text
stringlengths
6
947k
repo_name
stringlengths
5
100
path
stringlengths
4
231
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
6
947k
score
float64
0
0.34
#!/usr/bin/env python # -*- coding: utf8 -*- # ***************************************************************** # ** PTS -- Python Toolkit for working with SKIRT ** # ** © Astronomical Observatory, Ghent University ** # ***************************************************************** # Import the relevant PTS classes and modules from pts.core.basics.configuration import ConfigurationDefinition from pts.core.tools import filesystem as fs from pts.core.basics.plot import mpl, plotting_libraries, pdf, plotting_formats # ----------------------------------------------------------------- # Create configuration definition definition = ConfigurationDefinition() # Different plotting features definition.add_flag("instruments", "plot a comparison between the SEDs of the different instruments", True) definition.add_flag("contributions", "plot the various contributions to the SEDS", True) # The output directory definition.add_optional("output", "directory_path", "output directory", fs.cwd()) # The unit in which to plot definition.add_optional("wavelength_unit", "length_unit", "unit of wavelength", "micron", convert_default=True) definition.add_optional("unit", "photometric_unit", "photometric unit", "Jy", convert_default=True) # ----------------------------------------------------------------- # The plotting format definition.add_optional("format", "string", "plotting format", pdf, plotting_formats) # The plotting library to use definition.add_optional("library", "string", "plotting library", mpl, plotting_libraries) # ----------------------------------------------------------------- # Reference SEDS definition.add_optional("reference_seds", "filepath_list", "paths of reference SEDs") # Ignore these filters definition.add_optional("ignore_filters", "filter_list", "ignore these filters from the observed SEDs") # -----------------------------------------------------------------
SKIRT/PTS
core/config/plot_simulation_seds.py
Python
agpl-3.0
1,942
0.004637
# -*- coding:utf-8 -*- def decode(data): try: value, idx = __decode(data, 0) retval = (True, value) except Exception as e: retval = (False, e.message) finally: return retval def encode(data): try: value = __encode(data) retval = (True, value) except Exception, e: retval = (False, e.message) finally: return retval # 内部函数 # 解析bencode数据 def __decode(data, start_idx): if data[start_idx] == 'i': value, start_idx = __decode_int(data, start_idx + 1) elif data[start_idx].isdigit(): value, start_idx = __decode_str(data, start_idx) elif data[start_idx] == 'l': value, start_idx = __decode_list(data, start_idx + 1) elif data[start_idx] == 'd': value, start_idx = __decode_dict(data, start_idx + 1) else: raise ValueError('__decode: not in i, l, d') return value, start_idx # 解析整数 def __decode_int(data, start_idx): end_idx = data.index('e', start_idx) try: value = int(data[start_idx: end_idx]) except Exception: raise Exception('__decode_int: error') return value, end_idx + 1 # 解析字符串 def __decode_str(data, start_idx): try: end_idx = data.index(':', start_idx) str_len = int(data[start_idx: end_idx]) start_idx = end_idx + 1 end_idx = start_idx + str_len value = data[start_idx: end_idx] except Exception: raise Exception('__decode_str: error') return value, end_idx # 解析列表 def __decode_list(data, start_idx): values = [] while data[start_idx] != 'e': value, start_idx = __decode(data, start_idx) values.append(value) return values, start_idx + 1 # 解析字典 def __decode_dict(data, start_idx): dict_value = dict() while data[start_idx] != 'e': key, start_idx = __decode(data, start_idx) value, start_idx = __decode(data, start_idx) dict_value[key] = value return dict_value, start_idx + 1 # 数据编码 def __encode(data): if isinstance(data, int): value = __encode_int(data) elif isinstance(data, str): value = __encode_str(data) elif isinstance(data, dict): value = __encode_dict(data) elif isinstance(data, list): value = __encode_list(data) else: raise Exception('__encode: Error') return value # 数字编码 def __encode_int(data): return 'i' + str(data) + 'e' # 字符串编码 def __encode_str(data): str_len = len(data) return str(str_len) + ':' + data # 列表编码 def __encode_list(data): ret = 'l' for datai in data: ret += __encode(datai) return ret + 'e' # 字典编码 def __encode_dict(data): ret = 'd' for key, value in data.items(): ret += __encode(key) ret += __encode(value) return ret + 'e'
fupenglin/PyDHT
dht_bencode.py
Python
gpl-2.0
2,915
0
import platform class OSCollector(object): def __init__(self, docker_client=None): self.docker_client = docker_client def key_name(self): return "osInfo" def _zip_fields_values(self, keys, values): data = {} for key, value in zip(keys, values): if len(value) > 0: data[key] = value else: data[key] = None return data def _get_docker_version(self): data = {} if platform.system() == 'Linux': version = "Unknown" if self.docker_client: ver_resp = self.docker_client.version() version = "Docker version {0}, build {1}".format( ver_resp.get("Version", "Unknown"), ver_resp.get("GitCommit", "Unknown")) data['dockerVersion'] = version return data def _get_os(self): data = {} if platform.system() == 'Linux': info = platform.linux_distribution() keys = ["distribution", "version", "versionDescription"] data = self._zip_fields_values(keys, info) data['kernelVersion'] = \ platform.release() if len(platform.release()) > 0 else None return data def get_data(self): data = self._get_os() data.update(self._get_docker_version()) return data
dx9/python-agent
cattle/plugins/host_info/os_c.py
Python
apache-2.0
1,411
0
# This file is part of LibreOsteo. # # LibreOsteo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # LibreOsteo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with LibreOsteo. If not, see <http://www.gnu.org/licenses/>. """ Django settings for LibreOsteo project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os, sys, logging BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) if getattr(sys, 'frozen', False): logger = logging.getLogger(__name__) logger.info("Frozen with attribute value %s" % (getattr(sys, 'frozen', False))) logger.info("Real path of the start : %s " % (os.path.realpath(__file__))) SITE_ROOT = os.path.split( os.path.split( os.path.split(os.path.dirname( os.path.realpath(__file__)))[0])[0])[0] logger.info("SITE_ROOT = %s" % SITE_ROOT) if (getattr(sys, 'frozen', False)): SITE_ROOT = os.path.split(SITE_ROOT)[0] DATA_FOLDER = SITE_ROOT if (getattr(sys, 'frozen', False) == 'macosx_app'): DATA_FOLDER = os.path.join( os.path.join(os.path.join(os.environ['HOME'], 'Library'), 'Application Support'), 'Libreosteo') SITE_ROOT = os.path.join(os.path.split(SITE_ROOT)[0], 'Resources') if not os.path.exists(DATA_FOLDER): os.makedirs(DATA_FOLDER) else: SITE_ROOT = BASE_DIR DATA_FOLDER = os.path.join(SITE_ROOT, "data") if not os.path.exists(DATA_FOLDER): os.makedirs(DATA_FOLDER) from django.utils.translation import ugettext_lazy as _ # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '8xmh#fjyiamw^-_ro9m29^6^81^kc!aiczp)gvb#7with$dzb6' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] LOCALE_PATHS = ('locale', os.path.join(SITE_ROOT, 'django', 'conf', 'locale'), os.path.join(SITE_ROOT, 'locale')) APPEND_SLASH = False DEMONSTRATION = False COMPRESS_ENABLED = True # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'libreosteoweb', 'django_filters', 'rest_framework', 'compressor', 'zipcode_lookup', 'protected_media', 'haystack', 'statici18n' ] MIDDLEWARE = [ 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'libreosteoweb.middleware.OneSessionPerUserMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'libreosteoweb.middleware.LoginRequiredMiddleware', 'libreosteoweb.middleware.OfficeSettingsMiddleware', ] ROOT_URLCONF = 'Libreosteo.urls' WSGI_APPLICATION = 'Libreosteo.wsgi.application' STATIC_ROOT = os.path.join(SITE_ROOT, "static/") MEDIA_ROOT = os.path.join(DATA_FOLDER, "media/") TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(SITE_ROOT, 'templates'), os.path.join(SITE_ROOT, 'static'), ], 'OPTIONS': { 'context_processors': [ # Insert your TEMPLATE_CONTEXT_PROCESSORS here or use this # list if you haven't customized them: 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.debug', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.request', 'django.template.context_processors.i18n', ], 'loaders': [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', #'Libreosteo.zip_loader.Loader', ] }, }, ] TEMPLATE_ZIP_FILES = ('library.zip', ) # Additional locations of static files #STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. # os.path.join(SITE_ROOT, 'static'), # ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'compressor.finders.CompressorFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Database # https://docs.djangoproject.com/en/1.6/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(DATA_FOLDER, 'db.sqlite3'), #'ATOMIC_REQUESTS' : True, } } # Internationalization # https://docs.djangoproject.com/en/1.6/topics/i18n/ LANGUAGE_CODE = 'fr' LANGUAGES = ( ('fr', _('French')), ('en', _('English')), ) TIME_ZONE = 'Europe/Paris' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.6/howto/static-files/ STATIC_URL = '/static/' MEDIA_URL = '/files/' REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( #'rest_framework.authentication.BasicAuthentication', 'rest_framework.authentication.SessionAuthentication', ), # Use hyperlinked styles by default. # Only used if the `serializer_class` attribute is not set on a view. 'DEFAULT_MODEL_SERIALIZER_CLASS': 'rest_framework.serializers.ModelSerializer', # Use Django's standard `django.contrib.auth` permissions, # or allow read-only access for unauthenticated users. 'DEFAULT_PERMISSION_CLASSES': ['rest_framework.permissions.IsAuthenticated'], 'DEFAULT_FILTER_BACKENDS': ('django_filters.rest_framework.DjangoFilterBackend', ), 'TEST_REQUEST_DEFAULT_FORMAT': 'json', } LOGIN_URL = 'accounts/login' LOGIN_URL_NAME = 'login' LOGOUT_URL_NAME = 'logout' LOGIN_REDIRECT_URL = '/' INITIALIZE_ADMIN_URL_NAME = 'install' NO_REROUTE_PATTERN_URL = [ r'^accounts/create-admin/$', r'^internal/restore', r'^jsi18n', r'^web-view/partials/restore', r'^web-view/partials/register' ] LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' }, 'simple': { 'format': '%(levelname)s %(asctime)s %(module)s %(message)s' }, }, 'handlers': { 'null': { 'level': 'DEBUG', 'class': 'logging.NullHandler', }, 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'simple' }, }, 'loggers': { 'django': { 'handlers': ['null'], 'propagate': True, 'level': 'INFO', }, 'django.request': { 'handlers': ['console'], 'level': 'ERROR', 'propagate': False, }, 'django.server': { 'handlers': ['console'], 'level': 'INFO', 'propagate': False, }, 'libreosteoweb': { 'handlers': ['console'], 'level': 'INFO', }, 'libreosteoweb.api': { 'handlers': ['console'], 'level': 'INFO', } } } HAYSTACK_CONNECTIONS = { 'default': { 'ENGINE': 'haystack.backends.whoosh_backend.WhooshEngine', 'PATH': os.path.join(DATA_FOLDER, 'whoosh_index'), }, } HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor' COMPRESS_CSS_FILTERS = [ 'compressor.filters.css_default.CssAbsoluteFilter', 'compressor.filters.cssmin.rCSSMinFilter' ] DISPLAY_SERVICE_NET_HELPER = True PROTECTED_MEDIA_ROOT = os.path.join(DATA_FOLDER, "media") PROTECTED_MEDIA_URL = "/files" PROTECTED_MEDIA_LOCATION_PREFIX = "/internal" # Prefix used in nginx config PROTECTED_MEDIA_AS_DOWNLOADS = False # Controls inclusion of a Content-Disposition header
libreosteo/Libreosteo
Libreosteo/settings/base.py
Python
gpl-3.0
9,670
0.000827
import google import re from bs4 import BeautifulSoup def findContactPage(url): html = google.get_page(url) soup = BeautifulSoup(html) contactStr = soup.find_all('a', href=re.compile(".*?contact", re.IGNORECASE)) return contactStr if __name__ == "__main__": url = "http://www.wrangler.com/" contactStr = findContactPage(url) if(len(contactStr) > 0): contactPage = google.get_page(contactStr[0].get("href")) print contactStr[0].get("href")#.find_parents("a") soup = BeautifulSoup(contactPage) emailStr = soup.find_all(text=re.compile("[\w\.-]+@[\w\.-]+")) if(len(emailStr) > 0) : print addressStr else: print "could not find email" else: print "could not find contacts page"
LeoYReyes/GoogleSearchAutomator
Crawler.py
Python
bsd-3-clause
789
0.011407
"""projectash URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin from ash import views admin.site.site_header = 'System Administrator' admin.site.site_title = 'site admin' urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'^$', views.user_login, name='login'), url(r'^home', views.home, name='home'), url(r'^register', views.createAccount, name='registration'), url(r'^logout', views.user_logout, name='logout'), url(r'^expense', views.expense, name='expense'), url(r'^income/', views.income, name='income'), url(r'^incomes/', views.totalIncome, name='incomes'), url(r'^contact', views.contact, name='contact'), url(r'^creditors', views.creditors, name='creditors'), url(r'^debtors', views.debtors, name='debtors'), url(r'^calendar', views.calendar, name='calendar'), url(r'^tasks', views.addTask, name='task'), url(r'^debit/(?P<uid>\d+)/$', views.debit, name='debit'), url(r'^clear/(?P<uid>\d+)/$', views.clear_debit, name='debit'), url(r'^viewDebt/(?P<uid>\d+)/$', views.view_debit, name='debit'), url(r'^payDebt/(?P<pid>\d+)/$', views.pay_debt, name='payment'), ]
Ashaba/jash
projectash/urls.py
Python
bsd-2-clause
1,803
0.000555
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, Callable, Dict, Generic, Optional, TypeVar, overload, Union, List import warnings from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from ... import models as _models from ..._operations._operations import build_get_answers_from_text_request, build_get_answers_request from ..._patch import ( _validate_text_records, _get_positional_body, _verify_qna_id_and_question, _handle_metadata_filter_conversion, ) T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class QuestionAnsweringClientOperationsMixin: @overload async def get_answers( self, options: "_models.AnswersOptions", *, project_name: str, deployment_name: str, **kwargs: Any ) -> "_models.AnswersResult": ... @overload async def get_answers( self, *, project_name: str, deployment_name: str, qna_id: Optional[int] = None, question: Optional[str] = None, top: Optional[int] = None, user_id: Optional[str] = None, confidence_threshold: Optional[float] = None, answer_context: Optional["_models.KnowledgeBaseAnswerContext"] = None, ranker_kind: Optional[str] = None, filters: Optional["_models.QueryFilters"] = None, short_answer_options: Optional["_models.ShortAnswerOptions"] = None, include_unstructured_sources: Optional[bool] = None, **kwargs: Any ) -> "_models.AnswersResult": ... @distributed_trace_async async def get_answers(self, *args, **kwargs) -> "_models.AnswersResult": """Answers the specified question using your knowledge base. :param options: Positional only. POST body of the request. Either provide this value or individual keyword arguments. :type options: ~azure.ai.language.questionanswering.models.AnswersOptions :keyword project_name: The name of the knowledge base project to use. :paramtype project_name: str :keyword deployment_name: The name of the specific deployment of the project to use. :paramtype deployment_name: str :keyword qna_id: Exact QnA ID to fetch from the knowledge base, this field takes priority over question. :paramtype qna_id: int :keyword question: User question to query against the knowledge base. :paramtype question: str :keyword top: Max number of answers to be returned for the question. :paramtype top: int :keyword user_id: Unique identifier for the user. :paramtype user_id: str :keyword confidence_threshold: Minimum threshold score for answers, value ranges from 0 to 1. :paramtype confidence_threshold: float :keyword answer_context: Context object with previous QnA's information. :paramtype answer_context: ~azure.ai.language.questionanswering.models.KnowledgeBaseAnswerContext :keyword ranker_kind: Type of ranker to be used. Possible values include: "Default", "QuestionOnly". :paramtype ranker_kind: str :keyword filters: Filter QnAs based on given metadata list and knowledge base sources. :paramtype filters: ~azure.ai.language.questionanswering.models.QueryFilters :keyword short_answer_options: To configure Answer span prediction feature. :paramtype short_answer_options: ~azure.ai.language.questionanswering.models.ShortAnswerOptions :keyword include_unstructured_sources: (Optional) Flag to enable Query over Unstructured Sources. :paramtype include_unstructured_sources: bool :return: AnswersResult :rtype: ~azure.ai.language.questionanswering.models.AnswersResult :raises: ~azure.core.exceptions.HttpResponseError """ options = _get_positional_body(*args, **kwargs) or _models.AnswersOptions( qna_id=kwargs.pop("qna_id", None), question=kwargs.pop("question", None), top=kwargs.pop("top", None), user_id=kwargs.pop("user_id", None), confidence_threshold=kwargs.pop("confidence_threshold", None), answer_context=kwargs.pop("answer_context", None), ranker_kind=kwargs.pop("ranker_kind", None), filters=kwargs.pop("filters", None), short_answer_options=kwargs.pop("short_answer_options", None), include_unstructured_sources=kwargs.pop("include_unstructured_sources", None), ) _verify_qna_id_and_question(options) options = _handle_metadata_filter_conversion(options) cls = kwargs.pop("cls", None) # type: ClsType["_models.AnswersResult"] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) content_type = kwargs.pop("content_type", "application/json") # type: Optional[str] project_name = kwargs.pop("project_name") # type: str deployment_name = kwargs.pop("deployment_name") # type: str json = self._serialize.body(options, "AnswersOptions") request = build_get_answers_request( content_type=content_type, project_name=project_name, deployment_name=deployment_name, json=json, template_url=self.get_answers.metadata["url"], ) path_format_arguments = { "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } request.url = self._client.format_url(request.url, **path_format_arguments) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize("AnswersResult", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_answers.metadata = {"url": "/:query-knowledgebases"} # type: ignore @overload async def get_answers_from_text( self, options: "_models.AnswersFromTextOptions", **kwargs: Any ) -> "_models.AnswersFromTextResult": ... @overload async def get_answers_from_text( self, *, question: str, text_documents: List[Union[str, "_models.TextDocument"]], language: Optional[str] = None, **kwargs: Any ) -> "_models.AnswersFromTextResult": ... @distributed_trace_async async def get_answers_from_text(self, *args, **kwargs) -> "_models.AnswersFromTextResult": """Answers the specified question using the provided text in the body. :param options: Positional only. POST body of the request. Provide either `options`, OR individual keyword arguments. If both are provided, only the options object will be used. :type options: ~azure.ai.language.questionanswering.models.AnswersFromTextOptions :keyword question: User question to query against the given text records. :paramtype question: str :keyword text_documents: Text records to be searched for given question. :paramtype text_documents: list[str or ~azure.ai.language.questionanswering.models.TextDocument] :keyword language: Language of the text records. This is BCP-47 representation of a language. For example, use "en" for English; "es" for Spanish etc. If not set, use "en" for English as default. :paramtype language: str :return: AnswersFromTextResult :rtype: ~azure.ai.language.questionanswering.models.AnswersFromTextResult :raises: ~azure.core.exceptions.HttpResponseError """ options = _get_positional_body(*args, **kwargs) or _models.AnswersFromTextOptions( question=kwargs.pop("question"), text_documents=kwargs.pop("text_documents"), language=kwargs.pop("language", self._default_language), ) try: options["records"] = _validate_text_records(options["records"]) except TypeError: options.text_documents = _validate_text_records(options.text_documents) cls = kwargs.pop("cls", None) # type: ClsType["_models.AnswersFromTextResult"] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) content_type = kwargs.pop("content_type", "application/json") # type: Optional[str] json = self._serialize.body(options, "AnswersFromTextOptions") request = build_get_answers_from_text_request( content_type=content_type, json=json, template_url=self.get_answers_from_text.metadata["url"], ) path_format_arguments = { "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } request.url = self._client.format_url(request.url, **path_format_arguments) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize("AnswersFromTextResult", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_answers_from_text.metadata = {"url": "/:query-text"} # type: ignore
Azure/azure-sdk-for-python
sdk/cognitivelanguage/azure-ai-language-questionanswering/azure/ai/language/questionanswering/aio/_operations/_operations.py
Python
mit
10,950
0.004384
# -*- coding: utf-8 -*- # # diffoscope: in-depth comparison of files, archives, and directories # # Copyright © 2016 Chris Lamb <lamby@debian.org> # # diffoscope is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # diffoscope is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with diffoscope. If not, see <https://www.gnu.org/licenses/>. import abc import uuid import os.path import logging import itertools from collections import OrderedDict from diffoscope.config import Config from diffoscope.difference import Difference from diffoscope.excludes import filter_excludes from diffoscope.progress import Progress from ..missing_file import MissingFile from .file import path_apparent_size from .fuzzy import perform_fuzzy_matching NO_COMMENT = None logger = logging.getLogger(__name__) class Container(object, metaclass=abc.ABCMeta): auto_diff_metadata = True def __new__(cls, source): if isinstance(source, MissingFile): new = super(Container, MissingContainer).__new__(MissingContainer) new.__init__(source) return new return super(Container, cls).__new__(cls) def __init__(self, source): self._source = source # Keep a count of how "nested" we are self.depth = 0 if hasattr(source, 'container') and source.container is not None: self.depth = source.container.depth + 1 @property def source(self): return self._source @abc.abstractmethod def get_member_names(self): raise NotImplementedError() @abc.abstractmethod def get_member(self, member_name): raise NotImplementedError() def get_path_name(self, dest_dir): return os.path.join(dest_dir, str(uuid.uuid4())) def get_filtered_members(self): # If your get_member implementation is O(n) then this will be O(n^2) # cost. In such cases it is HIGHLY RECOMMENDED to override this as well for name in filter_excludes(self.get_member_names()): yield name, self.get_member(name) def perform_fuzzy_matching(self, my_members, other_members): return perform_fuzzy_matching(my_members, other_members) def get_adjusted_members(self): """ Returns an iterable of pairs. The key is what is used to match when comparing containers. This may be used to e.g. strip off version numbers, hashes, etc, efficiently for known file formats, so that we don't need to use the expensive tlsh "fuzzy-hashing" logic. Note that containers with 1 element are already force-compared against other containers with 1 element, so you don't need to override this method for those cases. """ return self.get_filtered_members() def lookup_file(self, *names): """ Try to fetch a specific file by digging in containers. """ from .specialize import specialize name, remainings = names[0], names[1:] try: file = self.get_member(name) except KeyError: return None logger.debug("lookup_file(%s) -> %s", names, file) specialize(file) if not remainings: return file container = file.as_container if not container: return None return container.lookup_file(*remainings) def get_adjusted_members_sizes(self): for name, member in self.get_adjusted_members(): if member.is_directory(): size = 4096 # default "size" of a directory else: size = path_apparent_size(member.path) yield name, (member, size) def comparisons(self, other): my_members = OrderedDict(self.get_adjusted_members_sizes()) other_members = OrderedDict(other.get_adjusted_members_sizes()) total_size = sum(x[1] for x in itertools.chain(my_members.values(), other_members.values())) # TODO: progress could be a bit more accurate here, give more weight to fuzzy-hashed files # TODO: merge DirectoryContainer.comparisons() into this with Progress(total_size) as p: def prep_yield(my_name, other_name, comment=NO_COMMENT): my_member, my_size = my_members.pop(my_name) other_member, other_size = other_members.pop(other_name) p.begin_step(my_size + other_size, msg=my_member.progress_name) return my_member, other_member, comment # if both containers contain 1 element, compare these if len(my_members) == 1 and len(other_members) == 1: yield prep_yield(next(iter(my_members.keys())), next(iter(other_members.keys()))) return other_names = set(other_members.keys()) # keep it sorted like my_members both_names = [name for name in my_members.keys() if name in other_names] for name in both_names: yield prep_yield(name, name) for my_name, other_name, score in self.perform_fuzzy_matching(my_members, other_members): comment = "Files similar despite different names" \ " (difference score: {})".format(score) yield prep_yield(my_name, other_name, comment) if Config().new_file: for my_member, my_size in my_members.values(): p.begin_step(my_size, msg=my_member.progress_name) yield my_member, MissingFile('/dev/null', my_member), NO_COMMENT for other_member, other_size in other_members.values(): p.begin_step(other_size, msg=other_member.progress_name) yield MissingFile('/dev/null', other_member), other_member, NO_COMMENT def compare(self, other, source=None, no_recurse=False): from .compare import compare_files def compare_pair(file1, file2, comment): difference = compare_files(file1, file2, source=None, diff_content_only=no_recurse) if comment: if difference is None: difference = Difference(None, file1.name, file2.name) difference.add_comment(comment) return difference return filter(None, itertools.starmap(compare_pair, self.comparisons(other))) class MissingContainer(Container): def get_member_names(self): return self.source.other_file.as_container.get_member_names() def get_member(self, member_name): return MissingFile('/dev/null')
ReproducibleBuilds/diffoscope
