_id and rating. """ window = Window.partitionBy('user').orderBy(col('rating').desc()) recommendation_df = df.withColumn('rank', row_number().over(window)) \ .where(col('rank') <= limit) \ .select(col('rating'), col('product').alias('recording_id'), col('user').alias('spark_user_id')) return recommendation_df def generate_recommendations(candidate_set, params: RecommendationParams, limit): """ Generate recommendations from the candidate set. Args: candidate_set (rdd): RDD of spark_user_id and recording_id. params: RecommendationParams class object. limit (int): Number of recommendations to be filtered for each user. Returns: recommendation_df: Dataframe of spark_user_id, recording_id and rating. """ recommendations = params.model.predictAll(candidate_set) if recommendations.isEmpty(): raise RecommendationsNotGeneratedException('Recommendations not generated!') df = listenbrainz_spark.session.createDataFrame(recommendations, schema=None) recommendation_df = filter_recommendations_on_rating(df, limit) return recommendation_df def get_scale_rating_udf(rating): """ Get user defined function (udf) to scale ratings so that they fall in the range: 0.0 -> 1.0. Args: rating (float): score given to recordings by CF. Returns: rating udf. """ scaled_rating = (rating / 2.0) + 0.5 return round(min(max(scaled_rating, -1.0), 1.0), 3) def scale_rating(df): """ Scale the ratings column of dataframe so that they fall in the range: 0.0 -> 1.0. Args: df: Dataframe to scale. Returns: df: Dataframe with scaled rating. """ scaling_udf = udf(get_scale_rating_udf, DoubleType()) df = df.withColumn("scaled_rating", scaling_udf(df.rating)) \ .select(col('recording_id'), col('spark_user_id'), col('scaled_rating').alias('rating')) return df def get_candidate_set_rdd_for_user(candidate_set_df, users): """ Get candidate set RDD for a given user. Args: candidate_set_df: A dataframe of spark_user_id and recording_id for all users. users: list of user names to generate recommendations for. Returns: candidate_set_rdd: An RDD of spark_user_id and recording_id for a given user. """ if users: candidate_set_user_df = candidate_set_df.select('spark_user_id', 'recording_id') \ .where(col('user_id').isin(users)) else: candidate_set_user_df = candidate_set_df.select('spark_user_id', 'recording_id') if _is_empty_dataframe(candidate_set_user_df): raise EmptyDataframeExcpetion('Empty Candidate sets!') candidate_set_rdd = candidate_set_user_df.rdd.map(lambda r: (r['spark_user_id'], r['recording_id'])) return candidate_set_rdd def get_user_name_and_user_id(params: RecommendationParams, users): """ Get users from top artist candidate set. Args: params: RecommendationParams class object. users = list of users names to generate recommendations. Returns: users_df: dataframe of user id and user names. """ if len(users) == 0: users_df = params.top_artist_candidate_set_df.select('spark_user_id', 'user_id').distinct() else: users_df = params.top_artist_candidate_set_df.select('spark_user_id', 'user_id') \ .where(params.top_artist_candidate_set_df.user_id.isin(users)) \ .distinct() if _is_empty_dataframe(users_df): raise EmptyDataframeExcpetion('No active users found!') return users_df def check_for_ratings_beyond_range(top_artist_rec_df, similar_artist_rec_df): """ Check if rating in top_artist_rec_df and similar_artist_rec_df does not belong to [-1, 1]. Args: top_artist_rec_df (dataframe): Top artist recommendations for all users. similar_artist_rec_df (dataframe): Similar artist recommendations for all users. Returns: a tuple of booleans (max out of range, min out of range) """ max_rating = top_artist_rec_df.select(func.max('rating').alias('rating')).take(1)[0].rating max_rating = max(similar_artist_rec_df.select(func.max('rating').alias('rating')).take(1)[0].rating, max_rating) min_rating = top_artist_rec_df.select(func.min('rating').alias('rating')).take(1)[0].rating min_rating = min(similar_artist_rec_df.select(func.min('rating').alias('rating')).take(1)[0].rating, min_rating) if max_rating > 1.0: logger.info('Some ratings are greater than 1 \nMax rating: {}'.format(max_rating)) if min_rating < -1.0: logger.info('Some ratings are less than -1 \nMin rating: {}'.format(min_rating)) return max_rating > 1.0, min_rating < -1.0 def create_messages(top_artist_rec_mbid_df, similar_artist_rec_mbid_df, active_user_count, total_time, top_artist_rec_user_count, similar_artist_rec_user_count): """ Create messages to send the data to the webserver via RabbitMQ. Args: top_artist_rec_mbid_df (dataframe): Top artist recommendations. similar_artist_rec_mbid_df (dataframe): Similar artist recommendations. active_user_count (int): Number of users active in the last week. total_time (str): Time taken in exceuting the whole script. top_artist_rec_user_count (int): Number of users for whom top artist recommendations were generated. similar_artist_rec_user_count (int): Number of users for whom similar artist recommendations were generated. Returns: messages: A list of messages to be sent via RabbitMQ """ top_artist_rec_itr = top_artist_rec_mbid_df.toLocalIterator() user_rec = {} for row in top_artist_rec_itr: if user_rec.get(row.user_id) is None: user_rec[row.user_id] = {} user_rec[row.user_id]['top_artist'] = [ { "recording_mbid": row.recording_mbid, "score": row.rating } ] user_rec[row.user_id]['similar_artist'] = [] else: user_rec[row.user_id]['top_artist'].append( { "recording_mbid": row.recording_mbid, "score": row.rating } ) similar_artist_rec_itr = similar_artist_rec_mbid_df.toLocalIterator() for row in similar_artist_rec_itr: if user_rec.get(row.user_id) is None: user_rec[row.user_id] = {} user_rec[row.user_id]['similar_artist'] = [ { "recording_mbid": row.recording_mbid, "score": row.rating } ] else: user_rec[row.user_id]['similar_artist'].append( { "recording_mbid": row.recording_mbid, "score": row.rating } ) for user_id, data in user_rec.items(): messages = { 'user_id': user_id, 'type': 'cf_recommendations_recording_recommendations', 'recommendations': { 'top_artist': data.get('top_artist', []), 'similar_artist': data.get('similar_artist', []) } } yield messages yield { 'type': 'cf_recommendations_recording_mail', 'active_user_count': active_user_count, 'top_artist_user_count': top_artist_rec_user_count, 'similar_artist_user_count': similar_artist_rec_user_count, 'total_time': '{:.2f}'.format(total_time / 3600) } def get_recommendations_for_all(params: RecommendationParams, users): """ Get recommendations for all active users. Args: params: RecommendationParams class object. users = list of users names to generate recommendations. Returns: top_artist_rec_df: Top artist recommendations. similar_artist_rec_df: Similar artist recommendations. """ try: top_artist_candidate_set_rdd = get_candidate_set_rdd_for_user(params.top_artist_candidate_set_df, users) except EmptyDataframeExcpetion: logger.error('Top artist candidate set not found for any user.', exc_info=True) raise try: similar_artist_candidate_set_rdd = get_candidate_set_rdd_for_user(params.similar_artist_candidate_set_df, users) except EmptyDataframeExcpetion: logger.error('Similar artist candidate set not found for any user.', exc_info=True) raise try: top_artist_rec_df = generate_recommendations(top_artist_candidate_set_rdd, params, params.recommendation_top_artist_limit) except RecommendationsNotGeneratedException: logger.error('Top artist recommendations not generated for any user', exc_info=True) raise try: similar_artist_rec_df = generate_recommendations(similar_artist_candidate_set_rdd, params, params.recommendation_similar_artist_limit) except RecommendationsNotGeneratedException: logger.error('Similar artist recommendations not generated for any user', exc_info=True) raise return top_artist_rec_df, similar_artist_rec_df def get_user_count(df): """ Get distinct user count from the given dataframe. """ users_df = df.select('spark_user_id').distinct() return users_df.count() def main(recommendation_top_artist_limit=None, recommendation_similar_artist_limit=None, users=None): try: listenbrainz_spark.init_spark_session('Recommendations') except SparkSessionNotInitializedException as err: logger.error(str(err), exc_info=True) raise try: recordings_df = utils.read_files_from_HDFS(path.RECOMMENDATION_RECORDINGS_DATAFRAME) top_artist_candidate_set_df = utils.read_files_from_HDFS(path.RECOMMENDATION_RECORDING_TOP_ARTIST_CANDIDATE_SET) similar_artist_candidate_set_df = utils.read_files_from_HDFS(path.RECOMMENDATION_RECORDING_SIMILAR_ARTIST_CANDIDATE_SET) except PathNotFoundException as err: logger.error(str(err), exc_info=True) raise except FileNotFetchedException as err: logger.error(str(err), exc_info=True) raise logger.info('Loading model...') model = load_model() # an action must be called to persist data in memory recordings_df.count() recordings_df.persist() params = RecommendationParams(recordings_df, model, top_artist_candidate_set_df, similar_artist_candidate_set_df, recommendation_top_artist_limit, recommendation_similar_artist_limit) try: # timestamp when the script was invoked ts_initial = time.monotonic() users_df = get_user_name_and_user_id(params, users) # Some users are excluded from the top_artist_candidate_set because of the limited data # in the mapping. Therefore, active_user_count may or may not be equal to number of users # active in the last week. Ideally, top_artist_candidate_set should give the active user count. active_user_count = users_df.count() users_df.persist() logger.info('Took {:.2f}sec to get active user count'.format(time.monotonic() - ts_initial)) except EmptyDataframeExcpetion as err: logger.error(str(err), exc_info=True) raise logger.info('Generating recommendations...') ts = time.monotonic() top_artist_rec_df, similar_artist_rec_df = get_recommendations_for_all(params, users) logger.info('Recommendations generated!') logger.info('Took {:.2f}sec to generate recommendations for all active users'.format(time.monotonic() - ts)) ts = time.monotonic() top_artist_rec_user_count = get_user_count(top_artist_rec_df) similar_artist_rec_user_count = get_user_count(similar_artist_rec_df) logger.info('Took {:.2f}sec to get top artist and similar artist user count'.format(time.monotonic() - ts)) ts = time.monotonic() check_for_ratings_beyond_range(top_artist_rec_df, similar_artist_rec_df) top_artist_rec_scaled_df = scale_rating(top_artist_rec_df) similar_artist_rec_scaled_df = scale_rating(similar_artist_rec_df) logger.info('Took {:.2f}sec to scale the ratings'.format(time.monotonic() - ts)) ts = time.monotonic() top_artist_rec_mbid_df = get_recording_mbids(params, top_artist_rec_scaled_df, users_df) similar_artist_rec_mbid_df = get_recording_mbids(params, similar_artist_rec_scaled_df, users_df) logger.info('Took {:.2f}sec to get mbids corresponding to recording ids'.format(time.monotonic() - ts)) # persisted data must be cleared from memory after usage to avoid OOM recordings_df.unpersist() total_time = time.monotonic() - ts_initial logger.info('Total time: {:.2f}sec'.format(total_time)) result = create_messages(top_artist_rec_mbid_df, similar_artist_rec_mbid_df, active_user_count, total_time, top_artist_rec_user_count, similar_artist_rec_user_count) users_df.unpersist() return result
metabrainz/listenbrainz-server
listenbrainz_spark/recommendations/recording/recommend.py
Python
gpl-2.0
19,039
0.004254
#!/usr/bin/env python import os, re, sys if len(sys.argv) < 2: print "usage: %s <recordfile>" % sys.argv[0] sys.exit(1) # Read record filename = sys.argv[1] fd = file(filename) record = fd.read() fd.close() # Update revision newrecord = [] lbreak = "\r\n" for line in record.splitlines(): if line.startswith('# Revision:'): rev = int(line.split(':')[1]) + 1 line = '# Revision: %u' % rev newrecord.append(line) newrecord = lbreak.join(newrecord) # Setup mail values address = 'freedb-submit@freedb.org' ident = os.path.splitext(filename)[0] if not re.search('^[a-z]+ [a-z0-9]{8}$', ident): sys.exit(ident + " is not a valid freedb `discid genre' pair") subject = "cddb %s" % ident # Save updated record fd = file(filename, "w") fd.write(newrecord) fd.close() # Send mail print "Subject:", subject cmd = 'cat "%s" | mutt -s "%s" %s' % (filename, subject, address) print "%", cmd os.system(cmd)
BackupTheBerlios/namingmuse
tools/freedb-submit.py
Python
gpl-2.0
936
0.001068
from graphql_relay.node.node import from_global_id def get_errors(e): # transform django errors to redux errors # django: {"key1": [value1], {"key2": [value2]}} # redux: ["key1", "value1", "key2", "value2"] fields = e.message_dict.keys() messages = ['; '.join(m) for m in e.message_dict.values()] errors = [i for pair in zip(fields, messages) for i in pair] return errors def get_object(object_name, relayId, otherwise=None): try: return object_name.objects.get(pk=from_global_id(relayId)[1]) except: return otherwise def load_object(instance, args, exception=['id']): if instance: [setattr(instance, key, value) for key, value in args.items() if key not in exception] return instance
teamtaverna/core
app/api/cruds/utils.py
Python
mit
760
0.002632
######################################################################## # $HeadURL$ # File : SSHComputingElement.py # Author : Dumitru Laurentiu, A.T. ######################################################################## """ SSH (Virtual) Computing Element: For a given IP/host it will send jobs directly through ssh """ from DIRAC.Resources.Computing.ComputingElement import ComputingElement from DIRAC.Resources.Computing.PilotBundle import bundleProxy, writeScript from DIRAC.Core.Utilities.List import uniqueElements from DIRAC.Core.Utilities.File import makeGuid from DIRAC.Core.Utilities.Pfn import pfnparse from DIRAC import S_OK, S_ERROR from DIRAC import rootPath from DIRAC import gLogger import os, urllib import shutil, tempfile from types import StringTypes __RCSID__ = "$Id$" CE_NAME = 'SSH' MANDATORY_PARAMETERS = [ 'Queue' ] class SSH: def __init__( self, user = None, host = None, password = None, key = None, parameters = {}, options = "" ): self.user = user if not user: self.user = parameters.get( 'SSHUser', '' ) self.host = host if not host: self.host = parameters.get( 'SSHHost', '' ) self.password = password if not password: self.password = parameters.get( 'SSHPassword', '' ) self.key = key if not key: self.key = parameters.get( 'SSHKey', '' ) self.options = options if not len(options): self.options = parameters.get( 'SSHOptions', '' ) self.log = gLogger.getSubLogger( 'SSH' ) def __ssh_call( self, command, timeout ): try: import pexpect expectFlag = True except: from DIRAC import shellCall expectFlag = False if not timeout: timeout = 999 if expectFlag: ssh_newkey = 'Are you sure you want to continue connecting' try: child = pexpect.spawn( command, timeout = timeout ) i = child.expect( [pexpect.TIMEOUT, ssh_newkey, pexpect.EOF, 'assword: '] ) if i == 0: # Timeout return S_OK( ( -1, child.before, 'SSH login failed' ) ) elif i == 1: # SSH does not have the public key. Just accept it. child.sendline ( 'yes' ) child.expect ( 'assword: ' ) i = child.expect( [pexpect.TIMEOUT, 'assword: '] ) if i == 0: # Timeout return S_OK( ( -1, str( child.before ) + str( child.after ), 'SSH login failed' ) ) elif i == 1: child.sendline( self.password ) child.expect( pexpect.EOF ) return S_OK( ( 0, child.before, '' ) ) elif i == 2: # Passwordless login, get the output return S_OK( ( 0, child.before, '' ) ) if self.password: child.sendline( self.password ) child.expect( pexpect.EOF ) return S_OK( ( 0, child.before, '' ) ) else: return S_ERROR( ( -2, child.before, '' ) ) except Exception, x: res = ( -1 , 'Encountered exception %s: %s' % ( Exception, str( x ) ) ) return S_ERROR( res ) else: # Try passwordless login result = shellCall( timeout, command ) # print ( "!!! SSH command: %s returned %s\n" % (command, result) ) if result['Value'][0] == 255: return S_ERROR ( ( -1, 'Cannot connect to host %s' % self.host, '' ) ) return result def sshCall( self, timeout, cmdSeq ): """ Execute remote command via a ssh remote call """ command = cmdSeq if type( cmdSeq ) == type( [] ): command = ' '.join( cmdSeq ) key = '' if self.key: key = ' -i %s ' % self.key pattern = "'===><==='" command = 'ssh -q %s -l %s %s %s "echo %s;%s"' % ( key, self.user, self.host, self.options, pattern, command ) self.log.debug( "SSH command %s" % command ) result = self.__ssh_call( command, timeout ) self.log.debug( "SSH command result %s" % str( result ) ) if not result['OK']: return result # Take the output only after the predefined pattern ind = result['Value'][1].find('===><===') if ind == -1: return result status,output,error = result['Value'] output = output[ind+8:] if output.startswith('\r'): output = output[1:] if output.startswith('\n'): output = output[1:] result['Value'] = ( status,output,error ) return result def scpCall( self, timeout, localFile, destinationPath, upload = True ): """ Execute scp copy """ key = '' if self.key: key = ' -i %s ' % self.key if upload: command = "scp %s %s %s %s@%s:%s" % ( key, self.options, localFile, self.user, self.host, destinationPath ) else: command = "scp %s %s %s@%s:%s %s" % ( key, self.options, self.user, self.host, destinationPath, localFile ) self.log.debug( "SCP command %s" % command ) return self.__ssh_call( command, timeout ) class SSHComputingElement( ComputingElement ): ############################################################################# def __init__( self, ceUniqueID ): """ Standard constructor. """ ComputingElement.__init__( self, ceUniqueID ) self.ceType = CE_NAME self.controlScript = 'sshce' self.submittedJobs = 0 self.mandatoryParameters = MANDATORY_PARAMETERS ############################################################################# def _addCEConfigDefaults( self ): """Method to make sure all necessary Configuration Parameters are defined """ # First assure that any global parameters are loaded ComputingElement._addCEConfigDefaults( self ) # Now batch system specific ones if 'ExecQueue' not in self.ceParameters: self.ceParameters['ExecQueue'] = self.ceParameters.get( 'Queue', '' ) if 'SharedArea' not in self.ceParameters: #. isn't a good location, move to $HOME self.ceParameters['SharedArea'] = '$HOME' if 'BatchOutput' not in self.ceParameters: self.ceParameters['BatchOutput'] = 'data' if 'BatchError' not in self.ceParameters: self.ceParameters['BatchError'] = 'data' if 'ExecutableArea' not in self.ceParameters: self.ceParameters['ExecutableArea'] = 'data' if 'InfoArea' not in self.ceParameters: self.ceParameters['InfoArea'] = 'info' if 'WorkArea' not in self.ceParameters: self.ceParameters['WorkArea'] = 'work' if 'SubmitOptions' not in self.ceParameters: self.ceParameters['SubmitOptions'] = '-' def _reset( self ): """ Process CE parameters and make necessary adjustments """ self.queue = self.ceParameters['Queue'] if 'ExecQueue' not in self.ceParameters or not self.ceParameters['ExecQueue']: self.ceParameters['ExecQueue'] = self.ceParameters.get( 'Queue', '' ) self.execQueue = self.ceParameters['ExecQueue'] self.log.info( "Using queue: ", self.queue ) self.sharedArea = self.ceParameters['SharedArea'] self.batchOutput = self.ceParameters['BatchOutput'] if not self.batchOutput.startswith( '/' ): self.batchOutput = os.path.join( self.sharedArea, self.batchOutput ) self.batchError = self.ceParameters['BatchError'] if not self.batchError.startswith( '/' ): self.batchError = os.path.join( self.sharedArea, self.batchError ) self.infoArea = self.ceParameters['InfoArea'] if not self.infoArea.startswith( '/' ): self.infoArea = os.path.join( self.sharedArea, self.infoArea ) self.executableArea = self.ceParameters['ExecutableArea'] if not self.executableArea.startswith( '/' ): self.executableArea = os.path.join( self.sharedArea, self.executableArea ) self.workArea = self.ceParameters['WorkArea'] if not self.workArea.startswith( '/' ): self.workArea = os.path.join( self.sharedArea, self.workArea ) result = self._prepareRemoteHost() self.submitOptions = '' if 'SubmitOptions' in self.ceParameters: self.submitOptions = self.ceParameters['SubmitOptions'] self.removeOutput = True if 'RemoveOutput' in self.ceParameters: if self.ceParameters['RemoveOutput'].lower() in ['no', 'false', '0']: self.removeOutput = False def _prepareRemoteHost(self, host=None ): """ Prepare remote directories and upload control script """ ssh = SSH( host = host, parameters = self.ceParameters ) # Make remote directories dirTuple = tuple ( uniqueElements( [self.sharedArea, self.executableArea, self.infoArea, self.batchOutput, self.batchError, self.workArea] ) ) nDirs = len( dirTuple ) cmd = 'mkdir -p %s; '*nDirs % dirTuple self.log.verbose( 'Creating working directories on %s' % self.ceParameters['SSHHost'] ) result = ssh.sshCall( 30, cmd ) if not result['OK']: self.log.warn( 'Failed creating working directories: %s' % result['Message'][1] ) return result status,output,error = result['Value'] if status == -1: self.log.warn( 'TImeout while creating directories' ) return S_ERROR( 'TImeout while creating directories' ) if "cannot" in output: self.log.warn( 'Failed to create directories: %s' % output ) return S_ERROR( 'Failed to create directories: %s' % output ) # Upload the control script now sshScript = os.path.join( rootPath, "DIRAC", "Resources", "Computing", "remote_scripts", self.controlScript ) self.log.verbose( 'Uploading %s script to %s' % ( self.controlScript, self.ceParameters['SSHHost'] ) ) result = ssh.scpCall( 30, sshScript, self.sharedArea ) if not result['OK']: self.log.warn( 'Failed uploading control script: %s' % result['Message'][1] ) return result status,output,error = result['Value'] if status != 0: if status == -1: self.log.warn( 'Timeout while uploading control script' ) return S_ERROR( 'Timeout while uploading control script' ) else: self.log.warn( 'Failed uploading control script: %s' % output ) return S_ERROR( 'Failed uploading control script' ) # Chmod the control scripts self.log.verbose( 'Chmod +x control script' ) result = ssh.sshCall( 10, "chmod +x %s/%s" % ( self.sharedArea, self.controlScript ) ) if not result['OK']: self.log.warn( 'Failed chmod control script: %s' % result['Message'][1] ) return result status,output,error = result['Value'] if status != 0: if status == -1: self.log.warn( 'Timeout while chmod control script' ) return S_ERROR( 'Timeout while chmod control script' ) else: self.log.warn( 'Failed uploading chmod script: %s' % output ) return S_ERROR( 'Failed uploading chmod script' ) return S_OK() def submitJob( self, executableFile, proxy, numberOfJobs = 1 ): # self.log.verbose( "Executable file path: %s" % executableFile ) if not os.access( executableFile, 5 ): os.chmod( executableFile, 0755 ) # if no proxy is supplied, the executable can be submitted directly # otherwise a wrapper script is needed to get the proxy to the execution node # The wrapper script makes debugging more complicated and thus it is # recommended to transfer a proxy inside the executable if possible. if proxy: self.log.verbose( 'Setting up proxy for payload' ) wrapperContent = bundleProxy( executableFile, proxy ) name = writeScript( wrapperContent, os.getcwd() ) submitFile = name else: # no proxy submitFile = executableFile result = self._submitJobToHost( submitFile, numberOfJobs ) if proxy: os.remove( submitFile ) return result def _submitJobToHost( self, executableFile, numberOfJobs, host = None ): """ Submit prepared executable to the given host """ ssh = SSH( host = host, parameters = self.ceParameters ) # Copy the executable sFile = os.path.basename( executableFile ) result = ssh.scpCall( 10, executableFile, '%s/%s' % ( self.executableArea, os.path.basename( executableFile ) ) ) if not result['OK']: return result jobStamps = [] for i in range( numberOfJobs ): jobStamps.append( makeGuid()[:8] ) jobStamp = '#'.join( jobStamps ) subOptions = urllib.quote( self.submitOptions ) cmd = "bash --login -c '%s/%s submit_job %s/%s %s %s %s %d %s %s %s %s'" % ( self.sharedArea, self.controlScript, self.executableArea, os.path.basename( executableFile ), self.batchOutput, self.batchError, self.workArea, numberOfJobs, self.infoArea, jobStamp, self.execQueue, subOptions ) self.log.verbose( 'CE submission command: %s' % cmd ) result = ssh.sshCall( 120, cmd ) if not result['OK']: self.log.error( '%s CE job submission failed' % self.ceType, result['Message'] ) return result sshStatus = result['Value'][0] sshStdout = result['Value'][1] sshStderr = result['Value'][2] # Examine results of the job submission submitHost = host if host is None: submitHost = self.ceParameters['SSHHost'].split('/')[0] if sshStatus == 0: outputLines = sshStdout.strip().replace('\r','').split('\n') try: index = outputLines.index('============= Start output ===============') outputLines = outputLines[index+1:] except: return S_ERROR( "Invalid output from job submission: %s" % outputLines[0] ) try: status = int( outputLines[0] ) except: return S_ERROR( "Failed local batch job submission: %s" % outputLines[0] ) if status != 0: message = "Unknown reason" if len( outputLines ) > 1: message = outputLines[1] return S_ERROR( 'Failed job submission, reason: %s' % message ) else: batchIDs = outputLines[1:] jobIDs = [ self.ceType.lower()+'://'+self.ceName+'/'+id for id in batchIDs ] else: return S_ERROR( '\n'.join( [sshStdout,sshStderr] ) ) result = S_OK ( jobIDs ) self.submittedJobs += len( batchIDs ) return result def killJob( self, jobIDList ): """ Kill a bunch of jobs """ if type( jobIDList ) in StringTypes: jobIDList = [jobIDList] return self._killJobOnHost( jobIDList ) def _killJobOnHost( self, jobIDList, host = None ): """ Kill the jobs for the given list of job IDs """ resultDict = {} ssh = SSH( host = host, parameters = self.ceParameters ) jobDict = {} for job in jobIDList: result = pfnparse( job ) if result['OK']: stamp = result['Value']['FileName'] else: self.log.error( 'Invalid job id', job ) continue jobDict[stamp] = job stampList = jobDict.keys() cmd = "bash --login -c '%s/%s kill_job %s %s'" % ( self.sharedArea, self.controlScript, '#'.join( stampList ), self.infoArea ) result = ssh.sshCall( 10, cmd ) if not result['OK']: return result sshStatus = result['Value'][0] sshStdout = result['Value'][1] sshStderr = result['Value'][2] # Examine results of the job submission if sshStatus == 0: outputLines = sshStdout.strip().replace('\r','').split('\n') try: index = outputLines.index('============= Start output ===============') outputLines = outputLines[index+1:] except: return S_ERROR( "Invalid output from job kill: %s" % outputLines[0] ) try: status = int( outputLines[0] ) except: return S_ERROR( "Failed local batch job kill: %s" % outputLines[0] ) if status != 0: message = "Unknown reason" if len( outputLines ) > 1: message = outputLines[1] return S_ERROR( 'Failed job kill, reason: %s' % message ) else: return S_ERROR( '\n'.join( [sshStdout,sshStderr] ) ) return S_OK() def _getHostStatus( self, host = None ): """ Get jobs running at a given host """ ssh = SSH( host = host, parameters = self.ceParameters ) cmd = "bash --login -c '%s/%s status_info %s %s %s %s'" % ( self.sharedArea, self.controlScript, self.infoArea, self.workArea, self.ceParameters['SSHUser'], self.execQueue ) result = ssh.sshCall( 10, cmd ) if not result['OK']: return result sshStatus = result['Value'][0] sshStdout = result['Value'][1] sshStderr = result['Value'][2] # Examine results of the job submission resultDict = {} if sshStatus == 0: outputLines = sshStdout.strip().replace('\r','').split('\n') try: index = outputLines.index('============= Start output ===============') outputLines = outputLines[index+1:] except: return S_ERROR( "Invalid output from CE get status: %s" % outputLines[0] ) try: status = int( outputLines[0] ) except: return S_ERROR( "Failed to get CE status: %s" % outputLines[0] ) if status != 0: message = "Unknown reason" if len( outputLines ) > 1: message = outputLines[1] return S_ERROR( 'Failed to get CE status, reason: %s' % message ) else: for line in outputLines[1:]: if ':::' in line: jobStatus, nJobs = line.split( ':::' ) resultDict[jobStatus] = int( nJobs ) else: return S_ERROR( '\n'.join( [sshStdout,sshStderr] ) ) return S_OK( resultDict ) def getCEStatus( self, jobIDList = None ): """ Method to return information on running and pending jobs. """ result = S_OK() result['SubmittedJobs'] = self.submittedJobs result['RunningJobs'] = 0 result['WaitingJobs'] = 0 resultHost = self._getHostStatus() if not resultHost['OK']: return resultHost result['RunningJobs'] = resultHost['Value'].get( 'Running',0 ) result['WaitingJobs'] = resultHost['Value'].get( 'Waiting',0 ) self.log.verbose( 'Waiting Jobs: ', result['WaitingJobs'] ) self.log.verbose( 'Running Jobs: ', result['RunningJobs'] ) return result def getJobStatus( self, jobIDList ): """ Get the status information for the given list of jobs """ return self._getJobStatusOnHost( jobIDList ) def _getJobStatusOnHost( self, jobIDList, host = None ): """ Get the status information for the given list of jobs """ # self.log.verbose( '*** getUnitJobStatus %s - %s\n' % ( jobIDList, host) ) resultDict = {} ssh = SSH( host = host, parameters = self.ceParameters ) jobDict = {} for job in jobIDList: result = pfnparse( job ) if result['OK']: stamp = result['Value']['FileName'] else: self.log.error( 'Invalid job id', job ) continue jobDict[stamp] = job stampList = jobDict.keys() cmd = "bash --login -c '%s/%s job_status %s %s %s'" % ( self.sharedArea, self.controlScript, '#'.join( stampList ), self.infoArea, self.ceParameters['SSHUser'] ) result = ssh.sshCall( 30, cmd ) if not result['OK']: return result sshStatus = result['Value'][0] sshStdout = result['Value'][1] sshStderr = result['Value'][2] if sshStatus == 0: outputLines = sshStdout.strip().replace('\r','').split('\n') try: index = outputLines.index('============= Start output ===============') outputLines = outputLines[index+1:] except: return S_ERROR( "Invalid output from job get status: %s" % outputLines[0] ) try: status = int( outputLines[0] ) except: return S_ERROR( "Failed local batch job status: %s" % outputLines[0] ) if status != 0: message = "Unknown reason" if len( outputLines ) > 1: message = outputLines[1] return S_ERROR( 'Failed job kill, reason: %s' % message ) else: for line in outputLines[1:]: jbundle = line.split( ':::' ) if ( len( jbundle ) == 2 ): resultDict[jobDict[jbundle[0]]] = jbundle[1] else: return S_ERROR( '\n'.join( [sshStdout,sshStderr] ) ) # self.log.verbose( ' !!! getUnitJobStatus will return : %s\n' % resultDict ) return S_OK( resultDict ) def _getJobOutputFiles( self, jobID ): """ Get output file names for the specific CE """ result = pfnparse( jobID ) if not result['OK']: return result jobStamp = result['Value']['FileName'] host = result['Value']['Host'] output = '%s/%s.out' % ( self.batchOutput, jobStamp ) error = '%s/%s.err' % ( self.batchError, jobStamp ) return S_OK( (jobStamp,host,output,error) ) def getJobOutput( self, jobID, localDir = None ): """ Get the specified job standard output and error files. If the localDir is provided, the output is returned as file in this directory. Otherwise, the output is returned as strings. """ result = self._getJobOutputFiles(jobID) if not result['OK']: return result jobStamp,host,outputFile,errorFile = result['Value'] self.log.verbose( 'Getting output for jobID %s' % jobID ) if not localDir: tempDir = tempfile.mkdtemp() else: tempDir = localDir ssh = SSH( parameters = self.ceParameters ) result = ssh.scpCall( 20, '%s/%s.out' % ( tempDir, jobStamp ), '%s' % outputFile, upload = False ) if not result['OK']: return result if not os.path.exists( '%s/%s.out' % ( tempDir, jobStamp ) ): os.system( 'touch %s/%s.out' % ( tempDir, jobStamp ) ) result = ssh.scpCall( 20, '%s/%s.err' % ( tempDir, jobStamp ), '%s' % errorFile, upload = False ) if not result['OK']: return result if not os.path.exists( '%s/%s.err' % ( tempDir, jobStamp ) ): os.system( 'touch %s/%s.err' % ( tempDir, jobStamp ) ) # The result is OK, we can remove the output if self.removeOutput: result = ssh.sshCall( 10, 'rm -f %s/%s.out %s/%s.err' % ( self.batchOutput, jobStamp, self.batchError, jobStamp ) ) if localDir: return S_OK( ( '%s/%s.out' % ( tempDir, jobStamp ), '%s/%s.err' % ( tempDir, jobStamp ) ) ) else: # Return the output as a string outputFile = open( '%s/%s.out' % ( tempDir, jobStamp ), 'r' ) output = outputFile.read() outputFile.close() outputFile = open( '%s/%s.err' % ( tempDir, jobStamp ), 'r' ) error = outputFile.read() outputFile.close() shutil.rmtree( tempDir ) return S_OK( ( output, error ) ) #EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#
calancha/DIRAC
Resources/Computing/SSHComputingElement.py
Python
gpl-3.0
24,359
0.036332
""" Small POP server. Heavilly based on pypopper: a file-based pop3 server (http://code.activestate.com/recipes/534131-pypopper-python-pop3-server/) Useage: python server.py Will return all mail*.txt in the current folder as mail. Output is also printed. """ import logging import socket import glob logging.basicConfig(format="%(message)s") log = logging.getLogger("pypopper") log.setLevel(logging.INFO) class ChatterboxConnection(object): END = "\r\n" def __init__(self, conn): self.conn = conn def __getattr__(self, name): return getattr(self.conn, name) def sendall(self, data, END=END): if len(data) < 50: log.debug("send: %r", data) else: log.debug("send: %r...", data[:50]) data += END self.conn.sendall(data) def recvall(self, END=END): data = [] while True: chunk = self.conn.recv(4096) if END in chunk: data.append(chunk[:chunk.index(END)]) break data.append(chunk) if len(data) > 1: pair = data[-2] + data[-1] if END in pair: data[-2] = pair[:pair.index(END)] data.pop() break log.debug("recv: %r", "".join(data)) return "".join(data) class Message(object): def __init__(self, filename): global MSG_INDEX msg = open(filename, "r") try: self.data = data = msg.read() self.size = len(data) self.top, bot = data.split("\r\n\r\n", 1) self.bot = bot.split("\r\n") self.index = int(filename.split('mail')[1].split('.txt')[0]) finally: msg.close() def handleUser(data, msgs): log.info("USER:%s", data.split()[1]) return "+OK user accepted" def handlePass(data, msgs): log.info("PASS:%s", data.split()[1]) return "+OK pass accepted" def handleStat(data, msgs): return "+OK %i %i" % (len(msgs), sum([msg.size for msg in msgs])) def handleList(data, msgs): return "+OK %i messages (%i octets)\r\n%s\r\n." % (len(msgs), sum([msg.size for msg in msgs]), '\r\n'.join(["%i %i" % (msg.index, msg.size,) for msg in msgs])) def handleTop(data, msgs): cmd, num, lines = data.split() lines = int(lines) msg = msgs[int(num) - 1] text = msg.top + "\r\n\r\n" + "\r\n".join(msg.bot[:lines]) return "+OK top of message follows\r\n%s\r\n." % text def handleRetr(data, msgs): log.info("RETRIVE:%s", data.split()[1]) msg = msgs[int(data.split()[1]) - 1] return "+OK %i octets\r\n%s\r\n." % (msg.size, msg.data) def handleDele(data, msgs): log.info("DELETE:%s", data.split()[1]) return "+OK message 1 deleted" def handleNoop(data, msgs): return "+OK" def handleQuit(data, msgs): return "+OK pypopper POP3 server signing off" dispatch = dict( USER=handleUser, PASS=handlePass, STAT=handleStat, LIST=handleList, TOP=handleTop, RETR=handleRetr, DELE=handleDele, NOOP=handleNoop, QUIT=handleQuit, ) def serve(host, port, filenames): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((host, port)) try: if host: hostname = host else: hostname = "localhost" log.debug("pypopper POP3 serving '%s' on %s:%s", filenames, hostname, port) while True: sock.listen(1) conn, addr = sock.accept() log.debug('Connected by %s', addr) try: msgs = range(0, len(filenames)) for f in filenames: msg = Message(f) msgs[msg.index-1] = msg conn = ChatterboxConnection(conn) conn.sendall("+OK pypopper file-based pop3 server ready") while True: data = conn.recvall() command = data.split(None, 1)[0] try: cmd = dispatch[command] except KeyError: conn.sendall("-ERR unknown command") else: conn.sendall(cmd(data, msgs)) if cmd is handleQuit: return finally: conn.close() msgs = None except (SystemExit, KeyboardInterrupt): log.info("pypopper stopped") except Exception as ex: log.critical("fatal error", exc_info=ex) finally: sock.shutdown(socket.SHUT_RDWR) sock.close() if __name__ == "__main__": filenames = glob.glob("./mail[0-9]*.txt") serve("127.0.0.1", 22110, filenames)