diffoscope/comparators/utils/container.py
Python
gpl-3.0
7,045
0.001136
# encoding:utf8 import numpy as np import cv2 import base64 import beesion import time import logging logging.basicConfig(format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s', datefmt='%H:%M:%S', level=logging.DEBUG) frame_processing_ratio = 4 frame_count = 0 cap = cv2.VideoCapture(1) #cap2 = cv2.VideoCapture(1) while(True): _, frame = cap.read() #_, frame2 = cap2.read() if frame_count%frame_processing_ratio: frame = cv2.resize(frame, (0,0), fx=0.33, fy=0.33) if cv2.waitKey(1) & 0xFF == ord('c'): _, img_png = cv2.imencode('.png', frame) beesion.detect_text_front(img_png.tobytes()) _, img_png = cv2.imencode('.png', frame) #faces = beesion.detect_faces(img_jpg.tobytes()) #google's faces = beesion.detect_faces_offline(frame)# offline if len(faces) == 1: known_faces = beesion.load_known_faces() cv2.imshow('frame',frame) croped_faces = list() face = faces[0] y,x,h,w = face frame = cv2.rectangle(frame, (x,y),(w,h),(0,255,0),2) croped_faces.append(frame[y:h, w:x]) verification_result = beesion.verify_known_faces(known_faces, croped_faces[0]) logging.info(verification_result) if verification_result and True in verification_result: frame = cv2.putText(frame, 'Acceso permitido', (20,200),cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 4) while(cv2.waitKey(1) & 0xFF != ord('q')): cv2.imshow('frame',frame) elif verification_result and False in verification_result: frame = cv2.putText(frame, "Acceso denegado", (20,200),cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2) else: frame = cv2.putText(frame, "Por favor, no se mueva", (20,200),cv2.FONT_HERSHEY_SIMPLEX, 2, (255,0,0), 2) cv2.imshow('frame',frame) # cv2.imshow('frame2',frame2) if cv2.waitKey(1) & 0xFF == ord('q'): cap.release() cv2.destroyAllWindows() break frame_count+=1 if frame_count>4: frame_count = 0 # avoid inifinite number
beeva-albertorincon/beeva-poc-google-ocr-faces
code/demo.py
Python
apache-2.0
2,248
0.018238
if __name__ == '__main__': n = int(input()) for i in range(n): print(i**2)
manishbisht/Competitive-Programming
Hackerrank/Practice/Python/1.introduction/05.Loops.py
Python
mit
107
0.009346
__author__ = 'roscoe' import os from datetime import datetime import qgis.utils import qgis.utils from src.geogigpy import Repository from src.geogigpy import geogig from src.geogigpy.geogigexception import GeoGigException from qgis.core import QgsVectorLayer, QgsMapLayerRegistry class GeoRepo(object): def __init__(self, remote, path, repo_type): """constructor""" self.repo_type = repo_type self.remote = remote self.path = path self.sql_database = os.path.join(self.path, 'database.sqlite') self.local_repo = self.connect2repo() self.root_path = os.path.normpath(__file__) def connect2repo(self): if os.path.isdir(os.path.join(self.path, '.geogig')): print "Set to existing repo" local_repo = Repository(self.path) return local_repo else: if self.repo_type=="remote": local_repo = Repository.newrepofromclone(self.remote, self.path) print "New repo from clone" else: local_repo = Repository(self.path, init=True) print "New repo initialized at : %s" % self.path return local_repo def export_to_shapefiles(self): for t in self.local_repo.trees: if t.path not in ("layer_statistics", "views_layer_statistics", "virts_layer_statistics"): self.local_repo.exportshp('HEAD', t.path, os.path.join('HEAD', t.path, os.path.join(self.path, t.path) + '.shp')) # layer = qgis.utils.iface.addVectorLayer(os.path.join(self.path, t.path) + '.shp', t.path, "ogr") vl = QgsVectorLayer("Point", "temporary_points", "memory") print layer.geometryType() pr = vl.dataProvider() layer = qgis.utils.iface.addVectorLayer(os.path.join(self.path, t.path) + '.shp', t.path, "ogr") # layers = QgsMapLayerRegistry.instance().mapLayers() # for name, layer in layers.iteritems(): # print 'name: ' + str(name), 'layer type: ' + str(layer.geometryType()) my_dir = self.path print 'deleting %s' % my_dir for fname in os.listdir(my_dir): if fname.startswith(t.path): os.remove(os.path.join(my_dir, fname)) def import_all_shapefiles(self): for f in os.listdir(self.path): if f.endswith(".shp"): shp_path = os.path.join(self.path, f) self.local_repo.importshp(shp_path) def add_commit_push(self, name, email, message): message += " " + str(datetime.now()) self.local_repo.config(geogig.USER_NAME, name) self.local_repo.config(geogig.USER_EMAIL, email) try: self.import_all_shapefiles() except GeoGigException, e: print 'Error with import_from_spatialite()' try: self.local_repo.addandcommit(message) print 'Repo added and committed.' except GeoGigException, e: print e def push_to_remote(self): try: self.local_repo.push("origin","master",True) print 'Repo pushed.' except GeoGigException, e: print e def pull_from_remote(self): try: self.local_repo.pull("origin") except GeoGigException, e: print e # Notes: # ------------------------------------------------------------------------ # changed self.connector.importpg to self.connector.importsl in repo.py # changed commands.extend(["--table", table]) to commands.extend(["--all"]) # def importsl(self, database, table, add = False, dest = None): # self.connector.importsl(database, table, add, dest) # GeoGig can only import spatialite tables that have been created by # export db from Geogig.
roscoeZA/GeoGigSync
geo_repo.py
Python
cc0-1.0
4,025
0.003727
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import mock import grpc from grpc.experimental import aio import math import pytest from proto.marshal.rules.dates import DurationRule, TimestampRule from google.api_core import client_options from google.api_core import exceptions as core_exceptions from google.api_core import future from google.api_core import gapic_v1 from google.api_core import grpc_helpers from google.api_core import grpc_helpers_async from google.api_core import operation from google.api_core import operation_async # type: ignore from google.api_core import operations_v1 from google.api_core import path_template from google.auth import credentials as ga_credentials from google.auth.exceptions import MutualTLSChannelError from google.cloud.aiplatform_v1.services.tensorboard_service import ( TensorboardServiceAsyncClient, ) from google.cloud.aiplatform_v1.services.tensorboard_service import ( TensorboardServiceClient, ) from google.cloud.aiplatform_v1.services.tensorboard_service import pagers from google.cloud.aiplatform_v1.services.tensorboard_service import transports from google.cloud.aiplatform_v1.types import encryption_spec from google.cloud.aiplatform_v1.types import operation as gca_operation from google.cloud.aiplatform_v1.types import tensorboard from google.cloud.aiplatform_v1.types import tensorboard as gca_tensorboard from google.cloud.aiplatform_v1.types import tensorboard_data from google.cloud.aiplatform_v1.types import tensorboard_experiment from google.cloud.aiplatform_v1.types import ( tensorboard_experiment as gca_tensorboard_experiment, ) from google.cloud.aiplatform_v1.types import tensorboard_run from google.cloud.aiplatform_v1.types import tensorboard_run as gca_tensorboard_run from google.cloud.aiplatform_v1.types import tensorboard_service from google.cloud.aiplatform_v1.types import tensorboard_time_series from google.cloud.aiplatform_v1.types import ( tensorboard_time_series as gca_tensorboard_time_series, ) from google.longrunning import operations_pb2 from google.oauth2 import service_account from google.protobuf import field_mask_pb2 # type: ignore from google.protobuf import timestamp_pb2 # type: ignore import google.auth def client_cert_source_callback(): return b"cert bytes", b"key bytes" # If default endpoint is localhost, then default mtls endpoint will be the same. # This method modifies the default endpoint so the client can produce a different # mtls endpoint for endpoint testing purposes. def modify_default_endpoint(client): return ( "foo.googleapis.com" if ("localhost" in client.DEFAULT_ENDPOINT) else client.DEFAULT_ENDPOINT ) def test__get_default_mtls_endpoint(): api_endpoint = "example.googleapis.com" api_mtls_endpoint = "example.mtls.googleapis.com" sandbox_endpoint = "example.sandbox.googleapis.com" sandbox_mtls_endpoint = "example.mtls.sandbox.googleapis.com" non_googleapi = "api.example.com" assert TensorboardServiceClient._get_default_mtls_endpoint(None) is None assert ( TensorboardServiceClient._get_default_mtls_endpoint(api_endpoint) == api_mtls_endpoint ) assert ( TensorboardServiceClient._get_default_mtls_endpoint(api_mtls_endpoint) == api_mtls_endpoint ) assert ( TensorboardServiceClient._get_default_mtls_endpoint(sandbox_endpoint) == sandbox_mtls_endpoint ) assert ( TensorboardServiceClient._get_default_mtls_endpoint(sandbox_mtls_endpoint) == sandbox_mtls_endpoint ) assert ( TensorboardServiceClient._get_default_mtls_endpoint(non_googleapi) == non_googleapi ) @pytest.mark.parametrize( "client_class", [TensorboardServiceClient, TensorboardServiceAsyncClient,] ) def test_tensorboard_service_client_from_service_account_info(client_class): creds = ga_credentials.AnonymousCredentials() with mock.patch.object( service_account.Credentials, "from_service_account_info" ) as factory: factory.return_value = creds info = {"valid": True} client = client_class.from_service_account_info(info) assert client.transport._credentials == creds assert isinstance(client, client_class) assert client.transport._host == "aiplatform.googleapis.com:443" @pytest.mark.parametrize( "transport_class,transport_name", [ (transports.TensorboardServiceGrpcTransport, "grpc"), (transports.TensorboardServiceGrpcAsyncIOTransport, "grpc_asyncio"), ], ) def test_tensorboard_service_client_service_account_always_use_jwt( transport_class, transport_name ): with mock.patch.object( service_account.Credentials, "with_always_use_jwt_access", create=True ) as use_jwt: creds = service_account.Credentials(None, None, None) transport = transport_class(credentials=creds, always_use_jwt_access=True) use_jwt.assert_called_once_with(True) with mock.patch.object( service_account.Credentials, "with_always_use_jwt_access", create=True ) as use_jwt: creds = service_account.Credentials(None, None, None) transport = transport_class(credentials=creds, always_use_jwt_access=False) use_jwt.assert_not_called() @pytest.mark.parametrize( "client_class", [TensorboardServiceClient, TensorboardServiceAsyncClient,] ) def test_tensorboard_service_client_from_service_account_file(client_class): creds = ga_credentials.AnonymousCredentials() with mock.patch.object( service_account.Credentials, "from_service_account_file" ) as factory: factory.return_value = creds client = client_class.from_service_account_file("dummy/file/path.json") assert client.transport._credentials == creds assert isinstance(client, client_class) client = client_class.from_service_account_json("dummy/file/path.json") assert client.transport._credentials == creds assert isinstance(client, client_class) assert client.transport._host == "aiplatform.googleapis.com:443" def test_tensorboard_service_client_get_transport_class(): transport = TensorboardServiceClient.get_transport_class() available_transports = [ transports.TensorboardServiceGrpcTransport, ] assert transport in available_transports transport = TensorboardServiceClient.get_transport_class("grpc") assert transport == transports.TensorboardServiceGrpcTransport @pytest.mark.parametrize( "client_class,transport_class,transport_name", [ (TensorboardServiceClient, transports.TensorboardServiceGrpcTransport, "grpc"), ( TensorboardServiceAsyncClient, transports.TensorboardServiceGrpcAsyncIOTransport, "grpc_asyncio", ), ], ) @mock.patch.object( TensorboardServiceClient, "DEFAULT_ENDPOINT", modify_default_endpoint(TensorboardServiceClient), ) @mock.patch.object( TensorboardServiceAsyncClient, "DEFAULT_ENDPOINT", modify_default_endpoint(TensorboardServiceAsyncClient), ) def test_tensorboard_service_client_client_options( client_class, transport_class, transport_name ): # Check that if channel is provided we won't create a new one. with mock.patch.object(TensorboardServiceClient, "get_transport_class") as gtc: transport = transport_class(credentials=ga_credentials.AnonymousCredentials()) client = client_class(transport=transport) gtc.assert_not_called() # Check that if channel is provided via str we will create a new one. with mock.patch.object(TensorboardServiceClient, "get_transport_class") as gtc: client = client_class(transport=transport_name) gtc.assert_called() # Check the case api_endpoint is provided. options = client_options.ClientOptions(api_endpoint="squid.clam.whelk") with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(transport=transport_name, client_options=options) patched.assert_called_once_with( credentials=None, credentials_file=None, host="squid.clam.whelk", scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case api_endpoint is not provided and GOOGLE_API_USE_MTLS_ENDPOINT is # "never". with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "never"}): with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(transport=transport_name) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case api_endpoint is not provided and GOOGLE_API_USE_MTLS_ENDPOINT is # "always". with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "always"}): with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(transport=transport_name) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_MTLS_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case api_endpoint is not provided and GOOGLE_API_USE_MTLS_ENDPOINT has # unsupported value. with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "Unsupported"}): with pytest.raises(MutualTLSChannelError): client = client_class(transport=transport_name) # Check the case GOOGLE_API_USE_CLIENT_CERTIFICATE has unsupported value. with mock.patch.dict( os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": "Unsupported"} ): with pytest.raises(ValueError): client = client_class(transport=transport_name) # Check the case quota_project_id is provided options = client_options.ClientOptions(quota_project_id="octopus") with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(client_options=options, transport=transport_name) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id="octopus", client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) @pytest.mark.parametrize( "client_class,transport_class,transport_name,use_client_cert_env", [ ( TensorboardServiceClient, transports.TensorboardServiceGrpcTransport, "grpc", "true", ), ( TensorboardServiceAsyncClient, transports.TensorboardServiceGrpcAsyncIOTransport, "grpc_asyncio", "true", ), ( TensorboardServiceClient, transports.TensorboardServiceGrpcTransport, "grpc", "false", ), ( TensorboardServiceAsyncClient, transports.TensorboardServiceGrpcAsyncIOTransport, "grpc_asyncio", "false", ), ], ) @mock.patch.object( TensorboardServiceClient, "DEFAULT_ENDPOINT", modify_default_endpoint(TensorboardServiceClient), ) @mock.patch.object( TensorboardServiceAsyncClient, "DEFAULT_ENDPOINT", modify_default_endpoint(TensorboardServiceAsyncClient), ) @mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "auto"}) def test_tensorboard_service_client_mtls_env_auto( client_class, transport_class, transport_name, use_client_cert_env ): # This tests the endpoint autoswitch behavior. Endpoint is autoswitched to the default # mtls endpoint, if GOOGLE_API_USE_CLIENT_CERTIFICATE is "true" and client cert exists. # Check the case client_cert_source is provided. Whether client cert is used depends on # GOOGLE_API_USE_CLIENT_CERTIFICATE value. with mock.patch.dict( os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": use_client_cert_env} ): options = client_options.ClientOptions( client_cert_source=client_cert_source_callback ) with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(client_options=options, transport=transport_name) if use_client_cert_env == "false": expected_client_cert_source = None expected_host = client.DEFAULT_ENDPOINT else: expected_client_cert_source = client_cert_source_callback expected_host = client.DEFAULT_MTLS_ENDPOINT patched.assert_called_once_with( credentials=None, credentials_file=None, host=expected_host, scopes=None, client_cert_source_for_mtls=expected_client_cert_source, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case ADC client cert is provided. Whether client cert is used depends on # GOOGLE_API_USE_CLIENT_CERTIFICATE value. with mock.patch.dict( os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": use_client_cert_env} ): with mock.patch.object(transport_class, "__init__") as patched: with mock.patch( "google.auth.transport.mtls.has_default_client_cert_source", return_value=True, ): with mock.patch( "google.auth.transport.mtls.default_client_cert_source", return_value=client_cert_source_callback, ): if use_client_cert_env == "false": expected_host = client.DEFAULT_ENDPOINT expected_client_cert_source = None else: expected_host = client.DEFAULT_MTLS_ENDPOINT expected_client_cert_source = client_cert_source_callback patched.return_value = None client = client_class(transport=transport_name) patched.assert_called_once_with( credentials=None, credentials_file=None, host=expected_host, scopes=None, client_cert_source_for_mtls=expected_client_cert_source, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case client_cert_source and ADC client cert are not provided. with mock.patch.dict( os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": use_client_cert_env} ): with mock.patch.object(transport_class, "__init__") as patched: with mock.patch( "google.auth.transport.mtls.has_default_client_cert_source", return_value=False, ): patched.return_value = None client = client_class(transport=transport_name) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) @pytest.mark.parametrize( "client_class", [TensorboardServiceClient, TensorboardServiceAsyncClient] ) @mock.patch.object( TensorboardServiceClient, "DEFAULT_ENDPOINT", modify_default_endpoint(TensorboardServiceClient), ) @mock.patch.object( TensorboardServiceAsyncClient, "DEFAULT_ENDPOINT", modify_default_endpoint(TensorboardServiceAsyncClient), ) def test_tensorboard_service_client_get_mtls_endpoint_and_cert_source(client_class): mock_client_cert_source = mock.Mock() # Test the case GOOGLE_API_USE_CLIENT_CERTIFICATE is "true". with mock.patch.dict(os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": "true"}): mock_api_endpoint = "foo" options = client_options.ClientOptions( client_cert_source=mock_client_cert_source, api_endpoint=mock_api_endpoint ) api_endpoint, cert_source = client_class.get_mtls_endpoint_and_cert_source( options ) assert api_endpoint == mock_api_endpoint assert cert_source == mock_client_cert_source # Test the case GOOGLE_API_USE_CLIENT_CERTIFICATE is "false". with mock.patch.dict(os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": "false"}): mock_client_cert_source = mock.Mock() mock_api_endpoint = "foo" options = client_options.ClientOptions( client_cert_source=mock_client_cert_source, api_endpoint=mock_api_endpoint ) api_endpoint, cert_source = client_class.get_mtls_endpoint_and_cert_source( options ) assert api_endpoint == mock_api_endpoint assert cert_source is None # Test the case GOOGLE_API_USE_MTLS_ENDPOINT is "never". with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "never"}): api_endpoint, cert_source = client_class.get_mtls_endpoint_and_cert_source() assert api_endpoint == client_class.DEFAULT_ENDPOINT assert cert_source is None # Test the case GOOGLE_API_USE_MTLS_ENDPOINT is "always". with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "always"}): api_endpoint, cert_source = client_class.get_mtls_endpoint_and_cert_source() assert api_endpoint == client_class.DEFAULT_MTLS_ENDPOINT assert cert_source is None # Test the case GOOGLE_API_USE_MTLS_ENDPOINT is "auto" and default cert doesn't exist. with mock.patch.dict(os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": "true"}): with mock.patch( "google.auth.transport.mtls.has_default_client_cert_source", return_value=False, ): api_endpoint, cert_source = client_class.get_mtls_endpoint_and_cert_source() assert api_endpoint == client_class.DEFAULT_ENDPOINT assert cert_source is None # Test the case GOOGLE_API_USE_MTLS_ENDPOINT is "auto" and default cert exists. with mock.patch.dict(os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": "true"}): with mock.patch( "google.auth.transport.mtls.has_default_client_cert_source", return_value=True, ): with mock.patch( "google.auth.transport.mtls.default_client_cert_source", return_value=mock_client_cert_source, ): ( api_endpoint, cert_source, ) = client_class.get_mtls_endpoint_and_cert_source() assert api_endpoint == client_class.DEFAULT_MTLS_ENDPOINT assert cert_source == mock_client_cert_source @pytest.mark.parametrize( "client_class,transport_class,transport_name", [ (TensorboardServiceClient, transports.TensorboardServiceGrpcTransport, "grpc"), ( TensorboardServiceAsyncClient, transports.TensorboardServiceGrpcAsyncIOTransport, "grpc_asyncio", ), ], ) def test_tensorboard_service_client_client_options_scopes( client_class, transport_class, transport_name ): # Check the case scopes are provided. options = client_options.ClientOptions(scopes=["1", "2"],) with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(client_options=options, transport=transport_name) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=["1", "2"], client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) @pytest.mark.parametrize( "client_class,transport_class,transport_name,grpc_helpers", [ ( TensorboardServiceClient, transports.TensorboardServiceGrpcTransport, "grpc", grpc_helpers, ), ( TensorboardServiceAsyncClient, transports.TensorboardServiceGrpcAsyncIOTransport, "grpc_asyncio", grpc_helpers_async, ), ], ) def test_tensorboard_service_client_client_options_credentials_file( client_class, transport_class, transport_name, grpc_helpers ): # Check the case credentials file is provided. options = client_options.ClientOptions(credentials_file="credentials.json") with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(client_options=options, transport=transport_name) patched.assert_called_once_with( credentials=None, credentials_file="credentials.json", host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) def test_tensorboard_service_client_client_options_from_dict(): with mock.patch( "google.cloud.aiplatform_v1.services.tensorboard_service.transports.TensorboardServiceGrpcTransport.