ebu/PlugIt
tests/helpers/pop_server/server.py
Python
bsd-3-clause
4,827
0.001243
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 OpenStack Foundation # Copyright 2013 IBM Corp. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import webob from nova.api.openstack.compute.plugins.v3 import admin_password from nova.compute import api as compute_api from nova import exception from nova.openstack.common import jsonutils from nova import test from nova.tests.api.openstack import fakes def fake_get(self, context, id): return {'uuid': id} def fake_get_non_existed(self, context, id): raise exception.InstanceNotFound(instance_id=id) def fake_set_admin_password(self, context, instance, password=None): pass def fake_set_admin_password_failed(self, context, instance, password=None): raise exception.InstancePasswordSetFailed(instance=instance, reason='') def fake_set_admin_password_non_implement(self, context, instance, password=None): raise NotImplementedError() class AdminPasswordTest(test.NoDBTestCase): def setUp(self): super(AdminPasswordTest, self).setUp() self.stubs.Set(compute_api.API, 'set_admin_password', fake_set_admin_password) self.stubs.Set(compute_api.API, 'get', fake_get) self.app = fakes.wsgi_app_v3(init_only=('servers', admin_password.ALIAS)) def _make_request(self, url, body): req = webob.Request.blank(url) req.method = 'POST' req.body = jsonutils.dumps(body) req.content_type = 'application/json' res = req.get_response(self.app) return res def test_change_password(self): url = '/v3/servers/1/action' body = {'change_password': {'admin_password': 'test'}} res = self._make_request(url, body) self.assertEqual(res.status_int, 204) def test_change_password_empty_string(self): url = '/v3/servers/1/action' body = {'change_password': {'admin_password': ''}} res = self._make_request(url, body) self.assertEqual(res.status_int, 204) def test_change_password_with_non_implement(self): url = '/v3/servers/1/action' body = {'change_password': {'admin_password': 'test'}} self.stubs.Set(compute_api.API, 'set_admin_password', fake_set_admin_password_non_implement) res = self._make_request(url, body) self.assertEqual(res.status_int, 501) def test_change_password_with_non_existed_instance(self): url = '/v3/servers/1/action' body = {'change_password': {'admin_password': 'test'}} self.stubs.Set(compute_api.API, 'get', fake_get_non_existed) res = self._make_request(url, body) self.assertEqual(res.status_int, 404) def test_change_password_with_non_string_password(self): url = '/v3/servers/1/action' body = {'change_password': {'admin_password': 1234}} res = self._make_request(url, body) self.assertEqual(res.status_int, 400) def test_change_password_failed(self): url = '/v3/servers/1/action' body = {'change_password': {'admin_password': 'test'}} self.stubs.Set(compute_api.API, 'set_admin_password', fake_set_admin_password_failed) res = self._make_request(url, body) self.assertEqual(res.status_int, 409) def test_change_password_without_admin_password(self): url = '/v3/servers/1/action' body = {'change_password': {}} res = self._make_request(url, body) self.assertEqual(res.status_int, 400) def test_change_password_none(self): url = '/v3/servers/1/action' body = {'change_password': None} res = self._make_request(url, body) self.assertEqual(res.status_int, 400) class AdminPasswordXMLTest(test.NoDBTestCase): def setUp(self): super(AdminPasswordXMLTest, self).setUp() self.deserializer = admin_password.ChangePasswordDeserializer() def test_change_password_deserializer(self): request = '<change_password admin_password="1"></change_password>' expected = {'body': {'change_password': {'admin_password': '1'}}} res = self.deserializer.default(request) self.assertEqual(res, expected) def test_change_password_deserializer_without_admin_password(self): request = '<change_password></change_password>' expected = {'body': {'change_password': None}} res = self.deserializer.default(request) self.assertEqual(res, expected) def test_change_pass_no_pass(self): request = """<?xml version="1.0" encoding="UTF-8"?> <change_password xmlns="http://docs.openstack.org/compute/api/v1.1"/> """ request = self.deserializer.default(request) expected = { "change_password": None } self.assertEqual(request['body'], expected) def test_change_pass_empty_pass(self): request = """<?xml version="1.0" encoding="UTF-8"?> <change_password xmlns="http://docs.openstack.org/compute/api/v1.1" admin_password=""/> """ request = self.deserializer.default(request) expected = { "change_password": { "admin_password": "", }, } self.assertEqual(request['body'], expected)
sacharya/nova
nova/tests/api/openstack/compute/plugins/v3/test_admin_password.py
Python
apache-2.0
5,987
0
# coding: utf-8 """ KubeVirt API This is KubeVirt API an add-on for Kubernetes. OpenAPI spec version: 1.0.0 Contact: kubevirt-dev@googlegroups.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubevirt from kubevirt.rest import ApiException from kubevirt.models.v1_i6300_esb_watchdog import V1I6300ESBWatchdog class TestV1I6300ESBWatchdog(unittest.TestCase): """ V1I6300ESBWatchdog unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1I6300ESBWatchdog(self): """ Test V1I6300ESBWatchdog """ # FIXME: construct object with mandatory attributes with example values #model = kubevirt.models.v1_i6300_esb_watchdog.V1I6300ESBWatchdog() pass if __name__ == '__main__': unittest.main()
kubevirt/client-python
test/test_v1_i6300_esb_watchdog.py
Python
apache-2.0
927
0.001079
# Copyright 2014 - Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import json from unittest import mock import sqlalchemy as sa from mistral.db.v2 import api as db_api from mistral.db.v2.sqlalchemy import models from mistral import exceptions as exc from mistral.services import security from mistral.tests.unit.api import base from mistral.tests.unit import base as unit_base WF = models.WorkflowDefinition( spec={ 'version': '2.0', 'name': 'my_wf', 'tasks': { 'task1': { 'action': 'std.noop' } } } ) WF.update({'id': '123e4567-e89b-12d3-a456-426655440000', 'name': 'my_wf'}) TRIGGER = { 'id': '02abb422-55ef-4bb2-8cb9-217a583a6a3f', 'name': 'my_cron_trigger', 'pattern': '* * * * *', 'workflow_name': WF.name, 'workflow_id': '123e4567-e89b-12d3-a456-426655440000', 'workflow_input': '{}', 'workflow_params': '{}', 'scope': 'private', 'remaining_executions': 42 } trigger_values = copy.deepcopy(TRIGGER) trigger_values['workflow_input'] = json.loads( trigger_values['workflow_input']) trigger_values['workflow_params'] = json.loads( trigger_values['workflow_params']) TRIGGER_DB = models.CronTrigger() TRIGGER_DB.update(trigger_values) TRIGGER_DB_WITH_PROJECT_ID = TRIGGER_DB.get_clone() TRIGGER_DB_WITH_PROJECT_ID.project_id = '<default-project>' MOCK_WF = mock.MagicMock(return_value=WF) MOCK_TRIGGER = mock.MagicMock(return_value=TRIGGER_DB) MOCK_TRIGGERS = mock.MagicMock(return_value=[TRIGGER_DB]) MOCK_DELETE = mock.MagicMock(return_value=1) MOCK_EMPTY = mock.MagicMock(return_value=[]) MOCK_NOT_FOUND = mock.MagicMock(side_effect=exc.DBEntityNotFoundError()) MOCK_DUPLICATE = mock.MagicMock(side_effect=exc.DBDuplicateEntryError()) class TestCronTriggerController(base.APITest): @mock.patch.object(db_api, "get_cron_trigger", MOCK_TRIGGER) def test_get(self): resp = self.app.get('/v2/cron_triggers/my_cron_trigger') self.assertEqual(200, resp.status_int) self.assertDictEqual(TRIGGER, resp.json) @mock.patch.object(db_api, 'get_cron_trigger') def test_get_operational_error(self, mocked_get): mocked_get.side_effect = [ # Emulating DB OperationalError sa.exc.OperationalError('Mock', 'mock', 'mock'), TRIGGER_DB # Successful run ] resp = self.app.get('/v2/cron_triggers/my_cron_trigger') self.assertEqual(200, resp.status_int) self.assertDictEqual(TRIGGER, resp.json) @mock.patch.object(db_api, "get_cron_trigger", return_value=TRIGGER_DB_WITH_PROJECT_ID) def test_get_within_project_id(self, mock_get): resp = self.app.get('/v2/cron_triggers/my_cron_trigger') self.assertEqual(200, resp.status_int) self.assertTrue('project_id' in resp.json) @mock.patch.object(db_api, "get_cron_trigger", MOCK_NOT_FOUND) def test_get_not_found(self): resp = self.app.get( '/v2/cron_triggers/my_cron_trigger', expect_errors=True ) self.assertEqual(404, resp.status_int) @mock.patch.object(db_api, "get_cron_trigger", MOCK_TRIGGER) def test_get_by_id(self): resp = self.app.get( "/v2/cron_triggers/02abb422-55ef-4bb2-8cb9-217a583a6a3f") self.assertEqual(200, resp.status_int) self.assertDictEqual(TRIGGER, resp.json) @mock.patch.object(db_api, "get_workflow_definition", MOCK_WF) @mock.patch.object(db_api, "create_cron_trigger") def test_post(self, mock_mtd): mock_mtd.return_value = TRIGGER_DB resp = self.app.post_json('/v2/cron_triggers', TRIGGER) self.assertEqual(201, resp.status_int) self.assertDictEqual(TRIGGER, resp.json) self.assertEqual(1, mock_mtd.call_count) values = mock_mtd.call_args[0][0] self.assertEqual('* * * * *', values['pattern']) self.assertEqual(42, values['remaining_executions']) @mock.patch.object(db_api, "get_workflow_definition", MOCK_WF) @mock.patch.object(db_api, "create_cron_trigger", MOCK_DUPLICATE) @mock.patch.object(security, "delete_trust") def test_post_dup(self, delete_trust): resp = self.app.post_json( '/v2/cron_triggers', TRIGGER, expect_errors=True ) self.assertEqual(1, delete_trust.call_count) self.assertEqual(409, resp.status_int) @mock.patch.object(db_api, "get_workflow_definition", MOCK_WF) @mock.patch.object(db_api, "create_cron_trigger", MOCK_DUPLICATE) def test_post_same_wf_and_input(self): trig = TRIGGER.copy() trig['name'] = 'some_trigger_name' resp = self.app.post_json( '/v2/cron_triggers', trig, expect_errors=True ) self.assertEqual(409, resp.status_int) @mock.patch.object(db_api, "get_cron_trigger", MOCK_TRIGGER) @mock.patch.object(db_api, "delete_cron_trigger", MOCK_DELETE) @mock.patch.object(security, "delete_trust") def test_delete(self, delete_trust): resp = self.app.delete('/v2/cron_triggers/my_cron_trigger') self.assertEqual(1, delete_trust.call_count) self.assertEqual(204, resp.status_int) @mock.patch.object(db_api, "get_cron_trigger", MOCK_TRIGGER) @mock.patch.object(db_api, "delete_cron_trigger", MOCK_DELETE) @mock.patch.object(security, "delete_trust") def test_delete_by_id(self, delete_trust): resp = self.app.delete( '/v2/cron_triggers/02abb422-55ef-4bb2-8cb9-217a583a6a3f') self.assertEqual(1, delete_trust.call_count) self.assertEqual(204, resp.status_int) @mock.patch.object(db_api, "delete_cron_trigger", MOCK_NOT_FOUND) def test_delete_not_found(self): resp = self.app.delete( '/v2/cron_triggers/my_cron_trigger', expect_errors=True ) self.assertEqual(404, resp.status_int) @mock.patch.object(db_api, "get_cron_triggers", MOCK_TRIGGERS) def test_get_all(self): resp = self.app.get('/v2/cron_triggers') self.assertEqual(200, resp.status_int) self.assertEqual(1, len(resp.json['cron_triggers'])) self.assertDictEqual(TRIGGER, resp.json['cron_triggers'][0]) @mock.patch.object(db_api, 'get_cron_triggers') def test_get_all_operational_error(self, mocked_get_all): mocked_get_all.side_effect = [ # Emulating DB OperationalError sa.exc.OperationalError('Mock', 'mock', 'mock'), [TRIGGER_DB] # Successful run ] resp = self.app.get('/v2/cron_triggers') self.assertEqual(200, resp.status_int) self.assertEqual(1, len(resp.json['cron_triggers'])) self.assertDictEqual(TRIGGER, resp.json['cron_triggers'][0]) @mock.patch.object(db_api, 'get_cron_triggers') @mock.patch('mistral.context.MistralContext.from_environ') def test_get_all_projects_admin(self, mock_context, mock_get_triggers): admin_ctx = unit_base.get_context(admin=True) mock_context.return_value = admin_ctx resp = self.app.get('/v2/cron_triggers?all_projects=true') self.assertEqual(200, resp.status_int) self.assertTrue(mock_get_triggers.call_args[1].get('insecure', False)) @mock.patch.object(db_api, 'get_cron_triggers') @mock.patch('mistral.context.MistralContext.from_environ') def test_get_all_filter_project(self, mock_context, mock_get_triggers): admin_ctx = unit_base.get_context(admin=True) mock_context.return_value = admin_ctx resp = self.app.get( '/v2/cron_triggers?all_projects=true&' 'project_id=192796e61c174f718d6147b129f3f2ff' ) self.assertEqual(200, resp.status_int) self.assertTrue(mock_get_triggers.call_args[1].get('insecure', False)) self.assertEqual( {'eq': '192796e61c174f718d6147b129f3f2ff'}, mock_get_triggers.call_args[1].get('project_id') ) @mock.patch.object(db_api, "get_cron_triggers", MOCK_EMPTY) def test_get_all_empty(self): resp = self.app.get('/v2/cron_triggers') self.assertEqual(200, resp.status_int) self.assertEqual(0, len(resp.json['cron_triggers']))
openstack/mistral
mistral/tests/unit/api/v2/test_cron_triggers.py
Python
apache-2.0
8,830
0
""" MobileRobots Advanced Robotics Interface for Applications (ARIA) Copyright (C) 2004, 2005 ActivMedia Robotics LLC Copyright (C) 2006, 2007, 2008, 2009 MobileRobots Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA If you wish to redistribute ARIA under different terms, contact MobileRobots for information about a commercial version of ARIA at robots@mobilerobots.com or MobileRobots Inc, 10 Columbia Drive, Amherst, NH 03031; 800-639-9481 """ from AriaPy import * from ArNetworkingPy import * import sys from math import sin # This is an example server that shows how to draw arbitrary figures in a # client (e.g. MobileEyes). # These are callbacks that respond to client requests for the drawings' # geometry data. def exampleHomeDrawingNetCallback(client, requestPkt): print "exampleHomeDrawingNetCallback" reply = ArNetPacket() # 7 Vertices reply.byte4ToBuf(7) # Centered on 0,0. # X: Y: reply.byte4ToBuf(-500); reply.byte4ToBuf(500); # Vertex 1 reply.byte4ToBuf(-500); reply.byte4ToBuf(-500); # Vertex 2 reply.byte4ToBuf(500); reply.byte4ToBuf(-500); # Vertex 3 reply.byte4ToBuf(500); reply.byte4ToBuf(500); # Vertex 4 reply.byte4ToBuf(0); reply.byte4ToBuf(1000); # Vertex 5 reply.byte4ToBuf(-500); reply.byte4ToBuf(500); # Vertex 6 reply.byte4ToBuf(500); reply.byte4ToBuf(500); # Vertex 7 client.sendPacketUdp(reply) print "exampleHomeDrawingNetCallback Done." def exampleDotsDrawingNetCallback(client, requestPkt): reply = ArNetPacket() tik = ArUtil.getTime() % 200 t = tik / 5.0 # Three dots reply.byte4ToBuf(3) # Dot 1: reply.byte4ToBuf(3000); # X coordinate (mm) reply.byte4ToBuf((int) (sin(t) * 1000));# Y # Dot 2: reply.byte4ToBuf(3500); # X reply.byte4ToBuf((int) (sin(t+500) * 1000));# Y # Dot 3: reply.byte4ToBuf(4000); # X reply.byte4ToBuf((int) (sin(t+1000) * 1000));# Y client.sendPacketUdp(reply) def exampleXDrawingNetCallback(client, requestPkt): reply = ArNetPacket() # X marks the spot. 2 line segments, so 4 vertices: reply.byte4ToBuf(4) # Segment 1: reply.byte4ToBuf(-4250); # X1 reply.byte4ToBuf(250); # Y1 reply.byte4ToBuf(-3750); # X2 reply.byte4ToBuf(-250); # Y2 # Segment 2: reply.byte4ToBuf(-4250); # X1 reply.byte4ToBuf(-250); # Y1 reply.byte4ToBuf(-3750); # X2 reply.byte4ToBuf(250); # Y2 client.sendPacketUdp(reply) def exampleArrowsDrawingNetCallback(client, requestPkt): # 1 arrow that points at the robot reply = ArNetPacket() reply.byte4ToBuf(1) # 1 arrow reply.byte4ToBuf(0); # Pos. X reply.byte4ToBuf(700); # Pos. Y client.sendPacketUdp(reply) # Main program: Aria.init() robot = ArRobot() server = ArServerBase() parser = ArArgumentParser(sys.argv) simpleConnector = ArSimpleConnector(parser) simpleOpener = ArServerSimpleOpener(parser) parser.loadDefaultArguments() if not Aria.parseArgs() or not parser.checkHelpAndWarnUnparsed(): Aria.logOptions() Aria.exit(1) if not simpleOpener.open(server): if simpleOpener.wasUserFileBad(): print "Error: Bad user/password/permissions file." else: print "Error: Could not open server port. Use -help to see options." Aria.exit(1) # Devices sonarDev = ArSonarDevice() robot.addRangeDevice(sonarDev) irs = ArIRs() robot.addRangeDevice(irs) bumpers = ArBumpers() robot.addRangeDevice(bumpers) sick = ArSick() robot.addRangeDevice(sick); # attach services to the server serverInfoRobot = ArServerInfoRobot(server, robot) serverInfoSensor = ArServerInfoSensor(server, robot) # This is the service that provides drawing data to the client. drawings = ArServerInfoDrawings(server) # Convenience function that sets up drawings for all the robot's current # range devices (using default shape and color info) drawings.addRobotsRangeDevices(robot) # Add our custom drawings linedd = ArDrawingData("polyLine", ArColor(255, 0, 0), 2, 49) # shape name, color, size, layer drawings.addDrawing( linedd, "exampleDrawing_Home", exampleHomeDrawingNetCallback) dotsdd = ArDrawingData("polyDots", ArColor(0, 255, 0), 250, 48) drawings.addDrawing(dotsdd, "exampleDrawing_Dots", exampleDotsDrawingNetCallback) segdd = ArDrawingData("polySegments", ArColor(0, 0, 0), 4, 52) drawings.addDrawing( segdd, "exampleDrawing_XMarksTheSpot", exampleXDrawingNetCallback) ardd = ArDrawingData("polyArrows", ArColor(255, 0, 255), 500, 100) drawings.addDrawing( ardd, "exampleDrawing_Arrows", exampleArrowsDrawingNetCallback) # modes for moving the robot modeStop = ArServerModeStop(server, robot) modeDrive = ArServerModeDrive(server, robot) modeRatioDrive = ArServerModeRatioDrive(server, robot) modeWander = ArServerModeWander(server, robot) modeStop.addAsDefaultMode() modeStop.activate() # set up some simple commands ("custom commands") commands = ArServerHandlerCommands(server) uCCommands = ArServerSimpleComUC(commands, robot) loggingCommands = ArServerSimpleComMovementLogging(commands, robot) configCommands = ArServerSimpleComLogRobotConfig(commands, robot) # add the commands to enable and disable safe driving to the simple commands modeDrive.addControlCommands(commands) # Connect to the robot. if not simpleConnector.connectRobot(robot): print "Error: Could not connect to robot... exiting" Aria.shutdown() sys.exit(1) # set up the laser before handing it to the laser mode simpleConnector.setupLaser(sick) robot.enableMotors() # start the robot cycle running in a background thread robot.runAsync(True) # start the laser processing cycle in a background thread sick.runAsync() # connect the laser if it was requested if not simpleConnector.connectLaser(sick): print "Error: Could not connect to laser... exiting" Aria.shutdown() sys.exit(1) # log whatever we wanted to before the runAsync simpleOpener.checkAndLog() # run the server thread in the background server.runAsync() print "Server is now running on port %d..." % (simpleOpener.getPort()) robot.waitForRunExit() Aria.shutdown()
charismaticchiu/Robotics
ArNetworking/pythonExamples/drawingsExample.py
Python
gpl-2.0
6,718
0.018904
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "asuna.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
rogeliorv/asuna
manage.py
Python
apache-2.0
250
0.004
# -*- coding: latin-1 -*- import re import math import urllib from string import join import traceback, sys class JsUnwiser: def unwiseAll(self, data): try: in_data=data sPattern = 'eval\\(function\\(w,i,s,e\\).*?}\\((.*?)\\)' wise_data=re.compile(sPattern).findall(in_data) for wise_val in wise_data: unpack_val=self.unwise(wise_val) #print '\nunpack_val',unpack_val in_data=in_data.replace(wise_val,unpack_val) return in_data except: traceback.print_exc(file=sys.stdout) return data def containsWise(self, data): return 'w,i,s,e' in data def unwise(self, sJavascript): #print 'sJavascript',sJavascript page_value="" try: ss="w,i,s,e=("+sJavascript+')' exec (ss) page_value=self.__unpack(w,i,s,e) except: traceback.print_exc(file=sys.stdout) return page_value def __unpack( self,w, i, s, e): lIll = 0; ll1I = 0; Il1l = 0; ll1l = []; l1lI = []; while True: if (lIll < 5): l1lI.append(w[lIll]) elif (lIll < len(w)): ll1l.append(w[lIll]); lIll+=1; if (ll1I < 5): l1lI.append(i[ll1I]) elif (ll1I < len(i)): ll1l.append(i[ll1I]) ll1I+=1; if (Il1l < 5): l1lI.append(s[Il1l]) elif (Il1l < len(s)): ll1l.append(s[Il1l]); Il1l+=1; if (len(w) + len(i) + len(s) + len(e) == len(ll1l) + len(l1lI) + len(e)): break; lI1l = ''.join(ll1l)#.join(''); I1lI = ''.join(l1lI)#.join(''); ll1I = 0; l1ll = []; for lIll in range(0,len(ll1l),2): #print 'array i',lIll,len(ll1l) ll11 = -1; if ( ord(I1lI[ll1I]) % 2): ll11 = 1; #print 'val is ', lI1l[lIll: lIll+2] l1ll.append(chr( int(lI1l[lIll: lIll+2], 36) - ll11)); ll1I+=1; if (ll1I >= len(l1lI)): ll1I = 0; ret=''.join(l1ll) if 'eval(function(w,i,s,e)' in ret: ret=re.compile('eval\(function\(w,i,s,e\).*}\((.*?)\)').findall(ret)[0] return self.unwise(ret) else: return ret
siouka/dmind
plugin.video.tvpor/resources/lib/unwise.py
Python
gpl-2.0
2,506
0.027933
from django.conf.urls import patterns, url from .views import info, useradmin, user_info, user_remove urlpatterns = patterns( '', url('^info/$', info, name="info"), url('^useradmin/$', useradmin, name="useradmin"), url(r'^useradmin/info/(?P<email>[^/]+)/$', user_info, name='user_info'), url(r'^useradmin/remove/(?P<email>[^/]+)/$', user_remove, name='user_remove'), )
saukrIppl/seahub
seahub/institutions/urls.py
Python
apache-2.0
391
0.002558
''' urlresolver XBMC Addon Copyright (C) 2013 Bstrdsmkr This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' from t0mm0.common.net import Net from urlresolver.plugnplay.interfaces import UrlResolver from urlresolver.plugnplay.interfaces import PluginSettings from urlresolver.plugnplay import Plugin import re, urllib2, os, xbmcgui from urlresolver import common #SET ERROR_LOGO# THANKS TO VOINAGE, BSTRDMKR, ELDORADO error_logo = os.path.join(common.addon_path, 'resources', 'images', 'redx.png') class PromptfileResolver(Plugin, UrlResolver, PluginSettings): implements = [UrlResolver, PluginSettings] name = "promptfile" def __init__(self): p = self.get_setting('priority') or 100 self.priority = int(p) self.net = Net() def get_media_url(self, host, media_id): web_url = self.get_url(host, media_id) try: html = self.net.http_GET(web_url).content data = {} r = re.findall(r'type="hidden"\s*name="(.+?)"\s*value="(.*?)"', html) for name, value in r: data[name] = value html = self.net.http_POST(web_url, data).content html = re.compile(r'clip\s*:\s*\{.*?url\s*:\s*[\"\'](.+?)[\"\']', re.DOTALL).search(html) if not html: raise Exception ('File Not Found or removed') stream_url = html.group(1) return stream_url except urllib2.URLError, e: common.addon.log_error(self.name + ': got http error %d fetching %s' % (e.code, web_url)) common.addon.show_small_popup('Error','Http error: '+str(e), 5000, error_logo) return self.unresolvable(code=3, msg=e) except Exception, e: common.addon.log_error('**** Promptfile Error occured: %s' % e) common.addon.show_small_popup(title='[B][COLOR white]PROMPTFILE[/COLOR][/B]', msg='[COLOR red]%s[/COLOR]' % e, delay=5000, image=error_logo) return self.unresolvable(code=0, msg=e) def get_url(self, host, media_id): return 'http://www.promptfile.com/%s' % (media_id) def get_host_and_id(self, url): r = re.search('//(.+?)/(.+)', url) if r: return r.groups() else: return False def valid_url(self, url, host): if self.get_setting('enabled') == 'false': return False return (re.match('http://(www.)?promptfile.com/l/' + '[0-9A-Za-z\-]+', url) or 'promptfile' in host)
SMALLplayer/smallplayer-image-creator
storage/.xbmc/addons/script.module.urlresolver/lib/urlresolver/plugins/promptfile.py
Python
gpl-2.0
3,129
0.004155
# Copyright (c) 2013 OpenStack Foundation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from neutron.tests.unit.linuxbridge import test_linuxbridge_plugin from neutron.tests.unit.openvswitch import test_agent_scheduler class LbAgentSchedulerTestCase( test_agent_scheduler.OvsAgentSchedulerTestCase): plugin_str = test_linuxbridge_plugin.PLUGIN_NAME l3_plugin = None class LbL3AgentNotifierTestCase( test_agent_scheduler.OvsL3AgentNotifierTestCase): plugin_str = test_linuxbridge_plugin.PLUGIN_NAME l3_plugin = None class LbDhcpAgentNotifierTestCase( test_agent_scheduler.OvsDhcpAgentNotifierTestCase): plugin_str = test_linuxbridge_plugin.PLUGIN_NAME
shakamunyi/neutron-vrrp
neutron/tests/unit/linuxbridge/test_agent_scheduler.py
Python
apache-2.0
1,192
0.002517
{ 'name' : 'Custom pos session report (2)', 'version' : '1.0.0', 'author' : 'IT-Projects LLC, Ivan Yelizariev', 'license': 'GPL-3', 'category' : 'Custom', 'website' : 'https://yelizariev.github.io', 'description': """ Tested on Odoo 8.0 258a4cac82ef3b7e6a086f691f3bf8140d37b51c """, 'data':[ 'views/session_view.xml', 'views/pos_session_custom_report1.xml', 'views/report1.xml', 'views/layouts.xml', ], 'depends': ['base','point_of_sale'], 'init_xml': [], 'update_xml': [], 'installable': True, }
bmya/pos-addons
pos_session_custom2/__openerp__.py
Python
lgpl-3.0
583
0.012007
# Copyright (c) 2016 Uber Technologies, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import absolute_import import struct import six from .errors import ReadError skip = '_' def none(): """A ReadWriter that consumes nothing and returns None.""" return NoneReadWriter() def constant(rw, value): """A ReadWriter that runs the given ReadWriter and ignores the value. Always writes and returns ``value`` instead. :param rw: ReadWriter to run :param value: Value to serialize and return """ return ConstantReadWriter(rw, value) def number(width_bytes): """Build a ReadWriter for integers of the given width. :param width_bytes: Width of the integer. One of 1, 2, 4 and 8. """ return NumberReadWriter(width_bytes) def args(length_rw): """Build a ReadWriter for args=[arg1, arg2, arg3] :param length_rw: ReadWriter for the length of each arg """ return ArgsReaderWriter(length_rw) def len_prefixed_string(length_rw, is_binary=False): """Build a ReadWriter for strings prefixed with their length. .. code-block:: python len_prefixed_string(number(2)) # == str~2 :param length_rw: ReadWriter for the length of the string :param is_binary: Whether the string is a binary blob. If this is False (the default), the string will be encoded/decoded to UTF-8 before writing/reading. """ return LengthPrefixedBlobReadWriter(length_rw, is_binary) def chain(*rws): """Build a ReadWriter from the given list of ReadWriters. .. code-block:: python chain( number(1), number(8), len_prefixed_string(number(2)), ) # == n1:1 n2:8 s~2 Reads/writes from the given ReadWriters in-order. Returns lists of values in the same order as the ReadWriters. :param rws: One or more ReadWriters """ assert rws is not None if len(rws) == 1 and isinstance(rws[0], list): # In case someone does chain([l0, l1, ...]) rws = rws[0] return ChainReadWriter(rws) def dictionary(*pairs): """Build a ReadWriter that reads/writes dictionaries. ``pairs`` are tuples containing field names and their corresponding ReadWriters. The fields will be read and written in the same order provided here. For example the following ReadWriter will read and write dictionaries in the form ``{"flags": <byte>, "id": <int32>}``. .. code-block:: python dictionary( ("flags", number(1)), ("id", number(4)), ) For pairs where the key name is `rw.skip`, the value will not be saved and the serializer will receive None. :param pairs: One or more tuples in the from ``(<field name>, <ReadWriter>)``. """ return NamedChainReadWriter(pairs) def instance(cls, *pairs): """Build a ReadWriter that reads/writes intances of the given class. ``pairs`` are key-value pairs that specify constructor argument names and their corresponding ReadWriters. These same names are used to access attributes on instances when writing. .. code-block:: python instance( Person, ("name", len_prefixed_string(number(2))), ("age", number(1)) ) For pairs where the attribute name is `rw.skip`, the value will not be passed to the constructor. Further, while serializing, None will be passed to the serializer. :param cls: A class with an ``__init__`` method accepting keyword arguments for all items specified in ``pairs`` :param pairs: Key-value pairs mapping argument name to ReadWriter. """ return InstanceReadWriter(cls, pairs) def headers(length_rw, key_rw, value_rw=None): """Build a ReadWriter for header lists. A header is represented as:: count:L (key:K value:V){count} The value produced is a list of key-value pairs. For example, .. code-block:: python headers( number(L), len_prefixed_string(number(K)), len_prefixed_string(number(V)), ) :param length_rw: ReadWriter for the number of pairs in the header :param key_rw: ReadWriter for a key in a pair :param value_rw: ReadWriter for a value in a pair. Defaults to ``key_rw``. """ return HeadersReadWriter(length_rw, key_rw, value_rw) def switch(switch_rw, cases): """A ReadWriter that picks behavior based on the value of ``switch_rw``. .. code-block:: python switch( number(1), { 0: option_1_rw(), 1: option_2_rw() } ) Produces a tuple in the from ``(switch_value, case_value)``. If a given switch value did not have a corresponding case, nothing will be written to the stream and None will be returned as the value when reading. :param switch_rw: A ReadWriter that produces a value to dispatch on :param cases: Pairs where the key is the expected value from ``switch_rw``. If the value matches, the corresponding ReadWriter will be executed. """ return SwitchReadWriter(switch_rw, cases) class ReadWriter(object): """Provides the ability to read/write types from/to file-like objects. ReadWrites SHOULD not maintain any state between calls to ``read``/``write`` and MUST be re-usable and thread-safe. The ``read``/``write`` methods MAY Be called on the same ReadWriter instance multiple times for different requests at the same time. The file-like stream object MUST provide ``read(int)`` and ``write(str)`` methods with behaviors as follows: ``read(int)`` MUST return the specified number of bytes from the stream. MAY return fewer bytes if the end of the stream was reached. ``write(str)`` MUST write the given string or buffer to the stream. """ def read(self, stream): """Read and return the object from the stream. :param stream: file-like object providing a `read(int)` method :returns: the deserialized object :raises ReadError: for parse errors or if the input is too short """ raise NotImplementedError() def write(self, obj, stream): """Write the object to the stream. :param stream: file-like obect providing a `write(str)` method :returns: the stream """ raise NotImplementedError() def length(self, obj): """Return the number of bytes will actually be written into io. For cases where the width depends on the input, this should return the length of data will be written into iostream.""" raise NotImplementedError() def width(self): """Return the number of bytes this ReadWriter is expected to take. For cases where the width depends on the input, this should return the minimum width the ReadWriter is expected to take.""" raise NotImplementedError() def take(self, stream, num): """Read the given number of bytes from the stream. :param stream: stream to read from :param num: number of bytes to read :raises ReadError: if the stream did not yield the exact number of bytes expected """ s = stream.read(num) slen = len(s) if slen != num: raise ReadError( "Expected %d bytes but got %d bytes." % (num, slen) ) return s class DelegatingReadWriterMeta(type): def __new__(mcs, name, bases, dct): if bases != (ReadWriter,): # Children of this class MUST provide __rw__ assert dct.get('__rw__'), ( "%s.__rw__ must be set" % name ) return type.__new__(mcs, name, bases, dct) class DelegatingReadWriter(six.with_metaclass(DelegatingReadWriterMeta, ReadWriter)): # noqa """Allows mapping ReadWriters onto different types. A common pattern is to define a base ReadWriter using the primitives from this module and then map those onto custom types. For example, consider a Person class. .. code-block:: python Person = namedtuple('Person', 'name age') Given a ReadWriter that produces a ``(name, age)`` tuple, we want to map it to/from Person object. .. code-block:: python class PersonReadWriter(DelegatingReadWriter): __rw__ = # a ReadWriter that produces (name, age) tuples def read(self, stream): (name, age) = super(PersonReadWriter, self).read(stream) return Person(name, age) def write(self, person, stream): super(PersonReadWriter, self).write( (person.name, person.age), stream, ) """ # The underlying ReadWriter. All calls will be delegated to this. __rw__ = None def read(self, stream): return self.__rw__.read(stream) def write(self, obj, stream): self.__rw__.write(obj, stream) return stream def width(self): return self.__rw__.width() def length(self, obj): return self.__rw__.length(obj) class NumberReadWriter(ReadWriter): """See :py:func:`number` for documentation.""" _FORMATS = { 1: '>B', 2: '>H', 4: '>I', 8: '>Q', } __slots__ = ('_width', '_format') def __init__(self, width_bytes): assert width_bytes in self._FORMATS, ( "Unsupported integer width '%d'" % width_bytes ) self._width = width_bytes self._format = self._FORMATS[width_bytes] def read(self, stream): return struct.unpack(self._format, self.take(stream, self._width))[0] def write(self, num, stream): # Cast to int just in case the value is still a float stream.write(struct.pack(self._format, int(num))) return stream def width(self): return self._width def length(self, obj): return self._width class ArgsReaderWriter(ReadWriter): def __init__(self, length_rw, num=3): assert length_rw is not None self._length_rw = length_rw self._rw = len_prefixed_string(self._length_rw, is_binary=True) self.num = num def read(self, stream): args = [] try: for _ in range(self.num): args.append(self._rw.read(stream)) except ReadError: pass return args def write(self, args, stream): for arg in args: if arg is None: arg = "" self._rw.write(arg, stream) def width(self): return self.num * self._length_rw.width() def length(self, args): size = 0 for arg in args: if arg is None: arg = "" size += self._rw.length(arg) return size class LengthPrefixedBlobReadWriter(ReadWriter): """See :py:func:`len_prefixed_string` for documentation.""" __slots__ = ('_length', '_is_binary') def __init__(self, length_rw, is_binary=False): assert length_rw is not None self._length = length_rw self._is_binary = is_binary def read(self, stream): length = self._length.read(stream) if length == 0: return b"" else: blob = self.take(stream, length) if not self._is_binary: blob = blob.decode('utf-8') return blob def write(self, s, stream): if six.PY2 and not self._is_binary: s = s.encode('utf-8') if six.PY3 and isinstance(s, str): s = s.encode('utf-8') length = len(s) self._length.write(length, stream) stream.write(s) return stream def width(self): return self._length.width() def length(self, s): if not self._is_binary: if six.PY2: s = s.encode('utf-8') if six.PY3 and isinstance(s, str) or s is None: s = s.encode('utf-8') return len(s) + self._length.width() class ChainReadWriter(ReadWriter): """See :py:func:`chain` for documentation.""" __slots__ = ('_links',) def __init__(self, links): assert links is not None self._links = tuple(links) def read(self, stream): return [link.read(stream) for link in self._links] def write(self, items, stream): assert len(items) == len(self._links) for item, link in zip(items, self._links): link.write(item, stream) return stream def width(self): return sum(link.width() for link in self._links) def length(self, items): assert len(items) == len(self._links) size = 0 for item, link in zip(items, self._links): size += link.length(item) return size class NamedChainReadWriter(ReadWriter): """See :py:func:`dictionary` for documentation.""" __slots__ = ('_pairs',) def __init__(self, pairs): assert pairs is not None self._pairs = pairs def read(self, stream): result = {} for name, rw in self._pairs: try: value = rw.read(stream) if name != skip: result[name] = value except ReadError as e: raise ReadError("Failed to read %s: %s" % (name, e)) return result def write(self, obj, stream): for name, rw in self._pairs: if name != skip: rw.write(obj[name], stream) else: rw.write(None, stream) return stream def width(self): return sum(rw.width() for _, rw in self._pairs) def length(self, obj): size = 0 for name, rw in self._pairs: if name != skip: size += rw.length(obj[name]) else: size += rw.length(None) return size class InstanceReadWriter(ReadWriter): __slots__ = ('_cls', '_pairs',) def __init__(self, cls, pairs): self._pairs = pairs self._cls = cls def read(self, stream): kwargs = {} try: for attr, rw in self._pairs: value = rw.read(stream) if attr != skip: kwargs[attr] = value except ReadError as e: raise ReadError("Failed to read %s: %s" % (self._cls, e)) return self._cls(**kwargs) def write(self, obj, stream): for attr, rw in self._pairs: if attr != skip: value = getattr(obj, attr) rw.write(value, stream) else: rw.write(None, stream) return stream def width(self): return sum(rw.width() for _, rw in self._pairs) def length(self, obj): size = 0 for attr, rw in self._pairs: if attr != skip: value = getattr(obj, attr) size += rw.length(value) else: size += rw.length(None) return size def length_no_args(self, obj): size = 0 for attr, rw in self._pairs: if attr == "args": continue if attr != skip: value = getattr(obj, attr) size += rw.length(value) else: size += rw.length(None) return size class HeadersReadWriter(ReadWriter): """See :py:func:`headers` for documentation.""" __slots__ = ('_length', '_key', '_value') def __init__(self, length_rw, key_rw, value_rw=None): self._length = length_rw self._pair = chain(key_rw, value_rw or key_rw) def read(self, stream): count = self._length.read(stream) headers = [] for i in range(count): headers.append(self._pair.read(stream)) return headers def write(self, headers, stream): # In case someone does write({..}, stream) if isinstance(headers, dict): headers = list(headers.items()) self._length.write(len(headers), stream) for pair in headers: self._pair.write(pair, stream) return stream def width(self): return self._length.width() def length(self, headers): size = 0 if isinstance(headers, dict): headers = list(headers.items()) size += self._length.length(len(headers)) for pair in headers: size += self._pair.length(pair) return size class NoneReadWriter(ReadWriter): def read(self, stream): return None def write(self, _, stream): return stream def width(self): return 0 def length(self, obj): return 0 class ConstantReadWriter(ReadWriter): __slots__ = ('_rw', '_value') def __init__(self, rw, value): self._rw = rw self._value = value def read(self, stream): self._rw.read(stream) return self._value def write(self, out, stream): self._rw.write(self._value, stream) return stream def width(self): return self._rw.width() def length(self, obj): return self._rw.width() class SwitchReadWriter(ReadWriter): __slots__ = ('_switch', '_cases') def __init__(self, switch_rw, cases_rw): self._switch = switch_rw self._cases = cases_rw def read(self, stream): k = self._switch.read(stream) if k in self._cases: v = self._cases[k].read(stream) return (k, v) else: return (k, None) def write(self, item, stream): k, v = item self._switch.write(k, stream) if v is not None and k in self._cases: self._cases[k].write(v, stream) return stream def width(self): return self._switch.width() def length(self, item): k, v = item size = 0 size += self._switch.length(k) if v is not None and k in self._cases: size += self._cases[k].length(v) return size
uber/tchannel-python
tchannel/rw.py
Python
mit
19,427
0
from django.conf.urls import url from redisca.frontend import views app_name = 'frontend' urlpatterns = [ url(r'^$', views.template_list, name='template_list'), url(r'^([a-zA-Z0-9_\./\-]+)$', views.static_template, name='template'), ]
redisca/django-redisca
redisca/frontend/urls.py
Python
mit
246
0
#open a gsd file and write out a subsampled version, keeping only every N timesteps #useful if you want to be analyzing a shorter trajectory import gsd.hoomd import argparse import time start = time.time() parser = argparse.ArgumentParser(description='Subsamble GSD trajectory') parser.add_argument('fname',metavar='input',type=str,help='trajectory file to be subsampled') parser.add_argument('ofname',metavar='output',type=str,help='where to write subsampled trajectory file') parser.add_argument('N',metavar='N',type=int,help='keep frame each N timesteps') args = parser.parse_args() traj = gsd.hoomd.open(args.fname) frame0 = traj[0] newtraj = gsd.hoomd.open(args.ofname,'wb') newtraj.append(frame0) for i in range(args.N,len(traj),args.N): s = gsd.hoomd.Snapshot() pos = traj[i].particles.position s.particles.position = pos s.particles.N = len(pos) newtraj.append(s) end = time.time() print('Subsampling took {0} s.'.format(end-start))
ramansbach/cluster_analysis
clustering/scripts/gsdSubsample.py
Python
mit
959
0.023983
import unittest2 as unittest from ..models import TestStorage from ..strategy import TestStrategy from ...backends.utils import load_backends, get_backend from ...backends.github import GithubOAuth2 from ...exceptions import MissingBackend class BaseBackendUtilsTest(unittest.TestCase): def setUp(self): self.strategy = TestStrategy(storage=TestStorage) def tearDown(self): self.strategy = None class LoadBackendsTest(BaseBackendUtilsTest): def test_load_backends(self): loaded_backends = load_backends(( 'social_core.backends.github.GithubOAuth2', 'social_core.backends.facebook.FacebookOAuth2', 'social_core.backends.flickr.FlickrOAuth' ), force_load=True) keys = list(loaded_backends.keys()) self.assertEqual(keys, ['github', 'facebook', 'flickr']) backends = () loaded_backends = load_backends(backends, force_load=True) self.assertEqual(len(list(loaded_backends.keys())), 0) class GetBackendTest(BaseBackendUtilsTest): def test_get_backend(self): backend = get_backend(( 'social_core.backends.github.GithubOAuth2', 'social_core.backends.facebook.FacebookOAuth2', 'social_core.backends.flickr.FlickrOAuth' ), 'github') self.assertEqual(backend, GithubOAuth2) def test_get_missing_backend(self): with self.assertRaisesRegexp(MissingBackend, 'Missing backend "foobar" entry'): get_backend(('social_core.backends.github.GithubOAuth2', 'social_core.backends.facebook.FacebookOAuth2', 'social_core.backends.flickr.FlickrOAuth'), 'foobar')
tobias47n9e/social-core
social_core/tests/backends/test_utils.py
Python
bsd-3-clause
1,767
0
""" Methods for importing Helios data. """ from datetime import date, time, datetime, timedelta import os import pathlib import urllib.error from urllib.error import URLError from collections import OrderedDict import warnings import astropy.constants as constants import astropy.units as u import numpy as np import pandas as pd from bs4 import BeautifulSoup import requests from heliopy import config from heliopy.data import util from heliopy.data import cdasrest data_dir = config['download_dir'] use_hdf = config['use_hdf'] helios_dir = os.path.join(data_dir, 'helios') # new http base_url remote_base_url = 'https://helios-data.ssl.berkeley.edu/data/' def _check_probe(probe): probe = str(probe) assert probe == '1' or probe == '2', 'Probe number must be 1 or 2' return probe def _dist_file_dir(probe, year, doy): return os.path.join(helios_dir, 'helios{}'.format(probe), 'dist', '{}'.format(year), '{}'.format(int(doy))) def _loaddistfile(probe, year, doy, hour, minute, second): """ Method to load a Helios distribution file. Returns opened file and location of file if file exists. If file doesn't exist raises an OSError. Parameters ---------- probe : int, str Helios probe to import data from. Must be 1 or 2. year : int Year doy : int Day of year hour : int Hour. minute : int Minute second : int Second Returns ------- f : file Opened distribution function file filename : str Filename of opened file """ probe = _check_probe(probe) # Work out location of file yearstring = str(year)[-2:] filedir = _dist_file_dir(probe, year, doy) filename = os.path.join(filedir, 'h' + probe + 'y' + yearstring + 'd' + str(doy).zfill(3) + 'h' + str(hour).zfill(2) + 'm' + str(minute).zfill(2) + 's' + str(second).zfill(2) + '_') # Try to open distribution file for extension in ['hdm.0', 'hdm.1', 'ndm.0', 'ndm.1']: try: f = open(filename + extension) filename += extension except OSError: continue if 'f' not in locals(): raise OSError('Could not find file with name ' + filename[:-1]) else: return f, filename def _dist_filename_to_hms(path): """Given distribution filename, extract hour, minute, second""" # year = int(path[-21:-19]) + 1900 # doy = int(path[-18:-15]) hour = int(path[-14:-12]) minute = int(path[-11:-9]) second = int(path[-8:-6]) return hour, minute, second def integrated_dists(probe, starttime, endtime, verbose=False): """ Returns the integrated distributions from experiments i1a and i1b in Helios distribution function files. The distributions are integrated over all angles and given as a function of proton velocity. Parameters ---------- probe : int Helios probe to import data from. Must be 1 or 2. starttime : datetime.datetime Start of interval endtime : datetime.datetime End of interval verbose : bool If ``True``, print information whilst loading. Default is ``False``. Returns ------- distinfo : pandas.Series Infromation stored in the top of distribution function files. """ extensions = ['hdm.0', 'hdm.1', 'ndm.0', 'ndm.1'] distlist = {'a': [], 'b': []} starttime_orig = starttime # Loop through each day while starttime < endtime: year = starttime.year doy = starttime.strftime('%j') # Directory for today's distribution files dist_dir = _dist_file_dir(probe, year, doy) # Locaiton of hdf file to save to/load from hdffile = 'h' + probe + str(year) + str(doy).zfill(3) +\ 'integrated_dists.hdf' hdffile = os.path.join(dist_dir, hdffile) todays_dists = {'a': [], 'b': []} # Check if data is already saved if os.path.isfile(hdffile): for key in todays_dists: todays_dists[key] = pd.read_hdf(hdffile, key=key) distlist[key].append(todays_dists[key]) starttime += timedelta(days=1) continue # If not saved, generate a derived file else: # Get every distribution function file present for this day for f in os.listdir(dist_dir): path = os.path.join(dist_dir, f) # Check for distribution function if path[-5:] in extensions: hour, minute, second = _dist_filename_to_hms(path) try: a, b = integrated_dists_single(probe, year, doy, hour, minute, second) except RuntimeError as err: strerr = 'No ion distribution function data in file' if str(err) == strerr: continue raise err t = datetime.combine(starttime.date(), time(hour, minute, second)) if verbose: print(t) dists = {'a': a, 'b': b} for key in dists: dist = dists[key] dist['Time'] = t dist = dist.set_index(['Time', 'v'], drop=True) todays_dists[key].append(dist) # Go through a and b and concat all the data for key in todays_dists: todays_dists[key] = pd.concat(todays_dists[key]) if use_hdf: todays_dists[key].to_hdf(hdffile, key=key, mode='a') distlist[key].append(todays_dists[key]) starttime += timedelta(days=1) for key in distlist: distlist[key] = util.timefilter(distlist[key], starttime_orig, endtime) return distlist def integrated_dists_single(probe, year, doy, hour, minute, second): """ Returns the integrated distributions from experiments i1a and i1b in Helios distribution function files. The distributions are integrated over all angles and given as a function of proton velocity. Parameters ---------- probe : int, str Helios probe to import data from. Must be 1 or 2. year : int Year doy : int Day of year hour : int Hour minute : int Minute. second : int Second Returns ------- i1a : pandas.DataFrame i1a integrated distribution function. i1b : pandas.DataFrame i1b integrated distribution function. """ probe = _check_probe(probe) f, _ = _loaddistfile(probe, year, doy, hour, minute, second) for line in f: if line[0:19] == ' 1-D i1a integrated': break # i1a distribution function i1adf = f.readline().split() f.readline() i1avs = f.readline().split() f.readline() # i1b distribution file i1bdf = f.readline().split() f.readline() i1bvs = f.readline().split() i1a = pd.DataFrame({'v': i1avs, 'df': i1adf}, dtype=float) i1b = pd.DataFrame({'v': i1bvs, 'df': i1bdf}, dtype=float) f.close() return i1a, i1b def electron_dist_single(probe, year, doy, hour, minute, second, remove_advect=False): """ Read in 2D electron distribution function. Parameters ---------- probe : int, str Helios probe to import data from. Must be 1 or 2. year : int Year doy : int Day of year hour : int Hour. minute : int Minute second : int Second remove_advect : bool If ``False``, the distribution is returned in the spacecraft frame. If ``True``, the distribution is returned in the solar wind frame, by subtracting the spacecraft velocity from the velcoity of each bin. Note this significantly slows down reading in the distribution. Returns ------- dist : pandas.DataFrame 2D electron distribution function """ probe = _check_probe(probe) f, filename = _loaddistfile(probe, year, doy, hour, minute, second) startline = None for i, line in enumerate(f): # Find start of electron distribution function if line[0:4] == ' 2-D': startline = i + 2 # Throw away next line (just has max of distribution) f.readline() # Throw away next line (just has table headings) if f.readline()[0:27] == ' no electron data available': return None break nlines = None for i, line in enumerate(f): if 'Degree, Pizzo correction' in line: break nlines = i + 1 if startline is None: return None ########################################## # Read and process electron distribution # ########################################## # Arguments for reading in data readargs = {'usecols': [0, 1, 2, 3, 4, 5], 'names': ['Az', 'E_bin', 'pdf', 'counts', 'vx', 'vy'], 'delim_whitespace': True, 'skiprows': startline, 'nrows': nlines} # Read in data dist = pd.read_csv(filename, **readargs) if dist.empty: return None # Remove spacecraft abberation # Assumes that spacecraft motion is always in the ecliptic (x-y) # plane if remove_advect: params = distparams_single(probe, year, doy, hour, minute, second) dist['vx'] += params['helios_vr'] dist['vy'] += params['helios_v'] # Convert to SI units dist[['vx', 'vy']] *= 1e3 dist['pdf'] *= 1e12 # Calculate spherical coordinates of energy bins dist['|v|'], _, dist['phi'] =\ util._cart2sph(dist['vx'], dist['vy'], 0) # Calculate bin energy assuming particles are electrons dist['E_electron'] = 0.5 * constants.m_e.value *\ ((dist['|v|']) ** 2) # Convert to multi-index using Azimuth and energy bin dist = dist.set_index(['E_bin', 'Az']) f.close() return dist def distparams(probe, starttime, endtime, verbose=False): """ Read in distribution parameters found in the header of distribution files. Parameters ---------- probe : int Helios probe to import data from. Must be 1 or 2. starttime : datetime.datetime Start of interval endtime : datetime.datetime End of interval verbose : bool If ``True``, print information whilst loading. Default is ``False``. Returns ------- distinfo : pandas.Series Infromation stored in the top of distribution function files """ extensions = ['hdm.0', 'hdm.1', 'ndm.0', 'ndm.1'] paramlist = [] starttime_orig = starttime # Loop through each day while starttime < endtime: year = starttime.year doy = starttime.strftime('%j') # Directory for today's distribution files dist_dir = _dist_file_dir(probe, year, doy) # Locaiton of hdf file to save to/load from hdffile = 'h' + probe + str(year) + str(doy).zfill(3) +\ 'distparams.hdf' hdffile = os.path.join(dist_dir, hdffile) if os.path.isfile(hdffile): todays_params = pd.read_hdf(hdffile) elif not os.path.isdir(dist_dir): starttime += timedelta(days=1) continue else: todays_params = [] # Get every distribution function file present for this day for f in os.listdir(dist_dir): path = os.path.join(dist_dir, f) # Check for distribution function if path[-5:] in extensions: hour, minute, second = _dist_filename_to_hms(path) if verbose: print(starttime.date(), hour, minute, second) p = distparams_single(probe, year, doy, hour, minute, second) todays_params.append(p) todays_params = pd.concat(todays_params, ignore_index=True, axis=1).T todays_params = todays_params.set_index('Time', drop=False) # Convert columns to numeric types todays_params = todays_params.apply(pd.to_numeric, errors='ignore') todays_params['Time'] = pd.to_datetime(todays_params['Time']) if use_hdf: todays_params.to_hdf(hdffile, key='distparams', mode='w') paramlist.append(todays_params) starttime += timedelta(days=1) return util.timefilter(paramlist, starttime_orig, endtime) def distparams_single(probe, year, doy, hour, minute, second): """ Read in parameters from a single distribution function measurement. Parameters ---------- probe : int, str Helios probe to import data from. Must be 1 or 2. year : int Year doy : int Day of year hour : int Hour minute : int Minute second : int Second Returns ------- distparams : pandas.Series Distribution parameters from top of distribution function file. """ probe = _check_probe(probe) f, _ = _loaddistfile(probe, year, doy, hour, minute, second) _, month, day = util.doy2ymd(year, doy) dtime = datetime(year, month, day, hour, minute, second) distparams = pd.Series(dtime, index=['Time']) # Ignore the Pizzo et. al. correction at top of file for _ in range(0, 3): f.readline() # Line of flags flags = f.readline().split() distparams['imode'] = int(flags[0]) # Alternating energy/azimuth shift on? distparams['ishift'] = bool(flags[1]) # Possibly H2 abberation shift? distparams['iperihelion_shift'] = bool(flags[2]) # Indicates a HDM file which contained bad data (frames), but could be # handled as NDM file distparams['minus'] = int(flags[3]) # 0 = no instrument, 1 = i1a, 2 = I3 distparams['ion_instrument'] = int(flags[4]) distparams['data_rate'] = 1 if ('hdm' in f.name) else 0 # 2 lines of Helios location information location = f.readline().split() distparams['r_sun'] = float(location[0]) # Heliospheric distance (AU) distparams['clong'] = float(location[1]) # Carrington longitude (deg) distparams['clat'] = float(location[2]) # Carrington lattitude (deg) distparams['carrot'] = int(f.readline().split()[0]) # Carrington cycle # 2 lines of Earth location information earth_loc = f.readline().split() # Heliospheric distance (AU) distparams['earth_rsun'] = float(earth_loc[0]) # Carrington longitude (deg) distparams['earth_clong'] = float(earth_loc[1]) # Carrington lattitude (deg) distparams['earth_clat'] = float(earth_loc[2]) earth_loc = f.readline().split() # Angle between Earth and Helios (deg) distparams['earth_he_angle'] = float(earth_loc[0]) # Carrington rotation distparams['earth_carrot'] = int(earth_loc[1]) # Helios velocity information helios_v = f.readline().split() # Helios radial velocity (km/s) distparams['helios_vr'] = float(helios_v[0]) * 1731 # Helios tangential velocity (km/s) distparams['helios_v'] = float(helios_v[1]) * 1731 # i1a integrated ion parameters i1a_proton_params = f.readline().split() # Proton number density (cm^-3) distparams['np_i1a'] = float(i1a_proton_params[0]) # Proton velocity (km/s) distparams['vp_i1a'] = float(i1a_proton_params[1]) # Proton temperature (K) distparams['Tp_i1a'] = float(i1a_proton_params[2]) i1a_proton_params = f.readline().split() # Proton azimuth flow angle (deg) distparams['v_az_i1a'] = float(i1a_proton_params[0]) # Proton elevation flow angle (deg) distparams['v_el_i1a'] = float(i1a_proton_params[1]) assert distparams['v_az_i1a'] < 360,\ 'Flow azimuth must be less than 360 degrees' # i1a integrated alpha parameters (possibly all zero?) i1a_alpha_params = f.readline().split() # Alpha number density (cm^-3) distparams['na_i1a'] = float(i1a_alpha_params[0]) # Alpha velocity (km/s) distparams['va_i1a'] = float(i1a_alpha_params[1]) # Alpha temperature (K) distparams['Ta_i1a'] = float(i1a_alpha_params[2]) # i1b integrated ion parameters i1b_proton_params = f.readline().split() # Proton number density (cm^-3) distparams['np_i1b'] = float(i1b_proton_params[0]) # Proton velocity (km/s) distparams['vp_i1b'] = float(i1b_proton_params[1]) # Proton temperature (K) distparams['Tp_i1b'] = float(i1b_proton_params[2]) # Magnetic field (out by a factor of 10 in data files for some reason) B = f.readline().split() distparams['Bx'] = float(B[0]) / 10 distparams['By'] = float(B[1]) / 10 distparams['Bz'] = float(B[2]) / 10 sigmaB = f.readline().split() distparams['sigmaBx'] = float(sigmaB[0]) / 10 distparams['sigmaBy'] = float(sigmaB[1]) / 10 distparams['sigmaBz'] = float(sigmaB[2]) / 10 # Replace bad values with nans to_replace = {'Tp_i1a': [-1.0, 0], 'np_i1a': [-1.0, 0], 'vp_i1a': [-1.0, 0], 'Tp_i1b': [-1.0, 0], 'np_i1b': [-1.0, 0], 'vp_i1b': [-1.0, 0], 'sigmaBx': -0.01, 'sigmaBy': -0.01, 'sigmaBz': -0.01, 'Bx': 0.0, 'By': 0.0, 'Bz': 0.0, 'v_az_i1a': [-1, 0], 'v_el_i1a': [-1, 0], 'na_i1a': [-1, 0], 'va_i1a': [-1, 0], 'Ta_i1a': [-1, 0]} distparams = distparams.replace(to_replace, np.nan) f.close() return distparams def electron_dists(probe, starttime, endtime, remove_advect=False, verbose=False): """ Return 2D electron distributions between *starttime* and *endtime* Parameters ---------- probe : int Helios probe to import data from. Must be 1 or 2. starttime : datetime.datetime Start of interval endtime : datetime.datetime End of interval remove_advect : bool If *False*, the distribution is returned in the spacecraft frame. If *True*, the distribution is returned in the solar wind frame, by subtracting the spacecraft velocity from the velcoity of each bin. Note this significantly slows down reading in the distribution. verbose : bool If ``True``, print dates when loading files. Default is ``False``. Returns ------- dists : pandas.DataFrame Electron distribution functions """ extensions = ['hdm.0', 'hdm.1', 'ndm.0', 'ndm.1'] distlist = [] # Loop through each day starttime_orig = starttime while starttime < endtime: year = starttime.year doy = starttime.strftime('%j') if verbose: print('Loading electron dists from year', year, 'doy', doy) # Directory for today's distribution files dist_dir = _dist_file_dir(probe, year, doy) print(dist_dir) # If directory doesn't exist, print error and continue if not os.path.exists(dist_dir): print('No electron distributions available for year', year, 'doy', doy) starttime += timedelta(days=1) continue # Locaiton of hdf file to save to/load from hdffile = 'h' + probe + str(year) + str(doy).zfill(3) +\ 'electron_dists.hdf' hdffile = os.path.join(dist_dir, hdffile) if os.path.isfile(hdffile): todays_dist = pd.read_hdf(hdffile) distlist.append(todays_dist) starttime += timedelta(days=1) continue todays_dist = [] # Get every distribution function file present for this day for f in os.listdir(dist_dir): path = os.path.join(dist_dir, f) # Check for distribution function if path[-5:] in extensions: hour, minute, second = _dist_filename_to_hms(path) try: d = electron_dist_single(probe, year, doy, hour, minute, second) except RuntimeError as err: strerr = 'No electron distribution function data in file' if str(err) == strerr: continue raise err if d is None: continue t = datetime.combine(starttime.date(), time(hour, minute, second)) d['Time'] = t if verbose: print(t) todays_dist.append(d) if todays_dist == []: starttime += timedelta(days=1) continue todays_dist = pd.concat(todays_dist) todays_dist = todays_dist.set_index('Time', append=True) if use_hdf: todays_dist.to_hdf(hdffile, key='electron_dists', mode='w') distlist.append(todays_dist) starttime += timedelta(days=1) if distlist == []: raise RuntimeError('No electron data available for times ' + str(starttime_orig) + ' to ' + str(endtime)) return util.timefilter(distlist, starttime_orig, endtime) def ion_dists(probe, starttime, endtime, remove_advect=False, verbose=False): """ Return 3D ion distributions between *starttime* and *endtime* Parameters ---------- probe : int Helios probe to import data from. Must be 1 or 2. starttime : datetime.datetime Start of interval endtime : datetime.datetime End of interval remove_advect : bool If *False*, the distribution is returned in the spacecraft frame. If *True*, the distribution is returned in the solar wind frame, by subtracting the spacecraft velocity from the velcoity of each bin. Note this significantly slows down reading in the distribution. verbose : bool If ``True``, print dates when loading files. Default is ``False``. Returns ------- distinfo : pandas.Series Infromation stored in the top of distribution function files. """ extensions = ['hdm.0', 'hdm.1', 'ndm.0', 'ndm.1'] distlist = [] # Loop through each day starttime_orig = starttime while starttime < endtime: year = starttime.year doy = int(starttime.strftime('%j')) if verbose: print('Loading ion dists from year', year, 'doy', doy) # Directory for today's distribution files dist_dir = _dist_file_dir(probe, year, doy) # If directory doesn't exist, print error and continue if not os.path.exists(dist_dir): print('No ion distributions available for year', year, 'doy', doy) starttime += timedelta(days=1) continue # Locaiton of hdf file to save to/load from hdffile = 'h' + probe + str(year) + str(doy).zfill(3) +\ 'ion_dists.hdf' hdffile = os.path.join(dist_dir, hdffile) if os.path.isfile(hdffile): todays_dist = pd.read_hdf(hdffile) distlist.append(todays_dist) starttime += timedelta(days=1) continue todays_dist = [] # Get every distribution function file present for this day for f in os.listdir(dist_dir): path = os.path.join(dist_dir, f) # Check for distribution function if path[-5:] in extensions: hour, minute, second = _dist_filename_to_hms(path) try: d = ion_dist_single(probe, year, doy, hour, minute, second) except RuntimeError as err: strerr = 'No ion distribution function data in file' if str(err) == strerr: continue raise err t = datetime.combine(starttime.date(), time(hour, minute, second)) d['Time'] = t if verbose: print(t) todays_dist.append(d) if todays_dist == []: starttime += timedelta(days=1) continue todays_dist = pd.concat(todays_dist) todays_dist = todays_dist.set_index('Time', append=True) if use_hdf: todays_dist.to_hdf(hdffile, key='ion_dist', mode='w') distlist.append(todays_dist) starttime += timedelta(days=1) if distlist == []: raise RuntimeError('No data available for times ' + str(starttime_orig) + ' to ' + str(endtime)) return util.timefilter(distlist, starttime_orig, endtime) def ion_dist_single(probe, year, doy, hour, minute, second, remove_advect=False): """ Read in ion distribution function. Parameters ---------- probe : int, str Helios probe to import data from. Must be 1 or 2. year : int Year doy : int Day of year hour : int Hour minute : int Minute. second : int Second remove_advect : bool If *False*, the distribution is returned in the spacecraft frame. If *True*, the distribution is returned in the solar wind frame, by subtracting the spacecraft velocity from the velcoity of each bin. Note this significantly slows down reading in the distribution. Returns ------- dist : pandas.DataFrame 3D ion distribution function """ probe = _check_probe(probe) f, filename = _loaddistfile(probe, year, doy, hour, minute, second) nionlines = None # Number of lines in ion distribution linesread = 0 # Stores the total number of lines read in the file # Loop through file to find end of ion distribution function for i, line in enumerate(f): # Find start of proton distribution function if line[0:23] == 'Maximum of distribution': ionstartline = i + 1 # Find number of lines in ion distribution function if line[0:4] == ' 2-D': nionlines = i - ionstartline break linesread += i # Bizzare case where there are two proton distributions in one file, # or there's no electron data available for i, line in enumerate(f): if line[0:23] == 'Maximum of distribution' or\ line[0:30] == ' 1.2 Degree, Pizzo correction' or\ line[0:30] == ' -1.2 Degree, Pizzo correction': warnings.warn("More than one ion distribution function found", RuntimeWarning) # NOTE: Bodge linesread -= 1 break f.close() # If there's no electron data to get number of lines, set end of ion # distribution function to end of file if nionlines is None: nionlines = i - ionstartline + 1 ##################################### # Read and process ion distribution # ##################################### # If no ion data in file if nionlines < 1: raise RuntimeError('No ion distribution function data in file') # Arguments for reading in data readargs = {'usecols': [0, 1, 2, 3, 4, 5, 6, 7], 'names': ['Az', 'El', 'E_bin', 'pdf', 'counts', 'vx', 'vy', 'vz'], 'delim_whitespace': True, 'skiprows': ionstartline, 'nrows': nionlines} # Read in data dist = pd.read_csv(filename, **readargs) # Remove spacecraft abberation # Assumes that spacecraft motion is always in the ecliptic (x-y) # plane if remove_advect: params = distparams_single(probe, year, doy, hour, minute, second) dist['vx'] += params['helios_vr'] dist['vy'] += params['helios_v'] # Convert to SI units dist[['vx', 'vy', 'vz']] *= 1e3 dist['pdf'] *= 1e12 # Calculate magnitude, elevation and azimuth of energy bins dist['|v|'], dist['theta'], dist['phi'] =\ util._cart2sph(dist['vx'], dist['vy'], dist['vz']) # Calculate bin energy assuming particles are protons dist['E_proton'] = 0.5 * constants.m_p.value * ((dist['|v|']) ** 2) # Convert to multi-index using azimuth, elevation, and energy bins dist = dist.set_index(['E_bin', 'El', 'Az']) return dist class _CoreFitDownloader(util.Downloader): def __init__(self, probe): self.probe = _check_probe(probe) self.units = OrderedDict([ ('B instrument', u.dimensionless_unscaled), ('Bx', u.nT), ('By', u.nT), ('Bz', u.nT), ('sigma B', u.nT), ('Ion instrument', u.dimensionless_unscaled), ('Status', u.dimensionless_unscaled), ('Tp_par', u.K), ('Tp_perp', u.K), ('carrot', u.dimensionless_unscaled), ('r_sun', u.AU), ('clat', u.deg), ('clong', u.deg), ('earth_he_angle', u.deg), ('n_p', u.cm**-3), ('vp_x', u.km / u.s), ('vp_y', u.km / u.s), ('vp_z', u.km / u.s), ('vth_p_par', u.km / u.s), ('vth_p_perp', u.km / u.s)]) def intervals(self, starttime, endtime): return self.intervals_daily(starttime, endtime) def fname(self, interval): year = interval.start.strftime('%Y') doy = interval.start.strftime('%j') return f'h{self.probe}_{year}_{doy.zfill(3)}_corefit.csv' def local_dir(self, interval): year = interval.start.strftime('%Y') return pathlib.Path('helios') / 'corefit' / year def download(self, interval): local_dir = self.local_path(interval).parent local_dir.mkdir(parents=True, exist_ok=True) year = interval.start.strftime('%Y') remote_dir = (pathlib.Path('E1_experiment') / 'New_proton_corefit_data_2017' / 'ascii' / f'helios{self.probe}' / f'{year}') remote_url = '{}{}'.format(remote_base_url, remote_dir) try: util._download_remote(remote_url, self.fname(interval), local_dir) except urllib.error.HTTPError: raise util.NoDataError def load_local_file(self, interval): return pd.read_csv(self.local_path(interval), parse_dates=['Time']) def corefit(probe, starttime, endtime): """ Read in merged data set Parameters ---------- probe : int, str Helios probe to import data from. Must be 1 or 2. starttime : datetime.datetime Interval start time endtime : datetime.datetime Interval end time try_download : bool If ``False`` don't try to download data if it is missing locally. Returns ------- data : sunpy.timeseries.GenericTimeSeries Data set """ dl = _CoreFitDownloader(probe) return dl.load(starttime, endtime) class _4hzDownloader(util.Downloader): def __init__(self, probe): self.probe = _check_probe(probe) self.units = OrderedDict([('Bx', u.nT), ('By', u.nT), ('Bz', u.nT), ('|B|', u.nT)]) def intervals(self, starttime, endtime): return self.intervals_daily(starttime, endtime) def fname(self, interval): year = int(interval.start.strftime('%Y')) doy = int(interval.start.strftime('%j')) return 'he{}1s{}{:03}.asc'.format(self.probe, year - 1900, doy) def local_dir(self, interval): year = interval.start.strftime('%Y') return pathlib.Path('helios') / 'mag4hz' / year def download(self, interval): remote_dir = ('E2_experiment/' 'Data_Cologne_Nov2016_bestdata/' 'HR%20-%20High%20Resolution%204Hz%20Data/' f'helios{self.probe}') remote_url = f'{remote_base_url}/{remote_dir}' local_fname = self.fname(interval) remote_fname = None # Because the filename contains a number between 0 and 24 at the end, # get a list of all the filenames and compare them to the filename # we want def get_file_list(url, ext='', params={}): response = requests.get(url, params=params) if response.ok: response_text = response.text else: return response.raise_for_status() soup = BeautifulSoup(response_text, 'html.parser') complete_file_list = [node.get('href') for node in soup.find_all('a') if node.get('href').endswith(ext)] return complete_file_list ext = 'asc' remote_file_list = get_file_list(remote_url, ext) for filename in remote_file_list: if local_fname[:-4] in filename: remote_fname = filename break if remote_fname is None: raise util.NoDataError dl_dir = self.local_path(interval).parent util._download_remote(remote_url, remote_fname, dl_dir) # Rename to a sensible and deterministic file name downloaded_path = (dl_dir / remote_fname) new_path = self.local_path(interval) downloaded_path.rename(new_path) def load_local_file(self, interval): # Read in data headings = ['Time', 'Bx', 'By', 'Bz'] cols = [0, 4, 5, 6] data = pd.read_csv(self.local_path(interval), names=headings, header=None, usecols=cols, delim_whitespace=True) # Convert date info to datetime data['Time'] = pd.to_datetime(data['Time'], format='%Y-%m-%dT%H:%M:%S') data = data.set_index('Time', drop=True) return data def mag_4hz(probe, starttime, endtime): """ Read in 4Hz magnetic field data. Parameters ---------- probe : int, str Helios probe to import data from. Must be 1 or 2. starttime : datetime.datetime Interval start time endtime : datetime.datetime Interval end time try_download : bool If ``False`` don't try to download data if it is missing locally. Returns ------- data : sunpy.timeseries.GenericTimeSeries 4Hz magnetic field data set """ dl = _4hzDownloader(probe) return dl.load(starttime, endtime) class _NessDownloader(util.Downloader): def __init__(self, probe): self.probe = _check_probe(probe) self.units = OrderedDict([('probe', u.dimensionless_unscaled), ('naverage', u.dimensionless_unscaled), ('Bx', u.nT), ('By', u.nT), ('Bz', u.nT), ('|B|', u.nT), ('sigma_Bx', u.nT), ('sigma_By', u.nT), ('sigma_Bz', u.nT)]) def intervals(self, starttime, endtime): return self.intervals_daily(starttime, endtime) def fname(self, interval): year = int(interval.start.strftime('%Y')) doy = int(interval.start.strftime('%j')) return 'h{}{}{:03}.asc'.format(self.probe, year - 1900, doy) def local_dir(self, interval): year = interval.start.strftime('%Y') return pathlib.Path('helios') / 'mag4hz' / year def download(self, interval): remote_dir = (pathlib.Path('E3_experiment') / 'helios{}_6sec_ness'.format(self.probe) / interval.start.strftime('%Y')) remote_url = f'{remote_base_url}{remote_dir}' try: util._download_remote(remote_url, self.fname(interval), self.local_path(interval).parent) except URLError: raise util.NoDataError def load_local_file(self, interval): # Read in data headings = ['probe', 'year', 'doy', 'hour', 'minute', 'second', 'naverage', 'Bx', 'By', 'Bz', '|B|', 'sigma_Bx', 'sigma_By', 'sigma_Bz'] colspecs = [(1, 2), (2, 4), (4, 7), (7, 9), (9, 11), (11, 13), (13, 15), (15, 22), (22, 29), (29, 36), (36, 42), (42, 48), (48, 54), (54, 60)] data = pd.read_fwf(self.local_path(interval), names=headings, header=None, colspecs=colspecs) # Process data data['year'] += 1900 # Convert date info to datetime data['Time'] = pd.to_datetime(data['year'], format='%Y') + \ pd.to_timedelta(data['doy'] - 1, unit='d') + \ pd.to_timedelta(data['hour'], unit='h') + \ pd.to_timedelta(data['minute'], unit='m') + \ pd.to_timedelta(data['second'], unit='s') data = data.drop(['year', 'doy', 'hour', 'minute', 'second'], axis=1) data = data.set_index('Time', drop=False) return data def mag_ness(probe, starttime, endtime): """ Read in 6 second magnetic field data. Parameters ---------- probe : int, str Helios probe to import data from. Must be 1 or 2. starttime : datetime.datetime Interval start time endtime : datetime.datetime Interval end time try_download : bool If ``False`` don't try to download data if it is missing locally. Returns ------- data : pandas.DataFrame 6 second magnetic field data set """ dl = _NessDownloader(probe) return dl.load(starttime, endtime) def _docstring(identifier, extra): return cdasrest._docstring(identifier, 'M', extra) def _helios(starttime, endtime, identifier, units=None, warn_missing_units=True): """ Generic method for downloading Helios data from CDAWeb. """ dl = cdasrest.CDASDwonloader('helios', identifier, 'helios', units=units, warn_missing_units=warn_missing_units) return dl.load(starttime, endtime) def merged(probe, starttime, endtime): identifier = f'HELIOS{probe}_40SEC_MAG-PLASMA' return _helios(starttime, endtime, identifier, warn_missing_units=False) merged.__doc__ = _docstring( 'HELIOS1_40SEC_MAG-PLASMA', 'merged magnetic field and plasma data.')