__init__" ) as grpc_transport: grpc_transport.return_value = None client = TensorboardServiceClient( client_options={"api_endpoint": "squid.clam.whelk"} ) grpc_transport.assert_called_once_with( credentials=None, credentials_file=None, host="squid.clam.whelk", scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) @pytest.mark.parametrize( "client_class,transport_class,transport_name,grpc_helpers", [ ( TensorboardServiceClient, transports.TensorboardServiceGrpcTransport, "grpc", grpc_helpers, ), ( TensorboardServiceAsyncClient, transports.TensorboardServiceGrpcAsyncIOTransport, "grpc_asyncio", grpc_helpers_async, ), ], ) def test_tensorboard_service_client_create_channel_credentials_file( client_class, transport_class, transport_name, grpc_helpers ): # Check the case credentials file is provided. options = client_options.ClientOptions(credentials_file="credentials.json") with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(client_options=options, transport=transport_name) patched.assert_called_once_with( credentials=None, credentials_file="credentials.json", host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # test that the credentials from file are saved and used as the credentials. with mock.patch.object( google.auth, "load_credentials_from_file", autospec=True ) as load_creds, mock.patch.object( google.auth, "default", autospec=True ) as adc, mock.patch.object( grpc_helpers, "create_channel" ) as create_channel: creds = ga_credentials.AnonymousCredentials() file_creds = ga_credentials.AnonymousCredentials() load_creds.return_value = (file_creds, None) adc.return_value = (creds, None) client = client_class(client_options=options, transport=transport_name) create_channel.assert_called_with( "aiplatform.googleapis.com:443", credentials=file_creds, credentials_file=None, quota_project_id=None, default_scopes=( "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/cloud-platform.read-only", ), scopes=None, default_host="aiplatform.googleapis.com", ssl_credentials=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) @pytest.mark.parametrize( "request_type", [tensorboard_service.CreateTensorboardRequest, dict,] ) def test_create_tensorboard(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/spam") response = client.create_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.CreateTensorboardRequest() # Establish that the response is the type that we expect. assert isinstance(response, future.Future) def test_create_tensorboard_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard), "__call__" ) as call: client.create_tensorboard() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.CreateTensorboardRequest() @pytest.mark.asyncio async def test_create_tensorboard_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.CreateTensorboardRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam") ) response = await client.create_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.CreateTensorboardRequest() # Establish that the response is the type that we expect. assert isinstance(response, future.Future) @pytest.mark.asyncio async def test_create_tensorboard_async_from_dict(): await test_create_tensorboard_async(request_type=dict) def test_create_tensorboard_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.CreateTensorboardRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard), "__call__" ) as call: call.return_value = operations_pb2.Operation(name="operations/op") client.create_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] @pytest.mark.asyncio async def test_create_tensorboard_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.CreateTensorboardRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/op") ) await client.create_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] def test_create_tensorboard_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.create_tensorboard( parent="parent_value", tensorboard=gca_tensorboard.Tensorboard(name="name_value"), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val arg = args[0].tensorboard mock_val = gca_tensorboard.Tensorboard(name="name_value") assert arg == mock_val def test_create_tensorboard_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.create_tensorboard( tensorboard_service.CreateTensorboardRequest(), parent="parent_value", tensorboard=gca_tensorboard.Tensorboard(name="name_value"), ) @pytest.mark.asyncio async def test_create_tensorboard_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam") ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.create_tensorboard( parent="parent_value", tensorboard=gca_tensorboard.Tensorboard(name="name_value"), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val arg = args[0].tensorboard mock_val = gca_tensorboard.Tensorboard(name="name_value") assert arg == mock_val @pytest.mark.asyncio async def test_create_tensorboard_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.create_tensorboard( tensorboard_service.CreateTensorboardRequest(), parent="parent_value", tensorboard=gca_tensorboard.Tensorboard(name="name_value"), ) @pytest.mark.parametrize( "request_type", [tensorboard_service.GetTensorboardRequest, dict,] ) def test_get_tensorboard(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_tensorboard), "__call__") as call: # Designate an appropriate return value for the call. call.return_value = tensorboard.Tensorboard( name="name_value", display_name="display_name_value", description="description_value", blob_storage_path_prefix="blob_storage_path_prefix_value", run_count=989, etag="etag_value", ) response = client.get_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.GetTensorboardRequest() # Establish that the response is the type that we expect. assert isinstance(response, tensorboard.Tensorboard) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.blob_storage_path_prefix == "blob_storage_path_prefix_value" assert response.run_count == 989 assert response.etag == "etag_value" def test_get_tensorboard_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_tensorboard), "__call__") as call: client.get_tensorboard() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.GetTensorboardRequest() @pytest.mark.asyncio async def test_get_tensorboard_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.GetTensorboardRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_tensorboard), "__call__") as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard.Tensorboard( name="name_value", display_name="display_name_value", description="description_value", blob_storage_path_prefix="blob_storage_path_prefix_value", run_count=989, etag="etag_value", ) ) response = await client.get_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.GetTensorboardRequest() # Establish that the response is the type that we expect. assert isinstance(response, tensorboard.Tensorboard) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.blob_storage_path_prefix == "blob_storage_path_prefix_value" assert response.run_count == 989 assert response.etag == "etag_value" @pytest.mark.asyncio async def test_get_tensorboard_async_from_dict(): await test_get_tensorboard_async(request_type=dict) def test_get_tensorboard_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.GetTensorboardRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_tensorboard), "__call__") as call: call.return_value = tensorboard.Tensorboard() client.get_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] @pytest.mark.asyncio async def test_get_tensorboard_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.GetTensorboardRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_tensorboard), "__call__") as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard.Tensorboard() ) await client.get_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] def test_get_tensorboard_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_tensorboard), "__call__") as call: # Designate an appropriate return value for the call. call.return_value = tensorboard.Tensorboard() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.get_tensorboard(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val def test_get_tensorboard_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.get_tensorboard( tensorboard_service.GetTensorboardRequest(), name="name_value", ) @pytest.mark.asyncio async def test_get_tensorboard_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_tensorboard), "__call__") as call: # Designate an appropriate return value for the call. call.return_value = tensorboard.Tensorboard() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard.Tensorboard() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.get_tensorboard(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val @pytest.mark.asyncio async def test_get_tensorboard_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.get_tensorboard( tensorboard_service.GetTensorboardRequest(), name="name_value", ) @pytest.mark.parametrize( "request_type", [tensorboard_service.UpdateTensorboardRequest, dict,] ) def test_update_tensorboard(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/spam") response = client.update_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.UpdateTensorboardRequest() # Establish that the response is the type that we expect. assert isinstance(response, future.Future) def test_update_tensorboard_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard), "__call__" ) as call: client.update_tensorboard() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.UpdateTensorboardRequest() @pytest.mark.asyncio async def test_update_tensorboard_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.UpdateTensorboardRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam") ) response = await client.update_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.UpdateTensorboardRequest() # Establish that the response is the type that we expect. assert isinstance(response, future.Future) @pytest.mark.asyncio async def test_update_tensorboard_async_from_dict(): await test_update_tensorboard_async(request_type=dict) def test_update_tensorboard_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.UpdateTensorboardRequest() request.tensorboard.name = "tensorboard.name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard), "__call__" ) as call: call.return_value = operations_pb2.Operation(name="operations/op") client.update_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "tensorboard.name=tensorboard.name/value",) in kw[ "metadata" ] @pytest.mark.asyncio async def test_update_tensorboard_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.UpdateTensorboardRequest() request.tensorboard.name = "tensorboard.name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/op") ) await client.update_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "tensorboard.name=tensorboard.name/value",) in kw[ "metadata" ] def test_update_tensorboard_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.update_tensorboard( tensorboard=gca_tensorboard.Tensorboard(name="name_value"), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].tensorboard mock_val = gca_tensorboard.Tensorboard(name="name_value") assert arg == mock_val arg = args[0].update_mask mock_val = field_mask_pb2.FieldMask(paths=["paths_value"]) assert arg == mock_val def test_update_tensorboard_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.update_tensorboard( tensorboard_service.UpdateTensorboardRequest(), tensorboard=gca_tensorboard.Tensorboard(name="name_value"), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) @pytest.mark.asyncio async def test_update_tensorboard_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam") ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.update_tensorboard( tensorboard=gca_tensorboard.Tensorboard(name="name_value"), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].tensorboard mock_val = gca_tensorboard.Tensorboard(name="name_value") assert arg == mock_val arg = args[0].update_mask mock_val = field_mask_pb2.FieldMask(paths=["paths_value"]) assert arg == mock_val @pytest.mark.asyncio async def test_update_tensorboard_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.update_tensorboard( tensorboard_service.UpdateTensorboardRequest(), tensorboard=gca_tensorboard.Tensorboard(name="name_value"), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) @pytest.mark.parametrize( "request_type", [tensorboard_service.ListTensorboardsRequest, dict,] ) def test_list_tensorboards(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboards), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ListTensorboardsResponse( next_page_token="next_page_token_value", ) response = client.list_tensorboards(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ListTensorboardsRequest() # Establish that the response is the type that we expect. assert isinstance(response, pagers.ListTensorboardsPager) assert response.next_page_token == "next_page_token_value" def test_list_tensorboards_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboards), "__call__" ) as call: client.list_tensorboards() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ListTensorboardsRequest() @pytest.mark.asyncio async def test_list_tensorboards_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.ListTensorboardsRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboards), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ListTensorboardsResponse( next_page_token="next_page_token_value", ) ) response = await client.list_tensorboards(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ListTensorboardsRequest() # Establish that the response is the type that we expect. assert isinstance(response, pagers.ListTensorboardsAsyncPager) assert response.next_page_token == "next_page_token_value" @pytest.mark.asyncio async def test_list_tensorboards_async_from_dict(): await test_list_tensorboards_async(request_type=dict) def test_list_tensorboards_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ListTensorboardsRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboards), "__call__" ) as call: call.return_value = tensorboard_service.ListTensorboardsResponse() client.list_tensorboards(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] @pytest.mark.asyncio async def test_list_tensorboards_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ListTensorboardsRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboards), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ListTensorboardsResponse() ) await client.list_tensorboards(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] def test_list_tensorboards_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboards), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ListTensorboardsResponse() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.list_tensorboards(parent="parent_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val def test_list_tensorboards_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.list_tensorboards( tensorboard_service.ListTensorboardsRequest(), parent="parent_value", ) @pytest.mark.asyncio async def test_list_tensorboards_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboards), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ListTensorboardsResponse() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ListTensorboardsResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.list_tensorboards(parent="parent_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val @pytest.mark.asyncio async def test_list_tensorboards_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.list_tensorboards( tensorboard_service.ListTensorboardsRequest(), parent="parent_value", ) def test_list_tensorboards_pager(transport_name: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials, transport=transport_name, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboards), "__call__" ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardsResponse( tensorboards=[ tensorboard.Tensorboard(), tensorboard.Tensorboard(), tensorboard.Tensorboard(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardsResponse( tensorboards=[], next_page_token="def", ), tensorboard_service.ListTensorboardsResponse( tensorboards=[tensorboard.Tensorboard(),], next_page_token="ghi", ), tensorboard_service.ListTensorboardsResponse( tensorboards=[tensorboard.Tensorboard(), tensorboard.Tensorboard(),], ), RuntimeError, ) metadata = () metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", ""),)), ) pager = client.list_tensorboards(request={}) assert pager._metadata == metadata results = [i for i in pager] assert len(results) == 6 assert all(isinstance(i, tensorboard.Tensorboard) for i in results) def test_list_tensorboards_pages(transport_name: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials, transport=transport_name, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboards), "__call__" ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardsResponse( tensorboards=[ tensorboard.Tensorboard(), tensorboard.Tensorboard(), tensorboard.Tensorboard(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardsResponse( tensorboards=[], next_page_token="def", ), tensorboard_service.ListTensorboardsResponse( tensorboards=[tensorboard.Tensorboard(),], next_page_token="ghi", ), tensorboard_service.ListTensorboardsResponse( tensorboards=[tensorboard.Tensorboard(), tensorboard.Tensorboard(),], ), RuntimeError, ) pages = list(client.list_tensorboards(request={}).pages) for page_, token in zip(pages, ["abc", "def", "ghi", ""]): assert page_.raw_page.next_page_token == token @pytest.mark.asyncio async def test_list_tensorboards_async_pager(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboards), "__call__", new_callable=mock.AsyncMock, ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardsResponse( tensorboards=[ tensorboard.Tensorboard(), tensorboard.Tensorboard(), tensorboard.Tensorboard(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardsResponse( tensorboards=[], next_page_token="def", ), tensorboard_service.ListTensorboardsResponse( tensorboards=[tensorboard.Tensorboard(),], next_page_token="ghi", ), tensorboard_service.ListTensorboardsResponse( tensorboards=[tensorboard.Tensorboard(), tensorboard.Tensorboard(),], ), RuntimeError, ) async_pager = await client.list_tensorboards(request={},) assert async_pager.next_page_token == "abc" responses = [] async for response in async_pager: responses.append(response) assert len(responses) == 6 assert all(isinstance(i, tensorboard.Tensorboard) for i in responses) @pytest.mark.asyncio async def test_list_tensorboards_async_pages(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboards), "__call__", new_callable=mock.AsyncMock, ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardsResponse( tensorboards=[ tensorboard.Tensorboard(), tensorboard.Tensorboard(), tensorboard.Tensorboard(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardsResponse( tensorboards=[], next_page_token="def", ), tensorboard_service.ListTensorboardsResponse( tensorboards=[tensorboard.Tensorboard(),], next_page_token="ghi", ), tensorboard_service.ListTensorboardsResponse( tensorboards=[tensorboard.Tensorboard(), tensorboard.Tensorboard(),], ), RuntimeError, ) pages = [] async for page_ in (await client.list_tensorboards(request={})).pages: pages.append(page_) for page_, token in zip(pages, ["abc", "def", "ghi", ""]): assert page_.raw_page.next_page_token == token @pytest.mark.parametrize( "request_type", [tensorboard_service.DeleteTensorboardRequest, dict,] ) def test_delete_tensorboard(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/spam") response = client.delete_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.DeleteTensorboardRequest() # Establish that the response is the type that we expect. assert isinstance(response, future.Future) def test_delete_tensorboard_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard), "__call__" ) as call: client.delete_tensorboard() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.DeleteTensorboardRequest() @pytest.mark.asyncio async def test_delete_tensorboard_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.DeleteTensorboardRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam") ) response = await client.delete_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.DeleteTensorboardRequest() # Establish that the response is the type that we expect. assert isinstance(response, future.Future) @pytest.mark.asyncio async def test_delete_tensorboard_async_from_dict(): await test_delete_tensorboard_async(request_type=dict) def test_delete_tensorboard_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.DeleteTensorboardRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard), "__call__" ) as call: call.return_value = operations_pb2.Operation(name="operations/op") client.delete_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] @pytest.mark.asyncio async def test_delete_tensorboard_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.DeleteTensorboardRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/op") ) await client.delete_tensorboard(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] def test_delete_tensorboard_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.delete_tensorboard(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val def test_delete_tensorboard_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.delete_tensorboard( tensorboard_service.DeleteTensorboardRequest(), name="name_value", ) @pytest.mark.asyncio async def test_delete_tensorboard_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam") ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.delete_tensorboard(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val @pytest.mark.asyncio async def test_delete_tensorboard_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.delete_tensorboard( tensorboard_service.DeleteTensorboardRequest(), name="name_value", ) @pytest.mark.parametrize( "request_type", [tensorboard_service.CreateTensorboardExperimentRequest, dict,] ) def test_create_tensorboard_experiment(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_experiment.TensorboardExperiment( name="name_value", display_name="display_name_value", description="description_value", etag="etag_value", source="source_value", ) response = client.create_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.CreateTensorboardExperimentRequest() # Establish that the response is the type that we expect. assert isinstance(response, gca_tensorboard_experiment.TensorboardExperiment) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.etag == "etag_value" assert response.source == "source_value" def test_create_tensorboard_experiment_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_experiment), "__call__" ) as call: client.create_tensorboard_experiment() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.CreateTensorboardExperimentRequest() @pytest.mark.asyncio async def test_create_tensorboard_experiment_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.CreateTensorboardExperimentRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_experiment.TensorboardExperiment( name="name_value", display_name="display_name_value", description="description_value", etag="etag_value", source="source_value", ) ) response = await client.create_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.CreateTensorboardExperimentRequest() # Establish that the response is the type that we expect. assert isinstance(response, gca_tensorboard_experiment.TensorboardExperiment) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.etag == "etag_value" assert response.source == "source_value" @pytest.mark.asyncio async def test_create_tensorboard_experiment_async_from_dict(): await test_create_tensorboard_experiment_async(request_type=dict) def test_create_tensorboard_experiment_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.CreateTensorboardExperimentRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_experiment), "__call__" ) as call: call.return_value = gca_tensorboard_experiment.TensorboardExperiment() client.create_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] @pytest.mark.asyncio async def test_create_tensorboard_experiment_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.CreateTensorboardExperimentRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_experiment), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_experiment.TensorboardExperiment() ) await client.create_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] def test_create_tensorboard_experiment_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_experiment.TensorboardExperiment() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.create_tensorboard_experiment( parent="parent_value", tensorboard_experiment=gca_tensorboard_experiment.TensorboardExperiment( name="name_value" ), tensorboard_experiment_id="tensorboard_experiment_id_value", ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val arg = args[0].tensorboard_experiment mock_val = gca_tensorboard_experiment.TensorboardExperiment(name="name_value") assert arg == mock_val arg = args[0].tensorboard_experiment_id mock_val = "tensorboard_experiment_id_value" assert arg == mock_val def test_create_tensorboard_experiment_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.create_tensorboard_experiment( tensorboard_service.CreateTensorboardExperimentRequest(), parent="parent_value", tensorboard_experiment=gca_tensorboard_experiment.TensorboardExperiment( name="name_value" ), tensorboard_experiment_id="tensorboard_experiment_id_value", ) @pytest.mark.asyncio async def test_create_tensorboard_experiment_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_experiment.TensorboardExperiment() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_experiment.TensorboardExperiment() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.create_tensorboard_experiment( parent="parent_value", tensorboard_experiment=gca_tensorboard_experiment.TensorboardExperiment( name="name_value" ), tensorboard_experiment_id="tensorboard_experiment_id_value", ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val arg = args[0].tensorboard_experiment mock_val = gca_tensorboard_experiment.TensorboardExperiment(name="name_value") assert arg == mock_val arg = args[0].tensorboard_experiment_id mock_val = "tensorboard_experiment_id_value" assert arg == mock_val @pytest.mark.asyncio async def test_create_tensorboard_experiment_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.create_tensorboard_experiment( tensorboard_service.CreateTensorboardExperimentRequest(), parent="parent_value", tensorboard_experiment=gca_tensorboard_experiment.TensorboardExperiment( name="name_value" ), tensorboard_experiment_id="tensorboard_experiment_id_value", ) @pytest.mark.parametrize( "request_type", [tensorboard_service.GetTensorboardExperimentRequest, dict,] ) def test_get_tensorboard_experiment(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_experiment.TensorboardExperiment( name="name_value", display_name="display_name_value", description="description_value", etag="etag_value", source="source_value", ) response = client.get_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.GetTensorboardExperimentRequest() # Establish that the response is the type that we expect. assert isinstance(response, tensorboard_experiment.TensorboardExperiment) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.etag == "etag_value" assert response.source == "source_value" def test_get_tensorboard_experiment_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_experiment), "__call__" ) as call: client.get_tensorboard_experiment() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.GetTensorboardExperimentRequest() @pytest.mark.asyncio async def test_get_tensorboard_experiment_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.GetTensorboardExperimentRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_experiment.TensorboardExperiment( name="name_value", display_name="display_name_value", description="description_value", etag="etag_value", source="source_value", ) ) response = await client.get_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.GetTensorboardExperimentRequest() # Establish that the response is the type that we expect. assert isinstance(response, tensorboard_experiment.TensorboardExperiment) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.etag == "etag_value" assert response.source == "source_value" @pytest.mark.asyncio async def test_get_tensorboard_experiment_async_from_dict(): await test_get_tensorboard_experiment_async(request_type=dict) def test_get_tensorboard_experiment_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.GetTensorboardExperimentRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_experiment), "__call__" ) as call: call.return_value = tensorboard_experiment.TensorboardExperiment() client.get_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] @pytest.mark.asyncio async def test_get_tensorboard_experiment_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.GetTensorboardExperimentRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_experiment), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_experiment.TensorboardExperiment() ) await client.get_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] def test_get_tensorboard_experiment_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_experiment.TensorboardExperiment() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.get_tensorboard_experiment(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val def test_get_tensorboard_experiment_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.get_tensorboard_experiment( tensorboard_service.GetTensorboardExperimentRequest(), name="name_value", ) @pytest.mark.asyncio async def test_get_tensorboard_experiment_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_experiment.TensorboardExperiment() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_experiment.TensorboardExperiment() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.get_tensorboard_experiment(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val @pytest.mark.asyncio async def test_get_tensorboard_experiment_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.get_tensorboard_experiment( tensorboard_service.GetTensorboardExperimentRequest(), name="name_value", ) @pytest.mark.parametrize( "request_type", [tensorboard_service.UpdateTensorboardExperimentRequest, dict,] ) def test_update_tensorboard_experiment(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_experiment.TensorboardExperiment( name="name_value", display_name="display_name_value", description="description_value", etag="etag_value", source="source_value", ) response = client.update_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.UpdateTensorboardExperimentRequest() # Establish that the response is the type that we expect. assert isinstance(response, gca_tensorboard_experiment.TensorboardExperiment) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.etag == "etag_value" assert response.source == "source_value" def test_update_tensorboard_experiment_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_experiment), "__call__" ) as call: client.update_tensorboard_experiment() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.UpdateTensorboardExperimentRequest() @pytest.mark.asyncio async def test_update_tensorboard_experiment_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.UpdateTensorboardExperimentRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_experiment.TensorboardExperiment( name="name_value", display_name="display_name_value", description="description_value", etag="etag_value", source="source_value", ) ) response = await client.update_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.UpdateTensorboardExperimentRequest() # Establish that the response is the type that we expect. assert isinstance(response, gca_tensorboard_experiment.TensorboardExperiment) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.etag == "etag_value" assert response.source == "source_value" @pytest.mark.asyncio async def test_update_tensorboard_experiment_async_from_dict(): await test_update_tensorboard_experiment_async(request_type=dict) def test_update_tensorboard_experiment_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.UpdateTensorboardExperimentRequest() request.tensorboard_experiment.name = "tensorboard_experiment.name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_experiment), "__call__" ) as call: call.return_value = gca_tensorboard_experiment.TensorboardExperiment() client.update_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "tensorboard_experiment.name=tensorboard_experiment.name/value", ) in kw["metadata"] @pytest.mark.asyncio async def test_update_tensorboard_experiment_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.UpdateTensorboardExperimentRequest() request.tensorboard_experiment.name = "tensorboard_experiment.name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_experiment), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_experiment.TensorboardExperiment() ) await client.update_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "tensorboard_experiment.name=tensorboard_experiment.name/value", ) in kw["metadata"] def test_update_tensorboard_experiment_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_experiment.TensorboardExperiment() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.update_tensorboard_experiment( tensorboard_experiment=gca_tensorboard_experiment.TensorboardExperiment( name="name_value" ), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_experiment mock_val = gca_tensorboard_experiment.TensorboardExperiment(name="name_value") assert arg == mock_val arg = args[0].update_mask mock_val = field_mask_pb2.FieldMask(paths=["paths_value"]) assert arg == mock_val def test_update_tensorboard_experiment_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.update_tensorboard_experiment( tensorboard_service.UpdateTensorboardExperimentRequest(), tensorboard_experiment=gca_tensorboard_experiment.TensorboardExperiment( name="name_value" ), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) @pytest.mark.asyncio async def test_update_tensorboard_experiment_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_experiment.TensorboardExperiment() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_experiment.TensorboardExperiment() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.update_tensorboard_experiment( tensorboard_experiment=gca_tensorboard_experiment.TensorboardExperiment( name="name_value" ), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_experiment mock_val = gca_tensorboard_experiment.TensorboardExperiment(name="name_value") assert arg == mock_val arg = args[0].update_mask mock_val = field_mask_pb2.FieldMask(paths=["paths_value"]) assert arg == mock_val @pytest.mark.asyncio async def test_update_tensorboard_experiment_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.update_tensorboard_experiment( tensorboard_service.UpdateTensorboardExperimentRequest(), tensorboard_experiment=gca_tensorboard_experiment.TensorboardExperiment( name="name_value" ), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) @pytest.mark.parametrize( "request_type", [tensorboard_service.ListTensorboardExperimentsRequest, dict,] ) def test_list_tensorboard_experiments(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_experiments), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ListTensorboardExperimentsResponse( next_page_token="next_page_token_value", ) response = client.list_tensorboard_experiments(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ListTensorboardExperimentsRequest() # Establish that the response is the type that we expect. assert isinstance(response, pagers.ListTensorboardExperimentsPager) assert response.next_page_token == "next_page_token_value" def test_list_tensorboard_experiments_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_experiments), "__call__" ) as call: client.list_tensorboard_experiments() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ListTensorboardExperimentsRequest() @pytest.mark.asyncio async def test_list_tensorboard_experiments_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.ListTensorboardExperimentsRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_experiments), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ListTensorboardExperimentsResponse( next_page_token="next_page_token_value", ) ) response = await client.list_tensorboard_experiments(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ListTensorboardExperimentsRequest() # Establish that the response is the type that we expect. assert isinstance(response, pagers.ListTensorboardExperimentsAsyncPager) assert response.next_page_token == "next_page_token_value" @pytest.mark.asyncio async def test_list_tensorboard_experiments_async_from_dict(): await test_list_tensorboard_experiments_async(request_type=dict) def test_list_tensorboard_experiments_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ListTensorboardExperimentsRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_experiments), "__call__" ) as call: call.return_value = tensorboard_service.ListTensorboardExperimentsResponse() client.list_tensorboard_experiments(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] @pytest.mark.asyncio async def test_list_tensorboard_experiments_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ListTensorboardExperimentsRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_experiments), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ListTensorboardExperimentsResponse() ) await client.list_tensorboard_experiments(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] def test_list_tensorboard_experiments_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_experiments), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ListTensorboardExperimentsResponse() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.list_tensorboard_experiments(parent="parent_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val def test_list_tensorboard_experiments_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.list_tensorboard_experiments( tensorboard_service.ListTensorboardExperimentsRequest(), parent="parent_value", ) @pytest.mark.asyncio async def test_list_tensorboard_experiments_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_experiments), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ListTensorboardExperimentsResponse() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ListTensorboardExperimentsResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.list_tensorboard_experiments(parent="parent_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val @pytest.mark.asyncio async def test_list_tensorboard_experiments_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.list_tensorboard_experiments( tensorboard_service.ListTensorboardExperimentsRequest(), parent="parent_value", ) def test_list_tensorboard_experiments_pager(transport_name: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials, transport=transport_name, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_experiments), "__call__" ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[ tensorboard_experiment.TensorboardExperiment(), tensorboard_experiment.TensorboardExperiment(), tensorboard_experiment.TensorboardExperiment(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[], next_page_token="def", ), tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[ tensorboard_experiment.TensorboardExperiment(), ], next_page_token="ghi", ), tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[ tensorboard_experiment.TensorboardExperiment(), tensorboard_experiment.TensorboardExperiment(), ], ), RuntimeError, ) metadata = () metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", ""),)), ) pager = client.list_tensorboard_experiments(request={}) assert pager._metadata == metadata results = [i for i in pager] assert len(results) == 6 assert all( isinstance(i, tensorboard_experiment.TensorboardExperiment) for i in results ) def test_list_tensorboard_experiments_pages(transport_name: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials, transport=transport_name, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_experiments), "__call__" ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[ tensorboard_experiment.TensorboardExperiment(), tensorboard_experiment.TensorboardExperiment(), tensorboard_experiment.TensorboardExperiment(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[], next_page_token="def", ), tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[ tensorboard_experiment.TensorboardExperiment(), ], next_page_token="ghi", ), tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[ tensorboard_experiment.TensorboardExperiment(), tensorboard_experiment.TensorboardExperiment(), ], ), RuntimeError, ) pages = list(client.list_tensorboard_experiments(request={}).pages) for page_, token in zip(pages, ["abc", "def", "ghi", ""]): assert page_.raw_page.next_page_token == token @pytest.mark.asyncio async def test_list_tensorboard_experiments_async_pager(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_experiments), "__call__", new_callable=mock.AsyncMock, ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[ tensorboard_experiment.TensorboardExperiment(), tensorboard_experiment.TensorboardExperiment(), tensorboard_experiment.TensorboardExperiment(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[], next_page_token="def", ), tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[ tensorboard_experiment.TensorboardExperiment(), ], next_page_token="ghi", ), tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[ tensorboard_experiment.TensorboardExperiment(), tensorboard_experiment.TensorboardExperiment(), ], ), RuntimeError, ) async_pager = await client.list_tensorboard_experiments(request={},) assert async_pager.next_page_token == "abc" responses = [] async for response in async_pager: responses.append(response) assert len(responses) == 6 assert all( isinstance(i, tensorboard_experiment.TensorboardExperiment) for i in responses ) @pytest.mark.asyncio async def test_list_tensorboard_experiments_async_pages(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_experiments), "__call__", new_callable=mock.AsyncMock, ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[ tensorboard_experiment.TensorboardExperiment(), tensorboard_experiment.TensorboardExperiment(), tensorboard_experiment.TensorboardExperiment(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[], next_page_token="def", ), tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[ tensorboard_experiment.TensorboardExperiment(), ], next_page_token="ghi", ), tensorboard_service.ListTensorboardExperimentsResponse( tensorboard_experiments=[ tensorboard_experiment.TensorboardExperiment(), tensorboard_experiment.TensorboardExperiment(), ], ), RuntimeError, ) pages = [] async for page_ in ( await client.list_tensorboard_experiments(request={}) ).pages: pages.append(page_) for page_, token in zip(pages, ["abc", "def", "ghi", ""]): assert page_.raw_page.next_page_token == token @pytest.mark.parametrize( "request_type", [tensorboard_service.DeleteTensorboardExperimentRequest, dict,] ) def test_delete_tensorboard_experiment(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/spam") response = client.delete_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.DeleteTensorboardExperimentRequest() # Establish that the response is the type that we expect. assert isinstance(response, future.Future) def test_delete_tensorboard_experiment_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_experiment), "__call__" ) as call: client.delete_tensorboard_experiment() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.DeleteTensorboardExperimentRequest() @pytest.mark.asyncio async def test_delete_tensorboard_experiment_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.DeleteTensorboardExperimentRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam") ) response = await client.delete_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.DeleteTensorboardExperimentRequest() # Establish that the response is the type that we expect. assert isinstance(response, future.Future) @pytest.mark.asyncio async def test_delete_tensorboard_experiment_async_from_dict(): await test_delete_tensorboard_experiment_async(request_type=dict) def test_delete_tensorboard_experiment_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.DeleteTensorboardExperimentRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_experiment), "__call__" ) as call: call.return_value = operations_pb2.Operation(name="operations/op") client.delete_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] @pytest.mark.asyncio async def test_delete_tensorboard_experiment_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.DeleteTensorboardExperimentRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_experiment), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/op") ) await client.delete_tensorboard_experiment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] def test_delete_tensorboard_experiment_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.delete_tensorboard_experiment(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val def test_delete_tensorboard_experiment_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.delete_tensorboard_experiment( tensorboard_service.DeleteTensorboardExperimentRequest(), name="name_value", ) @pytest.mark.asyncio async def test_delete_tensorboard_experiment_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_experiment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam") ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.delete_tensorboard_experiment(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val @pytest.mark.asyncio async def test_delete_tensorboard_experiment_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.delete_tensorboard_experiment( tensorboard_service.DeleteTensorboardExperimentRequest(), name="name_value", ) @pytest.mark.parametrize( "request_type", [tensorboard_service.CreateTensorboardRunRequest, dict,] ) def test_create_tensorboard_run(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_run.TensorboardRun( name="name_value", display_name="display_name_value", description="description_value", etag="etag_value", ) response = client.create_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.CreateTensorboardRunRequest() # Establish that the response is the type that we expect. assert isinstance(response, gca_tensorboard_run.TensorboardRun) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.etag == "etag_value" def test_create_tensorboard_run_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_run), "__call__" ) as call: client.create_tensorboard_run() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.CreateTensorboardRunRequest() @pytest.mark.asyncio async def test_create_tensorboard_run_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.CreateTensorboardRunRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_run.TensorboardRun( name="name_value", display_name="display_name_value", description="description_value", etag="etag_value", ) ) response = await client.create_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.CreateTensorboardRunRequest() # Establish that the response is the type that we expect. assert isinstance(response, gca_tensorboard_run.TensorboardRun) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.etag == "etag_value" @pytest.mark.asyncio async def test_create_tensorboard_run_async_from_dict(): await test_create_tensorboard_run_async(request_type=dict) def test_create_tensorboard_run_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.CreateTensorboardRunRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_run), "__call__" ) as call: call.return_value = gca_tensorboard_run.TensorboardRun() client.create_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] @pytest.mark.asyncio async def test_create_tensorboard_run_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.CreateTensorboardRunRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_run), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_run.TensorboardRun() ) await client.create_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] def test_create_tensorboard_run_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_run.TensorboardRun() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.create_tensorboard_run( parent="parent_value", tensorboard_run=gca_tensorboard_run.TensorboardRun(name="name_value"), tensorboard_run_id="tensorboard_run_id_value", ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val arg = args[0].tensorboard_run mock_val = gca_tensorboard_run.TensorboardRun(name="name_value") assert arg == mock_val arg = args[0].tensorboard_run_id mock_val = "tensorboard_run_id_value" assert arg == mock_val def test_create_tensorboard_run_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.create_tensorboard_run( tensorboard_service.CreateTensorboardRunRequest(), parent="parent_value", tensorboard_run=gca_tensorboard_run.TensorboardRun(name="name_value"), tensorboard_run_id="tensorboard_run_id_value", ) @pytest.mark.asyncio async def test_create_tensorboard_run_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_run.TensorboardRun() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_run.TensorboardRun() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.create_tensorboard_run( parent="parent_value", tensorboard_run=gca_tensorboard_run.TensorboardRun(name="name_value"), tensorboard_run_id="tensorboard_run_id_value", ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val arg = args[0].tensorboard_run mock_val = gca_tensorboard_run.TensorboardRun(name="name_value") assert arg == mock_val arg = args[0].tensorboard_run_id mock_val = "tensorboard_run_id_value" assert arg == mock_val @pytest.mark.asyncio async def test_create_tensorboard_run_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.create_tensorboard_run( tensorboard_service.CreateTensorboardRunRequest(), parent="parent_value", tensorboard_run=gca_tensorboard_run.TensorboardRun(name="name_value"), tensorboard_run_id="tensorboard_run_id_value", ) @pytest.mark.parametrize( "request_type", [tensorboard_service.BatchCreateTensorboardRunsRequest, dict,] ) def test_batch_create_tensorboard_runs(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_runs), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.BatchCreateTensorboardRunsResponse() response = client.batch_create_tensorboard_runs(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.BatchCreateTensorboardRunsRequest() # Establish that the response is the type that we expect. assert isinstance(response, tensorboard_service.BatchCreateTensorboardRunsResponse) def test_batch_create_tensorboard_runs_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_runs), "__call__" ) as call: client.batch_create_tensorboard_runs() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.BatchCreateTensorboardRunsRequest() @pytest.mark.asyncio async def test_batch_create_tensorboard_runs_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.BatchCreateTensorboardRunsRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_runs), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.BatchCreateTensorboardRunsResponse() ) response = await client.batch_create_tensorboard_runs(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.BatchCreateTensorboardRunsRequest() # Establish that the response is the type that we expect. assert isinstance(response, tensorboard_service.BatchCreateTensorboardRunsResponse) @pytest.mark.asyncio async def test_batch_create_tensorboard_runs_async_from_dict(): await test_batch_create_tensorboard_runs_async(request_type=dict) def test_batch_create_tensorboard_runs_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.BatchCreateTensorboardRunsRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_runs), "__call__" ) as call: call.return_value = tensorboard_service.BatchCreateTensorboardRunsResponse() client.batch_create_tensorboard_runs(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] @pytest.mark.asyncio async def test_batch_create_tensorboard_runs_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.BatchCreateTensorboardRunsRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_runs), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.BatchCreateTensorboardRunsResponse() ) await client.batch_create_tensorboard_runs(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] def test_batch_create_tensorboard_runs_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_runs), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.BatchCreateTensorboardRunsResponse() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.batch_create_tensorboard_runs( parent="parent_value", requests=[ tensorboard_service.CreateTensorboardRunRequest(parent="parent_value") ], ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val arg = args[0].requests mock_val = [ tensorboard_service.CreateTensorboardRunRequest(parent="parent_value") ] assert arg == mock_val def test_batch_create_tensorboard_runs_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.batch_create_tensorboard_runs( tensorboard_service.BatchCreateTensorboardRunsRequest(), parent="parent_value", requests=[ tensorboard_service.CreateTensorboardRunRequest(parent="parent_value") ], ) @pytest.mark.asyncio async def