dstansby/heliopy
heliopy/data/helios.py
Python
gpl-3.0
38,861
0
# coding=utf-8 # Copyright (c) 2001, Canal TP and/or its affiliates. All rights reserved. # # This file is part of Navitia, # the software to build cool stuff with public transport. # # Hope you'll enjoy and contribute to this project, # powered by Canal TP (www.canaltp.fr). # Help us simplify mobility and open public transport: # a non ending quest to the responsive locomotion way of traveling! # # LICENCE: This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Stay tuned using # twitter @navitia # [matrix] channel #navitia:matrix.org (https://app.element.io/#/room/#navitia:matrix.org) # https://groups.google.com/d/forum/navitia # www.navitia.io from tests.mock_navitia import navitia_response response = navitia_response.NavitiaResponse() response.queries = [ "vehicle_journeys/?filter=vehicle_journey.has_code(source, Code-orders)&since=20120615T120000Z&until=20120615T190000Z&data_freshness=base_schedule&depth=2" # resquest time is UTC -> 12:00 is 8:00 local in Sherbrooke ] response.response_code = 200 response.json_response = """ { "disruptions": [], "feed_publishers": [ { "id": "builder", "license": "ODBL", "name": "departure board", "url": "www.canaltp.fr" } ], "links": [ ], "pagination": { "items_on_page": 1, "items_per_page": 25, "start_page": 0, "total_result": 1 }, "vehicle_journeys": [ { "calendars": [ { "active_periods": [ { "begin": "20120615", "end": "20130615" } ], "week_pattern": { "friday": true, "monday": false, "saturday": false, "sunday": false, "thursday": false, "tuesday": false, "wednesday": false } } ], "disruptions": [], "id": "R:vj1", "name": "R:vj1", "stop_times": [ { "arrival_time": "100000", "departure_time": "100000", "utc_arrival_time": "140000", "utc_departure_time": "140000", "headsign": "R:vj1", "journey_pattern_point": { "id": "journey_pattern_point:14" }, "stop_point": { "codes": [ { "type": "source", "value": "Code-StopR1" } ], "coord": { "lat": "0", "lon": "0" }, "equipments": [ "has_wheelchair_boarding", "has_bike_accepted" ], "id": "StopR1", "label": "StopR1", "links": [], "name": "StopR1", "stop_area": { "coord": { "lat": "0", "lon": "0" }, "id": "StopR1", "label": "StopR1", "links": [], "name": "StopR1", "timezone": "America/Montreal" } } }, { "arrival_time": "101000", "departure_time": "101000", "utc_arrival_time": "140100", "utc_departure_time": "140100", "headsign": "R:vj1", "journey_pattern_point": { "id": "journey_pattern_point:15" }, "stop_point": { "codes": [ { "type": "source", "value": "Code-StopR2" } ], "coord": { "lat": "0", "lon": "0" }, "equipments": [ "has_wheelchair_boarding", "has_bike_accepted" ], "id": "StopR2", "label": "StopR2", "links": [], "name": "StopR2", "stop_area": { "coord": { "lat": "0", "lon": "0" }, "id": "StopR2", "label": "StopR2", "links": [], "name": "StopR2", "timezone": "America/Montreal" } } }, { "arrival_time": "102000", "departure_time": "102000", "utc_arrival_time": "140200", "utc_departure_time": "140200", "headsign": "R:vj1", "journey_pattern_point": { "id": "journey_pattern_point:16" }, "stop_point": { "codes": [ { "type": "source", "value": "Code-StopR3" } ], "coord": { "lat": "0", "lon": "0" }, "equipments": [ "has_wheelchair_boarding", "has_bike_accepted" ], "id": "StopR3", "label": "StopR3", "links": [], "name": "StopR3", "stop_area": { "coord": { "lat": "0", "lon": "0" }, "id": "StopR3", "label": "StopR3", "links": [], "name": "StopR3", "timezone": "America/Montreal" } } }, { "arrival_time": "103000", "departure_time": "103000", "utc_arrival_time": "140300", "utc_departure_time": "140300", "headsign": "R:vj1", "journey_pattern_point": { "id": "journey_pattern_point:17" }, "stop_point": { "codes": [ { "type": "source", "value": "Code-StopR4" } ], "coord": { "lat": "0", "lon": "0" }, "equipments": [ "has_wheelchair_boarding", "has_bike_accepted" ], "id": "StopR4", "label": "StopR4", "links": [], "name": "StopR4", "stop_area": { "coord": { "lat": "0", "lon": "0" }, "id": "StopR4", "label": "StopR4", "links": [], "name": "StopR4", "timezone": "America/Montreal" } } }, { "arrival_time": "104000", "departure_time": "104000", "utc_arrival_time": "140400", "utc_departure_time": "140400", "headsign": "R:vj1", "journey_pattern_point": { "id": "journey_pattern_point:17" }, "stop_point": { "codes": [ { "type": "source", "value": "Code-StopR5" } ], "coord": { "lat": "0", "lon": "0" }, "equipments": [ "has_wheelchair_boarding", "has_bike_accepted" ], "id": "StopR5", "label": "StopR5", "links": [], "name": "StopR5", "stop_area": { "coord": { "lat": "0", "lon": "0" }, "id": "StopR5", "label": "StopR5", "links": [], "name": "StopR5", "timezone": "America/Montreal" } } }, { "arrival_time": "105000", "departure_time": "105000", "utc_arrival_time": "140500", "utc_departure_time": "140500", "headsign": "R:vj1", "journey_pattern_point": { "id": "journey_pattern_point:17" }, "stop_point": { "codes": [ { "type": "source", "value": "Code-StopR6" } ], "coord": { "lat": "0", "lon": "0" }, "equipments": [ "has_wheelchair_boarding", "has_bike_accepted" ], "id": "StopR6", "label": "StopR6", "links": [], "name": "StopR6", "stop_area": { "coord": { "lat": "0", "lon": "0" }, "id": "StopR6", "label": "StopR6", "links": [], "name": "StopR6", "timezone": "America/Montreal" } } } ], "trip": { "id": "R:vj1", "name": "R:vj1" }, "validity_pattern": { "beginning_date": "20120614", "days": "100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010000001000000100000010" } } ] } """
CanalTP/kirin
tests/mock_navitia/vj_bad_order.py
Python
agpl-3.0
13,166
0.000228
#!/usr/bin/env python # encoding: utf-8 ################################################################################ # # RMG - Reaction Mechanism Generator # # Copyright (c) 2002-2009 Prof. William H. Green (whgreen@mit.edu) and the # RMG Team (rmg_dev@mit.edu) # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # ################################################################################ """ This script contains unit tests of the :mod:`rmgpy.quantity` module. """ import unittest import math import numpy import rmgpy.constants as constants import rmgpy.quantity as quantity ################################################################################ class TestAcceleration(unittest.TestCase): """ Contains unit tests of the Acceleration unit type object. """ def test_mpers2(self): """ Test the creation of an acceleration quantity with units of m/s^2. """ q = quantity.Acceleration(1.0,"m/s^2") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "m/s^2") def test_cmpers2(self): """ Test the creation of an acceleration quantity with units of cm/s^2. """ q = quantity.Acceleration(1.0,"cm/s^2") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 0.01, delta=1e-8) self.assertEqual(q.units, "cm/s^2") ################################################################################ class TestArea(unittest.TestCase): """ Contains unit tests of the Area unit type object. """ def test_m2(self): """ Test the creation of an area quantity with units of m^2. """ q = quantity.Area(1.0,"m^2") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "m^2") def test_cm2(self): """ Test the creation of an area quantity with units of m^2. """ q = quantity.Area(1.0,"cm^2") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e-4, delta=1e-10) self.assertEqual(q.units, "cm^2") ################################################################################ class TestConcentration(unittest.TestCase): """ Contains unit tests of the Concentration unit type object. """ def test_perm3(self): """ Test the creation of an concentration quantity with units of m^-3. """ try: q = quantity.Concentration(1.0,"m^-3") self.fail('Allowed invalid unit type "m^-3".') except quantity.QuantityError: pass def test_molperm3(self): """ Test the creation of an concentration quantity with units of mol/m^3. """ q = quantity.Concentration(1.0,"mol/m^3") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "mol/m^3") def test_moleculesperm3(self): """ Test the creation of an concentration quantity with units of molecules/m^3. """ q = quantity.Concentration(1.0,"molecules/m^3") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si*constants.Na, 1.0, delta=1e-6) self.assertEqual(q.units, "molecules/m^3") ################################################################################ class TestEnergy(unittest.TestCase): """ Contains unit tests of the Energy unit type object. """ def test_J(self): """ Test the creation of an energy quantity with units of J. """ try: q = quantity.Energy(1.0,"J") self.fail('Allowed invalid unit type "J".') except quantity.QuantityError: pass def test_Jpermol(self): """ Test the creation of an energy quantity with units of J/mol. """ q = quantity.Energy(1.0,"J/mol") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "J/mol") def test_cal(self): """ Test the creation of an energy quantity with units of cal. """ try: q = quantity.Energy(1.0,"cal") self.fail('Allowed invalid unit type "cal".') except quantity.QuantityError: pass def test_calpermol(self): """ Test the creation of an energy quantity with units of cal/mol. """ q = quantity.Energy(1.0,"cal/mol") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 4.184, delta=1e-6) self.assertEqual(q.units, "cal/mol") def test_kJ(self): """ Test the creation of an energy quantity with units of kJ. """ try: q = quantity.Energy(1.0,"kJ") self.fail('Allowed invalid unit type "kJ".') except quantity.QuantityError: pass def test_kJpermol(self): """ Test the creation of an energy quantity with units of kJ/mol. """ q = quantity.Energy(1.0,"kJ/mol") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1000., delta=1e-6) self.assertEqual(q.units, "kJ/mol") def test_kcal(self): """ Test the creation of an energy quantity with units of kcal. """ try: q = quantity.Energy(1.0,"kcal") self.fail('Allowed invalid unit type "kcal".') except quantity.QuantityError: pass def test_kcalpermol(self): """ Test the creation of an energy quantity with units of kcal/mol. """ q = quantity.Energy(1.0,"kcal/mol") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 4184., delta=1e-6) self.assertEqual(q.units, "kcal/mol") def test_Kelvin(self): """ Test the creation of an energy quantity with units of K (not really an energy!). """ q = quantity.Energy(10.0,"K") self.assertAlmostEqual(q.value, 10*8.314472, delta=1e-6) self.assertEqual(q.units, "J/mol") ################################################################################ class TestDipoleMoment(unittest.TestCase): """ Contains unit tests of the DipoleMoment unit type object. """ def test_Ctimesm(self): """ Test the creation of a dipole moment quantity with units of C*m. """ q = quantity.DipoleMoment(1.0,"C*m") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, 6) self.assertEqual(q.units, "C*m") def test_D(self): """ Test the creation of a dipole moment quantity with units of J/mol. """ q = quantity.DipoleMoment(1.0,"De") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si*constants.c*1.0e21, 1.0, 6) self.assertEqual(q.units, "De") ################################################################################ class TestFlux(unittest.TestCase): """ Contains unit tests of the Flux unit type object. """ def test_perm2pers(self): """ Test the creation of a flux quantity with units of m^-2*s^-1. """ try: q = quantity.Flux(1.0,"m^-2*s^-1") self.fail('Allowed invalid unit type "m^-2*s^-1".') except quantity.QuantityError: pass def test_molperm3(self): """ Test the creation of a flux quantity with units of mol/(m^2*s). """ q = quantity.Flux(1.0,"mol/(m^2*s)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "mol/(m^2*s)") def test_moleculesperm3(self): """ Test the creation of a flux quantity with units of molecules/(m^2*s). """ q = quantity.Flux(1.0,"molecules/(m^2*s)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si*constants.Na, 1.0, delta=1e-6) self.assertEqual(q.units, "molecules/(m^2*s)") ################################################################################ class TestForce(unittest.TestCase): """ Contains unit tests of the Force unit type object. """ def test_N(self): """ Test the creation of an force quantity with units of N. """ q = quantity.Force(1.0,"N") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "N") ################################################################################ class TestFrequency(unittest.TestCase): """ Contains unit tests of the Frequency unit type object. Note that, as a special case, frequencies can be read in several units, but are always stored internally as cm^-1. """ def test_cm_1(self): """ Test the creation of a frequency quantity with units of cm^-1. """ q = quantity.Frequency(1.0,"cm^-1") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "cm^-1") def test_s_1(self): """ Test the creation of a frequency quantity with units of s^-1. """ q = quantity.Frequency(1.0,"s^-1") self.assertAlmostEqual(q.value, 1./(constants.c*100.), delta=1e-17) self.assertAlmostEqual(q.value_si, 1./(constants.c*100.), delta=1e-17) self.assertEqual(q.units, "cm^-1") def test_K(self): """ Test the creation of a frequency quantity with units of K. """ q = quantity.Frequency(1.0,"K") self.assertAlmostEqual(q.value, constants.kB/(constants.h*constants.c*100.), 6) self.assertAlmostEqual(q.value_si, constants.kB/(constants.h*constants.c*100.), delta=1e-6) self.assertEqual(q.units, "cm^-1") def test_eV(self): """ Test the creation of a frequency quantity with units of eV. """ q = quantity.Frequency(1.0,"eV") self.assertAlmostEqual(q.value, constants.e/(constants.h*constants.c*100.), 2) self.assertAlmostEqual(q.value_si, constants.e/(constants.h*constants.c*100.), delta=1e-2) self.assertEqual(q.units, "cm^-1") def test_Hz(self): """ Test the creation of a frequency quantity with units of Hz. """ q = quantity.Frequency(1.0,"Hz") self.assertAlmostEqual(q.value, 1./(constants.c*100.), delta=1e-17) self.assertAlmostEqual(q.value_si, 1./(constants.c*100.), delta=1e-17) self.assertEqual(q.units, "cm^-1") def test_kHz(self): """ Test the creation of a frequency quantity with units of kHz. """ q = quantity.Frequency(1.0,"kHz") self.assertAlmostEqual(q.value, 1e3/(constants.c*100.), delta=1e-14) self.assertAlmostEqual(q.value_si, 1e3/(constants.c*100.), delta=1e-14) self.assertEqual(q.units, "cm^-1") def test_MHz(self): """ Test the creation of a frequency quantity with units of MHz. """ q = quantity.Frequency(1.0,"MHz") self.assertAlmostEqual(q.value, 1e6/(constants.c*100.), delta=1e-11) self.assertAlmostEqual(q.value_si, 1e6/(constants.c*100.), delta=1e-11) self.assertEqual(q.units, "cm^-1") def test_GHz(self): """ Test the creation of a frequency quantity with units of GHz. """ q = quantity.Frequency(1.0,"GHz") self.assertAlmostEqual(q.value, 1e9/(constants.c*100.), delta=1e-08) self.assertAlmostEqual(q.value_si, 1e9/(constants.c*100.), delta=1e-08) self.assertEqual(q.units, "cm^-1") ################################################################################ class TestHeatCapacity(unittest.TestCase): """ Contains unit tests of the HeatCapacity unit type object. """ def test_JperK(self): """ Test the creation of a heat capacity quantity with units of J/K. """ try: q = quantity.HeatCapacity(1.0,"J/K") self.fail('Allowed invalid unit type "J/K".') except quantity.QuantityError: pass def test_JpermolperK(self): """ Test the creation of a heat capacity quantity with units of J/(mol*K). """ q = quantity.HeatCapacity(1.0,"J/(mol*K)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "J/(mol*K)") def test_calperK(self): """ Test the creation of a heat capacity quantity with units of cal/K. """ try: q = quantity.HeatCapacity(1.0,"cal/K") self.fail('Allowed invalid unit type "cal/K".') except quantity.QuantityError: pass def test_calpermolperK(self): """ Test the creation of a heat capacity quantity with units of cal/(mol*K). """ q = quantity.HeatCapacity(1.0,"cal/(mol*K)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 4.184, delta=1e-6) self.assertEqual(q.units, "cal/(mol*K)") def test_kJperK(self): """ Test the creation of a heat capacity quantity with units of kJ/K. """ try: q = quantity.HeatCapacity(1.0,"kJ/K") self.fail('Allowed invalid unit type "kJ/K".') except quantity.QuantityError: pass def test_kJpermolperK(self): """ Test the creation of a heat capacity quantity with units of kJ/(mol*K). """ q = quantity.HeatCapacity(1.0,"kJ/(mol*K)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1000., delta=1e-6) self.assertEqual(q.units, "kJ/(mol*K)") def test_kcalperK(self): """ Test the creation of a heat capacity quantity with units of kcal/K. """ try: q = quantity.HeatCapacity(1.0,"kcal/K") self.fail('Allowed invalid unit type "kcal/K".') except quantity.QuantityError: pass def test_kcalpermolperK(self): """ Test the creation of a heat capacity quantity with units of kcal/(mol*K). """ q = quantity.HeatCapacity(1.0,"kcal/(mol*K)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 4184., delta=1e-6) self.assertEqual(q.units, "kcal/(mol*K)") ################################################################################ class TestInertia(unittest.TestCase): """ Contains unit tests of the Inertia unit type object. """ def test_kg_m2(self): """ Test the creation of a moment of inertia quantity with units of kg*m^2. """ q = quantity.Inertia(1.0,"kg*m^2") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "kg*m^2") def test_amu_angstrom2(self): """ Test the creation of a moment of inertia quantity with units of amu*angstrom^2. """ q = quantity.Inertia(1.0,"amu*angstrom^2") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si*constants.Na*1e23, 1.0, delta=1e-6) self.assertEqual(q.units, "amu*angstrom^2") ################################################################################ class TestLength(unittest.TestCase): """ Contains unit tests of the Length unit type object. """ def test_m(self): """ Test the creation of a length quantity with units of m. """ q = quantity.Length(1.0,"m") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "m") def test_km(self): """ Test the creation of a length quantity with units of km. """ q = quantity.Length(1.0,"km") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e3, delta=1e-3) self.assertEqual(q.units, "km") def test_cm(self): """ Test the creation of a length quantity with units of cm. """ q = quantity.Length(1.0,"cm") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e-2, delta=1e-8) self.assertEqual(q.units, "cm") def test_mm(self): """ Test the creation of a length quantity with units of mm. """ q = quantity.Length(1.0,"mm") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e-3, delta=1e-9) self.assertEqual(q.units, "mm") def test_um(self): """ Test the creation of a length quantity with units of um. """ q = quantity.Length(1.0,"um") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e-6, delta=1e-12) self.assertEqual(q.units, "um") def test_nm(self): """ Test the creation of a length quantity with units of nm. """ q = quantity.Length(1.0,"nm") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e-9, delta=1e-15) self.assertEqual(q.units, "nm") def test_pm(self): """ Test the creation of a length quantity with units of pm. """ q = quantity.Length(1.0,"pm") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e-12, delta=1e-18) self.assertEqual(q.units, "pm") ################################################################################ class TestMass(unittest.TestCase): """ Contains unit tests of the Mass unit type object. """ def test_kg(self): """ Test the creation of a mass quantity with units of kg. """ q = quantity.Mass(1.0,"kg") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "kg") def test_gpermol(self): """ Test the creation of a mass quantity with units of g/mol. Note that g/mol is automatically coerced to amu. """ q = quantity.Mass(1.0,"g/mol") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, constants.amu, delta=1e-32) self.assertEqual(q.units, "amu") def test_kgpermol(self): """ Test the creation of a mass quantity with units of kg/mol. Note that kg/mol is automatically coerced to amu. """ q = quantity.Mass(1.0,"kg/mol") self.assertAlmostEqual(q.value, 1000.0, 3) self.assertAlmostEqual(q.value_si, 1000.*constants.amu, delta=1e-29) self.assertEqual(q.units, "amu") def test_amu(self): """ Test the creation of a mass quantity with units of amu. """ q = quantity.Mass(1.0,"amu") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, constants.amu, delta=1e-32) self.assertEqual(q.units, "amu") ################################################################################ class TestMomentum(unittest.TestCase): """ Contains unit tests of the Momentum unit type object. """ def test_kgmpers2(self): """ Test the creation of a momentum quantity with units of kg*m/s^2. """ q = quantity.Momentum(1.0,"kg*m/s^2") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "kg*m/s^2") ################################################################################ class TestPower(unittest.TestCase): """ Contains unit tests of the Power unit type object. """ def test_W(self): """ Test the creation of a power quantity with units of W. """ q = quantity.Power(1.0,"W") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "W") ################################################################################ class TestPressure(unittest.TestCase): """ Contains unit tests of the Pressure unit type object. """ def test_Pa(self): """ Test the creation of a pressure quantity with units of Pa. """ q = quantity.Pressure(1.0,"Pa") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "Pa") def test_bar(self): """ Test the creation of a pressure quantity with units of bar. """ q = quantity.Pressure(1.0,"bar") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e5, delta=1e-6) self.assertEqual(q.units, "bar") def test_atm(self): """ Test the creation of a pressure quantity with units of atm. """ q = quantity.Pressure(1.0,"atm") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 101325., delta=1e-6) self.assertEqual(q.units, "atm") def test_torr(self): """ Test the creation of a pressure quantity with units of torr. """ q = quantity.Pressure(1.0,"torr") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 101325./760., delta=1e-6) self.assertEqual(q.units, "torr") def test_psi(self): """ Test the creation of a pressure quantity with units of psi. """ q = quantity.Pressure(1.0,"psi") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 101325./14.695949, delta=1e-2) self.assertEqual(q.units, "psi") ################################################################################ class TestRateCoefficient(unittest.TestCase): """ Contains unit tests of the RateCoefficient unit type object. """ def test_s(self): """ Test the creation of a rate coefficient quantity with units of s^-1. """ q = quantity.RateCoefficient(1.0,"s^-1") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "s^-1") def test_m3permols(self): """ Test the creation of a rate coefficient quantity with units of m^3/(mol*s). """ q = quantity.RateCoefficient(1.0,"m^3/(mol*s)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "m^3/(mol*s)") def test_m6permol2s(self): """ Test the creation of a rate coefficient quantity with units of m^6/(mol^2*s). """ q = quantity.RateCoefficient(1.0,"m^6/(mol^2*s)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "m^6/(mol^2*s)") def test_m9permol3s(self): """ Test the creation of a rate coefficient quantity with units of m^9/(mol^3*s). """ q = quantity.RateCoefficient(1.0,"m^9/(mol^3*s)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "m^9/(mol^3*s)") def test_cm3permols(self): """ Test the creation of a rate coefficient quantity with units of cm^3/(mol*s). """ q = quantity.RateCoefficient(1.0,"cm^3/(mol*s)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si*1e6, 1.0, delta=1e-6) self.assertEqual(q.units, "cm^3/(mol*s)") def test_cm6permol2s(self): """ Test the creation of a rate coefficient quantity with units of cm^6/(mol^2*s). """ q = quantity.RateCoefficient(1.0,"cm^6/(mol^2*s)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si*(1e6)**2, 1.0, delta=1e-6) self.assertEqual(q.units, "cm^6/(mol^2*s)") def test_cm9permol3s(self): """ Test the creation of a rate coefficient quantity with units of cm^9/(mol^3*s). """ q = quantity.RateCoefficient(1.0,"cm^9/(mol^3*s)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si*(1e6)**3, 1.0, delta=1e-6) self.assertEqual(q.units, "cm^9/(mol^3*s)") def test_cm3permolecules(self): """ Test the creation of a rate coefficient quantity with units of cm^3/(molecule*s). """ q = quantity.RateCoefficient(1.0,"cm^3/(molecule*s)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si*1e6/constants.Na, 1.0, delta=1e-6) self.assertEqual(q.units, "cm^3/(molecule*s)") def test_cm6permolecule2s(self): """ Test the creation of a rate coefficient quantity with units of cm^6/(molecule^2*s). """ q = quantity.RateCoefficient(1.0,"cm^6/(molecule^2*s)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si*(1e6/constants.Na)**2, 1.0, delta=1e-6) self.assertEqual(q.units, "cm^6/(molecule^2*s)") def test_cm9permolecule3s(self): """ Test the creation of a rate coefficient quantity with units of cm^9/(molecule^3*s). """ q = quantity.RateCoefficient(1.0,"cm^9/(molecule^3*s)") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si*(1e6/constants.Na)**3, 1.0, delta=1e-6) self.assertEqual(q.units, "cm^9/(molecule^3*s)") ################################################################################ class TestTemperature(unittest.TestCase): """ Contains unit tests of the Temperature unit type object. """ def test_K(self): """ Test the creation of a temperature quantity with units of K. """ q = quantity.Temperature(1.0,"K") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "K") def test_degC(self): """ Test the creation of a temperature quantity with units of degrees C. """ with self.assertRaises(NotImplementedError): q = quantity.Temperature(1.0,"degC") def test_degF(self): """ Test the creation of a temperature quantity with units of degrees F. """ with self.assertRaises(NotImplementedError): q = quantity.Temperature(1.0,"degF") def test_degR(self): """ Test the creation of a temperature quantity with units of degrees R. """ with self.assertRaises(NotImplementedError): q = quantity.Temperature(1.0,"degR") ################################################################################ class TestTime(unittest.TestCase): """ Contains unit tests of the Time unit type object. """ def test_s(self): """ Test the creation of a time quantity with units of s. """ q = quantity.Time(1.0,"s") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "s") def test_ms(self): """ Test the creation of a time quantity with units of ms. """ q = quantity.Time(1.0,"ms") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e-3, delta=1e-9) self.assertEqual(q.units, "ms") def test_us(self): """ Test the creation of a time quantity with units of us. """ q = quantity.Time(1.0,"us") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e-6, delta=1e-12) self.assertEqual(q.units, "us") def test_ns(self): """ Test the creation of a time quantity with units of ns. """ q = quantity.Time(1.0,"ns") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e-9, delta=1e-15) self.assertEqual(q.units, "ns") def test_ps(self): """ Test the creation of a time quantity with units of ps. """ q = quantity.Time(1.0,"ps") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e-12, delta=1e-18) self.assertEqual(q.units, "ps") def test_fs(self): """ Test the creation of a time quantity with units of fs. """ q = quantity.Time(1.0,"fs") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e-15, delta=1e-21) self.assertEqual(q.units, "fs") def test_min(self): """ Test the creation of a time quantity with units of min. """ q = quantity.Time(1.0,"min") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 60.0, delta=1e-6) self.assertEqual(q.units, "min") def test_hr(self): """ Test the creation of a time quantity with units of hr. """ q = quantity.Time(1.0,"hr") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 3600.0, delta=1e-6) self.assertEqual(q.units, "hr") ################################################################################ class TestVelocity(unittest.TestCase): """ Contains unit tests of the Velocity unit type object. """ def test_mpers(self): """ Test the creation of an velocity quantity with units of m/s. """ q = quantity.Velocity(1.0,"m/s") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "m/s") def test_cmpers(self): """ Test the creation of an velocity quantity with units of m/s. """ q = quantity.Velocity(1.0,"cm/s") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 0.01, delta=1e-8) self.assertEqual(q.units, "cm/s") ################################################################################ class TestVolume(unittest.TestCase): """ Contains unit tests of the Volume unit type object. """ def test_m3(self): """ Test the creation of an volume quantity with units of m^3. """ q = quantity.Volume(1.0,"m^3") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0, delta=1e-6) self.assertEqual(q.units, "m^3") def test_L(self): """ Test the creation of an volume quantity with units of L. """ q = quantity.Volume(1.0,"L") self.assertAlmostEqual(q.value, 1.0, 6) self.assertAlmostEqual(q.value_si, 1.0e-3, delta=1e-9) self.assertEqual(q.units, "L") class TestQuantity(unittest.TestCase): """ Contains unit tests testing the value and uncertainty storage behavior for ScalarQuantity and ArrayQuantity objects """ def setUp(self): """ A function run before each unit test in this class. This tests the creation of several both ScalarQuantity and ArrayQuantity objects """ self.Cp = quantity.Quantity([-6.51,-5.19333,-4.47333,-3.76,-3.44333,-2.94667,-2.47],'cal/(mol*K)', '+|-',[2.72057,3.42407,4.84068,5.11681,5.13207,5.8757,8.29108]) self.v = quantity.Quantity([5,10,12],'cm/s','*|/',[1.2,0.4,1]) self.H = quantity.Quantity(33.1097,'kcal/mol','+|-',24.8344) self.A = quantity.Quantity(7.25e+13, 'cm^3/(mol*s)', '*|/', 5) self.Cp_array = quantity.ArrayQuantity([-6.51,-5.19333,-4.47333,-3.76,-3.44333,-2.94667,-2.47],'cal/(mol*K)', [2.72057,3.42407,4.84068,5.11681,5.13207,5.8757,8.29108],'+|-') self.v_array = quantity.ArrayQuantity([5,10,12],'cm/s',[1.2,0.4,1],'*|/') self.H_scalar = quantity.ScalarQuantity(33.1097,'kcal/mol',24.8344,'+|-',) self.A_scalar = quantity.ScalarQuantity(7.25e+13, 'cm^3/(mol*s)', 5,'*|/') def test_scalar_conversion(self): """ ScalarQuantity: test that the value and uncertainty get converted to the proper si value. """ # Uncertainty of type +|- must be adjusted by units self.assertAlmostEqual(self.H.value_si,self.H.value*4184) self.assertAlmostEqual(self.H.uncertainty_si, self.H.uncertainty*4184) self.assertAlmostEqual(self.H_scalar.value_si,self.H_scalar.value*4184) self.assertAlmostEqual(self.H_scalar.uncertainty_si, self.H_scalar.uncertainty*4184) # Uncertainty of type *|/ does not need to be adjusted by units self.assertAlmostEqual(self.A.value_si,self.A.value*1e-6) self.assertAlmostEqual(self.A.uncertainty_si, self.A.uncertainty) self.assertAlmostEqual(self.A_scalar.value_si, self.A_scalar.value*1e-6) self.assertAlmostEqual(self.A_scalar.uncertainty_si, self.A_scalar.uncertainty) def test_array_conversion(self): """ ArrayQuantity: test that the value and uncertainty get converted to the proper si value. """ numpy.testing.assert_array_almost_equal(self.v.value_si, self.v.value*1e-2) numpy.testing.assert_array_almost_equal(self.v.uncertainty_si, self.v.uncertainty) numpy.testing.assert_array_almost_equal(self.v_array.value_si, self.v.value*1e-2) numpy.testing.assert_array_almost_equal(self.v_array.uncertainty_si, self.v.uncertainty) numpy.testing.assert_array_almost_equal(self.Cp.value_si, self.Cp.value*4.184) numpy.testing.assert_array_almost_equal(self.Cp.uncertainty_si, self.Cp.uncertainty*4.184) numpy.testing.assert_array_almost_equal(self.Cp_array.value_si, self.Cp.value*4.184) numpy.testing.assert_array_almost_equal(self.Cp_array.uncertainty_si, self.Cp.uncertainty*4.184) def test_scalar_repr(self): """ Test that the ScalarQuantity objects can be recreated using their __repr__ function """ # Test that the values can be reconstituted H = quantity.Quantity(eval(repr(self.H))) self.assertEqual(H.value_si, self.H.value_si) self.assertEqual(H.uncertainty_si, self.H.uncertainty_si) self.assertEqual(H.uncertaintyType, self.H.uncertaintyType) self.assertEqual(H.units, self.H.units) A = quantity.Quantity(eval(repr(self.A))) self.assertEqual(A.value_si, self.A.value_si) self.assertEqual(A.uncertainty_si, self.A.uncertainty_si) self.assertEqual(A.uncertaintyType, self.A.uncertaintyType) self.assertEqual(A.units, self.A.units) # Test that the __repr__ strings are the same self.assertEqual(repr(H),repr(self.H)) self.assertEqual(repr(self.H),repr(self.H_scalar)) self.assertEqual(repr(A),repr(self.A)) self.assertEqual(repr(self.A),repr(self.A_scalar)) def test_array_repr(self): """ Test that the ArrayQuantity objects can be recreated using their __repr__ function """ # Test that the values can be reconstituted Cp = quantity.Quantity(eval(repr(self.Cp))) numpy.testing.assert_array_almost_equal(Cp.value_si, self.Cp.value_si) numpy.testing.assert_array_almost_equal(Cp.uncertainty_si, self.Cp.uncertainty_si) self.assertEqual(Cp.uncertaintyType, self.Cp.uncertaintyType) self.assertEqual(Cp.units, self.Cp.units) v = quantity.Quantity(eval(repr(self.v))) numpy.testing.assert_array_almost_equal(v.value_si, self.v.value_si) numpy.testing.assert_array_almost_equal(v.uncertainty_si, self.v.uncertainty_si) self.assertEqual(v.uncertaintyType, self.v.uncertaintyType) self.assertEqual(v.units, self.v.units) # Test that the __repr__ strings are the same self.assertEqual(repr(Cp),repr(self.Cp)) self.assertEqual(repr(self.Cp),repr(self.Cp_array)) self.assertEqual(repr(v),repr(self.v)) self.assertEqual(repr(self.v),repr(self.v_array))
pierrelb/RMG-Py
rmgpy/quantityTest.py
Python
mit
38,311
0.007021
import re, os import util from InputParameters import InputParameters from MooseObject import MooseObject class Tester(MooseObject): @staticmethod def validParams(): params = MooseObject.validParams() # Common Options params.addRequiredParam('type', "The type of test of Tester to create for this test.") params.addParam('max_time', 300, "The maximum in seconds that the test will be allowed to run.") params.addParam('min_reported_time', "The minimum time elapsed before a test is reported as taking to long to run.") params.addParam('skip', "Provide a reason this test will be skipped.") params.addParam('deleted', "Tests that only show up when using the '-e' option (Permanently skipped or not implemented).") params.addParam('heavy', False, "Set to True if this test should only be run when the '--heavy' option is used.") params.addParam('group', [], "A list of groups for which this test belongs.") params.addParam('prereq', [], "A list of prereq tests that need to run successfully before launching this test.") params.addParam('skip_checks', False, "Tells the TestHarness to skip additional checks (This parameter is set automatically by the TestHarness during recovery tests)") params.addParam('scale_refine', 0, "The number of refinements to do when scaling") params.addParam('success_message', 'OK', "The successful message") params.addParam('cli_args', [], "Additional arguments to be passed to the test.") params.addParam('valgrind', 'NONE', "Set to (NONE, NORMAL, HEAVY) to determine which configurations where valgrind will run.") # Test Filters params.addParam('platform', ['ALL'], "A list of platforms for which this test will run on. ('ALL', 'DARWIN', 'LINUX', 'SL', 'LION', 'ML')") params.addParam('compiler', ['ALL'], "A list of compilers for which this test is valid on. ('ALL', 'GCC', 'INTEL', 'CLANG')") params.addParam('petsc_version', ['ALL'], "A list of petsc versions for which this test will run on, supports normal comparison operators ('<', '>', etc...)") params.addParam('mesh_mode', ['ALL'], "A list of mesh modes for which this test will run ('DISTRIBUTED', 'REPLICATED')") params.addParam('method', ['ALL'], "A test that runs under certain executable configurations ('ALL', 'OPT', 'DBG', 'DEVEL', 'OPROF', 'PRO')") params.addParam('library_mode', ['ALL'], "A test that only runs when libraries are built under certain configurations ('ALL', 'STATIC', 'DYNAMIC')") params.addParam('dtk', ['ALL'], "A test that runs only if DTK is detected ('ALL', 'TRUE', 'FALSE')") params.addParam('unique_ids', ['ALL'], "A test that runs only if UNIQUE_IDs are enabled ('ALL', 'TRUE', 'FALSE')") params.addParam('recover', True, "A test that runs with '--recover' mode enabled") params.addParam('vtk', ['ALL'], "A test that runs only if VTK is detected ('ALL', 'TRUE', 'FALSE')") params.addParam('tecplot', ['ALL'], "A test that runs only if Tecplot is detected ('ALL', 'TRUE', 'FALSE')") params.addParam('dof_id_bytes', ['ALL'], "A test that runs only if libmesh is configured --with-dof-id-bytes = a specific number, e.g. '4', '8'") params.addParam('petsc_debug', ['ALL'], "{False,True} -> test only runs when PETSc is configured with --with-debugging={0,1}, otherwise test always runs.") params.addParam('curl', ['ALL'], "A test that runs only if CURL is detected ('ALL', 'TRUE', 'FALSE')") params.addParam('tbb', ['ALL'], "A test that runs only if TBB is available ('ALL', 'TRUE', 'FALSE')") params.addParam('superlu', ['ALL'], "A test that runs only if SuperLU is available via PETSc ('ALL', 'TRUE', 'FALSE')") params.addParam('slepc', ['ALL'], "A test that runs only if SLEPc is available ('ALL', 'TRUE', 'FALSE')") params.addParam('unique_id', ['ALL'], "A test that runs only if libmesh is configured with --enable-unique-id ('ALL', 'TRUE', 'FALSE')") params.addParam('cxx11', ['ALL'], "A test that runs only if CXX11 is available ('ALL', 'TRUE', 'FALSE')") params.addParam('asio', ['ALL'], "A test that runs only if ASIO is available ('ALL', 'TRUE', 'FALSE')") params.addParam('depend_files', [], "A test that only runs if all depend files exist (files listed are expected to be relative to the base directory, not the test directory") params.addParam('env_vars', [], "A test that only runs if all the environment variables listed exist") params.addParam('should_execute', True, 'Whether or not the executable needs to be run. Use this to chain together multiple tests based off of one executeable invocation') params.addParam('required_submodule', [], "A list of initialized submodules for which this test requires.") params.addParam('check_input', False, "Check for correct input file syntax") params.addParam('display_required', False, "The test requires and active display for rendering (i.e., ImageDiff tests).") return params def __init__(self, name, params): MooseObject.__init__(self, name, params) self.specs = params # Initialize the status bucket class self.status = util.TestStatus() # Enumerate the buckets here so ther are easier to work with in the tester class self.bucket_success = self.status.bucket_success self.bucket_fail = self.status.bucket_fail self.bucket_diff = self.status.bucket_diff self.bucket_pbs = self.status.bucket_pbs self.bucket_pending = self.status.bucket_pending self.bucket_deleted = self.status.bucket_deleted self.bucket_skip = self.status.bucket_skip self.bucket_silent = self.status.bucket_silent # Initialize the tester with a pending status self.setStatus('launched', self.bucket_pending) # Set the status message if self.specs['check_input']: self.success_message = 'SYNTAX PASS' else: self.success_message = self.specs['success_message'] # Set up common paramaters self.should_execute = self.specs['should_execute'] self.check_input = self.specs['check_input'] def getTestName(self): return self.specs['test_name'] def getPrereqs(self): return self.specs['prereq'] # Method to return if the test can run def getRunnable(self): return self.status.getRunnable() # Method to return text color based on current test status def getColor(self): return self.status.getColor() # Method to return the input file if applicable to this Tester def getInputFile(self): return None # Method to return the output files if applicable to this Tester def getOutputFiles(self): return [] # Method to return the successful message printed to stdout def getSuccessMessage(self): return self.success_message # Method to return status text (exodiff, crash, skipped because x, y and z etc) def getStatusMessage(self): return self.status.getStatusMessage() # Method to return status bucket tuple def getStatus(self): return self.status.getStatus() # Method to set the bucket status def setStatus(self, reason, bucket): self.status.setStatus(reason, bucket) return self.getStatus() # Method to check if a test has failed. This method will return true if a # tester has failed at any point during the processing of the test. # Note: It's possible for a tester to report false for both didFail and # didPass. This will happen if the tester is in-progress for instance. # See didPass() def didFail(self): return self.status.didFail() # Method to check for successfull test # Note: This method can return False until the tester has completely finished. # For this reason it should be used only after the tester has completed. # Instead you may want to use the didFail method which returns false # only if the tester has failed at any point during the processing # of that tester (e.g. after the main command has been run but before # output has been tested). # See didFail() def didPass(self): return self.status.didPass() def getCheckInput(self): return self.check_input def setValgrindMode(self, mode): # Increase the alloted time for tests when running with the valgrind option if mode == 'NORMAL': self.specs['max_time'] = self.specs['max_time'] * 2 elif mode == 'HEAVY': self.specs['max_time'] = self.specs['max_time'] * 6 # Override this method to tell the harness whether or not this test should run. # This function should return a tuple (Boolean, reason) # If a reason is provided it'll be printed and counted as skipped. If the reason # is left blank, the test will not be printed at all nor counted in the test totals. def checkRunnable(self, options): return (True, '') # Whether or not the executeable should be run # Don't override this def shouldExecute(self): return self.should_execute # This method is called prior to running the test. It can be used to cleanup files # or do other preparations before the tester is run def prepare(self, options): return def getThreads(self, options): return 1 def getProcs(self, options): return 1 # This method should return the executable command that will be executed by the tester def getCommand(self, options): return # This method is called to return the commands (list) used for processing results def processResultsCommand(self, moose_dir, options): return [] # This method will be called to process the results of running the test. Any post-test # processing should happen in this method def processResults(self, moose_dir, retcode, options, output): return # This is the base level runnable check common to all Testers. DO NOT override # this method in any of your derived classes. Instead see "checkRunnable" def checkRunnableBase(self, options, checks, test_list=None): reason = '' # If --dry-run set the test status to pass and DO NOT return. # This will allow additional checks to perform and report tests # that would normally be skipped (and return as False). if options.dry_run: self.success_message = 'DRY RUN' self.setStatus(self.success_message, self.bucket_success) # Check if we only want to run failed tests if options.failed_tests: if self.specs['test_name'] not in test_list: self.setStatus('not failed', self.bucket_silent) return False # Are we running only tests in a specific group? if options.group <> 'ALL' and options.group not in self.specs['group']: self.setStatus('unmatched group', self.bucket_silent) return False if options.not_group <> '' and options.not_group in self.specs['group']: self.setStatus('unmatched group', self.bucket_silent) return False # Store regexp for matching tests if --re is used if options.reg_exp: match_regexp = re.compile(options.reg_exp) # If --re then only test matching regexp. Needs to run before other SKIP methods # This also needs to be in its own bucket group. We normally print skipped messages. # But we do not want to print tests that didn't match regex. if options.reg_exp and not match_regexp.search(self.specs['test_name']): self.setStatus('silent', self.bucket_silent) return False # Check for deleted tests if self.specs.isValid('deleted'): if options.extra_info: # We might want to trim the string so it formats nicely if len(self.specs['deleted']) >= util.TERM_COLS - (len(self.specs['test_name'])+21): test_reason = (self.specs['deleted'])[:(util.TERM_COLS - (len(self.specs['test_name'])+24))] + '...' else: test_reason = self.specs['deleted'] reason = 'deleted (' + test_reason + ')' self.setStatus(reason, self.bucket_deleted) return False # Check for skipped tests if self.specs.type('skip') is bool and self.specs['skip']: # Backwards compatible (no reason) self.setStatus('no reason', self.bucket_skip) return False elif self.specs.type('skip') is not bool and self.specs.isValid('skip'): skip_message = self.specs['skip'] # We might want to trim the string so it formats nicely if len(skip_message) >= util.TERM_COLS - (len(self.specs['test_name'])+21): reason = (skip_message)[:(util.TERM_COLS - (len(self.specs['test_name'])+24))] + '...' else: reason = skip_message self.setStatus(reason, self.bucket_skip) return False # If were testing for SCALE_REFINE, then only run tests with a SCALE_REFINE set elif (options.store_time or options.scaling) and self.specs['scale_refine'] == 0: self.setStatus('silent', self.bucket_silent) return False # If we're testing with valgrind, then skip tests that require parallel or threads or don't meet the valgrind setting elif options.valgrind_mode != '': if self.specs['valgrind'].upper() == 'NONE': reason = 'Valgrind==NONE' elif self.specs['valgrind'].upper() == 'HEAVY' and options.valgrind_mode.upper() == 'NORMAL': reason = 'Valgrind==HEAVY' elif self.specs['min_parallel'] > 1 or self.specs['min_threads'] > 1: reason = 'Valgrind requires serial' if reason != '': self.setStatus(reason, self.bucket_skip) return False # If we're running in recover mode skip tests that have recover = false elif options.enable_recover and self.specs['recover'] == False: reason = 'NO RECOVER' self.setStatus(reason, self.bucket_skip) return False # Check for PETSc versions (petsc_status, logic_reason, petsc_version) = util.checkPetscVersion(checks, self.specs) if not petsc_status: reason = 'using PETSc ' + str(checks['petsc_version']) + ' REQ: ' + logic_reason + ' ' + petsc_version self.setStatus(reason, self.bucket_skip) return False # PETSc is being explicitly checked above local_checks = ['platform', 'compiler', 'mesh_mode', 'method', 'library_mode', 'dtk', 'unique_ids', 'vtk', 'tecplot', \ 'petsc_debug', 'curl', 'tbb', 'superlu', 'cxx11', 'asio', 'unique_id', 'slepc'] for check in local_checks: test_platforms = set() operator_display = '!=' inverse_set = False for x in self.specs[check]: if x[0] == '!': if inverse_set: reason = 'Multiple Negation Unsupported' self.setStatus(reason, self.bucket_skip) return False inverse_set = True operator_display = '==' x = x[1:] # Strip off the ! x_upper = x.upper() if x_upper in test_platforms: reason = 'Duplicate Entry or Negative of Existing Entry' self.setStatus(reason, self.bucket_skip) return False test_platforms.add(x.upper()) match_found = len(test_platforms.intersection(checks[check])) > 0 # Either we didn't find the match when we were using normal "include" logic # or we did find the match when we wanted to exclude it if inverse_set == match_found: reason = re.sub(r'\[|\]', '', check).upper() + operator_display + ', '.join(test_platforms) self.setStatus(reason, self.bucket_skip) return False # Check for heavy tests if options.all_tests or options.heavy_tests: if not self.specs['heavy'] and options.heavy_tests: reason = 'NOT HEAVY' self.setStatus(reason, self.bucket_silent) return False elif self.specs['heavy']: reason = 'HEAVY' self.setStatus(reason, self.bucket_skip) return False # Check for positive scale refine values when using store timing options if self.specs['scale_refine'] == 0 and options.store_time: self.setStatus('scale_refine==0 store_time=True', self.bucket_skip) return False # There should only be one entry in self.specs['dof_id_bytes'] for x in self.specs['dof_id_bytes']: if x != 'ALL' and not x in checks['dof_id_bytes']: reason = '--with-dof-id-bytes!=' + x self.setStatus(reason, self.bucket_skip) return False # Check to make sure depend files exist for file in self.specs['depend_files']: if not os.path.isfile(os.path.join(self.specs['base_dir'], file)): reason = 'DEPEND FILES' self.setStatus(reason, self.bucket_skip) return False # Check to make sure required submodules are initialized for var in self.specs['required_submodule']: if var not in checks["submodules"]: reason = '%s submodule not initialized' % var self.setStatus(reason, self.bucket_skip) return False # Check to make sure environment variable exists for var in self.specs['env_vars']: if not os.environ.has_key(var): reason = 'ENV VAR NOT SET' self.setStatus(reason, self.bucket_skip) return False # Check for display if self.specs['display_required'] and not os.getenv('DISPLAY', False): reason = 'NO DISPLAY' self.setStatus(reason, self.bucket_skip) return False # Check the return values of the derived classes return self.checkRunnable(options)
backmari/moose
python/TestHarness/testers/Tester.py
Python
lgpl-2.1
18,823
0.004835
""" provide a generic structure to support window functions, similar to how we have a Groupby object """ from __future__ import division import warnings import numpy as np from collections import defaultdict from datetime import timedelta from pandas.core.dtypes.generic import ( ABCSeries, ABCDataFrame, ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex, ABCDateOffset) from pandas.core.dtypes.common import ( is_integer, is_bool, is_float_dtype, is_integer_dtype, needs_i8_conversion, is_timedelta64_dtype, is_list_like, _ensure_float64, is_scalar) from pandas.core.base import (PandasObject, SelectionMixin, GroupByMixin) import pandas.core.common as com import pandas._libs.window as _window from pandas import compat from pandas.compat.numpy import function as nv from pandas.util._decorators import (Substitution, Appender, cache_readonly) from pandas.core.generic import _shared_docs from textwrap import dedent _shared_docs = dict(**_shared_docs) _doc_template = """ Returns ------- same type as input See also -------- pandas.Series.%(name)s pandas.DataFrame.%(name)s """ class _Window(PandasObject, SelectionMixin): _attributes = ['window', 'min_periods', 'freq', 'center', 'win_type', 'axis', 'on', 'closed'] exclusions = set() def __init__(self, obj, window=None, min_periods=None, freq=None, center=False, win_type=None, axis=0, on=None, closed=None, **kwargs): if freq is not None: warnings.warn("The freq kw is deprecated and will be removed in a " "future version. You can resample prior to passing " "to a window function", FutureWarning, stacklevel=3) self.__dict__.update(kwargs) self.blocks = [] self.obj = obj self.on = on self.closed = closed self.window = window self.min_periods = min_periods self.freq = freq self.center = center self.win_type = win_type self.win_freq = None self.axis = obj._get_axis_number(axis) if axis is not None else None self.validate() @property def _constructor(self): return Window @property def is_datetimelike(self): return None @property def _on(self): return None @property def is_freq_type(self): return self.win_type == 'freq' def validate(self): if self.center is not None and not is_bool(self.center): raise ValueError("center must be a boolean") if self.min_periods is not None and not \ is_integer(self.min_periods): raise ValueError("min_periods must be an integer") if self.closed is not None and self.closed not in \ ['right', 'both', 'left', 'neither']: raise ValueError("closed must be 'right', 'left', 'both' or " "'neither'") def _convert_freq(self, how=None): """ resample according to the how, return a new object """ obj = self._selected_obj index = None if (self.freq is not None and isinstance(obj, (ABCSeries, ABCDataFrame))): if how is not None: warnings.warn("The how kw argument is deprecated and removed " "in a future version. You can resample prior " "to passing to a window function", FutureWarning, stacklevel=6) obj = obj.resample(self.freq).aggregate(how or 'asfreq') return obj, index def _create_blocks(self, how): """ split data into blocks & return conformed data """ obj, index = self._convert_freq(how) if index is not None: index = self._on # filter out the on from the object if self.on is not None: if obj.ndim == 2: obj = obj.reindex(columns=obj.columns.difference([self.on]), copy=False) blocks = obj._to_dict_of_blocks(copy=False).values() return blocks, obj, index def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ # create a new object to prevent aliasing if subset is None: subset = self.obj self = self._shallow_copy(subset) self._reset_cache() if subset.ndim == 2: if is_scalar(key) and key in subset or is_list_like(key): self._selection = key return self def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError("%r object has no attribute %r" % (type(self).__name__, attr)) def _dir_additions(self): return self.obj._dir_additions() def _get_window(self, other=None): return self.window @property def _window_type(self): return self.__class__.__name__ def __unicode__(self): """ provide a nice str repr of our rolling object """ attrs = ["{k}={v}".format(k=k, v=getattr(self, k)) for k in self._attributes if getattr(self, k, None) is not None] return "{klass} [{attrs}]".format(klass=self._window_type, attrs=','.join(attrs)) def _get_index(self, index=None): """ Return index as ndarrays Returns ------- tuple of (index, index_as_ndarray) """ if self.is_freq_type: if index is None: index = self._on return index, index.asi8 return index, index def _prep_values(self, values=None, kill_inf=True, how=None): if values is None: values = getattr(self._selected_obj, 'values', self._selected_obj) # GH #12373 : rolling functions error on float32 data # make sure the data is coerced to float64 if is_float_dtype(values.dtype): values = _ensure_float64(values) elif is_integer_dtype(values.dtype): values = _ensure_float64(values) elif needs_i8_conversion(values.dtype): raise NotImplementedError("ops for {action} for this " "dtype {dtype} are not " "implemented".format( action=self._window_type, dtype=values.dtype)) else: try: values = _ensure_float64(values) except (ValueError, TypeError): raise TypeError("cannot handle this type -> {0}" "".format(values.dtype)) if kill_inf: values = values.copy() values[np.isinf(values)] = np.NaN return values def _wrap_result(self, result, block=None, obj=None): """ wrap a single result """ if obj is None: obj = self._selected_obj index = obj.index if isinstance(result, np.ndarray): # coerce if necessary if block is not None: if is_timedelta64_dtype(block.values.dtype): from pandas import to_timedelta result = to_timedelta( result.ravel(), unit='ns').values.reshape(result.shape) if result.ndim == 1: from pandas import Series return Series(result, index, name=obj.name) return type(obj)(result, index=index, columns=block.columns) return result def _wrap_results(self, results, blocks, obj): """ wrap the results Paramters --------- results : list of ndarrays blocks : list of blocks obj : conformed data (may be resampled) """ from pandas import Series, concat from pandas.core.index import _ensure_index final = [] for result, block in zip(results, blocks): result = self._wrap_result(result, block=block, obj=obj) if result.ndim == 1: return result final.append(result) # if we have an 'on' column # we want to put it back into the results # in the same location columns = self._selected_obj.columns if self.on is not None and not self._on.equals(obj.index): name = self._on.name final.append(Series(self._on, index=obj.index, name=name)) if self._selection is not None: selection = _ensure_index(self._selection) # need to reorder to include original location of # the on column (if its not already there) if name not in selection: columns = self.obj.columns indexer = columns.get_indexer(selection.tolist() + [name]) columns = columns.take(sorted(indexer)) if not len(final): return obj.astype('float64') return concat(final, axis=1).reindex(columns=columns, copy=False) def _center_window(self, result, window): """ center the result in the window """ if self.axis > result.ndim - 1: raise ValueError("Requested axis is larger then no. of argument " "dimensions") offset = _offset(window, True) if offset > 0: if isinstance(result, (ABCSeries, ABCDataFrame)): result = result.slice_shift(-offset, axis=self.axis) else: lead_indexer = [slice(None)] * result.ndim lead_indexer[self.axis] = slice(offset, None) result = np.copy(result[tuple(lead_indexer)]) return result def aggregate(self, arg, *args, **kwargs): result, how = self._aggregate(arg, *args, **kwargs) if result is None: return self.apply(arg, args=args, kwargs=kwargs) return result agg = aggregate _shared_docs['sum'] = dedent(""" %(name)s sum Parameters ---------- how : string, default None .. deprecated:: 0.18.0 Method for down- or re-sampling""") _shared_docs['mean'] = dedent(""" %(name)s mean Parameters ---------- how : string, default None .. deprecated:: 0.18.0 Method for down- or re-sampling""") class Window(_Window): """ Provides rolling window calculations. .. versionadded:: 0.18.0 Parameters ---------- window : int, or offset Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size. If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. This is new in 0.19.0 min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, this will default to 1. freq : string or DateOffset object, optional (default None) .. deprecated:: 0.18.0 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. win_type : string, default None Provide a window type. See the notes below. on : string, optional For a DataFrame, column on which to calculate the rolling window, rather than the index closed : string, default None Make the interval closed on the 'right', 'left', 'both' or 'neither' endpoints. For offset-based windows, it defaults to 'right'. For fixed windows, defaults to 'both'. Remaining cases not implemented for fixed windows. .. versionadded:: 0.20.0 axis : int or string, default 0 Returns ------- a Window or Rolling sub-classed for the particular operation Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 Rolling sum with a window length of 2, using the 'triang' window type. >>> df.rolling(2, win_type='triang').sum() B 0 NaN 1 1.0 2 2.5 3 NaN 4 NaN Rolling sum with a window length of 2, min_periods defaults to the window length. >>> df.rolling(2).sum() B 0 NaN 1 1.0 2 3.0 3 NaN 4 NaN Same as above, but explicity set the min_periods >>> df.rolling(2, min_periods=1).sum() B 0 0.0 1 1.0 2 3.0 3 2.0 4 4.0 A ragged (meaning not-a-regular frequency), time-indexed DataFrame >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ....: index = [pd.Timestamp('20130101 09:00:00'), ....: pd.Timestamp('20130101 09:00:02'), ....: pd.Timestamp('20130101 09:00:03'), ....: pd.Timestamp('20130101 09:00:05'), ....: pd.Timestamp('20130101 09:00:06')]) >>> df B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1. >>> df.rolling('2s').sum() B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). To learn more about the offsets & frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. The recognized win_types are: * ``boxcar`` * ``triang`` * ``blackman`` * ``hamming`` * ``bartlett`` * ``parzen`` * ``bohman`` * ``blackmanharris`` * ``nuttall`` * ``barthann`` * ``kaiser`` (needs beta) * ``gaussian`` (needs std) * ``general_gaussian`` (needs power, width) * ``slepian`` (needs width). """ def validate(self): super(Window, self).validate() window = self.window if isinstance(window, (list, tuple, np.ndarray)): pass elif is_integer(window): if window < 0: raise ValueError("window must be non-negative") try: import scipy.signal as sig except ImportError: raise ImportError('Please install scipy to generate window ' 'weight') if not isinstance(self.win_type, compat.string_types): raise ValueError('Invalid win_type {0}'.format(self.win_type)) if getattr(sig, self.win_type, None) is None: raise ValueError('Invalid win_type {0}'.format(self.win_type)) else: raise ValueError('Invalid window {0}'.format(window)) def _prep_window(self, **kwargs): """ provide validation for our window type, return the window we have already been validated """ window = self._get_window() if isinstance(window, (list, tuple, np.ndarray)): return com._asarray_tuplesafe(window).astype(float) elif is_integer(window): import scipy.signal as sig # the below may pop from kwargs def _validate_win_type(win_type, kwargs): arg_map = {'kaiser': ['beta'], 'gaussian': ['std'], 'general_gaussian': ['power', 'width'], 'slepian': ['width']} if win_type in arg_map: return tuple([win_type] + _pop_args(win_type, arg_map[win_type], kwargs)) return win_type def _pop_args(win_type, arg_names, kwargs): msg = '%s window requires %%s' % win_type all_args = [] for n in arg_names: if n not in kwargs: raise ValueError(msg % n) all_args.append(kwargs.pop(n)) return all_args win_type = _validate_win_type(self.win_type, kwargs) # GH #15662. `False` makes symmetric window, rather than periodic. return sig.get_window(win_type, window, False).astype(float) def _apply_window(self, mean=True, how=None, **kwargs): """ Applies a moving window of type ``window_type`` on the data. Parameters ---------- mean : boolean, default True If True computes weighted mean, else weighted sum how : string, default to None .. deprecated:: 0.18.0 how to resample Returns ------- y : type of input argument """ window = self._prep_window(**kwargs) center = self.center blocks, obj, index = self._create_blocks(how=how) results = [] for b in blocks: try: values = self._prep_values(b.values) except TypeError: results.append(b.values.copy()) continue if values.size == 0: results.append(values.copy()) continue offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, len(window)) return _window.roll_window(np.concatenate((arg, additional_nans)) if center else arg, window, minp, avg=mean) result = np.apply_along_axis(f, self.axis, values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, blocks, obj) _agg_doc = dedent(""" Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3, win_type='boxcar').agg('mean') A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -0.885035 0.212600 -0.711689 3 -0.323928 -0.200122 -1.093408 4 -0.071445 -0.431533 -1.075833 5 0.504739 0.676083 -0.996353 6 0.358206 1.903256 -0.774200 7 0.906020 1.283573 0.085482 8 -0.096361 0.818139 0.472290 9 0.070889 0.134399 -0.031308 See also -------- pandas.DataFrame.rolling.aggregate pandas.DataFrame.aggregate """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='', klass='Series/DataFrame')) def aggregate(self, arg, *args, **kwargs): result, how = self._aggregate(arg, *args, **kwargs) if result is None: # these must apply directly result = arg(self) return result agg = aggregate @Substitution(name='window') @Appender(_doc_template) @Appender(_shared_docs['sum']) def sum(self, *args, **kwargs): nv.validate_window_func('sum', args, kwargs) return self._apply_window(mean=False, **kwargs) @Substitution(name='window') @Appender(_doc_template) @Appender(_shared_docs['mean']) def mean(self, *args, **kwargs): nv.validate_window_func('mean', args, kwargs) return self._apply_window(mean=True, **kwargs) class _GroupByMixin(GroupByMixin): """ provide the groupby facilities """ def __init__(self, obj, *args, **kwargs): parent = kwargs.pop('parent', None) # noqa groupby = kwargs.pop('groupby', None) if groupby is None: groupby, obj = obj, obj.obj self._groupby = groupby self._groupby.mutated = True self._groupby.grouper.mutated = True super(GroupByMixin, self).__init__(obj, *args, **kwargs) count = GroupByMixin._dispatch('count') corr = GroupByMixin._dispatch('corr', other=None, pairwise=None) cov = GroupByMixin._dispatch('cov', other=None, pairwise=None) def _apply(self, func, name, window=None, center=None, check_minp=None, how=None, **kwargs): """ dispatch to apply; we are stripping all of the _apply kwargs and performing the original function call on the grouped object """ def f(x, name=name, *args): x = self._shallow_copy(x) if isinstance(name, compat.string_types): return getattr(x, name)(*args, **kwargs) return x.apply(name, *args, **kwargs) return self._groupby.apply(f) class _Rolling(_Window): @property def _constructor(self): return Rolling def _apply(self, func, name=None, window=None, center=None, check_minp=None, how=None, **kwargs): """ Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : string/callable to apply name : string, optional name of this function window : int/array, default to _get_window() center : boolean, default to self.center check_minp : function, default to _use_window how : string, default to None .. deprecated:: 0.18.0 how to resample Returns ------- y : type of input """ if center is None: center = self.center if window is None: window = self._get_window() if check_minp is None: check_minp = _use_window blocks, obj, index = self._create_blocks(how=how) index, indexi = self._get_index(index=index) results = [] for b in blocks: try: values = self._prep_values(b.values) except TypeError: results.append(b.values.copy()) continue if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, compat.string_types): cfunc = getattr(_window, func, None) if cfunc is None: raise ValueError("we do not support this function " "in _window.{0}".format(func)) def func(arg, window, min_periods=None, closed=None): minp = check_minp(min_periods, window) # ensure we are only rolling on floats arg = _ensure_float64(arg) return cfunc(arg, window, minp, indexi, closed, **kwargs) # calculation function if center: offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def calc(x): return func(np.concatenate((x, additional_nans)), window, min_periods=self.min_periods, closed=self.closed) else: def calc(x): return func(x, window, min_periods=self.min_periods, closed=self.closed) with np.errstate(all='ignore'): if values.ndim > 1: result = np.apply_along_axis(calc, self.axis, values) else: result = calc(values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, blocks, obj) class _Rolling_and_Expanding(_Rolling): _shared_docs['count'] = """%(name)s count of number of non-NaN observations inside provided window.""" def count(self): blocks, obj, index = self._create_blocks(how=None) index, indexi = self._get_index(index=index) window = self._get_window() window = min(window, len(obj)) if not self.center else window results = [] for b in blocks: result = b.notna().astype(int) result = self._constructor(result, window=window, min_periods=0, center=self.center, closed=self.closed).sum() results.append(result) return self._wrap_results(results, blocks, obj) _shared_docs['apply'] = dedent(r""" %(name)s function apply Parameters ---------- func : function Must produce a single value from an ndarray input \*args and \*\*kwargs are passed to the function""") def apply(self, func, args=(), kwargs={}): # TODO: _level is unused? _level = kwargs.pop('_level', None) # noqa window = self._get_window() offset = _offset(window, self.center) index, indexi = self._get_index() def f(arg, window, min_periods, closed): minp = _use_window(min_periods, window) return _window.roll_generic(arg, window, minp, indexi, closed, offset, func, args, kwargs) return self._apply(f, func, args=args, kwargs=kwargs, center=False) def sum(self, *args, **kwargs): nv.validate_window_func('sum', args, kwargs) return self._apply('roll_sum', 'sum', **kwargs) _shared_docs['max'] = dedent(""" %(name)s maximum Parameters ---------- how : string, default 'max' .. deprecated:: 0.18.0 Method for down- or re-sampling""") def max(self, how=None, *args, **kwargs): nv.validate_window_func('max', args, kwargs) if self.freq is not None and how is None: how = 'max' return self._apply('roll_max', 'max', how=how, **kwargs) _shared_docs['min'] = dedent(""" %(name)s minimum Parameters ---------- how : string, default 'min' .. deprecated:: 0.18.0 Method for down- or re-sampling""") def min(self, how=None, *args, **kwargs): nv.validate_window_func('min', args, kwargs) if self.freq is not None and how is None: how = 'min' return self._apply('roll_min', 'min', how=how, **kwargs) def mean(self, *args, **kwargs): nv.validate_window_func('mean', args, kwargs) return self._apply('roll_mean', 'mean', **kwargs) _shared_docs['median'] = dedent(""" %(name)s median Parameters ---------- how : string, default 'median' .. deprecated:: 0.18.0 Method for down- or re-sampling""") def median(self, how=None, **kwargs): if self.freq is not None and how is None: how = 'median' return self._apply('roll_median_c', 'median', how=how, **kwargs) _shared_docs['std'] = dedent(""" %(name)s standard deviation Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements.""") def std(self, ddof=1, *args, **kwargs): nv.validate_window_func('std', args, kwargs) window = self._get_window() index, indexi = self._get_index() def f(arg, *args, **kwargs): minp = _require_min_periods(1)(self.min_periods, window) return _zsqrt(_window.roll_var(arg, window, minp, indexi, self.closed, ddof)) return self._apply(f, 'std', check_minp=_require_min_periods(1), ddof=ddof, **kwargs) _shared_docs['var'] = dedent(""" %(name)s variance Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements.""") def var(self, ddof=1, *args, **kwargs): nv.validate_window_func('var', args, kwargs) return self._apply('roll_var', 'var', check_minp=_require_min_periods(1), ddof=ddof, **kwargs) _shared_docs['skew'] = """Unbiased %(name)s skewness""" def skew(self, **kwargs): return self._apply('roll_skew', 'skew', check_minp=_require_min_periods(3), **kwargs) _shared_docs['kurt'] = """Unbiased %(name)s kurtosis""" def kurt(self, **kwargs): return self._apply('roll_kurt', 'kurt', check_minp=_require_min_periods(4), **kwargs) _shared_docs['quantile'] = dedent(""" %(name)s quantile Parameters ---------- quantile : float 0 <= quantile <= 1""") def quantile(self, quantile, **kwargs): window = self._get_window() index, indexi = self._get_index() def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, window) if quantile == 1.0: return _window.roll_max(arg, window, minp, indexi, self.closed) elif quantile == 0.0: return _window.roll_min(arg, window, minp, indexi, self.closed) else: return _window.roll_quantile(arg, window, minp, indexi, self.closed, quantile) return self._apply(f, 'quantile', quantile=quantile, **kwargs) _shared_docs['cov'] = dedent(""" %(name)s sample covariance Parameters ---------- other : Series, DataFrame, or ndarray, optional if not supplied then will default to self and produce pairwise output pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements.""") def cov(self, other=None, pairwise=None, ddof=1, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) # GH 16058: offset window if self.is_freq_type: window = self.win_freq else: window = self._get_window(other) def _get_cov(X, Y): # GH #12373 : rolling functions error on float32 data # to avoid potential overflow, cast the data to float64 X = X.astype('float64') Y = Y.astype('float64') mean = lambda x: x.rolling(window, self.min_periods, center=self.center).mean(**kwargs) count = (X + Y).rolling(window=window, center=self.center).count(**kwargs) bias_adj = count / (count - ddof) return (mean(X * Y) - mean(X) * mean(Y)) * bias_adj return _flex_binary_moment(self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise)) _shared_docs['corr'] = dedent(""" %(name)s sample correlation Parameters ---------- other : Series, DataFrame, or ndarray, optional if not supplied then will default to self and produce pairwise output pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.""") def corr(self, other=None, pairwise=None, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) window = self._get_window(other) def _get_corr(a, b): a = a.rolling(window=window, min_periods=self.min_periods, freq=self.freq, center=self.center) b = b.rolling(window=window, min_periods=self.min_periods, freq=self.freq, center=self.center) return a.cov(b, **kwargs) / (a.std(**kwargs) * b.std(**kwargs)) return _flex_binary_moment(self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise)) class Rolling(_Rolling_and_Expanding): @cache_readonly def is_datetimelike(self): return isinstance(self._on, (ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex)) @cache_readonly def _on(self): if self.on is None: return self.obj.index elif (isinstance(self.obj, ABCDataFrame) and self.on