test_batch_create_tensorboard_runs_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_runs), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.BatchCreateTensorboardRunsResponse() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.BatchCreateTensorboardRunsResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.batch_create_tensorboard_runs( parent="parent_value", requests=[ tensorboard_service.CreateTensorboardRunRequest(parent="parent_value") ], ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val arg = args[0].requests mock_val = [ tensorboard_service.CreateTensorboardRunRequest(parent="parent_value") ] assert arg == mock_val @pytest.mark.asyncio async def test_batch_create_tensorboard_runs_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.batch_create_tensorboard_runs( tensorboard_service.BatchCreateTensorboardRunsRequest(), parent="parent_value", requests=[ tensorboard_service.CreateTensorboardRunRequest(parent="parent_value") ], ) @pytest.mark.parametrize( "request_type", [tensorboard_service.GetTensorboardRunRequest, dict,] ) def test_get_tensorboard_run(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_run.TensorboardRun( name="name_value", display_name="display_name_value", description="description_value", etag="etag_value", ) response = client.get_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.GetTensorboardRunRequest() # Establish that the response is the type that we expect. assert isinstance(response, tensorboard_run.TensorboardRun) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.etag == "etag_value" def test_get_tensorboard_run_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_run), "__call__" ) as call: client.get_tensorboard_run() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.GetTensorboardRunRequest() @pytest.mark.asyncio async def test_get_tensorboard_run_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.GetTensorboardRunRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_run.TensorboardRun( name="name_value", display_name="display_name_value", description="description_value", etag="etag_value", ) ) response = await client.get_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.GetTensorboardRunRequest() # Establish that the response is the type that we expect. assert isinstance(response, tensorboard_run.TensorboardRun) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.etag == "etag_value" @pytest.mark.asyncio async def test_get_tensorboard_run_async_from_dict(): await test_get_tensorboard_run_async(request_type=dict) def test_get_tensorboard_run_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.GetTensorboardRunRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_run), "__call__" ) as call: call.return_value = tensorboard_run.TensorboardRun() client.get_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] @pytest.mark.asyncio async def test_get_tensorboard_run_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.GetTensorboardRunRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_run), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_run.TensorboardRun() ) await client.get_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] def test_get_tensorboard_run_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_run.TensorboardRun() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.get_tensorboard_run(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val def test_get_tensorboard_run_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.get_tensorboard_run( tensorboard_service.GetTensorboardRunRequest(), name="name_value", ) @pytest.mark.asyncio async def test_get_tensorboard_run_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_run.TensorboardRun() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_run.TensorboardRun() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.get_tensorboard_run(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val @pytest.mark.asyncio async def test_get_tensorboard_run_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.get_tensorboard_run( tensorboard_service.GetTensorboardRunRequest(), name="name_value", ) @pytest.mark.parametrize( "request_type", [tensorboard_service.UpdateTensorboardRunRequest, dict,] ) def test_update_tensorboard_run(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_run.TensorboardRun( name="name_value", display_name="display_name_value", description="description_value", etag="etag_value", ) response = client.update_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.UpdateTensorboardRunRequest() # Establish that the response is the type that we expect. assert isinstance(response, gca_tensorboard_run.TensorboardRun) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.etag == "etag_value" def test_update_tensorboard_run_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_run), "__call__" ) as call: client.update_tensorboard_run() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.UpdateTensorboardRunRequest() @pytest.mark.asyncio async def test_update_tensorboard_run_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.UpdateTensorboardRunRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_run.TensorboardRun( name="name_value", display_name="display_name_value", description="description_value", etag="etag_value", ) ) response = await client.update_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.UpdateTensorboardRunRequest() # Establish that the response is the type that we expect. assert isinstance(response, gca_tensorboard_run.TensorboardRun) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert response.etag == "etag_value" @pytest.mark.asyncio async def test_update_tensorboard_run_async_from_dict(): await test_update_tensorboard_run_async(request_type=dict) def test_update_tensorboard_run_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.UpdateTensorboardRunRequest() request.tensorboard_run.name = "tensorboard_run.name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_run), "__call__" ) as call: call.return_value = gca_tensorboard_run.TensorboardRun() client.update_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "tensorboard_run.name=tensorboard_run.name/value", ) in kw["metadata"] @pytest.mark.asyncio async def test_update_tensorboard_run_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.UpdateTensorboardRunRequest() request.tensorboard_run.name = "tensorboard_run.name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_run), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_run.TensorboardRun() ) await client.update_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "tensorboard_run.name=tensorboard_run.name/value", ) in kw["metadata"] def test_update_tensorboard_run_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_run.TensorboardRun() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.update_tensorboard_run( tensorboard_run=gca_tensorboard_run.TensorboardRun(name="name_value"), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_run mock_val = gca_tensorboard_run.TensorboardRun(name="name_value") assert arg == mock_val arg = args[0].update_mask mock_val = field_mask_pb2.FieldMask(paths=["paths_value"]) assert arg == mock_val def test_update_tensorboard_run_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.update_tensorboard_run( tensorboard_service.UpdateTensorboardRunRequest(), tensorboard_run=gca_tensorboard_run.TensorboardRun(name="name_value"), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) @pytest.mark.asyncio async def test_update_tensorboard_run_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_run.TensorboardRun() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_run.TensorboardRun() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.update_tensorboard_run( tensorboard_run=gca_tensorboard_run.TensorboardRun(name="name_value"), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_run mock_val = gca_tensorboard_run.TensorboardRun(name="name_value") assert arg == mock_val arg = args[0].update_mask mock_val = field_mask_pb2.FieldMask(paths=["paths_value"]) assert arg == mock_val @pytest.mark.asyncio async def test_update_tensorboard_run_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.update_tensorboard_run( tensorboard_service.UpdateTensorboardRunRequest(), tensorboard_run=gca_tensorboard_run.TensorboardRun(name="name_value"), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) @pytest.mark.parametrize( "request_type", [tensorboard_service.ListTensorboardRunsRequest, dict,] ) def test_list_tensorboard_runs(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_runs), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ListTensorboardRunsResponse( next_page_token="next_page_token_value", ) response = client.list_tensorboard_runs(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ListTensorboardRunsRequest() # Establish that the response is the type that we expect. assert isinstance(response, pagers.ListTensorboardRunsPager) assert response.next_page_token == "next_page_token_value" def test_list_tensorboard_runs_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_runs), "__call__" ) as call: client.list_tensorboard_runs() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ListTensorboardRunsRequest() @pytest.mark.asyncio async def test_list_tensorboard_runs_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.ListTensorboardRunsRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_runs), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ListTensorboardRunsResponse( next_page_token="next_page_token_value", ) ) response = await client.list_tensorboard_runs(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ListTensorboardRunsRequest() # Establish that the response is the type that we expect. assert isinstance(response, pagers.ListTensorboardRunsAsyncPager) assert response.next_page_token == "next_page_token_value" @pytest.mark.asyncio async def test_list_tensorboard_runs_async_from_dict(): await test_list_tensorboard_runs_async(request_type=dict) def test_list_tensorboard_runs_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ListTensorboardRunsRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_runs), "__call__" ) as call: call.return_value = tensorboard_service.ListTensorboardRunsResponse() client.list_tensorboard_runs(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] @pytest.mark.asyncio async def test_list_tensorboard_runs_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ListTensorboardRunsRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_runs), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ListTensorboardRunsResponse() ) await client.list_tensorboard_runs(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] def test_list_tensorboard_runs_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_runs), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ListTensorboardRunsResponse() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.list_tensorboard_runs(parent="parent_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val def test_list_tensorboard_runs_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.list_tensorboard_runs( tensorboard_service.ListTensorboardRunsRequest(), parent="parent_value", ) @pytest.mark.asyncio async def test_list_tensorboard_runs_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_runs), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ListTensorboardRunsResponse() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ListTensorboardRunsResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.list_tensorboard_runs(parent="parent_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val @pytest.mark.asyncio async def test_list_tensorboard_runs_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.list_tensorboard_runs( tensorboard_service.ListTensorboardRunsRequest(), parent="parent_value", ) def test_list_tensorboard_runs_pager(transport_name: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials, transport=transport_name, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_runs), "__call__" ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[ tensorboard_run.TensorboardRun(), tensorboard_run.TensorboardRun(), tensorboard_run.TensorboardRun(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[], next_page_token="def", ), tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[tensorboard_run.TensorboardRun(),], next_page_token="ghi", ), tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[ tensorboard_run.TensorboardRun(), tensorboard_run.TensorboardRun(), ], ), RuntimeError, ) metadata = () metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", ""),)), ) pager = client.list_tensorboard_runs(request={}) assert pager._metadata == metadata results = [i for i in pager] assert len(results) == 6 assert all(isinstance(i, tensorboard_run.TensorboardRun) for i in results) def test_list_tensorboard_runs_pages(transport_name: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials, transport=transport_name, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_runs), "__call__" ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[ tensorboard_run.TensorboardRun(), tensorboard_run.TensorboardRun(), tensorboard_run.TensorboardRun(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[], next_page_token="def", ), tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[tensorboard_run.TensorboardRun(),], next_page_token="ghi", ), tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[ tensorboard_run.TensorboardRun(), tensorboard_run.TensorboardRun(), ], ), RuntimeError, ) pages = list(client.list_tensorboard_runs(request={}).pages) for page_, token in zip(pages, ["abc", "def", "ghi", ""]): assert page_.raw_page.next_page_token == token @pytest.mark.asyncio async def test_list_tensorboard_runs_async_pager(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_runs), "__call__", new_callable=mock.AsyncMock, ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[ tensorboard_run.TensorboardRun(), tensorboard_run.TensorboardRun(), tensorboard_run.TensorboardRun(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[], next_page_token="def", ), tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[tensorboard_run.TensorboardRun(),], next_page_token="ghi", ), tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[ tensorboard_run.TensorboardRun(), tensorboard_run.TensorboardRun(), ], ), RuntimeError, ) async_pager = await client.list_tensorboard_runs(request={},) assert async_pager.next_page_token == "abc" responses = [] async for response in async_pager: responses.append(response) assert len(responses) == 6 assert all(isinstance(i, tensorboard_run.TensorboardRun) for i in responses) @pytest.mark.asyncio async def test_list_tensorboard_runs_async_pages(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_runs), "__call__", new_callable=mock.AsyncMock, ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[ tensorboard_run.TensorboardRun(), tensorboard_run.TensorboardRun(), tensorboard_run.TensorboardRun(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[], next_page_token="def", ), tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[tensorboard_run.TensorboardRun(),], next_page_token="ghi", ), tensorboard_service.ListTensorboardRunsResponse( tensorboard_runs=[ tensorboard_run.TensorboardRun(), tensorboard_run.TensorboardRun(), ], ), RuntimeError, ) pages = [] async for page_ in (await client.list_tensorboard_runs(request={})).pages: pages.append(page_) for page_, token in zip(pages, ["abc", "def", "ghi", ""]): assert page_.raw_page.next_page_token == token @pytest.mark.parametrize( "request_type", [tensorboard_service.DeleteTensorboardRunRequest, dict,] ) def test_delete_tensorboard_run(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/spam") response = client.delete_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.DeleteTensorboardRunRequest() # Establish that the response is the type that we expect. assert isinstance(response, future.Future) def test_delete_tensorboard_run_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_run), "__call__" ) as call: client.delete_tensorboard_run() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.DeleteTensorboardRunRequest() @pytest.mark.asyncio async def test_delete_tensorboard_run_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.DeleteTensorboardRunRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam") ) response = await client.delete_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.DeleteTensorboardRunRequest() # Establish that the response is the type that we expect. assert isinstance(response, future.Future) @pytest.mark.asyncio async def test_delete_tensorboard_run_async_from_dict(): await test_delete_tensorboard_run_async(request_type=dict) def test_delete_tensorboard_run_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.DeleteTensorboardRunRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_run), "__call__" ) as call: call.return_value = operations_pb2.Operation(name="operations/op") client.delete_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] @pytest.mark.asyncio async def test_delete_tensorboard_run_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.DeleteTensorboardRunRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_run), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/op") ) await client.delete_tensorboard_run(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] def test_delete_tensorboard_run_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.delete_tensorboard_run(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val def test_delete_tensorboard_run_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.delete_tensorboard_run( tensorboard_service.DeleteTensorboardRunRequest(), name="name_value", ) @pytest.mark.asyncio async def test_delete_tensorboard_run_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_run), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam") ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.delete_tensorboard_run(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val @pytest.mark.asyncio async def test_delete_tensorboard_run_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.delete_tensorboard_run( tensorboard_service.DeleteTensorboardRunRequest(), name="name_value", ) @pytest.mark.parametrize( "request_type", [tensorboard_service.BatchCreateTensorboardTimeSeriesRequest, dict,] ) def test_batch_create_tensorboard_time_series(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = ( tensorboard_service.BatchCreateTensorboardTimeSeriesResponse() ) response = client.batch_create_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.BatchCreateTensorboardTimeSeriesRequest() # Establish that the response is the type that we expect. assert isinstance( response, tensorboard_service.BatchCreateTensorboardTimeSeriesResponse ) def test_batch_create_tensorboard_time_series_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_time_series), "__call__" ) as call: client.batch_create_tensorboard_time_series() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.BatchCreateTensorboardTimeSeriesRequest() @pytest.mark.asyncio async def test_batch_create_tensorboard_time_series_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.BatchCreateTensorboardTimeSeriesRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.BatchCreateTensorboardTimeSeriesResponse() ) response = await client.batch_create_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.BatchCreateTensorboardTimeSeriesRequest() # Establish that the response is the type that we expect. assert isinstance( response, tensorboard_service.BatchCreateTensorboardTimeSeriesResponse ) @pytest.mark.asyncio async def test_batch_create_tensorboard_time_series_async_from_dict(): await test_batch_create_tensorboard_time_series_async(request_type=dict) def test_batch_create_tensorboard_time_series_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.BatchCreateTensorboardTimeSeriesRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_time_series), "__call__" ) as call: call.return_value = ( tensorboard_service.BatchCreateTensorboardTimeSeriesResponse() ) client.batch_create_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] @pytest.mark.asyncio async def test_batch_create_tensorboard_time_series_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.BatchCreateTensorboardTimeSeriesRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_time_series), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.BatchCreateTensorboardTimeSeriesResponse() ) await client.batch_create_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] def test_batch_create_tensorboard_time_series_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = ( tensorboard_service.BatchCreateTensorboardTimeSeriesResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.batch_create_tensorboard_time_series( parent="parent_value", requests=[ tensorboard_service.CreateTensorboardTimeSeriesRequest( parent="parent_value" ) ], ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val arg = args[0].requests mock_val = [ tensorboard_service.CreateTensorboardTimeSeriesRequest( parent="parent_value" ) ] assert arg == mock_val def test_batch_create_tensorboard_time_series_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.batch_create_tensorboard_time_series( tensorboard_service.BatchCreateTensorboardTimeSeriesRequest(), parent="parent_value", requests=[ tensorboard_service.CreateTensorboardTimeSeriesRequest( parent="parent_value" ) ], ) @pytest.mark.asyncio async def test_batch_create_tensorboard_time_series_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_create_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = ( tensorboard_service.BatchCreateTensorboardTimeSeriesResponse() ) call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.BatchCreateTensorboardTimeSeriesResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.batch_create_tensorboard_time_series( parent="parent_value", requests=[ tensorboard_service.CreateTensorboardTimeSeriesRequest( parent="parent_value" ) ], ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val arg = args[0].requests mock_val = [ tensorboard_service.CreateTensorboardTimeSeriesRequest( parent="parent_value" ) ] assert arg == mock_val @pytest.mark.asyncio async def test_batch_create_tensorboard_time_series_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.batch_create_tensorboard_time_series( tensorboard_service.BatchCreateTensorboardTimeSeriesRequest(), parent="parent_value", requests=[ tensorboard_service.CreateTensorboardTimeSeriesRequest( parent="parent_value" ) ], ) @pytest.mark.parametrize( "request_type", [tensorboard_service.CreateTensorboardTimeSeriesRequest, dict,] ) def test_create_tensorboard_time_series(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_time_series.TensorboardTimeSeries( name="name_value", display_name="display_name_value", description="description_value", value_type=gca_tensorboard_time_series.TensorboardTimeSeries.ValueType.SCALAR, etag="etag_value", plugin_name="plugin_name_value", plugin_data=b"plugin_data_blob", ) response = client.create_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.CreateTensorboardTimeSeriesRequest() # Establish that the response is the type that we expect. assert isinstance(response, gca_tensorboard_time_series.TensorboardTimeSeries) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert ( response.value_type == gca_tensorboard_time_series.TensorboardTimeSeries.ValueType.SCALAR ) assert response.etag == "etag_value" assert response.plugin_name == "plugin_name_value" assert response.plugin_data == b"plugin_data_blob" def test_create_tensorboard_time_series_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_time_series), "__call__" ) as call: client.create_tensorboard_time_series() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.CreateTensorboardTimeSeriesRequest() @pytest.mark.asyncio async def test_create_tensorboard_time_series_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.CreateTensorboardTimeSeriesRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_time_series.TensorboardTimeSeries( name="name_value", display_name="display_name_value", description="description_value", value_type=gca_tensorboard_time_series.TensorboardTimeSeries.ValueType.SCALAR, etag="etag_value", plugin_name="plugin_name_value", plugin_data=b"plugin_data_blob", ) ) response = await client.create_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.CreateTensorboardTimeSeriesRequest() # Establish that the response is the type that we expect. assert isinstance(response, gca_tensorboard_time_series.TensorboardTimeSeries) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert ( response.value_type == gca_tensorboard_time_series.TensorboardTimeSeries.ValueType.SCALAR ) assert response.etag == "etag_value" assert response.plugin_name == "plugin_name_value" assert response.plugin_data == b"plugin_data_blob" @pytest.mark.asyncio async def test_create_tensorboard_time_series_async_from_dict(): await test_create_tensorboard_time_series_async(request_type=dict) def test_create_tensorboard_time_series_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.CreateTensorboardTimeSeriesRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_time_series), "__call__" ) as call: call.return_value = gca_tensorboard_time_series.TensorboardTimeSeries() client.create_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] @pytest.mark.asyncio async def test_create_tensorboard_time_series_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.CreateTensorboardTimeSeriesRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_time_series), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_time_series.TensorboardTimeSeries() ) await client.create_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] def