in self.obj.columns): from pandas import Index return Index(self.obj[self.on]) else: raise ValueError("invalid on specified as {0}, " "must be a column (if DataFrame) " "or None".format(self.on)) def validate(self): super(Rolling, self).validate() # we allow rolling on a datetimelike index if ((self.obj.empty or self.is_datetimelike) and isinstance(self.window, (compat.string_types, ABCDateOffset, timedelta))): self._validate_monotonic() freq = self._validate_freq() # we don't allow center if self.center: raise NotImplementedError("center is not implemented " "for datetimelike and offset " "based windows") # this will raise ValueError on non-fixed freqs self.win_freq = self.window self.window = freq.nanos self.win_type = 'freq' # min_periods must be an integer if self.min_periods is None: self.min_periods = 1 elif not is_integer(self.window): raise ValueError("window must be an integer") elif self.window < 0: raise ValueError("window must be non-negative") if not self.is_datetimelike and self.closed is not None: raise ValueError("closed only implemented for datetimelike " "and offset based windows") def _validate_monotonic(self): """ validate on is monotonic """ if not self._on.is_monotonic: formatted = self.on or 'index' raise ValueError("{0} must be " "monotonic".format(formatted)) def _validate_freq(self): """ validate & return our freq """ from pandas.tseries.frequencies import to_offset try: return to_offset(self.window) except (TypeError, ValueError): raise ValueError("passed window {0} in not " "compat with a datetimelike " "index".format(self.window)) _agg_doc = dedent(""" Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3).sum() A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -2.655105 0.637799 -2.135068 3 -0.971785 -0.600366 -3.280224 4 -0.214334 -1.294599 -3.227500 5 1.514216 2.028250 -2.989060 6 1.074618 5.709767 -2.322600 7 2.718061 3.850718 0.256446 8 -0.289082 2.454418 1.416871 9 0.212668 0.403198 -0.093924 >>> df.rolling(3).agg({'A':'sum', 'B':'min'}) A B 0 NaN NaN 1 NaN NaN 2 -2.655105 -0.165272 3 -0.971785 -1.340923 4 -0.214334 -1.340923 5 1.514216 -1.340923 6 1.074618 0.211596 7 2.718061 -1.647453 8 -0.289082 -1.647453 9 0.212668 -1.647453 See also -------- pandas.Series.rolling pandas.DataFrame.rolling """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='', klass='Series/DataFrame')) def aggregate(self, arg, *args, **kwargs): return super(Rolling, self).aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['count']) def count(self): # different impl for freq counting if self.is_freq_type: return self._apply('roll_count', 'count') return super(Rolling, self).count() @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['apply']) def apply(self, func, args=(), kwargs={}): return super(Rolling, self).apply(func, args=args, kwargs=kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['sum']) def sum(self, *args, **kwargs): nv.validate_rolling_func('sum', args, kwargs) return super(Rolling, self).sum(*args, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['max']) def max(self, *args, **kwargs): nv.validate_rolling_func('max', args, kwargs) return super(Rolling, self).max(*args, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['min']) def min(self, *args, **kwargs): nv.validate_rolling_func('min', args, kwargs) return super(Rolling, self).min(*args, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['mean']) def mean(self, *args, **kwargs): nv.validate_rolling_func('mean', args, kwargs) return super(Rolling, self).mean(*args, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['median']) def median(self, **kwargs): return super(Rolling, self).median(**kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['std']) def std(self, ddof=1, *args, **kwargs): nv.validate_rolling_func('std', args, kwargs) return super(Rolling, self).std(ddof=ddof, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['var']) def var(self, ddof=1, *args, **kwargs): nv.validate_rolling_func('var', args, kwargs) return super(Rolling, self).var(ddof=ddof, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['skew']) def skew(self, **kwargs): return super(Rolling, self).skew(**kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['kurt']) def kurt(self, **kwargs): return super(Rolling, self).kurt(**kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['quantile']) def quantile(self, quantile, **kwargs): return super(Rolling, self).quantile(quantile=quantile, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['cov']) def cov(self, other=None, pairwise=None, ddof=1, **kwargs): return super(Rolling, self).cov(other=other, pairwise=pairwise, ddof=ddof, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['corr']) def corr(self, other=None, pairwise=None, **kwargs): return super(Rolling, self).corr(other=other, pairwise=pairwise, **kwargs) class RollingGroupby(_GroupByMixin, Rolling): """ Provides a rolling groupby implementation .. versionadded:: 0.18.1 """ @property def _constructor(self): return Rolling def _gotitem(self, key, ndim, subset=None): # we are setting the index on the actual object # here so our index is carried thru to the selected obj # when we do the splitting for the groupby if self.on is not None: self._groupby.obj = self._groupby.obj.set_index(self._on) self.on = None return super(RollingGroupby, self)._gotitem(key, ndim, subset=subset) def _validate_monotonic(self): """ validate that on is monotonic; we don't care for groupby.rolling because we have already validated at a higher level """ pass class Expanding(_Rolling_and_Expanding): """ Provides expanding transformations. .. versionadded:: 0.18.0 Parameters ---------- min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) .. deprecated:: 0.18.0 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. axis : int or string, default 0 Returns ------- a Window sub-classed for the particular operation Examples -------- >>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]}) B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> df.expanding(2).sum() B 0 NaN 1 1.0 2 3.0 3 3.0 4 7.0 Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). """ _attributes = ['min_periods', 'freq', 'center', 'axis'] def __init__(self, obj, min_periods=1, freq=None, center=False, axis=0, **kwargs): super(Expanding, self).__init__(obj=obj, min_periods=min_periods, freq=freq, center=center, axis=axis) @property def _constructor(self): return Expanding def _get_window(self, other=None): obj = self._selected_obj if other is None: return (max(len(obj), self.min_periods) if self.min_periods else len(obj)) return (max((len(obj) + len(obj)), self.min_periods) if self.min_periods else (len(obj) + len(obj))) _agg_doc = dedent(""" Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.ewm(alpha=0.5).mean() A B C 0 -2.385977 -0.102758 0.438822 1 -1.464856 0.569633 -0.490089 2 -0.207700 0.149687 -1.135379 3 -0.471677 -0.645305 -0.906555 4 -0.355635 -0.203033 -0.904111 5 1.076417 1.503943 -1.146293 6 -0.041654 1.925562 -0.588728 7 0.680292 0.132049 0.548693 8 0.067236 0.948257 0.163353 9 -0.286980 0.618493 -0.694496 See also -------- pandas.DataFrame.expanding.aggregate pandas.DataFrame.rolling.aggregate pandas.DataFrame.aggregate """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='', klass='Series/DataFrame')) def aggregate(self, arg, *args, **kwargs): return super(Expanding, self).aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['count']) def count(self, **kwargs): return super(Expanding, self).count(**kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['apply']) def apply(self, func, args=(), kwargs={}): return super(Expanding, self).apply(func, args=args, kwargs=kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['sum']) def sum(self, *args, **kwargs): nv.validate_expanding_func('sum', args, kwargs) return super(Expanding, self).sum(*args, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['max']) def max(self, *args, **kwargs): nv.validate_expanding_func('max', args, kwargs) return super(Expanding, self).max(*args, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['min']) def min(self, *args, **kwargs): nv.validate_expanding_func('min', args, kwargs) return super(Expanding, self).min(*args, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['mean']) def mean(self, *args, **kwargs): nv.validate_expanding_func('mean', args, kwargs) return super(Expanding, self).mean(*args, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['median']) def median(self, **kwargs): return super(Expanding, self).median(**kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['std']) def std(self, ddof=1, *args, **kwargs): nv.validate_expanding_func('std', args, kwargs) return super(Expanding, self).std(ddof=ddof, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['var']) def var(self, ddof=1, *args, **kwargs): nv.validate_expanding_func('var', args, kwargs) return super(Expanding, self).var(ddof=ddof, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['skew']) def skew(self, **kwargs): return super(Expanding, self).skew(**kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['kurt']) def kurt(self, **kwargs): return super(Expanding, self).kurt(**kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['quantile']) def quantile(self, quantile, **kwargs): return super(Expanding, self).quantile(quantile=quantile, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['cov']) def cov(self, other=None, pairwise=None, ddof=1, **kwargs): return super(Expanding, self).cov(other=other, pairwise=pairwise, ddof=ddof, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['corr']) def corr(self, other=None, pairwise=None, **kwargs): return super(Expanding, self).corr(other=other, pairwise=pairwise, **kwargs) class ExpandingGroupby(_GroupByMixin, Expanding): """ Provides a expanding groupby implementation .. versionadded:: 0.18.1 """ @property def _constructor(self): return Expanding _bias_template = """ Parameters ---------- bias : boolean, default False Use a standard estimation bias correction """ _pairwise_template = """ Parameters ---------- other : Series, DataFrame, or ndarray, optional if not supplied then will default to self and produce pairwise output pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. bias : boolean, default False Use a standard estimation bias correction """ class EWM(_Rolling): r""" Provides exponential weighted functions .. versionadded:: 0.18.0 Parameters ---------- com : float, optional Specify decay in terms of center of mass, :math:`\alpha = 1 / (1 + com),\text{ for } com \geq 0` span : float, optional Specify decay in terms of span, :math:`\alpha = 2 / (span + 1),\text{ for } span \geq 1` halflife : float, optional Specify decay in terms of half-life, :math:`\alpha = 1 - exp(log(0.5) / halflife),\text{ for } halflife > 0` alpha : float, optional Specify smoothing factor :math:`\alpha` directly, :math:`0 < \alpha \leq 1` .. versionadded:: 0.18.0 min_periods : int, default 0 Minimum number of observations in window required to have a value (otherwise result is NA). freq : None or string alias / date offset object, default=None .. deprecated:: 0.18.0 Frequency to conform to before computing statistic adjust : boolean, default True Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average) ignore_na : boolean, default False Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior Returns ------- a Window sub-classed for the particular operation Examples -------- >>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]}) B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> df.ewm(com=0.5).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213 Notes ----- Exactly one of center of mass, span, half-life, and alpha must be provided. Allowed values and relationship between the parameters are specified in the parameter descriptions above; see the link at the end of this section for a detailed explanation. The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-alpha)**(n-2), ..., 1-alpha, 1. When adjust is False, weighted averages are calculated recursively as: weighted_average[0] = arg[0]; weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i]. When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False). When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False). More details can be found at http://pandas.pydata.org/pandas-docs/stable/computation.html#exponentially-weighted-windows """ _attributes = ['com', 'min_periods', 'freq', 'adjust', 'ignore_na', 'axis'] def __init__(self, obj, com=None, span=None, halflife=None, alpha=None, min_periods=0, freq=None, adjust=True, ignore_na=False, axis=0): self.obj = obj self.com = _get_center_of_mass(com, span, halflife, alpha) self.min_periods = min_periods self.freq = freq self.adjust = adjust self.ignore_na = ignore_na self.axis = axis self.on = None @property def _constructor(self): return EWM _agg_doc = dedent(""" Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.ewm(alpha=0.5).mean() A B C 0 -2.385977 -0.102758 0.438822 1 -1.464856 0.569633 -0.490089 2 -0.207700 0.149687 -1.135379 3 -0.471677 -0.645305 -0.906555 4 -0.355635 -0.203033 -0.904111 5 1.076417 1.503943 -1.146293 6 -0.041654 1.925562 -0.588728 7 0.680292 0.132049 0.548693 8 0.067236 0.948257 0.163353 9 -0.286980 0.618493 -0.694496 See also -------- pandas.DataFrame.rolling.aggregate """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='', klass='Series/DataFrame')) def aggregate(self, arg, *args, **kwargs): return super(EWM, self).aggregate(arg, *args, **kwargs) agg = aggregate def _apply(self, func, how=None, **kwargs): """Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : string/callable to apply how : string, default to None .. deprecated:: 0.18.0 how to resample Returns ------- y : type of input argument """ blocks, obj, index = self._create_blocks(how=how) results = [] for b in blocks: try: values = self._prep_values(b.values) except TypeError: results.append(b.values.copy()) continue if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, compat.string_types): cfunc = getattr(_window, func, None) if cfunc is None: raise ValueError("we do not support this function " "in _window.{0}".format(func)) def func(arg): return cfunc(arg, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods)) results.append(np.apply_along_axis(func, self.axis, values)) return self._wrap_results(results, blocks, obj) @Substitution(name='ewm') @Appender(_doc_template) def mean(self, *args, **kwargs): """exponential weighted moving average""" nv.validate_window_func('mean', args, kwargs) return self._apply('ewma', **kwargs) @Substitution(name='ewm') @Appender(_doc_template) @Appender(_bias_template) def std(self, bias=False, *args, **kwargs): """exponential weighted moving stddev""" nv.validate_window_func('std', args, kwargs) return _zsqrt(self.var(bias=bias, **kwargs)) vol = std @Substitution(name='ewm') @Appender(_doc_template) @Appender(_bias_template) def var(self, bias=False, *args, **kwargs): """exponential weighted moving variance""" nv.validate_window_func('var', args, kwargs) def f(arg): return _window.ewmcov(arg, arg, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), int(bias)) return self._apply(f, **kwargs) @Substitution(name='ewm') @Appender(_doc_template) @Appender(_pairwise_template) def cov(self, other=None, pairwise=None, bias=False, **kwargs): """exponential weighted sample covariance""" if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) def _get_cov(X, Y): X = self._shallow_copy(X) Y = self._shallow_copy(Y) cov = _window.ewmcov(X._prep_values(), Y._prep_values(), self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), int(bias)) return X._wrap_result(cov) return _flex_binary_moment(self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise)) @Substitution(name='ewm') @Appender(_doc_template) @Appender(_pairwise_template) def corr(self, other=None, pairwise=None, **kwargs): """exponential weighted sample correlation""" if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) def _get_corr(X, Y): X = self._shallow_copy(X) Y = self._shallow_copy(Y) def _cov(x, y): return _window.ewmcov(x, y, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), 1) x_values = X._prep_values() y_values = Y._prep_values() with np.errstate(all='ignore'): cov = _cov(x_values, y_values) x_var = _cov(x_values, x_values) y_var = _cov(y_values, y_values) corr = cov / _zsqrt(x_var * y_var) return X._wrap_result(corr) return _flex_binary_moment(self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise)) # Helper Funcs def _flex_binary_moment(arg1, arg2, f, pairwise=False): if not (isinstance(arg1, (np.ndarray, ABCSeries, ABCDataFrame)) and isinstance(arg2, (np.ndarray, ABCSeries, ABCDataFrame))): raise TypeError("arguments to moment function must be of type " "np.ndarray/Series/DataFrame") if (isinstance(arg1, (np.ndarray, ABCSeries)) and isinstance(arg2, (np.ndarray, ABCSeries))): X, Y = _prep_binary(arg1, arg2) return f(X, Y) elif isinstance(arg1, ABCDataFrame): from pandas import DataFrame def dataframe_from_int_dict(data, frame_template): result = DataFrame(data, index=frame_template.index) if len(result.columns) > 0: result.columns = frame_template.columns[result.columns] return result results = {} if isinstance(arg2, ABCDataFrame): if pairwise is False: if arg1 is arg2: # special case in order to handle duplicate column names for i, col in enumerate(arg1.columns): results[i] = f(arg1.iloc[:, i], arg2.iloc[:, i]) return dataframe_from_int_dict(results, arg1) else: if not arg1.columns.is_unique: raise ValueError("'arg1' columns are not unique") if not arg2.columns.is_unique: raise ValueError("'arg2' columns are not unique") with warnings.catch_warnings(record=True): X, Y = arg1.align(arg2, join='outer') X = X + 0 * Y Y = Y + 0 * X with warnings.catch_warnings(record=True): res_columns = arg1.columns.union(arg2.columns) for col in res_columns: if col in X and col in Y: results[col] = f(X[col], Y[col]) return DataFrame(results, index=X.index, columns=res_columns) elif pairwise is True: results = defaultdict(dict) for i, k1 in enumerate(arg1.columns): for j, k2 in enumerate(arg2.columns): if j < i and arg2 is arg1: # Symmetric case results[i][j] = results[j][i] else: results[i][j] = f(*_prep_binary(arg1.iloc[:, i], arg2.iloc[:, j])) # TODO: not the most efficient (perf-wise) # though not bad code-wise from pandas import Panel, MultiIndex, concat with warnings.catch_warnings(record=True): p = Panel.from_dict(results).swapaxes('items', 'major') if len(p.major_axis) > 0: p.major_axis = arg1.columns[p.major_axis] if len(p.minor_axis) > 0: p.minor_axis = arg2.columns[p.minor_axis] if len(p.items): result = concat( [p.iloc[i].T for i in range(len(p.items))], keys=p.items) else: result = DataFrame( index=MultiIndex(levels=[arg1.index, arg1.columns], labels=[[], []]), columns=arg2.columns, dtype='float64') # reset our index names to arg1 names # reset our column names to arg2 names # careful not to mutate the original names result.columns = result.columns.set_names( arg2.columns.names) result.index = result.index.set_names( arg1.index.names + arg1.columns.names) return result else: raise ValueError("'pairwise' is not True/False") else: results = {} for i, col in enumerate(arg1.columns): results[i] = f(*_prep_binary(arg1.iloc[:, i], arg2)) return dataframe_from_int_dict(results, arg1) else: return _flex_binary_moment(arg2, arg1, f) def _get_center_of_mass(com, span, halflife, alpha): valid_count = len([x for x in [com, span, halflife, alpha] if x is not None]) if valid_count > 1: raise ValueError("com, span, halflife, and alpha " "are mutually exclusive") # Convert to center of mass; domain checks ensure 0 < alpha <= 1 if com is not None: if com < 0: raise ValueError("com must satisfy: com >= 0") elif span is not None: if span < 1: raise ValueError("span must satisfy: span >= 1") com = (span - 1) / 2. elif halflife is not None: if halflife <= 0: raise ValueError("halflife must satisfy: halflife > 0") decay = 1 - np.exp(np.log(0.5) / halflife) com = 1 / decay - 1 elif alpha is not None: if alpha <= 0 or alpha > 1: raise ValueError("alpha must satisfy: 0 < alpha <= 1") com = (1.0 - alpha) / alpha else: raise ValueError("Must pass one of com, span, halflife, or alpha") return float(com) def _offset(window, center): if not is_integer(window): window = len(window) offset = (window - 1) / 2. if center else 0 try: return int(offset) except: return offset.astype(int) def _require_min_periods(p): def _check_func(minp, window): if minp is None: return window else: return max(p, minp) return _check_func def _use_window(minp, window): if minp is None: return window else: return minp def _zsqrt(x): with np.errstate(all='ignore'): result = np.sqrt(x) mask = x < 0 if isinstance(x, ABCDataFrame): if mask.values.any(): result[mask] = 0 else: if mask.any(): result[mask] = 0 return result def _prep_binary(arg1, arg2): if not isinstance(arg2, type(arg1)): raise Exception('Input arrays must be of the same type!') # mask out values, this also makes a common index... X = arg1 + 0 * arg2 Y = arg2 + 0 * arg1 return X, Y # Top-level exports def rolling(obj, win_type=None, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError('invalid type: %s' % type(obj)) if win_type is not None: return Window(obj, win_type=win_type, **kwds) return Rolling(obj, **kwds) rolling.__doc__ = Window.__doc__ def expanding(obj, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError('invalid type: %s' % type(obj)) return Expanding(obj, **kwds) expanding.__doc__ = Expanding.__doc__ def ewm(obj, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError('invalid type: %s' % type(obj)) return EWM(obj, **kwds) ewm.__doc__ = EWM.__doc__
Winand/pandas
pandas/core/window.py
Python
bsd-3-clause
68,740
0.000029
#!/usr/bin/env python #### Sudoku generator #### import random import time from collections import defaultdict class Square(object): '''Main class holding the attributes for each square of the sudoku''' def __init__(self, x, y): self.value = None self.x = x self.y = y self.free = range(1, 10) self.region = None def addValue(self, value): self.value = value def addRegion(self, region): self.region = region def removeFromFreeValues(self, value): self.free.remove(value) def restoreFree(self): self.free = range(1,10) def removeValue(self): self.value = None def getValue(self): return self.value def getX(self): return self.x def getY(self): return self.y def getFree(self): return self.free def getRegion(self): return self.region def createBoard(): board = [ Square(y, x) for x in range(9) for y in range(9) ] return board def defineRegions(board): for square in board: if square.getX() < 3 and square.getY() < 3: square.addRegion(0) elif 3 <= square.getX() < 6 and square.getY() < 3: square.addRegion(1) elif 6 <= square.getX() < 9 and square.getY() < 3: square.addRegion(2) elif square.getX() < 3 and 3 <= square.getY() < 6: square.addRegion(3) elif 3 <= square.getX() < 6 and 3 <= square.getY() < 6: square.addRegion(4) elif 6 <= square.getX() < 9 and 3 <= square.getY() < 6: square.addRegion(5) elif square.getX() < 3 and 6 <= square.getY() < 9: square.addRegion(6) elif 3 <= square.getX() < 6 and 6 <= square.getY() < 9: square.addRegion(7) elif 6 <= square.getX() < 9 and 6 <= square.getY() < 9: square.addRegion(8) def defineXs(board): Xdict = {} for i in range(9): x_squares = [] for square in board: if square.getX() == i: x_squares.append(square) Xdict[i] = x_squares return Xdict def defineYs(board): Ydict = {} for i in range(9): y_squares = [] for square in board: if square.getY() == i: y_squares.append(square) Ydict[i] = y_squares return Ydict def defineRegionslist(board): regions = {} for i in range(9): r_squares = [] for square in board: if square.getRegion() == i: r_squares.append(square) regions[i] = r_squares return regions def checkIfFree(board, current_square): free_values = current_square.getFree() if len(free_values) < 1: return False else: return True def setValueOnce(value, current_square): current_square.addValue(value) current_square.removeFromFreeValues(value) def checkXValidity(board, current_square): sameXlist = defineXs(board)[current_square.getX()] sameXlist.remove(current_square) x_values = [] for square in sameXlist: x_values.append(square.getValue()) if current_square.getValue() in x_values: return False else: return True def checkYValidity(board, current_square): sameYlist = defineYs(board)[current_square.getY()] sameYlist.remove(current_square) y_values = [] for square in sameYlist: y_values.append(square.getValue()) if current_square.getValue() in y_values: return False else: return True def checkRegionValidity(board, current_square): sameRegionlist = defineRegionslist(board)[current_square.getRegion()] sameRegionlist.remove(current_square) r_values = [] for square in sameRegionlist: r_values.append(square.getValue()) if current_square.getValue() in r_values: return False else: return True def checkConditions(board, square): if checkXValidity(board, square) == checkYValidity(board, square) == checkRegionValidity(board, square) == True: return True else: return False def CreateSudoku(): board = createBoard() defineRegions(board) index = 0 while index < 81: current_square = board[index] if checkIfFree(board, current_square) == False: current_square.restoreFree() current_square.removeValue() index -= 1 continue value = random.choice(current_square.getFree()) setValueOnce(value, current_square) if checkConditions(board, current_square) == False: continue else: index += 1 return board def printSudoku(board): line = "#---+---+---#---+---+---#---+---+---#" line_thick = "#####################################" print line for s in board: if (s.getX() ) % 3 == 0: print '# ', elif random.random() > 0.3: print '| ', else: print '| %d' %(s.getValue()), if (s.getX() +1) % 9 == 0: if (s.getY() + 1) % 3 == 0: print '#\n', line_thick else: print '#\n', line if __name__ == "__main__": sudoku = CreateSudoku() printSudoku(sudoku)
michalczaplinski/sudoku
sudoku_generator.py
Python
bsd-3-clause
5,317
0.00583
#!/usr/bin/env python from __future__ import absolute_import import urllib2 from pytomo import lib_youtube_download from pytomo import start_pytomo start_pytomo.configure_log_file('http_test') ip_address_uri = ("http://173.194.5.107/videoplayback?sparams=id%2Cexpire%2Cip%2Cipbits%2Citag%2Calgorithm%2Cburst%2Cfactor&algorithm=throttle-factor&itag=34&ipbits=8&burst=40&sver=3&signature=CE60F2B393D8E55A0B8529FCB0AAEDEC876A2C8C.9DAE7AE311AD2D4AE8094715551F8E2482DEA790&expire=1304107200&key=yt1&ip=193.0.0.0&factor=1.25&id=39d17ea226880992") info = {'accept-ranges': 'bytes', 'cache-control': 'private, max-age=20576', 'connection': 'close', 'Content-length': '16840065', 'content-type': 'video/x-flv', 'date': 'Fri, 29 Apr 2011 14:12:04 GMT', 'expires': 'Fri, 29 Apr 2011 19:55:00 GMT', 'last-modified': 'Fri, 18 Jun 2010 12:05:11 GMT', 'server': 'gvs 1.0', 'via': '1.1 goodway (NetCache NetApp/6.1.1), 1.1 s-proxy (NetCache NetApp/ 5.6.2R2)', 'x-content-type-options': 'nosniff'} def mock_response(req): if req.get_full_url() == ip_address_uri: mock_file = open('test_pytomo/OdF-oiaICZI.flv') resp = urllib2.addinfourl(mock_file,info , req.get_full_url()) resp.code = 200 resp.msg = "OK" return resp class MyHTTPHandler(urllib2.HTTPHandler): def http_open(self, req): print "mock opener" return mock_response(req) my_opener = urllib2.build_opener(MyHTTPHandler) urllib2.install_opener(my_opener) filedownloader = lib_youtube_download.FileDownloader(30) h = filedownloader._do_download(ip_address_uri) print h # #response = urllib2.urlopen(ip_address_uri) #print response.read() #print response.code #print response.msg
Jamlum/pytomo
test_http_server.py
Python
gpl-2.0
1,820
0.006044
from django.contrib import admin from models import FileSet admin.site.register(FileSet)
oswalpalash/OctaveCodeShare
scipy_central/filestorage/admin.py
Python
bsd-3-clause
89
0
from node import DotXMLDoc, AttributeParsingError class SimpleXmlApi(object): """ The main API class, comprising a map of attributes to dotted path names. Accessing an attribute that has been mapped to a dotted name will return the text value of that node/attribute. If an attribute is passed that isn't in the map, it's passed off to the L{DotXMLDoc} instance, so that the document can be walked manually. May be subclassed, overriding C{_map}, to provide custom APIs for known XML structures. """ _map = {} _doc = None def __init__(self, source="", map=None): """ @param source: A string containing an XML document @type source: str @param map: @type map: dict @return: void """ if map is not None: self.load_map(map) self.load_source(source) def add_mapping(self, name, path): """ Add a new attribute - dotted name mapping to the instance's map registry. @param name: The name of the attribute. @type name: str @param path: A dotted name that can be traversed. @type path: str @return: void """ self._map[name] = path def load_source(self, source): """ Parse an XML document and set it as this API's target. @param source: A string containing an XML document. @type source: str @return: void """ self._doc = DotXMLDoc(source) def load_map(self, map): """ Update the attribute registry with one or more mappings. Will not remove attributes that currently exist. @param map: A dictionary of the form C{\{'attribute':'dotted.name'\}} @type map: dict @return: void """ self._map.update(map) def del_mapping(self, name): """ Remove an attribute mapping from the registry. @param name: The name of the attribute to remove from the registry. @type name: str @return: void """ try: del self._map[name] except KeyError: pass def __getattr__(self, attr): try: return self._traverse(self._map[attr]) except KeyError: return getattr(self._doc, attr) def _traverse(self, path): """ Traverse a dotted path against the XML document in memory and return its text value. @param path: A dotted path that will resolve to a node or attribute. @type path: str @return: The text value of the node. @rtype: str """ try: return eval("self._doc.%s" % path).getValue() except SyntaxError: raise AttributeParsingError def factory(source, map=None, cls=None): """ Create a new L{SimpleXmlApi} instance using the given source and optional attribute map. To create an instance of a subclass, pass in the C{cls} attribute. """ if cls is None: cls = SimpleXmlApi return cls(source, map)
iancmcc/simplexmlapi
simplexmlapi/api.py
Python
mit
3,090
0.002913
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitsend Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test proper accounting with a double-spend conflict # from test_framework.test_framework import BitsendTestFramework from test_framework.util import * class TxnMallTest(BitsendTestFramework): def __init__(self): super().__init__() self.num_nodes = 4 self.setup_clean_chain = False def add_options(self, parser): parser.add_option("--mineblock", dest="mine_block", default=False, action="store_true", help="Test double-spend of 1-confirmed transaction") def setup_network(self): # Start with split network: return super(TxnMallTest, self).setup_network(True) def run_test(self): # All nodes should start with 1,250 BSD: starting_balance = 1250 for i in range(4): assert_equal(self.nodes[i].getbalance(), starting_balance) self.nodes[i].getnewaddress("") # bug workaround, coins generated assigned to first getnewaddress! # Assign coins to foo and bar accounts: node0_address_foo = self.nodes[0].getnewaddress("foo") fund_foo_txid = self.nodes[0].sendfrom("", node0_address_foo, 1219) fund_foo_tx = self.nodes[0].gettransaction(fund_foo_txid) node0_address_bar = self.nodes[0].getnewaddress("bar") fund_bar_txid = self.nodes[0].sendfrom("", node0_address_bar, 29) fund_bar_tx = self.nodes[0].gettransaction(fund_bar_txid) assert_equal(self.nodes[0].getbalance(""), starting_balance - 1219 - 29 + fund_foo_tx["fee"] + fund_bar_tx["fee"]) # Coins are sent to node1_address node1_address = self.nodes[1].getnewaddress("from0") # First: use raw transaction API to send 1240 BSD to node1_address, # but don't broadcast: doublespend_fee = Decimal('-.02') rawtx_input_0 = {} rawtx_input_0["txid"] = fund_foo_txid rawtx_input_0["vout"] = find_output(self.nodes[0], fund_foo_txid, 1219) rawtx_input_1 = {} rawtx_input_1["txid"] = fund_bar_txid rawtx_input_1["vout"] = find_output(self.nodes[0], fund_bar_txid, 29) inputs = [rawtx_input_0, rawtx_input_1] change_address = self.nodes[0].getnewaddress() outputs = {} outputs[node1_address] = 1240 outputs[change_address] = 1248 - 1240 + doublespend_fee rawtx = self.nodes[0].createrawtransaction(inputs, outputs) doublespend = self.nodes[0].signrawtransaction(rawtx) assert_equal(doublespend["complete"], True) # Create two spends using 1 50 BSD coin each txid1 = self.nodes[0].sendfrom("foo", node1_address, 40, 0) txid2 = self.nodes[0].sendfrom("bar", node1_address, 20, 0) # Have node0 mine a block: if (self.options.mine_block): self.nodes[0].generate(1) sync_blocks(self.nodes[0:2]) tx1 = self.nodes[0].gettransaction(txid1) tx2 = self.nodes[0].gettransaction(txid2) # Node0's balance should be starting balance, plus 50BSD for another # matured block, minus 40, minus 20, and minus transaction fees: expected = starting_balance + fund_foo_tx["fee"] + fund_bar_tx["fee"] if self.options.mine_block: expected += 50 expected += tx1["amount"] + tx1["fee"] expected += tx2["amount"] + tx2["fee"] assert_equal(self.nodes[0].getbalance(), expected) # foo and bar accounts should be debited: assert_equal(self.nodes[0].getbalance("foo", 0), 1219+tx1["amount"]+tx1["fee"]) assert_equal(self.nodes[0].getbalance("bar", 0), 29+tx2["amount"]+tx2["fee"]) if self.options.mine_block: assert_equal(tx1["confirmations"], 1) assert_equal(tx2["confirmations"], 1) # Node1's "from0" balance should be both transaction amounts: assert_equal(self.nodes[1].getbalance("from0"), -(tx1["amount"]+tx2["amount"])) else: assert_equal(tx1["confirmations"], 0) assert_equal(tx2["confirmations"], 0) # Now give doublespend and its parents to miner: self.nodes[2].sendrawtransaction(fund_foo_tx["hex"]) self.nodes[2].sendrawtransaction(fund_bar_tx["hex"]) doublespend_txid = self.nodes[2].sendrawtransaction(doublespend["hex"]) # ... mine a block... self.nodes[2].generate(1) # Reconnect the split network, and sync chain: connect_nodes(self.nodes[1], 2) self.nodes[2].generate(1) # Mine another block to make sure we sync sync_blocks(self.nodes) assert_equal(self.nodes[0].gettransaction(doublespend_txid)["confirmations"], 2) # Re-fetch transaction info: tx1 = self.nodes[0].gettransaction(txid1) tx2 = self.nodes[0].gettransaction(txid2) # Both transactions should be conflicted assert_equal(tx1["confirmations"], -2) assert_equal(tx2["confirmations"], -2) # Node0's total balance should be starting balance, plus 100BSD for # two more matured blocks, minus 1240 for the double-spend, plus fees (which are # negative): expected = starting_balance + 100 - 1240 + fund_foo_tx["fee"] + fund_bar_tx["fee"] + doublespend_fee assert_equal(self.nodes[0].getbalance(), expected) assert_equal(self.nodes[0].getbalance("*"), expected) # Final "" balance is starting_balance - amount moved to accounts - doublespend + subsidies + # fees (which are negative) assert_equal(self.nodes[0].getbalance("foo"), 1219) assert_equal(self.nodes[0].getbalance("bar"), 29) assert_equal(self.nodes[0].getbalance(""), starting_balance -1219 - 29 -1240 + 100 + fund_foo_tx["fee"] + fund_bar_tx["fee"] + doublespend_fee) # Node1's "from0" account balance should be just the doublespend: assert_equal(self.nodes[1].getbalance("from0"), 1240) if __name__ == '__main__': TxnMallTest().main()
madzebra/BitSend
qa/rpc-tests/txn_doublespend.py
Python
mit
6,649
0.004362
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Idea.color' db.add_column(u'brainstorming_idea', 'color', self.gf('django.db.models.fields.CharField')(default='', max_length=100, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'Idea.color' db.delete_column(u'brainstorming_idea', 'color') models = { u'brainstorming.brainstorming': { 'Meta': {'ordering': "['-created']", 'object_name': 'Brainstorming'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'creator_email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'creator_ip': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'details': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'question': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, u'brainstorming.brainstormingwatcher': { 'Meta': {'ordering': "['-created']", 'unique_together': "(('brainstorming', 'email'),)", 'object_name': 'BrainstormingWatcher'}, 'brainstorming': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['brainstorming.Brainstorming']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}) }, u'brainstorming.emailverification': { 'Meta': {'ordering': "['-created']", 'object_name': 'EmailVerification'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'id': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}) }, u'brainstorming.idea': { 'Meta': {'ordering': "['-created']", 'object_name': 'Idea'}, 'brainstorming': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['brainstorming.Brainstorming']"}), 'color': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'creator_ip': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'creator_name': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'ratings': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'text': ('django.db.models.fields.TextField', [], {}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}) } } complete_apps = ['brainstorming']
atizo/braindump
brainstorming/migrations/0005_auto__add_field_idea_color.py
Python
mit
4,031
0.007938
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2010 Radim Rehurek <radimrehurek@seznam.cz> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Automated tests for checking transformation algorithms (the models package). """ import logging import unittest import os import os.path import tempfile import numpy import scipy.linalg from gensim.corpora import mmcorpus, Dictionary from gensim.models import lsimodel, ldamodel, tfidfmodel, rpmodel, logentropy_model, ldamulticore from gensim.models.wrappers import ldamallet from gensim import matutils module_path = os.path.dirname(__file__) # needed because sample data files are located in the same folder datapath = lambda fname: os.path.join(module_path, 'test_data', fname) # set up vars used in testing ("Deerwester" from the web tutorial) texts = [['human', 'interface', 'computer'], ['survey', 'user', 'computer', 'system', 'response', 'time'], ['eps', 'user', 'interface', 'system'], ['system', 'human', 'system', 'eps'], ['user', 'response', 'time'], ['trees'], ['graph', 'trees'], ['graph', 'minors', 'trees'], ['graph', 'minors', 'survey']] dictionary = Dictionary(texts) corpus = [dictionary.doc2bow(text) for text in texts] def testfile(): # temporary data will be stored to this file return os.path.join(tempfile.gettempdir(), 'gensim_models.tst') class TestLsiModel(unittest.TestCase): def setUp(self): self.corpus = mmcorpus.MmCorpus(datapath('testcorpus.mm')) def testTransform(self): """Test lsi[vector] transformation.""" # create the transformation model model = lsimodel.LsiModel(self.corpus, num_topics=2) # make sure the decomposition is enough accurate u, s, vt = scipy.linalg.svd(matutils.corpus2dense(self.corpus, self.corpus.num_terms), full_matrices=False) self.assertTrue(numpy.allclose(s[:2], model.projection.s)) # singular values must match # transform one document doc = list(self.corpus)[0] transformed = model[doc] vec = matutils.sparse2full(transformed, 2) # convert to dense vector, for easier equality tests expected = numpy.array([-0.6594664, 0.142115444]) # scaled LSI version # expected = numpy.array([-0.1973928, 0.05591352]) # non-scaled LSI version self.assertTrue(numpy.allclose(abs(vec), abs(expected))) # transformed entries must be equal up to sign def testCorpusTransform(self): """Test lsi[corpus] transformation.""" model = lsimodel.LsiModel(self.corpus, num_topics=2) got = numpy.vstack(matutils.sparse2full(doc, 2) for doc in model[self.corpus]) expected = numpy.array([ [ 0.65946639, 0.14211544], [ 2.02454305, -0.42088759], [ 1.54655361, 0.32358921], [ 1.81114125, 0.5890525 ], [ 0.9336738 , -0.27138939], [ 0.01274618, -0.49016181], [ 0.04888203, -1.11294699], [ 0.08063836, -1.56345594], [ 0.27381003, -1.34694159]]) self.assertTrue(numpy.allclose(abs(got), abs(expected))) # must equal up to sign def testOnlineTransform(self): corpus = list(self.corpus) doc = corpus[0] # use the corpus' first document for testing # create the transformation model model2 = lsimodel.LsiModel(corpus=corpus, num_topics=5) # compute everything at once model = lsimodel.LsiModel(corpus=None, id2word=model2.id2word, num_topics=5) # start with no documents, we will add them later # train model on a single document model.add_documents([corpus[0]]) # transform the testing document with this partial transformation transformed = model[doc] vec = matutils.sparse2full(transformed, model.num_topics) # convert to dense vector, for easier equality tests expected = numpy.array([-1.73205078, 0.0, 0.0, 0.0, 0.0]) # scaled LSI version self.assertTrue(numpy.allclose(abs(vec), abs(expected), atol=1e-6)) # transformed entries must be equal up to sign # train on another 4 documents model.add_documents(corpus[1:5], chunksize=2) # train on 4 extra docs, in chunks of 2 documents, for the lols # transform a document with this partial transformation transformed = model[doc] vec = matutils.sparse2full(transformed, model.num_topics) # convert to dense vector, for easier equality tests expected = numpy.array([-0.66493785, -0.28314203, -1.56376302, 0.05488682, 0.17123269]) # scaled LSI version self.assertTrue(numpy.allclose(abs(vec), abs(expected), atol=1e-6)) # transformed entries must be equal up to sign # train on the rest of documents model.add_documents(corpus[5:]) # make sure the final transformation is the same as if we had decomposed the whole corpus at once vec1 = matutils.sparse2full(model[doc], model.num_topics) vec2 = matutils.sparse2full(model2[doc], model2.num_topics) self.assertTrue(numpy.allclose(abs(vec1), abs(vec2), atol=1e-5)) # the two LSI representations must equal up to sign def testPersistence(self): fname = testfile() model = lsimodel.LsiModel(self.corpus, num_topics=2) model.save(fname) model2 = lsimodel.LsiModel.load(fname) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(numpy.allclose(model.projection.u, model2.projection.u)) self.assertTrue(numpy.allclose(model.projection.s, model2.projection.s)) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def testPersistenceCompressed(self): fname = testfile() + '.gz' model = lsimodel.LsiModel(self.corpus, num_topics=2) model.save(fname) model2 = lsimodel.LsiModel.load(fname, mmap=None) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(numpy.allclose(model.projection.u, model2.projection.u)) self.assertTrue(numpy.allclose(model.projection.s, model2.projection.s)) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def testLargeMmap(self): fname = testfile() model = lsimodel.LsiModel(self.corpus, num_topics=2) # test storing the internal arrays into separate files model.save(fname, sep_limit=0) # now load the external arrays via mmap model2 = lsimodel.LsiModel.load(fname, mmap='r') self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(isinstance(model2.projection.u, numpy.memmap)) self.assertTrue(isinstance(model2.projection.s, numpy.memmap)) self.assertTrue(numpy.allclose(model.projection.u, model2.projection.u)) self.assertTrue(numpy.allclose(model.projection.s, model2.projection.s)) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def testLargeMmapCompressed(self): fname = testfile() + '.gz' model = lsimodel.LsiModel(self.corpus, num_topics=2) # test storing the internal arrays into separate files model.save(fname, sep_limit=0) # now load the external arrays via mmap return # turns out this test doesn't exercise this because there are no arrays # to be mmaped! self.assertRaises(IOError, lsimodel.LsiModel.load, fname, mmap='r') #endclass TestLsiModel class TestRpModel(unittest.TestCase): def setUp(self): self.corpus = mmcorpus.MmCorpus(datapath('testcorpus.mm')) def testTransform(self): # create the transformation model numpy.random.seed(13) # HACK; set fixed seed so that we always get the same random matrix (and can compare against expected results) model = rpmodel.RpModel(self.corpus, num_topics=2) # transform one document doc = list(self.corpus)[0] transformed = model[doc] vec = matutils.sparse2full(transformed, 2) # convert to dense vector, for easier equality tests expected = numpy.array([-0.70710677, 0.70710677]) self.assertTrue(numpy.allclose(vec, expected)) # transformed entries must be equal up to sign def testPersistence(self): fname = testfile() model = rpmodel.RpModel(self.corpus, num_topics=2) model.save(fname) model2 = rpmodel.RpModel.load(fname) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(numpy.allclose(model.projection, model2.projection)) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def testPersistenceCompressed(self): fname = testfile() + '.gz' model = rpmodel.RpModel(self.corpus, num_topics=2) model.save(fname) model2 = rpmodel.RpModel.load(fname, mmap=None) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(numpy.allclose(model.projection, model2.projection)) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector #endclass TestRpModel class TestLdaModel(unittest.TestCase): def setUp(self): self.corpus = mmcorpus.MmCorpus(datapath('testcorpus.mm')) self.class_ = ldamodel.LdaModel def testTransform(self): passed = False # sometimes, LDA training gets stuck at a local minimum # in that case try re-training the model from scratch, hoping for a # better random initialization for i in range(5): # restart at most 5 times # create the transformation model model = self.class_(id2word=dictionary, num_topics=2, passes=100) model.update(self.corpus) # transform one document doc = list(corpus)[0] transformed = model[doc] vec = matutils.sparse2full(transformed, 2) # convert to dense vector, for easier equality tests expected = [0.13, 0.87] passed = numpy.allclose(sorted(vec), sorted(expected), atol=1e-2) # must contain the same values, up to re-ordering if passed: break logging.warning("LDA failed to converge on attempt %i (got %s, expected %s)" % (i, sorted(vec), sorted(expected))) self.assertTrue(passed) def testTopTopics(self): # create the transformation model model = self.class_(id2word=dictionary, num_topics=2, passes=100) model.update(self.corpus) model.top_topics(self.corpus) def testPasses(self): # long message includes the original error message with a custom one self.longMessage = True # construct what we expect when passes aren't involved test_rhots = list() model = self.class_(id2word=dictionary, chunksize=1, num_topics=2) final_rhot = lambda: pow(model.offset + (1 * model.num_updates) / model.chunksize, -model.decay) # generate 5 updates to test rhot on for x in range(5): model.update(self.corpus) test_rhots.append(final_rhot()) for passes in [1, 5, 10, 50, 100]: model = self.class_(id2word=dictionary, chunksize=1, num_topics=2, passes=passes) self.assertEqual(final_rhot(), 1.0) # make sure the rhot matches the test after each update for test_rhot in test_rhots: model.update(self.corpus) msg = ", ".join(map(str, [passes, model.num_updates, model.state.numdocs])) self.assertAlmostEqual(final_rhot(), test_rhot, msg=msg) self.assertEqual(model.state.numdocs, len(corpus) * len(test_rhots)) self.assertEqual(model.num_updates, len(corpus) * len(test_rhots)) # def testTopicSeeding(self): # for topic in range(2): # passed = False # for i in range(5): # restart at most this many times, to mitigate LDA randomness # # try seeding it both ways round, check you get the same # # topics out but with which way round they are depending # # on the way round they're seeded # eta = numpy.ones((2, len(dictionary))) * 0.5 # system = dictionary.token2id[u'system'] # trees = dictionary.token2id[u'trees'] # # aggressively seed the word 'system', in one of the # # two topics, 10 times higher than the other words # eta[topic, system] *= 10.0 # model = self.class_(id2word=dictionary, num_topics=2, passes=200, eta=eta) # model.update(self.corpus) # topics = [dict((word, p) for p, word in model.show_topic(j, topn=None)) for j in range(2)] # # check that the word 'system' in the topic we seeded got a high weight, # # and the word 'trees' (the main word in the other topic) a low weight -- # # and vice versa for the other topic (which we didn't seed with 'system') # passed = ( # (topics[topic][u'system'] > topics[topic][u'trees']) # and # (topics[1 - topic][u'system'] < topics[1 - topic][u'trees']) # ) # if passed: # break # logging.warning("LDA failed to converge on attempt %i (got %s)", i, topics) # self.assertTrue(passed) def testPersistence(self): fname = testfile() model = self.class_(self.corpus, num_topics=2) model.save(fname) model2 = self.class_.load(fname) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(numpy.allclose(model.expElogbeta, model2.expElogbeta)) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def testPersistenceCompressed(self): fname = testfile() + '.gz' model = self.class_(self.corpus, num_topics=2) model.save(fname) model2 = self.class_.load(fname, mmap=None) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(numpy.allclose(model.expElogbeta, model2.expElogbeta)) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def testLargeMmap(self): fname = testfile() model = self.class_(self.corpus, num_topics=2) # simulate storing large arrays separately model.save(testfile(), sep_limit=0) # test loading the large model arrays with mmap model2 = self.class_.load(testfile(), mmap='r') self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(isinstance(model2.expElogbeta, numpy.memmap)) self.assertTrue(numpy.allclose(model.expElogbeta, model2.expElogbeta)) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def testLargeMmapCompressed(self): fname = testfile() + '.gz' model = self.class_(self.corpus, num_topics=2) # simulate storing large arrays separately model.save(fname, sep_limit=0) # test loading the large model arrays with mmap self.assertRaises(IOError, self.class_.load, fname, mmap='r') #endclass TestLdaModel class TestLdaMulticore(TestLdaModel): def setUp(self): self.corpus = mmcorpus.MmCorpus(datapath('testcorpus.mm')) self.class_ = ldamulticore.LdaMulticore #endclass TestLdaMulticore class TestLdaMallet(unittest.TestCase): def setUp(self): self.corpus = mmcorpus.MmCorpus(datapath('testcorpus.mm')) mallet_home = os.environ.get('MALLET_HOME', None) self.mallet_path = os.path.join(mallet_home, 'bin', 'mallet') if mallet_home else None def testTransform(self): if not self.mallet_path: return passed = False for i in range(5): # restart at most 5 times # create the transformation model model = ldamallet.LdaMallet(self.mallet_path, corpus, id2word=dictionary, num_topics=2, iterations=200) # transform one document doc = list(corpus)[0] transformed = model[doc] vec = matutils.sparse2full(transformed, 2) # convert to dense vector, for easier equality tests expected = [0.49, 0.51] passed = numpy.allclose(sorted(vec), sorted(expected), atol=1e-2) # must contain the same values, up to re-ordering if passed: break logging.warning("LDA failed to converge on attempt %i (got %s, expected %s)" % (i, sorted(vec), sorted(expected))) self.assertTrue(passed) def testPersistence(self): if not self.mallet_path: return fname = testfile() model = ldamallet.LdaMallet(self.mallet_path, self.corpus, num_topics=2, iterations=100) model.save(fname) model2 = ldamallet.LdaMallet.load(fname) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(numpy.allclose(model.wordtopics, model2.wordtopics)) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def testPersistenceCompressed(self): if not self.mallet_path: return fname = testfile() + '.gz' model = ldamallet.LdaMallet(self.mallet_path, self.corpus, num_topics=2, iterations=100) model.save(fname) model2 = ldamallet.LdaMallet.load(fname, mmap=None) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(numpy.allclose(model.wordtopics, model2.wordtopics)) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def testLargeMmap(self): if not self.mallet_path: return fname = testfile() model = ldamallet.LdaMallet(self.mallet_path, self.corpus, num_topics=2, iterations=100) # simulate storing large arrays separately model.save(testfile(), sep_limit=0) # test loading the large model arrays with mmap model2 = ldamodel.LdaModel.load(testfile(), mmap='r') self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(isinstance(model2.wordtopics, numpy.memmap)) self.assertTrue(numpy.allclose(model.wordtopics, model2.wordtopics)) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def testLargeMmapCompressed(self): if not self.mallet_path: return fname = testfile() + '.gz' model = ldamallet.LdaMallet(self.mallet_path, self.corpus, num_topics=2, iterations=100) # simulate storing large arrays separately model.save(fname, sep_limit=0) # test loading the large model arrays with mmap self.assertRaises(IOError, ldamodel.LdaModel.load, fname, mmap='r') #endclass TestLdaMallet class TestTfidfModel(unittest.TestCase): def setUp(self): self.corpus = mmcorpus.MmCorpus(datapath('testcorpus.mm')) def testTransform(self): # create the transformation model model = tfidfmodel.TfidfModel(self.corpus, normalize=True) # transform one document doc = list(self.corpus)[0] transformed = model[doc] expected = [(0, 0.57735026918962573), (1, 0.57735026918962573), (2, 0.57735026918962573)] self.assertTrue(numpy.allclose(transformed, expected)) def testInit(self): # create the transformation model by analyzing a corpus # uses the global `corpus`! model1 = tfidfmodel.TfidfModel(corpus) # make sure the dfs<->idfs transformation works self.assertEqual(model1.dfs, dictionary.dfs) self.assertEqual(model1.idfs, tfidfmodel.precompute_idfs(model1.wglobal, dictionary.dfs, len(corpus))) # create the transformation model by directly supplying a term->docfreq # mapping from the global var `dictionary`. model2 = tfidfmodel.TfidfModel(dictionary=dictionary) self.assertEqual(model1.idfs, model2.idfs) def testPersistence(self): fname = testfile() model = tfidfmodel.TfidfModel(self.corpus, normalize=True) model.save(fname) model2 = tfidfmodel.TfidfModel.load(fname) self.assertTrue(model.idfs == model2.idfs) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def testPersistenceCompressed(self): fname = testfile() + '.gz' model = tfidfmodel.TfidfModel(self.corpus, normalize=True) model.save(fname) model2 = tfidfmodel.TfidfModel.load(fname, mmap=None) self.assertTrue(model.idfs == model2.idfs) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector #endclass TestTfidfModel class TestLogEntropyModel(unittest.TestCase): def setUp(self): self.corpus_small = mmcorpus.MmCorpus(datapath('test_corpus_small.mm')) self.corpus_ok = mmcorpus.MmCorpus(datapath('test_corpus_ok.mm')) def testTransform(self): # create the transformation model model = logentropy_model.LogEntropyModel(self.corpus_ok, normalize=False) # transform one document doc = list(self.corpus_ok)[0] transformed = model[doc] expected = [(0, 0.3748900964125389), (1, 0.30730215324230725), (3, 1.20941755462856)] self.assertTrue(numpy.allclose(transformed, expected)) def testPersistence(self): fname = testfile() model = logentropy_model.LogEntropyModel(self.corpus_ok, normalize=True) model.save(fname) model2 = logentropy_model.LogEntropyModel.load(fname) self.assertTrue(model.entr == model2.entr) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) def testPersistenceCompressed(self): fname = testfile() + '.gz' model = logentropy_model.LogEntropyModel(self.corpus_ok, normalize=True) model.save(fname) model2 = logentropy_model.LogEntropyModel.load(fname, mmap=None) self.assertTrue(model.entr == model2.entr) tstvec = [] self.assertTrue(numpy.allclose(model[tstvec], model2[tstvec])) #endclass TestLogEntropyModel if __name__ == '__main__': logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG) unittest.main()
jyt109/gensim
gensim/test/test_models.py
Python
gpl-3.0
23,020
0.006125
#!/usr/bin/env python """Robobonobo setup script. Usage: ./get_ready.py [options] Options: -h, --help Show this help screen --version Show the version. """ from docopt import docopt from glob import glob import os GPIOS = [30, 31, 112, 113, 65, 27] GPIO_BASE = "/sys/class/gpio" SLOTS_GLOB = "/sys/devices/bone_capemgr.?/slots" def write_gpio(filename, msg, pindir=""): with open(os.path.join(GPIO_BASE, pindir, filename), mode="w+") as ex: ex.write(msg) def setup_gpio(pin): write_gpio("export", pin) pindir = "gpio" + pin write_gpio("direction", "out", pindir) write_gpio("value", "0", pindir) def setup_dto(): for match in glob(SLOTS_GLOB): with open(match, mode="w+") as slots: slots.write("robobonobo") def main(): for gpio in GPIOS: setup_gpio(str(gpio)) setup_dto() if __name__ == "__main__": args = docopt(__doc__, version="Robobonobo setup script v1") main()
dunmatt/robobonobo
scripts/get_ready.py
Python
mit
979
0
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """This script is used by chrome_tests.gypi's js2webui action to maintain the argument lists and to generate inlinable tests. """ import json import optparse import os import subprocess import sys import shutil def HasSameContent(filename, content): '''Returns true if the given file is readable and has the given content.''' try: with open(filename) as file: return file.read() == content except: # Ignore all errors and fall back on a safe bet. return False def main (): parser = optparse.OptionParser() parser.set_usage( "%prog v8_shell mock.js test_api.js js2webui.js " "testtype inputfile inputrelfile cxxoutfile jsoutfile") parser.add_option('-v', '--verbose', action='store_true') parser.add_option('-n', '--impotent', action='store_true', help="don't execute; just print (as if verbose)") parser.add_option('--deps_js', action="store", help=("Path to deps.js for dependency resolution, " + "optional.")) parser.add_option('--external', action='store', help="Load V8's initial snapshot from external files (y/n)") (opts, args) = parser.parse_args() if len(args) != 9: parser.error('all arguments are required.') (v8_shell, mock_js, test_api, js2webui, test_type, inputfile, inputrelfile, cxxoutfile, jsoutfile) = args cmd = [v8_shell] icudatafile = os.path.join(os.path.dirname(v8_shell), 'icudtl.dat') if os.path.exists(icudatafile): cmd.extend(['--icu-data-file=%s' % icudatafile]) v8nativesfile = os.path.join(os.path.dirname(v8_shell), 'natives_blob.bin') if opts.external == 'y' and os.path.exists(v8nativesfile): cmd.extend(['--natives_blob=%s' % v8nativesfile]) v8snapshotfile = os.path.join(os.path.dirname(v8_shell), 'snapshot_blob.bin') if opts.external == 'y' and os.path.exists(v8snapshotfile): cmd.extend(['--snapshot_blob=%s' % v8snapshotfile]) arguments = [js2webui, inputfile, inputrelfile, opts.deps_js, cxxoutfile, test_type] cmd.extend(['-e', "arguments=" + json.dumps(arguments), mock_js, test_api, js2webui]) if opts.verbose or opts.impotent: print cmd if not opts.impotent: try: p = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=0) out, err = p.communicate() if not HasSameContent(cxxoutfile, out): with open(cxxoutfile, 'wb') as f: f.write(out) shutil.copyfile(inputfile, jsoutfile) except Exception, ex: if os.path.exists(cxxoutfile): os.remove(cxxoutfile) if os.path.exists(jsoutfile): os.remove(jsoutfile) raise if __name__ == '__main__': sys.exit(main())
hgl888/chromium-crosswalk
tools/gypv8sh.py
Python
bsd-3-clause
2,927
0.012641
#! /usr/bin/env python from __future__ import print_function import os import time from github import Github gh = Github(os.environ['DMWMBOT_TOKEN']) codeRepo = os.environ.get('CODE_REPO', 'WMCore') teamName = os.environ.get('WMCORE_REPO', 'dmwm') repoName = '%s/%s' % (teamName, codeRepo) issueID = None if 'ghprbPullId' in os.environ: issueID = os.environ['ghprbPullId'] mode = 'PR' elif 'TargetIssueID' in os.environ: issueID = os.environ['TargetIssueID'] mode = 'Daily' print("Looking for %s issue %s" % (repoName, issueID)) repo = gh.get_repo(repoName) issue = repo.get_issue(int(issueID)) reportURL = os.environ['BUILD_URL'] lastCommit = repo.get_pull(int(issueID)).get_commits().get_page(0)[-1] lastCommit.create_status(state='pending', target_url=reportURL, description='Tests started at ' + time.strftime("%d %b %Y %H:%M GMT"))
dmwm/Docker
jenkins_python/scripts/PullRequestTestBegin.py
Python
apache-2.0
887
0.001127
from __future__ import absolute_import from __future__ import division from __future__ import print_function """Manage data for pretraining and RL tasks.""" import ast from collections import namedtuple from absl import logging from single_task import code_tasks # brain coder RLBatch = namedtuple('RLBatch', ['reward_fns', 'batch_size', 'good_reward']) class DataManager(object): """Interface between environment and model.""" def __init__(self, global_config, run_number=None, do_code_simplification=False): """Constructs a DataManager. Args: global_config: A config_lib.Config instance containing all config. See config in defaults.py. run_number: Which run this is (of the same experiment). This should be set when a task cycle is defined in the config. A task cycle is a list of tasks to cycle through repeatedly, and the selected task is a function of the run number, i.e. 0-th run, 1-st run, 2-nd run, etc... This can be None if only a single task is set in the config. do_code_simplification: When global_config.env.config_for_iclr is True, use this option to create code simplification (code golf) tasks, vs fixed length coding tasks. If True, a task with code simplification reward will be constructed. Raises: ValueError: If global_config.env.task and global_config.env.task_cycle are both set, or both not set. Only one should be given. ValueError: If global_config.env.task_cycle is set but run_number is None. """ env_config = global_config.env self.batch_size = global_config.batch_size if env_config.task_cycle: if env_config.task: raise ValueError('Do not set both `task` and `task_cycle`.') if run_number is None: raise ValueError('Do not use task_cycle for single-run experiment.') index = run_number % len(env_config.task_cycle) self.task_name = env_config.task_cycle[index] logging.info('run_number: %d, task_cycle index: %d', run_number, index) logging.info('task_cycle: %s', env_config.task_cycle) elif env_config.task: self.task_name = env_config.task else: raise ValueError('Either `task` or `task_cycle` must be set.') logging.info('Task for this run: "%s"', self.task_name) logging.info('config_for_iclr=True; do_code_simplification=%s', do_code_simplification) self.rl_task = code_tasks.make_task( task_name=self.task_name, override_kwargs=ast.literal_eval(env_config.task_kwargs), max_code_length=global_config.timestep_limit, require_correct_syntax=env_config.correct_syntax, do_code_simplification=do_code_simplification, correct_bonus=env_config.task_manager_config.correct_bonus, code_length_bonus=env_config.task_manager_config.code_length_bonus) def sample_rl_batch(self): """Create reward functions from the current task. Returns: RLBatch namedtuple instance, which holds functions and information for a minibatch of episodes. * reward_fns: A reward function for each episode. Maps code string to reward. * batch_size: Number of episodes in this minibatch. * good_reward: Estimated threshold of rewards which indicate the algorithm is starting to solve the task. This is a heuristic that tries to reduce the amount of stuff written to disk. """ reward_fns = self.rl_task.rl_batch(self.batch_size) return RLBatch( reward_fns=reward_fns, batch_size=self.batch_size, good_reward=self.rl_task.good_reward)
jiaphuan/models
research/brain_coder/single_task/data.py
Python
apache-2.0
3,685
0.004071
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-06-02 16:10 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('lowfat', '0020_auto_20160602_1607'), ] operations = [ migrations.AddField( model_name='blog', name='status', field=models.CharField(choices=[('U', 'Unprocessed'), ('R', 'On Google Drive (for review)'), ('L', 'On pipeline to be published'), ('P', 'Published'), ('D', 'Declined'), ('O', 'Out of date')], default='U', max_length=1), ), ]
softwaresaved/fat
lowfat/migrations/0021_blog_status.py
Python
bsd-3-clause
627
0.001595
import website_forum
lamaisondub/lamaisondub-custom
website_forum_private/models/__init__.py
Python
agpl-3.0
21
0
from setuptools import setup setup(name='ldsc', version='1.0', description='LD Score Regression (LDSC)', url='http://github.com/bulik/ldsc', author='Brendan Bulik-Sullivan and Hilary Finucane', author_email='', license='GPLv3', packages=['ldscore'], scripts=['ldsc.py', 'munge_sumstats.py'], install_requires = [ 'bitarray>=0.8,<0.9', 'nose>=1.3,<1.4', 'pybedtools>=0.7,<0.8', 'scipy>=0.18,<0.19', 'numpy>=1.16,<1.17', 'pandas>=0.20,<0.21' ] )
bulik/ldsc
setup.py
Python
gpl-3.0
577
0.005199
import pandas as pd import pandas.testing as tm import pyspark.sql.functions as F import pytest from pyspark.sql import Window import ibis @pytest.mark.parametrize( ('ibis_windows', 'spark_range'), [ ([(ibis.interval(hours=1), 0)], (-3600, 0)), # 1h back looking window ([(ibis.interval(hours=2), 0)], (-7200, 0)), # 2h back looking window ( [(0, ibis.interval(hours=1))], (0, 3600), ), # 1h forward looking window ( [(ibis.interval(hours=1), ibis.interval(hours=1))], (-3600, 3600), ), # both forward and trailing ], indirect=['ibis_windows'], ) def test_window_with_timecontext(client, ibis_windows, spark_range): """Test context adjustment for trailing / range window We expand context according to window sizes, for example, for a table of: time value 2020-01-01 a 2020-01-02 b 2020-01-03 c 2020-01-04 d with context = (2020-01-03, 2002-01-04) trailing count for 1 day will be: time value count 2020-01-03 c 2 2020-01-04 d 2 trailing count for 2 days will be: time value count 2020-01-03 c 3 2020-01-04 d 3 with context = (2020-01-01, 2002-01-02) count for 1 day forward looking window will be: time value count 2020-01-01 a 2 2020-01-02 b 2 """ table = client.table('time_indexed_table') context = ( pd.Timestamp('20170102 07:00:00', tz='UTC'), pd.Timestamp('20170103', tz='UTC'), ) result_pd = table.mutate( count=table['value'].count().over(ibis_windows[0]) ).execute(timecontext=context) spark_table = table.compile() spark_window = ( Window.partitionBy('key') .orderBy(F.col('time').cast('long')) .rangeBetween(*spark_range) ) expected = spark_table.withColumn( 'count', F.count(spark_table['value']).over(spark_window), ).toPandas() expected = expected[ expected.time.between(*(t.tz_convert(None) for t in context)) ].reset_index(drop=True) tm.assert_frame_equal(result_pd, expected) @pytest.mark.parametrize( ('ibis_windows', 'spark_range'), [([(None, 0)], (Window.unboundedPreceding, 0))], indirect=['ibis_windows'], ) def test_cumulative_window(client, ibis_windows, spark_range): """Test context adjustment for cumulative window For cumulative window, by defination we should look back infinately. When data is trimmed by time context, we define the limit of looking back is the start time of given time context. Thus for a table of time value 2020-01-01 a 2020-01-02 b 2020-01-03 c 2020-01-04 d with context = (2020-01-02, 2002-01-03) cumulative count will be: time value count 2020-01-02 b 1 2020-01-03 c 2 """ table = client.table('time_indexed_table') context = ( pd.Timestamp('20170102 07:00:00', tz='UTC'), pd.Timestamp('20170105', tz='UTC'), ) result_pd = table.mutate( count_cum=table['value'].count().over(ibis_windows[0]) ).execute(timecontext=context) spark_table = table.compile(timecontext=context) spark_window = ( Window.partitionBy('key') .orderBy(F.col('time').cast('long')) .rangeBetween(*spark_range) ) expected = spark_table.withColumn( 'count_cum', F.count(spark_table['value']).over(spark_window), ).toPandas() expected = expected[ expected.time.between(*(t.tz_convert(None) for t in context)) ].reset_index(drop=True) tm.assert_frame_equal(result_pd, expected) @pytest.mark.parametrize( ('ibis_windows', 'spark_range'), [ ( [(ibis.interval(hours=1), 0), (ibis.interval(hours=2), 0)], [(-3600, 0), (-7200, 0)], ) ], indirect=['ibis_windows'], ) def test_multiple_trailing_window(client, ibis_windows, spark_range): """Test context adjustment for multiple trailing window When there are multiple window ops, we need to verify contexts are adjusted correctly for all windows. In this tests we are constucting one trailing window for 1h and another trailng window for 2h """ table = client.table('time_indexed_table') context = ( pd.Timestamp('20170102 07:00:00', tz='UTC'), pd.Timestamp('20170105', tz='UTC'), ) result_pd = table.mutate( count_1h=table['value'].count().over(ibis_windows[0]), count_2h=table['value'].count().over(ibis_windows[1]), ).execute(timecontext=context) spark_table = table.compile() spark_window_1h = ( Window.partitionBy('key') .orderBy(F.col('time').cast('long')) .rangeBetween(*spark_range[0]) ) spark_window_2h = ( Window.partitionBy('key') .orderBy(F.col('time').cast('long')) .rangeBetween(*spark_range[1]) ) expected = ( spark_table.withColumn( 'count_1h', F.count(spark_table['value']).over(spark_window_1h) ) .withColumn( 'count_2h', F.count(spark_table['value']).over(spark_window_2h) ) .toPandas() ) expected = expected[ expected.time.between(*(t.tz_convert(None) for t in context)) ].reset_index(drop=True) tm.assert_frame_equal(result_pd, expected) @pytest.mark.parametrize( ('ibis_windows', 'spark_range'), [ ( [(ibis.interval(hours=1), 0), (ibis.interval(hours=2), 0)], [(-3600, 0), (-7200, 0)], ) ], indirect=['ibis_windows'], ) def test_chained_trailing_window(client, ibis_windows, spark_range): """Test context adjustment for chained windows When there are chained window ops, we need to verify contexts are adjusted correctly for all windows. In this tests we are constucting one trailing window for 1h and trailng window on the new column for 2h """ table = client.table('time_indexed_table') context = ( pd.Timestamp('20170102 07:00:00', tz='UTC'), pd.Timestamp('20170105', tz='UTC'), ) table = table.mutate( new_col=table['value'].count().over(ibis_windows[0]), ) table = table.mutate(count=table['new_col'].count().over(ibis_windows[1])) result_pd = table.execute(timecontext=context) spark_table = table.compile() spark_window_1h = ( Window.partitionBy('key') .orderBy(F.col('time').cast('long')) .rangeBetween(*spark_range[0]) ) spark_window_2h = ( Window.partitionBy('key') .orderBy(F.col('time').cast('long')) .rangeBetween(*spark_range[1]) ) spark_table = spark_table.withColumn( 'new_col', F.count(spark_table['value']).over(spark_window_1h) ) spark_table = spark_table.withColumn( 'count', F.count(spark_table['new_col']).over(spark_window_2h) ) expected = spark_table.toPandas() expected = expected[ expected.time.between(*(t.tz_convert(None) for t in context)) ].reset_index(drop=True) tm.assert_frame_equal(result_pd, expected) @pytest.mark.xfail( reason='Issue #2457 Adjust context properly for mixed rolling window,' ' cumulative window and non window ops', strict=True, ) @pytest.mark.parametrize( ('ibis_windows', 'spark_range'), [ ( [(ibis.interval(hours=1), 0), (None, 0)], [(-3600, 0), (Window.unboundedPreceding, 0)], ) ], indirect=['ibis_windows'], ) def test_rolling_with_cumulative_window(client, ibis_windows, spark_range): """Test context adjustment for rolling window and cumulative window cumulative window should calculate only with in user's context, while rolling window should calculate on expanded context. For a rolling window of 1 day, time value 2020-01-01 a 2020-01-02 b 2020-01-03 c 2020-01-04 d with context = (2020-01-02, 2002-01-03), count will be: time value roll_count cum_count 2020-01-02 b 2 1 2020-01-03 c 2 2 """ table = client.table('time_indexed_table') context = ( pd.Timestamp('20170102 07:00:00', tz='UTC'), pd.Timestamp('20170105', tz='UTC'), ) result_pd = table.mutate( count_1h=table['value'].count().over(ibis_windows[0]), count_cum=table['value'].count().over(ibis_windows[1]), ).execute(timecontext=context) spark_table = table.compile() spark_window_1h = ( Window.partitionBy('key') .orderBy(F.col('time').cast('long')) .rangeBetween(*spark_range[0]) ) spark_window_cum = ( Window.partitionBy('key') .orderBy(F.col('time').cast('long')) .rangeBetween(*spark_range[1]) ) expected = ( spark_table.withColumn( 'count_1h', F.count(spark_table['value']).over(spark_window_1h) ) .withColumn( 'count_cum', F.count(spark_table['value']).over(spark_window_cum) ) .toPandas() ) expected = expected[ expected.time.between(*(t.tz_convert(None) for t in context)) ].reset_index(drop=True) tm.assert_frame_equal(result_pd, expected) @pytest.mark.xfail( reason='Issue #2457 Adjust context properly for mixed rolling window,' ' cumulative window and non window ops', strict=True, ) @pytest.mark.parametrize( ('ibis_windows', 'spark_range'), [([(ibis.interval(hours=1), 0)], [(-3600, 0)])], indirect=['ibis_windows'], ) def test_rolling_with_non_window_op(client, ibis_windows, spark_range): """Test context adjustment for rolling window and non window ops non window ops should calculate only with in user's context, while rolling window should calculate on expanded context. For a rolling window of 1 day, and a `count` aggregation time value 2020-01-01 a 2020-01-02 b 2020-01-03 c 2020-01-04 d with context = (2020-01-02, 2002-01-04), result will be: time value roll_count count 2020-01-02 b 2 3 2020-01-03 c 2 3 2020-01-04 d 2 3 Because there are 3 rows within user context (01-02, 01-04), count should return 3 for every row, rather 4, based on the adjusted context (01-01, 01-04). """ table = client.table('time_indexed_table') context = ( pd.Timestamp('20170102 07:00:00', tz='UTC'), pd.Timestamp('20170105', tz='UTC'), ) result_pd = table.mutate( count_1h=table['value'].count().over(ibis_windows[0]), count=table['value'].count(), ).execute(timecontext=context) spark_table = table.compile() spark_window_1h = ( Window.partitionBy('key') .orderBy(F.col('time').cast('long')) .rangeBetween(*spark_range[0]) ) expected = ( spark_table.withColumn( 'count_1h', F.count(spark_table['value']).over(spark_window_1h) ) .withColumn('count', F.count(spark_table['value'])) .toPandas() ) expected = expected[ expected.time.between(*(t.tz_convert(None) for t in context)) ].reset_index(drop=True) tm.assert_frame_equal(result_pd, expected) @pytest.mark.xfail( reason='Issue #2453 chain mutate() for window op and' 'non window op throws error for pyspark backend', strict=True, ) def test_complex_window(client): """Test window with different sizes mix context adjustment for window op that require context adjustment and non window op that doesn't adjust context """ table = client.table('time_indexed_table') context = ( pd.Timestamp('20170102 07:00:00', tz='UTC'), pd.Timestamp('20170105', tz='UTC'), ) window = ibis.trailing_window( preceding=ibis.interval(hours=1), order_by='time', group_by='key' ) window2 = ibis.trailing_window( preceding=ibis.interval(hours=2), order_by='time', group_by='key' ) window_cum = ibis.cumulative_window(order_by='time', group_by='key') # context should be adjusted accordingly for each window result_pd = ( table.mutate( count_1h=table['value'].count().over(window), count_2h=table['value'].count().over(window2), count_cum=table['value'].count().over(window_cum), ) .mutate(count=table['value'].count()) .execute(timecontext=context) ) df = table.execute() expected_win_1h = ( df.set_index('time') .groupby('key') .value.rolling('1h', closed='both') .count() .rename('count_1h') .astype(int) ) expected_win_2h = ( df.set_index('time') .groupby('key') .value.rolling('2h', closed='both') .count() .rename('count_2h') .astype(int) ) expected_cum_win = ( df.set_index('time') .groupby('key') .value.expanding() .count() .rename('count_cum') .astype(int) ) df = df.set_index('time') df = df.assign( count_1h=expected_win_1h.sort_index(level=['time', 'key']).reset_index( level='key', drop=True ) ) df = df.assign( count_2h=expected_win_2h.sort_index(level=['time', 'key']).reset_index( level='key', drop=True ) ) df = df.assign( count_cum=expected_cum_win.sort_index( level=['time', 'key'] ).reset_index(level='key', drop=True) ) df['count'] = df.groupby(['key'])['value'].transform('count') df = df.reset_index() expected = ( df[df.time.between(*(t.tz_convert(None) for t in context))] .sort_values(['key']) .reset_index(drop=True) ) tm.assert_frame_equal(result_pd, expected)