test_create_tensorboard_time_series_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_time_series.TensorboardTimeSeries() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.create_tensorboard_time_series( parent="parent_value", tensorboard_time_series=gca_tensorboard_time_series.TensorboardTimeSeries( name="name_value" ), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val arg = args[0].tensorboard_time_series mock_val = gca_tensorboard_time_series.TensorboardTimeSeries(name="name_value") assert arg == mock_val def test_create_tensorboard_time_series_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.create_tensorboard_time_series( tensorboard_service.CreateTensorboardTimeSeriesRequest(), parent="parent_value", tensorboard_time_series=gca_tensorboard_time_series.TensorboardTimeSeries( name="name_value" ), ) @pytest.mark.asyncio async def test_create_tensorboard_time_series_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_time_series.TensorboardTimeSeries() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_time_series.TensorboardTimeSeries() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.create_tensorboard_time_series( parent="parent_value", tensorboard_time_series=gca_tensorboard_time_series.TensorboardTimeSeries( name="name_value" ), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val arg = args[0].tensorboard_time_series mock_val = gca_tensorboard_time_series.TensorboardTimeSeries(name="name_value") assert arg == mock_val @pytest.mark.asyncio async def test_create_tensorboard_time_series_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.create_tensorboard_time_series( tensorboard_service.CreateTensorboardTimeSeriesRequest(), parent="parent_value", tensorboard_time_series=gca_tensorboard_time_series.TensorboardTimeSeries( name="name_value" ), ) @pytest.mark.parametrize( "request_type", [tensorboard_service.GetTensorboardTimeSeriesRequest, dict,] ) def test_get_tensorboard_time_series(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_time_series.TensorboardTimeSeries( name="name_value", display_name="display_name_value", description="description_value", value_type=tensorboard_time_series.TensorboardTimeSeries.ValueType.SCALAR, etag="etag_value", plugin_name="plugin_name_value", plugin_data=b"plugin_data_blob", ) response = client.get_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.GetTensorboardTimeSeriesRequest() # Establish that the response is the type that we expect. assert isinstance(response, tensorboard_time_series.TensorboardTimeSeries) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert ( response.value_type == tensorboard_time_series.TensorboardTimeSeries.ValueType.SCALAR ) assert response.etag == "etag_value" assert response.plugin_name == "plugin_name_value" assert response.plugin_data == b"plugin_data_blob" def test_get_tensorboard_time_series_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_time_series), "__call__" ) as call: client.get_tensorboard_time_series() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.GetTensorboardTimeSeriesRequest() @pytest.mark.asyncio async def test_get_tensorboard_time_series_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.GetTensorboardTimeSeriesRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_time_series.TensorboardTimeSeries( name="name_value", display_name="display_name_value", description="description_value", value_type=tensorboard_time_series.TensorboardTimeSeries.ValueType.SCALAR, etag="etag_value", plugin_name="plugin_name_value", plugin_data=b"plugin_data_blob", ) ) response = await client.get_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.GetTensorboardTimeSeriesRequest() # Establish that the response is the type that we expect. assert isinstance(response, tensorboard_time_series.TensorboardTimeSeries) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert ( response.value_type == tensorboard_time_series.TensorboardTimeSeries.ValueType.SCALAR ) assert response.etag == "etag_value" assert response.plugin_name == "plugin_name_value" assert response.plugin_data == b"plugin_data_blob" @pytest.mark.asyncio async def test_get_tensorboard_time_series_async_from_dict(): await test_get_tensorboard_time_series_async(request_type=dict) def test_get_tensorboard_time_series_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.GetTensorboardTimeSeriesRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_time_series), "__call__" ) as call: call.return_value = tensorboard_time_series.TensorboardTimeSeries() client.get_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] @pytest.mark.asyncio async def test_get_tensorboard_time_series_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.GetTensorboardTimeSeriesRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_time_series), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_time_series.TensorboardTimeSeries() ) await client.get_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] def test_get_tensorboard_time_series_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_time_series.TensorboardTimeSeries() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.get_tensorboard_time_series(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val def test_get_tensorboard_time_series_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.get_tensorboard_time_series( tensorboard_service.GetTensorboardTimeSeriesRequest(), name="name_value", ) @pytest.mark.asyncio async def test_get_tensorboard_time_series_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_time_series.TensorboardTimeSeries() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_time_series.TensorboardTimeSeries() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.get_tensorboard_time_series(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val @pytest.mark.asyncio async def test_get_tensorboard_time_series_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.get_tensorboard_time_series( tensorboard_service.GetTensorboardTimeSeriesRequest(), name="name_value", ) @pytest.mark.parametrize( "request_type", [tensorboard_service.UpdateTensorboardTimeSeriesRequest, dict,] ) def test_update_tensorboard_time_series(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_time_series.TensorboardTimeSeries( name="name_value", display_name="display_name_value", description="description_value", value_type=gca_tensorboard_time_series.TensorboardTimeSeries.ValueType.SCALAR, etag="etag_value", plugin_name="plugin_name_value", plugin_data=b"plugin_data_blob", ) response = client.update_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.UpdateTensorboardTimeSeriesRequest() # Establish that the response is the type that we expect. assert isinstance(response, gca_tensorboard_time_series.TensorboardTimeSeries) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert ( response.value_type == gca_tensorboard_time_series.TensorboardTimeSeries.ValueType.SCALAR ) assert response.etag == "etag_value" assert response.plugin_name == "plugin_name_value" assert response.plugin_data == b"plugin_data_blob" def test_update_tensorboard_time_series_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_time_series), "__call__" ) as call: client.update_tensorboard_time_series() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.UpdateTensorboardTimeSeriesRequest() @pytest.mark.asyncio async def test_update_tensorboard_time_series_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.UpdateTensorboardTimeSeriesRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_time_series.TensorboardTimeSeries( name="name_value", display_name="display_name_value", description="description_value", value_type=gca_tensorboard_time_series.TensorboardTimeSeries.ValueType.SCALAR, etag="etag_value", plugin_name="plugin_name_value", plugin_data=b"plugin_data_blob", ) ) response = await client.update_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.UpdateTensorboardTimeSeriesRequest() # Establish that the response is the type that we expect. assert isinstance(response, gca_tensorboard_time_series.TensorboardTimeSeries) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.description == "description_value" assert ( response.value_type == gca_tensorboard_time_series.TensorboardTimeSeries.ValueType.SCALAR ) assert response.etag == "etag_value" assert response.plugin_name == "plugin_name_value" assert response.plugin_data == b"plugin_data_blob" @pytest.mark.asyncio async def test_update_tensorboard_time_series_async_from_dict(): await test_update_tensorboard_time_series_async(request_type=dict) def test_update_tensorboard_time_series_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.UpdateTensorboardTimeSeriesRequest() request.tensorboard_time_series.name = "tensorboard_time_series.name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_time_series), "__call__" ) as call: call.return_value = gca_tensorboard_time_series.TensorboardTimeSeries() client.update_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "tensorboard_time_series.name=tensorboard_time_series.name/value", ) in kw["metadata"] @pytest.mark.asyncio async def test_update_tensorboard_time_series_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.UpdateTensorboardTimeSeriesRequest() request.tensorboard_time_series.name = "tensorboard_time_series.name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_time_series), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_time_series.TensorboardTimeSeries() ) await client.update_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "tensorboard_time_series.name=tensorboard_time_series.name/value", ) in kw["metadata"] def test_update_tensorboard_time_series_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_time_series.TensorboardTimeSeries() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.update_tensorboard_time_series( tensorboard_time_series=gca_tensorboard_time_series.TensorboardTimeSeries( name="name_value" ), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_time_series mock_val = gca_tensorboard_time_series.TensorboardTimeSeries(name="name_value") assert arg == mock_val arg = args[0].update_mask mock_val = field_mask_pb2.FieldMask(paths=["paths_value"]) assert arg == mock_val def test_update_tensorboard_time_series_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.update_tensorboard_time_series( tensorboard_service.UpdateTensorboardTimeSeriesRequest(), tensorboard_time_series=gca_tensorboard_time_series.TensorboardTimeSeries( name="name_value" ), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) @pytest.mark.asyncio async def test_update_tensorboard_time_series_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gca_tensorboard_time_series.TensorboardTimeSeries() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gca_tensorboard_time_series.TensorboardTimeSeries() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.update_tensorboard_time_series( tensorboard_time_series=gca_tensorboard_time_series.TensorboardTimeSeries( name="name_value" ), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_time_series mock_val = gca_tensorboard_time_series.TensorboardTimeSeries(name="name_value") assert arg == mock_val arg = args[0].update_mask mock_val = field_mask_pb2.FieldMask(paths=["paths_value"]) assert arg == mock_val @pytest.mark.asyncio async def test_update_tensorboard_time_series_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.update_tensorboard_time_series( tensorboard_service.UpdateTensorboardTimeSeriesRequest(), tensorboard_time_series=gca_tensorboard_time_series.TensorboardTimeSeries( name="name_value" ), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) @pytest.mark.parametrize( "request_type", [tensorboard_service.ListTensorboardTimeSeriesRequest, dict,] ) def test_list_tensorboard_time_series(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ListTensorboardTimeSeriesResponse( next_page_token="next_page_token_value", ) response = client.list_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ListTensorboardTimeSeriesRequest() # Establish that the response is the type that we expect. assert isinstance(response, pagers.ListTensorboardTimeSeriesPager) assert response.next_page_token == "next_page_token_value" def test_list_tensorboard_time_series_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_time_series), "__call__" ) as call: client.list_tensorboard_time_series() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ListTensorboardTimeSeriesRequest() @pytest.mark.asyncio async def test_list_tensorboard_time_series_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.ListTensorboardTimeSeriesRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ListTensorboardTimeSeriesResponse( next_page_token="next_page_token_value", ) ) response = await client.list_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ListTensorboardTimeSeriesRequest() # Establish that the response is the type that we expect. assert isinstance(response, pagers.ListTensorboardTimeSeriesAsyncPager) assert response.next_page_token == "next_page_token_value" @pytest.mark.asyncio async def test_list_tensorboard_time_series_async_from_dict(): await test_list_tensorboard_time_series_async(request_type=dict) def test_list_tensorboard_time_series_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ListTensorboardTimeSeriesRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_time_series), "__call__" ) as call: call.return_value = tensorboard_service.ListTensorboardTimeSeriesResponse() client.list_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] @pytest.mark.asyncio async def test_list_tensorboard_time_series_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ListTensorboardTimeSeriesRequest() request.parent = "parent/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_time_series), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ListTensorboardTimeSeriesResponse() ) await client.list_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "parent=parent/value",) in kw["metadata"] def test_list_tensorboard_time_series_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ListTensorboardTimeSeriesResponse() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.list_tensorboard_time_series(parent="parent_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val def test_list_tensorboard_time_series_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.list_tensorboard_time_series( tensorboard_service.ListTensorboardTimeSeriesRequest(), parent="parent_value", ) @pytest.mark.asyncio async def test_list_tensorboard_time_series_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ListTensorboardTimeSeriesResponse() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ListTensorboardTimeSeriesResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.list_tensorboard_time_series(parent="parent_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].parent mock_val = "parent_value" assert arg == mock_val @pytest.mark.asyncio async def test_list_tensorboard_time_series_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.list_tensorboard_time_series( tensorboard_service.ListTensorboardTimeSeriesRequest(), parent="parent_value", ) def test_list_tensorboard_time_series_pager(transport_name: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials, transport=transport_name, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_time_series), "__call__" ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[ tensorboard_time_series.TensorboardTimeSeries(), tensorboard_time_series.TensorboardTimeSeries(), tensorboard_time_series.TensorboardTimeSeries(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[], next_page_token="def", ), tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[ tensorboard_time_series.TensorboardTimeSeries(), ], next_page_token="ghi", ), tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[ tensorboard_time_series.TensorboardTimeSeries(), tensorboard_time_series.TensorboardTimeSeries(), ], ), RuntimeError, ) metadata = () metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", ""),)), ) pager = client.list_tensorboard_time_series(request={}) assert pager._metadata == metadata results = [i for i in pager] assert len(results) == 6 assert all( isinstance(i, tensorboard_time_series.TensorboardTimeSeries) for i in results ) def test_list_tensorboard_time_series_pages(transport_name: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials, transport=transport_name, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_time_series), "__call__" ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[ tensorboard_time_series.TensorboardTimeSeries(), tensorboard_time_series.TensorboardTimeSeries(), tensorboard_time_series.TensorboardTimeSeries(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[], next_page_token="def", ), tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[ tensorboard_time_series.TensorboardTimeSeries(), ], next_page_token="ghi", ), tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[ tensorboard_time_series.TensorboardTimeSeries(), tensorboard_time_series.TensorboardTimeSeries(), ], ), RuntimeError, ) pages = list(client.list_tensorboard_time_series(request={}).pages) for page_, token in zip(pages, ["abc", "def", "ghi", ""]): assert page_.raw_page.next_page_token == token @pytest.mark.asyncio async def test_list_tensorboard_time_series_async_pager(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_time_series), "__call__", new_callable=mock.AsyncMock, ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[ tensorboard_time_series.TensorboardTimeSeries(), tensorboard_time_series.TensorboardTimeSeries(), tensorboard_time_series.TensorboardTimeSeries(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[], next_page_token="def", ), tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[ tensorboard_time_series.TensorboardTimeSeries(), ], next_page_token="ghi", ), tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[ tensorboard_time_series.TensorboardTimeSeries(), tensorboard_time_series.TensorboardTimeSeries(), ], ), RuntimeError, ) async_pager = await client.list_tensorboard_time_series(request={},) assert async_pager.next_page_token == "abc" responses = [] async for response in async_pager: responses.append(response) assert len(responses) == 6 assert all( isinstance(i, tensorboard_time_series.TensorboardTimeSeries) for i in responses ) @pytest.mark.asyncio async def test_list_tensorboard_time_series_async_pages(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_tensorboard_time_series), "__call__", new_callable=mock.AsyncMock, ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[ tensorboard_time_series.TensorboardTimeSeries(), tensorboard_time_series.TensorboardTimeSeries(), tensorboard_time_series.TensorboardTimeSeries(), ], next_page_token="abc", ), tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[], next_page_token="def", ), tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[ tensorboard_time_series.TensorboardTimeSeries(), ], next_page_token="ghi", ), tensorboard_service.ListTensorboardTimeSeriesResponse( tensorboard_time_series=[ tensorboard_time_series.TensorboardTimeSeries(), tensorboard_time_series.TensorboardTimeSeries(), ], ), RuntimeError, ) pages = [] async for page_ in ( await client.list_tensorboard_time_series(request={}) ).pages: pages.append(page_) for page_, token in zip(pages, ["abc", "def", "ghi", ""]): assert page_.raw_page.next_page_token == token @pytest.mark.parametrize( "request_type", [tensorboard_service.DeleteTensorboardTimeSeriesRequest, dict,] ) def test_delete_tensorboard_time_series(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/spam") response = client.delete_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.DeleteTensorboardTimeSeriesRequest() # Establish that the response is the type that we expect. assert isinstance(response, future.Future) def test_delete_tensorboard_time_series_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_time_series), "__call__" ) as call: client.delete_tensorboard_time_series() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.DeleteTensorboardTimeSeriesRequest() @pytest.mark.asyncio async def test_delete_tensorboard_time_series_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.DeleteTensorboardTimeSeriesRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam") ) response = await client.delete_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.DeleteTensorboardTimeSeriesRequest() # Establish that the response is the type that we expect. assert isinstance(response, future.Future) @pytest.mark.asyncio async def test_delete_tensorboard_time_series_async_from_dict(): await test_delete_tensorboard_time_series_async(request_type=dict) def test_delete_tensorboard_time_series_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.DeleteTensorboardTimeSeriesRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_time_series), "__call__" ) as call: call.return_value = operations_pb2.Operation(name="operations/op") client.delete_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] @pytest.mark.asyncio async def test_delete_tensorboard_time_series_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.DeleteTensorboardTimeSeriesRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_time_series), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/op") ) await client.delete_tensorboard_time_series(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] def test_delete_tensorboard_time_series_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.delete_tensorboard_time_series(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val def test_delete_tensorboard_time_series_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.delete_tensorboard_time_series( tensorboard_service.DeleteTensorboardTimeSeriesRequest(), name="name_value", ) @pytest.mark.asyncio async def test_delete_tensorboard_time_series_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_tensorboard_time_series), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam") ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.delete_tensorboard_time_series(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].name mock_val = "name_value" assert arg == mock_val @pytest.mark.asyncio async def test_delete_tensorboard_time_series_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.delete_tensorboard_time_series( tensorboard_service.DeleteTensorboardTimeSeriesRequest(), name="name_value", ) @pytest.mark.parametrize( "request_type", [tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest, dict,], ) def test_batch_read_tensorboard_time_series_data(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_read_tensorboard_time_series_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = ( tensorboard_service.BatchReadTensorboardTimeSeriesDataResponse() ) response = client.batch_read_tensorboard_time_series_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert ( args[0] == tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest() ) # Establish that the response is the type that we expect. assert isinstance( response, tensorboard_service.BatchReadTensorboardTimeSeriesDataResponse ) def test_batch_read_tensorboard_time_series_data_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_read_tensorboard_time_series_data), "__call__" ) as call: client.batch_read_tensorboard_time_series_data() call.assert_called() _, args, _ = call.mock_calls[0] assert ( args[0] == tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest() ) @pytest.mark.asyncio async def test_batch_read_tensorboard_time_series_data_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_read_tensorboard_time_series_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.BatchReadTensorboardTimeSeriesDataResponse() ) response = await client.batch_read_tensorboard_time_series_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert ( args[0] == tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest() ) # Establish that the response is the type that we expect. assert isinstance( response, tensorboard_service.BatchReadTensorboardTimeSeriesDataResponse ) @pytest.mark.asyncio async def test_batch_read_tensorboard_time_series_data_async_from_dict(): await test_batch_read_tensorboard_time_series_data_async(request_type=dict) def test_batch_read_tensorboard_time_series_data_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest() request.tensorboard = "tensorboard/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_read_tensorboard_time_series_data), "__call__" ) as call: call.return_value = ( tensorboard_service.BatchReadTensorboardTimeSeriesDataResponse() ) client.batch_read_tensorboard_time_series_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "tensorboard=tensorboard/value",) in kw["metadata"] @pytest.mark.asyncio async def test_batch_read_tensorboard_time_series_data_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest() request.tensorboard = "tensorboard/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_read_tensorboard_time_series_data), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.BatchReadTensorboardTimeSeriesDataResponse() ) await client.batch_read_tensorboard_time_series_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "tensorboard=tensorboard/value",) in kw["metadata"] def test_batch_read_tensorboard_time_series_data_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_read_tensorboard_time_series_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = ( tensorboard_service.BatchReadTensorboardTimeSeriesDataResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.batch_read_tensorboard_time_series_data(tensorboard="tensorboard_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].tensorboard mock_val = "tensorboard_value" assert arg == mock_val def test_batch_read_tensorboard_time_series_data_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.batch_read_tensorboard_time_series_data( tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest(), tensorboard="tensorboard_value", ) @pytest.mark.asyncio