cloudera/ibis
ibis/backends/pyspark/tests/test_window_context_adjustment.py
Python
apache-2.0
13,958
0
import datetime from django import template from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.contrib.sites.models import Site from django.contrib.syndication.views import Feed, add_domain from django.utils import feedgenerator, tzinfo from django.utils.encoding import iri_to_uri try: from django.utils.encoding import force_text except ImportError: # Django < 1.5 from django.utils.encoding import force_unicode as force_text USE_SINGLE_SIGNON = getattr(settings, "DISQUS_USE_SINGLE_SIGNON", False) class WxrFeedType(feedgenerator.Rss201rev2Feed): def rss_attributes(self): return { 'version': self._version, 'xmlns:content': 'http://purl.org/rss/1.0/modules/content/', 'xmlns:dsq': 'http://www.disqus.com/', 'xmlns:dc': 'http://purl.org/dc/elements/1.1/', 'xmlns:wp': 'http://wordpress.org/export/1.0/', } def format_date(self, date): return date.strftime('%Y-%m-%d %H:%M:%S') def add_item(self, title, link, description, author_email=None, author_name=None, author_link=None, pubdate=None, comments=None, unique_id=None, enclosure=None, categories=(), item_copyright=None, ttl=None, **kwargs): """ Adds an item to the feed. All args are expected to be Python Unicode objects except pubdate, which is a datetime.datetime object, and enclosure, which is an instance of the Enclosure class. """ to_unicode = lambda s: force_text(s, strings_only=True) if categories: categories = [to_unicode(c) for c in categories] if ttl is not None: # Force ints to unicode ttl = force_text(ttl) item = { 'title': to_unicode(title), 'link': iri_to_uri(link), 'description': to_unicode(description), 'author_email': to_unicode(author_email), 'author_name': to_unicode(author_name), 'author_link': iri_to_uri(author_link), 'pubdate': pubdate, 'comments': comments, 'unique_id': to_unicode(unique_id), 'enclosure': enclosure, 'categories': categories or (), 'item_copyright': to_unicode(item_copyright), 'ttl': ttl, } item.update(kwargs) self.items.append(item) def add_root_elements(self, handler): pass def add_item_elements(self, handler, item): if item['comments'] is None: return handler.addQuickElement('title', item['title']) handler.addQuickElement('link', item['link']) handler.addQuickElement('content:encoded', item['description']) handler.addQuickElement('dsq:thread_identifier', item['unique_id']) handler.addQuickElement('wp:post_date_gmt', self.format_date(item['pubdate']).decode('utf-8')) handler.addQuickElement('wp:comment_status', item['comment_status']) self.write_comments(handler, item['comments']) def add_comment_elements(self, handler, comment): if USE_SINGLE_SIGNON: handler.startElement('dsq:remote', {}) handler.addQuickElement('dsq:id', comment['user_id']) handler.addQuickElement('dsq:avatar', comment['avatar']) handler.endElement('dsq:remote') handler.addQuickElement('wp:comment_id', comment['id']) handler.addQuickElement('wp:comment_author', comment['user_name']) handler.addQuickElement('wp:comment_author_email', comment['user_email']) handler.addQuickElement('wp:comment_author_url', comment['user_url']) handler.addQuickElement('wp:comment_author_IP', comment['ip_address']) handler.addQuickElement('wp:comment_date_gmt', self.format_date(comment['submit_date']).decode('utf-8')) handler.addQuickElement('wp:comment_content', comment['comment']) handler.addQuickElement('wp:comment_approved', comment['is_approved']) if comment['parent'] is not None: handler.addQuickElement('wp:comment_parent', comment['parent']) def write_comments(self, handler, comments): for comment in comments: handler.startElement('wp:comment', {}) self.add_comment_elements(handler, comment) handler.endElement('wp:comment') class BaseWxrFeed(Feed): feed_type = WxrFeedType def get_feed(self, obj, request): current_site = Site.objects.get_current() link = self._Feed__get_dynamic_attr('link', obj) link = add_domain(current_site.domain, link) feed = self.feed_type( title = self._Feed__get_dynamic_attr('title', obj), link = link, description = self._Feed__get_dynamic_attr('description', obj), ) title_tmp = None if self.title_template is not None: try: title_tmp = template.loader.get_template(self.title_template) except template.TemplateDoesNotExist: pass description_tmp = None if self.description_template is not None: try: description_tmp = template.loader.get_template(self.description_template) except template.TemplateDoesNotExist: pass for item in self._Feed__get_dynamic_attr('items', obj): if title_tmp is not None: title = title_tmp.render( template.RequestContext(request, { 'obj': item, 'site': current_site })) else: title = self._Feed__get_dynamic_attr('item_title', item) if description_tmp is not None: description = description_tmp.render( template.RequestContext(request, { 'obj': item, 'site': current_site })) else: description = self._Feed__get_dynamic_attr('item_description', item) link = add_domain( current_site.domain, self._Feed__get_dynamic_attr('item_link', item), ) pubdate = self._Feed__get_dynamic_attr('item_pubdate', item) if pubdate and not hasattr(pubdate, 'tzinfo'): ltz = tzinfo.LocalTimezone(pubdate) pubdate = pubdate.replace(tzinfo=ltz) feed.add_item( title = title, link = link, description = description, unique_id = self._Feed__get_dynamic_attr('item_guid', item, link), pubdate = pubdate, comment_status = self._Feed__get_dynamic_attr('item_comment_status', item, 'open'), comments = self._get_comments(item) ) return feed def _get_comments(self, item): cmts = self._Feed__get_dynamic_attr('item_comments', item) output = [] for comment in cmts: output.append({ 'user_id': self._Feed__get_dynamic_attr('comment_user_id', comment), 'avatar': self._Feed__get_dynamic_attr('comment_avatar', comment), 'id': str(self._Feed__get_dynamic_attr('comment_id', comment)), 'user_name': self._Feed__get_dynamic_attr('comment_user_name', comment), 'user_email': self._Feed__get_dynamic_attr('comment_user_email', comment), 'user_url': self._Feed__get_dynamic_attr('comment_user_url', comment), 'ip_address': self._Feed__get_dynamic_attr('comment_ip_address', comment), 'submit_date': self._Feed__get_dynamic_attr('comment_submit_date', comment), 'comment': self._Feed__get_dynamic_attr('comment_comment', comment), 'is_approved': str(self._Feed__get_dynamic_attr('comment_is_approved', comment)), 'parent': str(self._Feed__get_dynamic_attr('comment_parent', comment)), }) return output class ContribCommentsWxrFeed(BaseWxrFeed): link = "/" def item_comments(self, item): from django.contrib.comments.models import Comment ctype = ContentType.objects.get_for_model(item) return Comment.objects.filter(content_type=ctype, object_pk=item.pk) def item_guid(self, item): ctype = ContentType.objects.get_for_model(item) return "%s_%s" % (ctype.name, item.pk) def comment_id(self, comment): return comment.pk def comment_user_id(self, comment): return force_text(comment.user_id) def comment_user_name(self, comment): return force_text(comment.user_name) def comment_user_email(self, comment): return force_text(comment.user_email) def comment_user_url(self, comment): return force_text(comment.user_url) def comment_ip_address(self, comment): return force_text(comment.ip_address) def comment_submit_date(self, comment): return comment.submit_date def comment_comment(self, comment): return comment.comment def comment_is_approved(self, comment): return int(comment.is_public) comment_parent = 0
steventimberman/masterDebater
venv/lib/python2.7/site-packages/disqus/wxr_feed.py
Python
mit
9,430
0.007529
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Pool' db.create_table(u'storageadmin_pool', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(unique=True, max_length=4096)), ('uuid', self.gf('django.db.models.fields.CharField')(max_length=100, null=True)), ('size', self.gf('django.db.models.fields.IntegerField')(default=0)), ('raid', self.gf('django.db.models.fields.CharField')(max_length=10)), ('toc', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), )) db.send_create_signal('storageadmin', ['Pool']) # Adding model 'Disk' db.create_table(u'storageadmin_disk', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('pool', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['storageadmin.Pool'], null=True, on_delete=models.SET_NULL)), ('name', self.gf('django.db.models.fields.CharField')(unique=True, max_length=10)), ('size', self.gf('django.db.models.fields.IntegerField')()), ('offline', self.gf('django.db.models.fields.BooleanField')(default=False)), ('parted', self.gf('django.db.models.fields.BooleanField')()), )) db.send_create_signal('storageadmin', ['Disk']) # Adding model 'Share' db.create_table(u'storageadmin_share', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('pool', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['storageadmin.Pool'])), ('qgroup', self.gf('django.db.models.fields.CharField')(max_length=100)), ('name', self.gf('django.db.models.fields.CharField')(unique=True, max_length=4096)), ('uuid', self.gf('django.db.models.fields.CharField')(max_length=100, null=True)), ('size', self.gf('django.db.models.fields.IntegerField')()), ('owner', self.gf('django.db.models.fields.CharField')(default='root', max_length=4096)), ('group', self.gf('django.db.models.fields.CharField')(default='root', max_length=4096)), ('perms', self.gf('django.db.models.fields.CharField')(default='755', max_length=9)), ('toc', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('subvol_name', self.gf('django.db.models.fields.CharField')(max_length=4096)), ('replica', self.gf('django.db.models.fields.BooleanField')(default=False)), )) db.send_create_signal('storageadmin', ['Share']) # Adding model 'Snapshot' db.create_table(u'storageadmin_snapshot', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('share', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['storageadmin.Share'])), ('name', self.gf('django.db.models.fields.CharField')(max_length=4096)), ('real_name', self.gf('django.db.models.fields.CharField')(default='unknownsnap', max_length=4096)), ('writable', self.gf('django.db.models.fields.BooleanField')(default=False)), ('size', self.gf('django.db.models.fields.IntegerField')(default=0)), ('toc', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('qgroup', self.gf('django.db.models.fields.CharField')(max_length=100)), ('uvisible', self.gf('django.db.models.fields.BooleanField')(default=False)), ('snap_type', self.gf('django.db.models.fields.CharField')(default='admin', max_length=64)), )) db.send_create_signal('storageadmin', ['Snapshot']) # Adding unique constraint on 'Snapshot', fields ['share', 'name'] db.create_unique(u'storageadmin_snapshot', ['share_id', 'name']) # Adding model 'PoolStatistic' db.create_table(u'storageadmin_poolstatistic', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('pool', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['storageadmin.Pool'])), ('total_capacity', self.gf('django.db.models.fields.IntegerField')()), ('used', self.gf('django.db.models.fields.IntegerField')()), ('ts', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), )) db.send_create_signal('storageadmin', ['PoolStatistic']) # Adding model 'ShareStatistic' db.create_table(u'storageadmin_sharestatistic', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('share', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['storageadmin.Share'])), ('total_capacity', self.gf('django.db.models.fields.IntegerField')()), ('used', self.gf('django.db.models.fields.IntegerField')()), ('ts', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), )) db.send_create_signal('storageadmin', ['ShareStatistic']) # Adding model 'NFSExportGroup' db.create_table(u'storageadmin_nfsexportgroup', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('host_str', self.gf('django.db.models.fields.CharField')(max_length=4096)), ('editable', self.gf('django.db.models.fields.CharField')(default='ro', max_length=2)), ('syncable', self.gf('django.db.models.fields.CharField')(default='async', max_length=5)), ('mount_security', self.gf('django.db.models.fields.CharField')(default='insecure', max_length=8)), ('nohide', self.gf('django.db.models.fields.BooleanField')(default=False)), ('enabled', self.gf('django.db.models.fields.BooleanField')(default=True)), )) db.send_create_signal('storageadmin', ['NFSExportGroup']) # Adding model 'NFSExport' db.create_table(u'storageadmin_nfsexport', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('export_group', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['storageadmin.NFSExportGroup'])), ('share', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['storageadmin.Share'])), ('mount', self.gf('django.db.models.fields.CharField')(max_length=4096)), )) db.send_create_signal('storageadmin', ['NFSExport']) # Adding model 'SambaShare' db.create_table(u'storageadmin_sambashare', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('share', self.gf('django.db.models.fields.related.OneToOneField')(related_name='sambashare', unique=True, to=orm['storageadmin.Share'])), ('path', self.gf('django.db.models.fields.CharField')(unique=True, max_length=4096)), ('comment', self.gf('django.db.models.fields.CharField')(default='foo bar', max_length=100)), ('browsable', self.gf('django.db.models.fields.CharField')(default='yes', max_length=3)), ('read_only', self.gf('django.db.models.fields.CharField')(default='no', max_length=3)), ('guest_ok', self.gf('django.db.models.fields.CharField')(default='no', max_length=3)), ('create_mask', self.gf('django.db.models.fields.CharField')(default='0755', max_length=4)), ('admin_users', self.gf('django.db.models.fields.CharField')(default='Administrator', max_length=128)), )) db.send_create_signal('storageadmin', ['SambaShare']) # Adding model 'IscsiTarget' db.create_table(u'storageadmin_iscsitarget', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('share', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['storageadmin.Share'])), ('tid', self.gf('django.db.models.fields.IntegerField')(unique=True)), ('tname', self.gf('django.db.models.fields.CharField')(unique=True, max_length=128)), ('dev_name', self.gf('django.db.models.fields.CharField')(unique=True, max_length=128)), ('dev_size', self.gf('django.db.models.fields.IntegerField')()), )) db.send_create_signal('storageadmin', ['IscsiTarget']) # Adding model 'PosixACLs' db.create_table(u'storageadmin_posixacls', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('smb_share', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['storageadmin.SambaShare'])), ('owner', self.gf('django.db.models.fields.CharField')(max_length=5)), ('perms', self.gf('django.db.models.fields.CharField')(max_length=3)), )) db.send_create_signal('storageadmin', ['PosixACLs']) # Adding model 'APIKeys' db.create_table(u'storageadmin_apikeys', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user', self.gf('django.db.models.fields.CharField')(unique=True, max_length=8)), ('key', self.gf('django.db.models.fields.CharField')(unique=True, max_length=10)), )) db.send_create_signal('storageadmin', ['APIKeys']) # Adding model 'Appliance' db.create_table(u'storageadmin_appliance', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('uuid', self.gf('django.db.models.fields.CharField')(unique=True, max_length=64)), ('ip', self.gf('django.db.models.fields.CharField')(unique=True, max_length=4096)), ('current_appliance', self.gf('django.db.models.fields.BooleanField')(default=False)), ('hostname', self.gf('django.db.models.fields.CharField')(default='Rockstor', max_length=128)), ('mgmt_port', self.gf('django.db.models.fields.IntegerField')(default=443)), )) db.send_create_signal('storageadmin', ['Appliance']) # Adding model 'SupportCase' db.create_table(u'storageadmin_supportcase', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('notes', self.gf('django.db.models.fields.TextField')()), ('zipped_log', self.gf('django.db.models.fields.CharField')(max_length=128)), ('status', self.gf('django.db.models.fields.CharField')(max_length=9)), ('case_type', self.gf('django.db.models.fields.CharField')(max_length=6)), )) db.send_create_signal('storageadmin', ['SupportCase']) # Adding model 'DashboardConfig' db.create_table(u'storageadmin_dashboardconfig', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'], unique=True)), ('widgets', self.gf('django.db.models.fields.CharField')(max_length=4096)), )) db.send_create_signal('storageadmin', ['DashboardConfig']) # Adding model 'NetworkInterface' db.create_table(u'storageadmin_networkinterface', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('alias', self.gf('django.db.models.fields.CharField')(max_length=100, null=True)), ('mac', self.gf('django.db.models.fields.CharField')(max_length=100)), ('boot_proto', self.gf('django.db.models.fields.CharField')(max_length=100, null=True)), ('onboot', self.gf('django.db.models.fields.CharField')(max_length=100, null=True)), ('network', self.gf('django.db.models.fields.CharField')(max_length=100, null=True)), ('netmask', self.gf('django.db.models.fields.CharField')(max_length=100, null=True)), ('ipaddr', self.gf('django.db.models.fields.CharField')(max_length=100, null=True)), ('itype', self.gf('django.db.models.fields.CharField')(default='io', max_length=100)), )) db.send_create_signal('storageadmin', ['NetworkInterface']) # Adding model 'User' db.create_table(u'storageadmin_user', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user', self.gf('django.db.models.fields.related.OneToOneField')(related_name='suser', unique=True, null=True, to=orm['auth.User'])), ('username', self.gf('django.db.models.fields.CharField')(default='', unique=True, max_length=4096)), ('uid', self.gf('django.db.models.fields.IntegerField')(default=5000)), ('gid', self.gf('django.db.models.fields.IntegerField')(default=5000)), )) db.send_create_signal('storageadmin', ['User']) # Adding model 'PoolScrub' db.create_table(u'storageadmin_poolscrub', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('pool', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['storageadmin.Pool'])), ('status', self.gf('django.db.models.fields.CharField')(default='started', max_length=10)), ('pid', self.gf('django.db.models.fields.IntegerField')()), ('start_time', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('end_time', self.gf('django.db.models.fields.DateTimeField')(null=True)), ('kb_scrubbed', self.gf('django.db.models.fields.IntegerField')(null=True)), ('errors', self.gf('django.db.models.fields.IntegerField')(null=True)), )) db.send_create_signal('storageadmin', ['PoolScrub']) # Adding model 'Setup' db.create_table(u'storageadmin_setup', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('setup_user', self.gf('django.db.models.fields.BooleanField')(default=False)), ('setup_system', self.gf('django.db.models.fields.BooleanField')(default=False)), ('setup_disks', self.gf('django.db.models.fields.BooleanField')(default=False)), ('setup_network', self.gf('django.db.models.fields.BooleanField')(default=False)), )) db.send_create_signal('storageadmin', ['Setup']) # Adding model 'SFTP' db.create_table(u'storageadmin_sftp', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('share', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['storageadmin.Share'], unique=True)), ('editable', self.gf('django.db.models.fields.CharField')(default='ro', max_length=2)), )) db.send_create_signal('storageadmin', ['SFTP']) # Adding model 'Plugin' db.create_table(u'storageadmin_plugin', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(unique=True, max_length=4096)), ('display_name', self.gf('django.db.models.fields.CharField')(default='', unique=True, max_length=4096)), ('description', self.gf('django.db.models.fields.CharField')(default='', max_length=4096)), ('css_file_name', self.gf('django.db.models.fields.CharField')(max_length=4096)), ('js_file_name', self.gf('django.db.models.fields.CharField')(max_length=4096)), ('key', self.gf('django.db.models.fields.CharField')(unique=True, max_length=4096)), )) db.send_create_signal('storageadmin', ['Plugin']) # Adding model 'InstalledPlugin' db.create_table(u'storageadmin_installedplugin', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('plugin_meta', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['storageadmin.Plugin'])), ('install_date', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), )) db.send_create_signal('storageadmin', ['InstalledPlugin']) def backwards(self, orm): # Removing unique constraint on 'Snapshot', fields ['share', 'name'] db.delete_unique(u'storageadmin_snapshot', ['share_id', 'name']) # Deleting model 'Pool' db.delete_table(u'storageadmin_pool') # Deleting model 'Disk' db.delete_table(u'storageadmin_disk') # Deleting model 'Share' db.delete_table(u'storageadmin_share') # Deleting model 'Snapshot' db.delete_table(u'storageadmin_snapshot') # Deleting model 'PoolStatistic' db.delete_table(u'storageadmin_poolstatistic') # Deleting model 'ShareStatistic' db.delete_table(u'storageadmin_sharestatistic') # Deleting model 'NFSExportGroup' db.delete_table(u'storageadmin_nfsexportgroup') # Deleting model 'NFSExport' db.delete_table(u'storageadmin_nfsexport') # Deleting model 'SambaShare' db.delete_table(u'storageadmin_sambashare') # Deleting model 'IscsiTarget' db.delete_table(u'storageadmin_iscsitarget') # Deleting model 'PosixACLs' db.delete_table(u'storageadmin_posixacls') # Deleting model 'APIKeys' db.delete_table(u'storageadmin_apikeys') # Deleting model 'Appliance' db.delete_table(u'storageadmin_appliance') # Deleting model 'SupportCase' db.delete_table(u'storageadmin_supportcase') # Deleting model 'DashboardConfig' db.delete_table(u'storageadmin_dashboardconfig') # Deleting model 'NetworkInterface' db.delete_table(u'storageadmin_networkinterface') # Deleting model 'User' db.delete_table(u'storageadmin_user') # Deleting model 'PoolScrub' db.delete_table(u'storageadmin_poolscrub') # Deleting model 'Setup' db.delete_table(u'storageadmin_setup') # Deleting model 'SFTP' db.delete_table(u'storageadmin_sftp') # Deleting model 'Plugin' db.delete_table(u'storageadmin_plugin') # Deleting model 'InstalledPlugin' db.delete_table(u'storageadmin_installedplugin') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'storageadmin.apikeys': { 'Meta': {'object_name': 'APIKeys'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '10'}), 'user': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '8'}) }, 'storageadmin.appliance': { 'Meta': {'object_name': 'Appliance'}, 'current_appliance': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'hostname': ('django.db.models.fields.CharField', [], {'default': "'Rockstor'", 'max_length': '128'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ip': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '4096'}), 'mgmt_port': ('django.db.models.fields.IntegerField', [], {'default': '443'}), 'uuid': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '64'}) }, 'storageadmin.dashboardconfig': { 'Meta': {'object_name': 'DashboardConfig'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'unique': 'True'}), 'widgets': ('django.db.models.fields.CharField', [], {'max_length': '4096'}) }, 'storageadmin.disk': { 'Meta': {'object_name': 'Disk'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '10'}), 'offline': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'parted': ('django.db.models.fields.BooleanField', [], {}), 'pool': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['storageadmin.Pool']", 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'size': ('django.db.models.fields.IntegerField', [], {}) }, 'storageadmin.installedplugin': { 'Meta': {'object_name': 'InstalledPlugin'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'install_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'plugin_meta': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['storageadmin.Plugin']"}) }, 'storageadmin.iscsitarget': { 'Meta': {'object_name': 'IscsiTarget'}, 'dev_name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '128'}), 'dev_size': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'share': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['storageadmin.Share']"}), 'tid': ('django.db.models.fields.IntegerField', [], {'unique': 'True'}), 'tname': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '128'}) }, 'storageadmin.networkinterface': { 'Meta': {'object_name': 'NetworkInterface'}, 'alias': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}), 'boot_proto': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ipaddr': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}), 'itype': ('django.db.models.fields.CharField', [], {'default': "'io'", 'max_length': '100'}), 'mac': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'netmask': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}), 'network': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}), 'onboot': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}) }, 'storageadmin.nfsexport': { 'Meta': {'object_name': 'NFSExport'}, 'export_group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['storageadmin.NFSExportGroup']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mount': ('django.db.models.fields.CharField', [], {'max_length': '4096'}), 'share': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['storageadmin.Share']"}) }, 'storageadmin.nfsexportgroup': { 'Meta': {'object_name': 'NFSExportGroup'}, 'editable': ('django.db.models.fields.CharField', [], {'default': "'ro'", 'max_length': '2'}), 'enabled': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'host_str': ('django.db.models.fields.CharField', [], {'max_length': '4096'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mount_security': ('django.db.models.fields.CharField', [], {'default': "'insecure'", 'max_length': '8'}), 'nohide': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'syncable': ('django.db.models.fields.CharField', [], {'default': "'async'", 'max_length': '5'}) }, 'storageadmin.plugin': { 'Meta': {'object_name': 'Plugin'}, 'css_file_name': ('django.db.models.fields.CharField', [], {'max_length': '4096'}), 'description': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '4096'}), 'display_name': ('django.db.models.fields.CharField', [], {'default': "''", 'unique': 'True', 'max_length': '4096'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'js_file_name': ('django.db.models.fields.CharField', [], {'max_length': '4096'}), 'key': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '4096'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '4096'}) }, 'storageadmin.pool': { 'Meta': {'object_name': 'Pool'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '4096'}), 'raid': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'size': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'toc': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'uuid': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}) }, 'storageadmin.poolscrub': { 'Meta': {'object_name': 'PoolScrub'}, 'end_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'errors': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'kb_scrubbed': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'pid': ('django.db.models.fields.IntegerField', [], {}), 'pool': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['storageadmin.Pool']"}), 'start_time': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'default': "'started'", 'max_length': '10'}) }, 'storageadmin.poolstatistic': { 'Meta': {'object_name': 'PoolStatistic'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'pool': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['storageadmin.Pool']"}), 'total_capacity': ('django.db.models.fields.IntegerField', [], {}), 'ts': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'used': ('django.db.models.fields.IntegerField', [], {}) }, 'storageadmin.posixacls': { 'Meta': {'object_name': 'PosixACLs'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'owner': ('django.db.models.fields.CharField', [], {'max_length': '5'}), 'perms': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'smb_share': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['storageadmin.SambaShare']"}) }, 'storageadmin.sambashare': { 'Meta': {'object_name': 'SambaShare'}, 'admin_users': ('django.db.models.fields.CharField', [], {'default': "'Administrator'", 'max_length': '128'}), 'browsable': ('django.db.models.fields.CharField', [], {'default': "'yes'", 'max_length': '3'}), 'comment': ('django.db.models.fields.CharField', [], {'default': "'foo bar'", 'max_length': '100'}), 'create_mask': ('django.db.models.fields.CharField', [], {'default': "'0755'", 'max_length': '4'}), 'guest_ok': ('django.db.models.fields.CharField', [], {'default': "'no'", 'max_length': '3'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'path': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '4096'}), 'read_only': ('django.db.models.fields.CharField', [], {'default': "'no'", 'max_length': '3'}), 'share': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'sambashare'", 'unique': 'True', 'to': "orm['storageadmin.Share']"}) }, 'storageadmin.setup': { 'Meta': {'object_name': 'Setup'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'setup_disks': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'setup_network': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'setup_system': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'setup_user': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'storageadmin.sftp': { 'Meta': {'object_name': 'SFTP'}, 'editable': ('django.db.models.fields.CharField', [], {'default': "'ro'", 'max_length': '2'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'share': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['storageadmin.Share']", 'unique': 'True'}) }, 'storageadmin.share': { 'Meta': {'object_name': 'Share'}, 'group': ('django.db.models.fields.CharField', [], {'default': "'root'", 'max_length': '4096'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '4096'}), 'owner': ('django.db.models.fields.CharField', [], {'default': "'root'", 'max_length': '4096'}), 'perms': ('django.db.models.fields.CharField', [], {'default': "'755'", 'max_length': '9'}), 'pool': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['storageadmin.Pool']"}), 'qgroup': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'replica': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'size': ('django.db.models.fields.IntegerField', [], {}), 'subvol_name': ('django.db.models.fields.CharField', [], {'max_length': '4096'}), 'toc': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'uuid': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}) }, 'storageadmin.sharestatistic': { 'Meta': {'object_name': 'ShareStatistic'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'share': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['storageadmin.Share']"}), 'total_capacity': ('django.db.models.fields.IntegerField', [], {}), 'ts': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'used': ('django.db.models.fields.IntegerField', [], {}) }, 'storageadmin.snapshot': { 'Meta': {'unique_together': "(('share', 'name'),)", 'object_name': 'Snapshot'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '4096'}), 'qgroup': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'real_name': ('django.db.models.fields.CharField', [], {'default': "'unknownsnap'", 'max_length': '4096'}), 'share': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['storageadmin.Share']"}), 'size': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'snap_type': ('django.db.models.fields.CharField', [], {'default': "'admin'", 'max_length': '64'}), 'toc': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'uvisible': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'writable': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'storageadmin.supportcase': { 'Meta': {'object_name': 'SupportCase'}, 'case_type': ('django.db.models.fields.CharField', [], {'max_length': '6'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'notes': ('django.db.models.fields.TextField', [], {}), 'status': ('django.db.models.fields.CharField', [], {'max_length': '9'}), 'zipped_log': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'storageadmin.user': { 'Meta': {'object_name': 'User'}, 'gid': ('django.db.models.fields.IntegerField', [], {'default': '5000'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'uid': ('django.db.models.fields.IntegerField', [], {'default': '5000'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'suser'", 'unique': 'True', 'null': 'True', 'to': u"orm['auth.User']"}), 'username': ('django.db.models.fields.CharField', [], {'default': "''", 'unique': 'True', 'max_length': '4096'}) } } complete_apps = ['storageadmin']
schakrava/rockstor-core
src/rockstor/storageadmin/south_migrations/0001_initial.py
Python
gpl-3.0
36,999
0.00746