async def test_batch_read_tensorboard_time_series_data_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.batch_read_tensorboard_time_series_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = ( tensorboard_service.BatchReadTensorboardTimeSeriesDataResponse() ) call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.BatchReadTensorboardTimeSeriesDataResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.batch_read_tensorboard_time_series_data( tensorboard="tensorboard_value", ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].tensorboard mock_val = "tensorboard_value" assert arg == mock_val @pytest.mark.asyncio async def test_batch_read_tensorboard_time_series_data_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.batch_read_tensorboard_time_series_data( tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest(), tensorboard="tensorboard_value", ) @pytest.mark.parametrize( "request_type", [tensorboard_service.ReadTensorboardTimeSeriesDataRequest, dict,] ) def test_read_tensorboard_time_series_data(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_time_series_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ReadTensorboardTimeSeriesDataResponse() response = client.read_tensorboard_time_series_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ReadTensorboardTimeSeriesDataRequest() # Establish that the response is the type that we expect. assert isinstance( response, tensorboard_service.ReadTensorboardTimeSeriesDataResponse ) def test_read_tensorboard_time_series_data_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_time_series_data), "__call__" ) as call: client.read_tensorboard_time_series_data() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ReadTensorboardTimeSeriesDataRequest() @pytest.mark.asyncio async def test_read_tensorboard_time_series_data_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.ReadTensorboardTimeSeriesDataRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_time_series_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ReadTensorboardTimeSeriesDataResponse() ) response = await client.read_tensorboard_time_series_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ReadTensorboardTimeSeriesDataRequest() # Establish that the response is the type that we expect. assert isinstance( response, tensorboard_service.ReadTensorboardTimeSeriesDataResponse ) @pytest.mark.asyncio async def test_read_tensorboard_time_series_data_async_from_dict(): await test_read_tensorboard_time_series_data_async(request_type=dict) def test_read_tensorboard_time_series_data_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ReadTensorboardTimeSeriesDataRequest() request.tensorboard_time_series = "tensorboard_time_series/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_time_series_data), "__call__" ) as call: call.return_value = tensorboard_service.ReadTensorboardTimeSeriesDataResponse() client.read_tensorboard_time_series_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "tensorboard_time_series=tensorboard_time_series/value", ) in kw["metadata"] @pytest.mark.asyncio async def test_read_tensorboard_time_series_data_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ReadTensorboardTimeSeriesDataRequest() request.tensorboard_time_series = "tensorboard_time_series/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_time_series_data), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ReadTensorboardTimeSeriesDataResponse() ) await client.read_tensorboard_time_series_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "tensorboard_time_series=tensorboard_time_series/value", ) in kw["metadata"] def test_read_tensorboard_time_series_data_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_time_series_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ReadTensorboardTimeSeriesDataResponse() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.read_tensorboard_time_series_data( tensorboard_time_series="tensorboard_time_series_value", ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_time_series mock_val = "tensorboard_time_series_value" assert arg == mock_val def test_read_tensorboard_time_series_data_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.read_tensorboard_time_series_data( tensorboard_service.ReadTensorboardTimeSeriesDataRequest(), tensorboard_time_series="tensorboard_time_series_value", ) @pytest.mark.asyncio async def test_read_tensorboard_time_series_data_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_time_series_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ReadTensorboardTimeSeriesDataResponse() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ReadTensorboardTimeSeriesDataResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.read_tensorboard_time_series_data( tensorboard_time_series="tensorboard_time_series_value", ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_time_series mock_val = "tensorboard_time_series_value" assert arg == mock_val @pytest.mark.asyncio async def test_read_tensorboard_time_series_data_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.read_tensorboard_time_series_data( tensorboard_service.ReadTensorboardTimeSeriesDataRequest(), tensorboard_time_series="tensorboard_time_series_value", ) @pytest.mark.parametrize( "request_type", [tensorboard_service.ReadTensorboardBlobDataRequest, dict,] ) def test_read_tensorboard_blob_data(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_blob_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = iter( [tensorboard_service.ReadTensorboardBlobDataResponse()] ) response = client.read_tensorboard_blob_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ReadTensorboardBlobDataRequest() # Establish that the response is the type that we expect. for message in response: assert isinstance(message, tensorboard_service.ReadTensorboardBlobDataResponse) def test_read_tensorboard_blob_data_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_blob_data), "__call__" ) as call: client.read_tensorboard_blob_data() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ReadTensorboardBlobDataRequest() @pytest.mark.asyncio async def test_read_tensorboard_blob_data_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.ReadTensorboardBlobDataRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_blob_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = mock.Mock(aio.UnaryStreamCall, autospec=True) call.return_value.read = mock.AsyncMock( side_effect=[tensorboard_service.ReadTensorboardBlobDataResponse()] ) response = await client.read_tensorboard_blob_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ReadTensorboardBlobDataRequest() # Establish that the response is the type that we expect. message = await response.read() assert isinstance(message, tensorboard_service.ReadTensorboardBlobDataResponse) @pytest.mark.asyncio async def test_read_tensorboard_blob_data_async_from_dict(): await test_read_tensorboard_blob_data_async(request_type=dict) def test_read_tensorboard_blob_data_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ReadTensorboardBlobDataRequest() request.time_series = "time_series/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_blob_data), "__call__" ) as call: call.return_value = iter( [tensorboard_service.ReadTensorboardBlobDataResponse()] ) client.read_tensorboard_blob_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "time_series=time_series/value",) in kw["metadata"] @pytest.mark.asyncio async def test_read_tensorboard_blob_data_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ReadTensorboardBlobDataRequest() request.time_series = "time_series/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_blob_data), "__call__" ) as call: call.return_value = mock.Mock(aio.UnaryStreamCall, autospec=True) call.return_value.read = mock.AsyncMock( side_effect=[tensorboard_service.ReadTensorboardBlobDataResponse()] ) await client.read_tensorboard_blob_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "time_series=time_series/value",) in kw["metadata"] def test_read_tensorboard_blob_data_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_blob_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = iter( [tensorboard_service.ReadTensorboardBlobDataResponse()] ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.read_tensorboard_blob_data(time_series="time_series_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].time_series mock_val = "time_series_value" assert arg == mock_val def test_read_tensorboard_blob_data_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.read_tensorboard_blob_data( tensorboard_service.ReadTensorboardBlobDataRequest(), time_series="time_series_value", ) @pytest.mark.asyncio async def test_read_tensorboard_blob_data_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.read_tensorboard_blob_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = iter( [tensorboard_service.ReadTensorboardBlobDataResponse()] ) call.return_value = mock.Mock(aio.UnaryStreamCall, autospec=True) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.read_tensorboard_blob_data( time_series="time_series_value", ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].time_series mock_val = "time_series_value" assert arg == mock_val @pytest.mark.asyncio async def test_read_tensorboard_blob_data_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.read_tensorboard_blob_data( tensorboard_service.ReadTensorboardBlobDataRequest(), time_series="time_series_value", ) @pytest.mark.parametrize( "request_type", [tensorboard_service.WriteTensorboardExperimentDataRequest, dict,] ) def test_write_tensorboard_experiment_data(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_experiment_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.WriteTensorboardExperimentDataResponse() response = client.write_tensorboard_experiment_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.WriteTensorboardExperimentDataRequest() # Establish that the response is the type that we expect. assert isinstance( response, tensorboard_service.WriteTensorboardExperimentDataResponse ) def test_write_tensorboard_experiment_data_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_experiment_data), "__call__" ) as call: client.write_tensorboard_experiment_data() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.WriteTensorboardExperimentDataRequest() @pytest.mark.asyncio async def test_write_tensorboard_experiment_data_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.WriteTensorboardExperimentDataRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_experiment_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.WriteTensorboardExperimentDataResponse() ) response = await client.write_tensorboard_experiment_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.WriteTensorboardExperimentDataRequest() # Establish that the response is the type that we expect. assert isinstance( response, tensorboard_service.WriteTensorboardExperimentDataResponse ) @pytest.mark.asyncio async def test_write_tensorboard_experiment_data_async_from_dict(): await test_write_tensorboard_experiment_data_async(request_type=dict) def test_write_tensorboard_experiment_data_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.WriteTensorboardExperimentDataRequest() request.tensorboard_experiment = "tensorboard_experiment/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_experiment_data), "__call__" ) as call: call.return_value = tensorboard_service.WriteTensorboardExperimentDataResponse() client.write_tensorboard_experiment_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "tensorboard_experiment=tensorboard_experiment/value", ) in kw["metadata"] @pytest.mark.asyncio async def test_write_tensorboard_experiment_data_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.WriteTensorboardExperimentDataRequest() request.tensorboard_experiment = "tensorboard_experiment/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_experiment_data), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.WriteTensorboardExperimentDataResponse() ) await client.write_tensorboard_experiment_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "tensorboard_experiment=tensorboard_experiment/value", ) in kw["metadata"] def test_write_tensorboard_experiment_data_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_experiment_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.WriteTensorboardExperimentDataResponse() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.write_tensorboard_experiment_data( tensorboard_experiment="tensorboard_experiment_value", write_run_data_requests=[ tensorboard_service.WriteTensorboardRunDataRequest( tensorboard_run="tensorboard_run_value" ) ], ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_experiment mock_val = "tensorboard_experiment_value" assert arg == mock_val arg = args[0].write_run_data_requests mock_val = [ tensorboard_service.WriteTensorboardRunDataRequest( tensorboard_run="tensorboard_run_value" ) ] assert arg == mock_val def test_write_tensorboard_experiment_data_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.write_tensorboard_experiment_data( tensorboard_service.WriteTensorboardExperimentDataRequest(), tensorboard_experiment="tensorboard_experiment_value", write_run_data_requests=[ tensorboard_service.WriteTensorboardRunDataRequest( tensorboard_run="tensorboard_run_value" ) ], ) @pytest.mark.asyncio async def test_write_tensorboard_experiment_data_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_experiment_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.WriteTensorboardExperimentDataResponse() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.WriteTensorboardExperimentDataResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.write_tensorboard_experiment_data( tensorboard_experiment="tensorboard_experiment_value", write_run_data_requests=[ tensorboard_service.WriteTensorboardRunDataRequest( tensorboard_run="tensorboard_run_value" ) ], ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_experiment mock_val = "tensorboard_experiment_value" assert arg == mock_val arg = args[0].write_run_data_requests mock_val = [ tensorboard_service.WriteTensorboardRunDataRequest( tensorboard_run="tensorboard_run_value" ) ] assert arg == mock_val @pytest.mark.asyncio async def test_write_tensorboard_experiment_data_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.write_tensorboard_experiment_data( tensorboard_service.WriteTensorboardExperimentDataRequest(), tensorboard_experiment="tensorboard_experiment_value", write_run_data_requests=[ tensorboard_service.WriteTensorboardRunDataRequest( tensorboard_run="tensorboard_run_value" ) ], ) @pytest.mark.parametrize( "request_type", [tensorboard_service.WriteTensorboardRunDataRequest, dict,] ) def test_write_tensorboard_run_data(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_run_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.WriteTensorboardRunDataResponse() response = client.write_tensorboard_run_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.WriteTensorboardRunDataRequest() # Establish that the response is the type that we expect. assert isinstance(response, tensorboard_service.WriteTensorboardRunDataResponse) def test_write_tensorboard_run_data_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_run_data), "__call__" ) as call: client.write_tensorboard_run_data() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.WriteTensorboardRunDataRequest() @pytest.mark.asyncio async def test_write_tensorboard_run_data_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.WriteTensorboardRunDataRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_run_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.WriteTensorboardRunDataResponse() ) response = await client.write_tensorboard_run_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.WriteTensorboardRunDataRequest() # Establish that the response is the type that we expect. assert isinstance(response, tensorboard_service.WriteTensorboardRunDataResponse) @pytest.mark.asyncio async def test_write_tensorboard_run_data_async_from_dict(): await test_write_tensorboard_run_data_async(request_type=dict) def test_write_tensorboard_run_data_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.WriteTensorboardRunDataRequest() request.tensorboard_run = "tensorboard_run/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_run_data), "__call__" ) as call: call.return_value = tensorboard_service.WriteTensorboardRunDataResponse() client.write_tensorboard_run_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "tensorboard_run=tensorboard_run/value",) in kw[ "metadata" ] @pytest.mark.asyncio async def test_write_tensorboard_run_data_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.WriteTensorboardRunDataRequest() request.tensorboard_run = "tensorboard_run/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_run_data), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.WriteTensorboardRunDataResponse() ) await client.write_tensorboard_run_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "tensorboard_run=tensorboard_run/value",) in kw[ "metadata" ] def test_write_tensorboard_run_data_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_run_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.WriteTensorboardRunDataResponse() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.write_tensorboard_run_data( tensorboard_run="tensorboard_run_value", time_series_data=[ tensorboard_data.TimeSeriesData( tensorboard_time_series_id="tensorboard_time_series_id_value" ) ], ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_run mock_val = "tensorboard_run_value" assert arg == mock_val arg = args[0].time_series_data mock_val = [ tensorboard_data.TimeSeriesData( tensorboard_time_series_id="tensorboard_time_series_id_value" ) ] assert arg == mock_val def test_write_tensorboard_run_data_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.write_tensorboard_run_data( tensorboard_service.WriteTensorboardRunDataRequest(), tensorboard_run="tensorboard_run_value", time_series_data=[ tensorboard_data.TimeSeriesData( tensorboard_time_series_id="tensorboard_time_series_id_value" ) ], ) @pytest.mark.asyncio async def test_write_tensorboard_run_data_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.write_tensorboard_run_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.WriteTensorboardRunDataResponse() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.WriteTensorboardRunDataResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.write_tensorboard_run_data( tensorboard_run="tensorboard_run_value", time_series_data=[ tensorboard_data.TimeSeriesData( tensorboard_time_series_id="tensorboard_time_series_id_value" ) ], ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_run mock_val = "tensorboard_run_value" assert arg == mock_val arg = args[0].time_series_data mock_val = [ tensorboard_data.TimeSeriesData( tensorboard_time_series_id="tensorboard_time_series_id_value" ) ] assert arg == mock_val @pytest.mark.asyncio async def test_write_tensorboard_run_data_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.write_tensorboard_run_data( tensorboard_service.WriteTensorboardRunDataRequest(), tensorboard_run="tensorboard_run_value", time_series_data=[ tensorboard_data.TimeSeriesData( tensorboard_time_series_id="tensorboard_time_series_id_value" ) ], ) @pytest.mark.parametrize( "request_type", [tensorboard_service.ExportTensorboardTimeSeriesDataRequest, dict,] ) def test_export_tensorboard_time_series_data(request_type, transport: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.export_tensorboard_time_series_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = tensorboard_service.ExportTensorboardTimeSeriesDataResponse( next_page_token="next_page_token_value", ) response = client.export_tensorboard_time_series_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ExportTensorboardTimeSeriesDataRequest() # Establish that the response is the type that we expect. assert isinstance(response, pagers.ExportTensorboardTimeSeriesDataPager) assert response.next_page_token == "next_page_token_value" def test_export_tensorboard_time_series_data_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.export_tensorboard_time_series_data), "__call__" ) as call: client.export_tensorboard_time_series_data() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ExportTensorboardTimeSeriesDataRequest() @pytest.mark.asyncio async def test_export_tensorboard_time_series_data_async( transport: str = "grpc_asyncio", request_type=tensorboard_service.ExportTensorboardTimeSeriesDataRequest, ): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.export_tensorboard_time_series_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ExportTensorboardTimeSeriesDataResponse( next_page_token="next_page_token_value", ) ) response = await client.export_tensorboard_time_series_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == tensorboard_service.ExportTensorboardTimeSeriesDataRequest() # Establish that the response is the type that we expect. assert isinstance(response, pagers.ExportTensorboardTimeSeriesDataAsyncPager) assert response.next_page_token == "next_page_token_value" @pytest.mark.asyncio async def test_export_tensorboard_time_series_data_async_from_dict(): await test_export_tensorboard_time_series_data_async(request_type=dict) def test_export_tensorboard_time_series_data_field_headers(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ExportTensorboardTimeSeriesDataRequest() request.tensorboard_time_series = "tensorboard_time_series/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.export_tensorboard_time_series_data), "__call__" ) as call: call.return_value = ( tensorboard_service.ExportTensorboardTimeSeriesDataResponse() ) client.export_tensorboard_time_series_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "tensorboard_time_series=tensorboard_time_series/value", ) in kw["metadata"] @pytest.mark.asyncio async def test_export_tensorboard_time_series_data_field_headers_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = tensorboard_service.ExportTensorboardTimeSeriesDataRequest() request.tensorboard_time_series = "tensorboard_time_series/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.export_tensorboard_time_series_data), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ExportTensorboardTimeSeriesDataResponse() ) await client.export_tensorboard_time_series_data(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "tensorboard_time_series=tensorboard_time_series/value", ) in kw["metadata"] def test_export_tensorboard_time_series_data_flattened(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.export_tensorboard_time_series_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = ( tensorboard_service.ExportTensorboardTimeSeriesDataResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.export_tensorboard_time_series_data( tensorboard_time_series="tensorboard_time_series_value", ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_time_series mock_val = "tensorboard_time_series_value" assert arg == mock_val def test_export_tensorboard_time_series_data_flattened_error(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.export_tensorboard_time_series_data( tensorboard_service.ExportTensorboardTimeSeriesDataRequest(), tensorboard_time_series="tensorboard_time_series_value", ) @pytest.mark.asyncio async def test_export_tensorboard_time_series_data_flattened_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.export_tensorboard_time_series_data), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = ( tensorboard_service.ExportTensorboardTimeSeriesDataResponse() ) call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( tensorboard_service.ExportTensorboardTimeSeriesDataResponse() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.export_tensorboard_time_series_data( tensorboard_time_series="tensorboard_time_series_value", ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] arg = args[0].tensorboard_time_series mock_val = "tensorboard_time_series_value" assert arg == mock_val @pytest.mark.asyncio async def test_export_tensorboard_time_series_data_flattened_error_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.export_tensorboard_time_series_data( tensorboard_service.ExportTensorboardTimeSeriesDataRequest(), tensorboard_time_series="tensorboard_time_series_value", ) def test_export_tensorboard_time_series_data_pager(transport_name: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials, transport=transport_name, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.export_tensorboard_time_series_data), "__call__" ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[ tensorboard_data.TimeSeriesDataPoint(), tensorboard_data.TimeSeriesDataPoint(), tensorboard_data.TimeSeriesDataPoint(), ], next_page_token="abc", ), tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[], next_page_token="def", ), tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[tensorboard_data.TimeSeriesDataPoint(),], next_page_token="ghi", ), tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[ tensorboard_data.TimeSeriesDataPoint(), tensorboard_data.TimeSeriesDataPoint(), ], ), RuntimeError, ) metadata = () metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("tensorboard_time_series", ""),) ), ) pager = client.export_tensorboard_time_series_data(request={}) assert pager._metadata == metadata results = [i for i in pager] assert len(results) == 6 assert all(isinstance(i, tensorboard_data.TimeSeriesDataPoint) for i in results) def test_export_tensorboard_time_series_data_pages(transport_name: str = "grpc"): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials, transport=transport_name, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.export_tensorboard_time_series_data), "__call__" ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[ tensorboard_data.TimeSeriesDataPoint(), tensorboard_data.TimeSeriesDataPoint(), tensorboard_data.TimeSeriesDataPoint(), ], next_page_token="abc", ), tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[], next_page_token="def", ), tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[tensorboard_data.TimeSeriesDataPoint(),], next_page_token="ghi", ), tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[ tensorboard_data.TimeSeriesDataPoint(), tensorboard_data.TimeSeriesDataPoint(), ], ), RuntimeError, ) pages = list(client.export_tensorboard_time_series_data(request={}).pages) for page_, token in zip(pages, ["abc", "def", "ghi", ""]): assert page_.raw_page.next_page_token == token @pytest.mark.asyncio async def test_export_tensorboard_time_series_data_async_pager(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.export_tensorboard_time_series_data), "__call__", new_callable=mock.AsyncMock, ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[ tensorboard_data.TimeSeriesDataPoint(), tensorboard_data.TimeSeriesDataPoint(), tensorboard_data.TimeSeriesDataPoint(), ], next_page_token="abc", ), tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[], next_page_token="def", ), tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[tensorboard_data.TimeSeriesDataPoint(),], next_page_token="ghi", ), tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[ tensorboard_data.TimeSeriesDataPoint(), tensorboard_data.TimeSeriesDataPoint(), ], ), RuntimeError, ) async_pager = await client.export_tensorboard_time_series_data(request={},) assert async_pager.next_page_token == "abc" responses = [] async for response in async_pager: responses.append(response) assert len(responses) == 6 assert all( isinstance(i, tensorboard_data.TimeSeriesDataPoint) for i in responses ) @pytest.mark.asyncio async def test_export_tensorboard_time_series_data_async_pages(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.export_tensorboard_time_series_data), "__call__", new_callable=mock.AsyncMock, ) as call: # Set the response to a series of pages. call.side_effect = ( tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[ tensorboard_data.TimeSeriesDataPoint(), tensorboard_data.TimeSeriesDataPoint(), tensorboard_data.TimeSeriesDataPoint(), ], next_page_token="abc", ), tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[], next_page_token="def", ), tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[tensorboard_data.TimeSeriesDataPoint(),], next_page_token="ghi", ), tensorboard_service.ExportTensorboardTimeSeriesDataResponse( time_series_data_points=[ tensorboard_data.TimeSeriesDataPoint(), tensorboard_data.TimeSeriesDataPoint(), ], ), RuntimeError, ) pages = [] async for page_ in ( await client.export_tensorboard_time_series_data(request={}) ).pages: pages.append(page_) for page_, token in zip(pages, ["abc", "def", "ghi", ""]): assert page_.raw_page.next_page_token == token def test_credentials_transport_error(): # It is an error to provide credentials and a transport instance. transport = transports.TensorboardServiceGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) with pytest.raises(ValueError): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # It is an error to provide a credentials file and a transport instance. transport = transports.TensorboardServiceGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) with pytest.raises(ValueError): client = TensorboardServiceClient( client_options={"credentials_file": "credentials.json"}, transport=transport, ) # It is an error to provide an api_key and a transport instance. transport = transports.TensorboardServiceGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) options = client_options.ClientOptions() options.api_key = "api_key" with pytest.raises(ValueError): client = TensorboardServiceClient(client_options=options, transport=transport,) # It is an error to provide an api_key and a credential. options = mock.Mock() options.api_key = "api_key" with pytest.raises(ValueError): client = TensorboardServiceClient( client_options=options, credentials=ga_credentials.AnonymousCredentials() ) # It is an error to provide scopes and a transport instance. transport = transports.TensorboardServiceGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) with pytest.raises(ValueError): client = TensorboardServiceClient( client_options={"scopes": ["1", "2"]}, transport=transport, ) def test_transport_instance(): # A client may be instantiated with a custom transport instance. transport = transports.TensorboardServiceGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) client = TensorboardServiceClient(transport=transport) assert client.transport is transport def test_transport_get_channel(): # A client may be instantiated with a custom transport instance. transport = transports.TensorboardServiceGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) channel = transport.grpc_channel assert channel transport = transports.TensorboardServiceGrpcAsyncIOTransport( credentials=ga_credentials.AnonymousCredentials(), ) channel = transport.grpc_channel assert channel @pytest.mark.parametrize( "transport_class", [ transports.TensorboardServiceGrpcTransport, transports.TensorboardServiceGrpcAsyncIOTransport, ], ) def test_transport_adc(transport_class): # Test default credentials are used if not provided. with mock.patch.object(google.auth, "default") as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) transport_class() adc.assert_called_once() def test_transport_grpc_default(): # A client should use the gRPC transport by default. client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), ) assert isinstance(client.transport, transports.TensorboardServiceGrpcTransport,) def test_tensorboard_service_base_transport_error(): # Passing both a credentials object and credentials_file should raise an error with pytest.raises(core_exceptions.DuplicateCredentialArgs): transport = transports.TensorboardServiceTransport( credentials=ga_credentials.AnonymousCredentials(), credentials_file="credentials.json", ) def test_tensorboard_service_base_transport(): # Instantiate the base transport. with mock.patch( "google.cloud.aiplatform_v1.services.tensorboard_service.transports.TensorboardServiceTransport.__init__" ) as Transport: Transport.return_value = None transport = transports.TensorboardServiceTransport( credentials=ga_credentials.AnonymousCredentials(), ) # Every method on the transport should just blindly # raise NotImplementedError. methods = ( "create_tensorboard", "get_tensorboard", "update_tensorboard", "list_tensorboards", "delete_tensorboard", "create_tensorboard_experiment", "get_tensorboard_experiment", "update_tensorboard_experiment", "list_tensorboard_experiments", "delete_tensorboard_experiment", "create_tensorboard_run", "batch_create_tensorboard_runs", "get_tensorboard_run", "update_tensorboard_run", "list_tensorboard_runs", "delete_tensorboard_run", "batch_create_tensorboard_time_series", "create_tensorboard_time_series", "get_tensorboard_time_series", "update_tensorboard_time_series", "list_tensorboard_time_series", "delete_tensorboard_time_series", "batch_read_tensorboard_time_series_data", "read_tensorboard_time_series_data", "read_tensorboard_blob_data", "write_tensorboard_experiment_data", "write_tensorboard_run_data", "export_tensorboard_time_series_data", ) for method in methods: with pytest.raises(NotImplementedError): getattr(transport, method)(request=object()) with pytest.raises(NotImplementedError): transport.close() # Additionally, the LRO client (a property) should # also raise NotImplementedError with pytest.raises(NotImplementedError): transport.operations_client def test_tensorboard_service_base_transport_with_credentials_file(): # Instantiate the base transport with a credentials file with mock.patch.object( google.auth, "load_credentials_from_file", autospec=True ) as load_creds, mock.patch( "google.cloud.aiplatform_v1.services.tensorboard_service.transports.TensorboardServiceTransport._prep_wrapped_messages" ) as Transport: Transport.return_value = None load_creds.return_value = (ga_credentials.AnonymousCredentials(), None) transport = transports.TensorboardServiceTransport( credentials_file="credentials.json", quota_project_id="octopus", ) load_creds.assert_called_once_with( "credentials.json", scopes=None, default_scopes=( "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/cloud-platform.read-only", ), quota_project_id="octopus", ) def test_tensorboard_service_base_transport_with_adc(): # Test the default credentials are used if credentials and credentials_file are None. with mock.patch.object(google.auth, "default", autospec=True) as adc, mock.patch( "google.cloud.aiplatform_v1.services.tensorboard_service.transports.TensorboardServiceTransport._prep_wrapped_messages" ) as Transport: Transport.return_value = None adc.return_value = (ga_credentials.AnonymousCredentials(), None) transport = transports.TensorboardServiceTransport() adc.assert_called_once() def test_tensorboard_service_auth_adc(): # If no credentials are provided, we should use ADC credentials. with mock.patch.object(google.auth, "default", autospec=True) as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) TensorboardServiceClient() adc.assert_called_once_with( scopes=None, default_scopes=( "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/cloud-platform.read-only", ), quota_project_id=None, ) @pytest.mark.parametrize( "transport_class", [ transports.TensorboardServiceGrpcTransport, transports.TensorboardServiceGrpcAsyncIOTransport, ], ) def test_tensorboard_service_transport_auth_adc(transport_class): # If credentials and host are not provided, the transport class should use # ADC credentials. with mock.patch.object(google.auth, "default", autospec=True) as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) transport_class(quota_project_id="octopus", scopes=["1", "2"]) adc.assert_called_once_with( scopes=["1", "2"], default_scopes=( "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/cloud-platform.read-only", ), quota_project_id="octopus", ) @pytest.mark.parametrize( "transport_class,grpc_helpers", [ (transports.TensorboardServiceGrpcTransport, grpc_helpers), (transports.TensorboardServiceGrpcAsyncIOTransport, grpc_helpers_async), ], ) def test_tensorboard_service_transport_create_channel(transport_class, grpc_helpers): # If credentials and host are not provided, the transport class should use # ADC credentials. with mock.patch.object( google.auth, "default", autospec=True ) as adc, mock.patch.object( grpc_helpers, "create_channel", autospec=True ) as create_channel: creds = ga_credentials.AnonymousCredentials() adc.return_value = (creds, None) transport_class(quota_project_id="octopus", scopes=["1", "2"]) create_channel.assert_called_with( "aiplatform.googleapis.com:443", credentials=creds, credentials_file=None, quota_project_id="octopus", default_scopes=( "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/cloud-platform.read-only", ), scopes=["1", "2"], default_host="aiplatform.googleapis.com", ssl_credentials=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) @pytest.mark.parametrize( "transport_class", [ transports.TensorboardServiceGrpcTransport, transports.TensorboardServiceGrpcAsyncIOTransport, ], ) def test_tensorboard_service_grpc_transport_client_cert_source_for_mtls( transport_class, ): cred = ga_credentials.AnonymousCredentials() # Check ssl_channel_credentials is used if provided. with mock.patch.object(transport_class, "create_channel") as mock_create_channel: mock_ssl_channel_creds = mock.Mock() transport_class( host="squid.clam.whelk", credentials=cred, ssl_channel_credentials=mock_ssl_channel_creds, ) mock_create_channel.assert_called_once_with( "squid.clam.whelk:443", credentials=cred, credentials_file=None, scopes=None, ssl_credentials=mock_ssl_channel_creds, quota_project_id=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Check if ssl_channel_credentials is not provided, then client_cert_source_for_mtls # is used. with mock.patch.object(transport_class, "create_channel", return_value=mock.Mock()): with mock.patch("grpc.ssl_channel_credentials") as mock_ssl_cred: transport_class( credentials=cred, client_cert_source_for_mtls=client_cert_source_callback, ) expected_cert, expected_key = client_cert_source_callback() mock_ssl_cred.assert_called_once_with( certificate_chain=expected_cert, private_key=expected_key ) def test_tensorboard_service_host_no_port(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), client_options=client_options.ClientOptions( api_endpoint="aiplatform.googleapis.com" ), ) assert client.transport._host == "aiplatform.googleapis.com:443" def test_tensorboard_service_host_with_port(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), client_options=client_options.ClientOptions( api_endpoint="aiplatform.googleapis.com:8000" ), ) assert client.transport._host == "aiplatform.googleapis.com:8000" def test_tensorboard_service_grpc_transport_channel(): channel = grpc.secure_channel("http://localhost/", grpc.local_channel_credentials()) # Check that channel is used if provided. transport = transports.TensorboardServiceGrpcTransport( host="squid.clam.whelk", channel=channel, ) assert transport.grpc_channel == channel assert transport._host == "squid.clam.whelk:443" assert transport._ssl_channel_credentials == None def test_tensorboard_service_grpc_asyncio_transport_channel(): channel = aio.secure_channel("http://localhost/", grpc.local_channel_credentials()) # Check that channel is used if provided. transport = transports.TensorboardServiceGrpcAsyncIOTransport( host="squid.clam.whelk", channel=channel, ) assert transport.grpc_channel == channel assert transport._host == "squid.clam.whelk:443" assert transport._ssl_channel_credentials == None # Remove this test when deprecated arguments (api_mtls_endpoint, client_cert_source) are # removed from grpc/grpc_asyncio transport constructor. @pytest.mark.parametrize( "transport_class", [ transports.TensorboardServiceGrpcTransport, transports.TensorboardServiceGrpcAsyncIOTransport, ], ) def test_tensorboard_service_transport_channel_mtls_with_client_cert_source( transport_class, ): with mock.patch( "grpc.ssl_channel_credentials", autospec=True ) as grpc_ssl_channel_cred: with mock.patch.object( transport_class, "create_channel" ) as grpc_create_channel: mock_ssl_cred = mock.Mock() grpc_ssl_channel_cred.return_value = mock_ssl_cred mock_grpc_channel = mock.Mock() grpc_create_channel.return_value = mock_grpc_channel cred = ga_credentials.AnonymousCredentials() with pytest.warns(DeprecationWarning): with mock.patch.object(google.auth, "default") as adc: adc.return_value = (cred, None) transport = transport_class( host="squid.clam.whelk", api_mtls_endpoint="mtls.squid.clam.whelk", client_cert_source=client_cert_source_callback, ) adc.assert_called_once() grpc_ssl_channel_cred.assert_called_once_with( certificate_chain=b"cert bytes", private_key=b"key bytes" ) grpc_create_channel.assert_called_once_with( "mtls.squid.clam.whelk:443", credentials=cred, credentials_file=None, scopes=None, ssl_credentials=mock_ssl_cred, quota_project_id=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) assert transport.grpc_channel == mock_grpc_channel assert transport._ssl_channel_credentials == mock_ssl_cred # Remove this test when deprecated arguments (api_mtls_endpoint, client_cert_source) are # removed from grpc/grpc_asyncio transport constructor. @pytest.mark.parametrize( "transport_class", [ transports.TensorboardServiceGrpcTransport, transports.TensorboardServiceGrpcAsyncIOTransport, ], ) def test_tensorboard_service_transport_channel_mtls_with_adc(transport_class): mock_ssl_cred = mock.Mock() with mock.patch.multiple( "google.auth.transport.grpc.SslCredentials", __init__=mock.Mock(return_value=None), ssl_credentials=mock.PropertyMock(return_value=mock_ssl_cred), ): with mock.patch.object( transport_class, "create_channel" ) as grpc_create_channel: mock_grpc_channel = mock.Mock() grpc_create_channel.return_value = mock_grpc_channel mock_cred = mock.Mock() with pytest.warns(DeprecationWarning): transport = transport_class( host="squid.clam.whelk", credentials=mock_cred, api_mtls_endpoint="mtls.squid.clam.whelk", client_cert_source=None, ) grpc_create_channel.assert_called_once_with( "mtls.squid.clam.whelk:443", credentials=mock_cred, credentials_file=None, scopes=None, ssl_credentials=mock_ssl_cred, quota_project_id=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) assert transport.grpc_channel == mock_grpc_channel def test_tensorboard_service_grpc_lro_client(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) transport = client.transport # Ensure that we have a api-core operations client. assert isinstance(transport.operations_client, operations_v1.OperationsClient,) # Ensure that subsequent calls to the property send the exact same object. assert transport.operations_client is transport.operations_client def test_tensorboard_service_grpc_lro_async_client(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc_asyncio", ) transport = client.transport # Ensure that we have a api-core operations client. assert isinstance(transport.operations_client, operations_v1.OperationsAsyncClient,) # Ensure that subsequent calls to the property send the exact same object. assert transport.operations_client is transport.operations_client def test_tensorboard_path(): project = "squid" location = "clam" tensorboard = "whelk" expected = "projects/{project}/locations/{location}/tensorboards/{tensorboard}".format( project=project, location=location, tensorboard=tensorboard, ) actual = TensorboardServiceClient.tensorboard_path(project, location, tensorboard) assert expected == actual def test_parse_tensorboard_path(): expected = { "project": "octopus", "location": "oyster", "tensorboard": "nudibranch", } path = TensorboardServiceClient.tensorboard_path(**expected) # Check that the path construction is reversible. actual = TensorboardServiceClient.parse_tensorboard_path(path) assert expected == actual def test_tensorboard_experiment_path(): project = "cuttlefish" location = "mussel" tensorboard = "winkle" experiment = "nautilus" expected = "projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}".format( project=project, location=location, tensorboard=tensorboard, experiment=experiment, ) actual = TensorboardServiceClient.tensorboard_experiment_path( project, location, tensorboard, experiment ) assert expected == actual def test_parse_tensorboard_experiment_path(): expected = { "project": "scallop", "location": "abalone", "tensorboard": "squid", "experiment": "clam", } path = TensorboardServiceClient.tensorboard_experiment_path(**expected) # Check that the path construction is reversible. actual = TensorboardServiceClient.parse_tensorboard_experiment_path(path) assert expected == actual def test_tensorboard_run_path(): project = "whelk" location = "octopus" tensorboard = "oyster" experiment = "nudibranch" run = "cuttlefish" expected = "projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}".format( project=project, location=location, tensorboard=tensorboard, experiment=experiment, run=run, ) actual = TensorboardServiceClient.tensorboard_run_path( project, location, tensorboard, experiment, run ) assert expected == actual def test_parse_tensorboard_run_path(): expected = { "project": "mussel", "location": "winkle", "tensorboard": "nautilus", "experiment": "scallop", "run": "abalone", } path = TensorboardServiceClient.tensorboard_run_path(**expected) # Check that the path construction is reversible. actual = TensorboardServiceClient.parse_tensorboard_run_path(path) assert expected == actual def test_tensorboard_time_series_path(): project = "squid" location = "clam" tensorboard = "whelk" experiment = "octopus" run = "oyster" time_series = "nudibranch" expected = "projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series}".format( project=project, location=location, tensorboard=tensorboard, experiment=experiment, run=run, time_series=time_series, ) actual = TensorboardServiceClient.tensorboard_time_series_path( project, location, tensorboard, experiment, run, time_series ) assert expected == actual def test_parse_tensorboard_time_series_path(): expected = { "project": "cuttlefish", "location": "mussel", "tensorboard": "winkle", "experiment": "nautilus", "run": "scallop", "time_series": "abalone", } path = TensorboardServiceClient.tensorboard_time_series_path(**expected) # Check that the path construction is reversible. actual = TensorboardServiceClient.parse_tensorboard_time_series_path(path) assert expected == actual def test_common_billing_account_path(): billing_account = "squid" expected = "billingAccounts/{billing_account}".format( billing_account=billing_account, ) actual = TensorboardServiceClient.common_billing_account_path(billing_account) assert expected == actual def test_parse_common_billing_account_path(): expected = { "billing_account": "clam", } path = TensorboardServiceClient.common_billing_account_path(**expected) # Check that the path construction is reversible. actual = TensorboardServiceClient.parse_common_billing_account_path(path) assert expected == actual def test_common_folder_path(): folder = "whelk" expected = "folders/{folder}".format(folder=folder,) actual = TensorboardServiceClient.common_folder_path(folder) assert expected == actual def test_parse_common_folder_path(): expected = { "folder": "octopus", } path = TensorboardServiceClient.common_folder_path(**expected) # Check that the path construction is reversible. actual = TensorboardServiceClient.parse_common_folder_path(path) assert expected == actual def test_common_organization_path(): organization = "oyster" expected = "organizations/{organization}".format(organization=organization,) actual = TensorboardServiceClient.common_organization_path(organization) assert expected == actual def test_parse_common_organization_path(): expected = { "organization": "nudibranch", } path = TensorboardServiceClient.common_organization_path(**expected) # Check that the path construction is reversible. actual = TensorboardServiceClient.parse_common_organization_path(path) assert expected == actual def test_common_project_path(): project = "cuttlefish" expected = "projects/{project}".format(project=project,) actual = TensorboardServiceClient.common_project_path(project) assert expected == actual def test_parse_common_project_path(): expected = { "project": "mussel", } path = TensorboardServiceClient.common_project_path(**expected) # Check that the path construction is reversible. actual = TensorboardServiceClient.parse_common_project_path(path) assert expected == actual def test_common_location_path(): project = "winkle" location = "nautilus" expected = "projects/{project}/locations/{location}".format( project=project, location=location, ) actual = TensorboardServiceClient.common_location_path(project, location) assert expected == actual def test_parse_common_location_path(): expected = { "project": "scallop", "location": "abalone", } path = TensorboardServiceClient.common_location_path(**expected) # Check that the path construction is reversible. actual = TensorboardServiceClient.parse_common_location_path(path) assert expected == actual def test_client_with_default_client_info(): client_info = gapic_v1.client_info.ClientInfo() with mock.patch.object( transports.TensorboardServiceTransport, "_prep_wrapped_messages" ) as prep: client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), client_info=client_info, ) prep.assert_called_once_with(client_info) with mock.patch.object( transports.TensorboardServiceTransport, "_prep_wrapped_messages" ) as prep: transport_class = TensorboardServiceClient.get_transport_class() transport = transport_class( credentials=ga_credentials.AnonymousCredentials(), client_info=client_info, ) prep.assert_called_once_with(client_info) @pytest.mark.asyncio async def test_transport_close_async(): client = TensorboardServiceAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc_asyncio", ) with mock.patch.object( type(getattr(client.transport, "grpc_channel")), "close" ) as close: async with client: close.assert_not_called() close.assert_called_once() def test_transport_close(): transports = { "grpc": "_grpc_channel", } for transport, close_name in transports.items(): client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport ) with mock.patch.object( type(getattr(client.transport, close_name)), "close" ) as close: with client: close.assert_not_called() close.assert_called_once() def test_client_ctx(): transports = [ "grpc", ] for transport in transports: client = TensorboardServiceClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport ) # Test client calls underlying transport. with mock.patch.object(type(client.transport), "close") as close: close.assert_not_called() with client: pass close.assert_called() @pytest.mark.parametrize( "client_class,transport_class", [ (TensorboardServiceClient, transports.TensorboardServiceGrpcTransport), ( TensorboardServiceAsyncClient, transports.TensorboardServiceGrpcAsyncIOTransport, ), ], ) def test_api_key_credentials(client_class, transport_class): with mock.patch.object( google.auth._default, "get_api_key_credentials", create=True ) as get_api_key_credentials: mock_cred = mock.Mock() get_api_key_credentials.return_value = mock_cred options = client_options.ClientOptions() options.api_key = "api_key" with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(client_options=options) patched.assert_called_once_with( credentials=mock_cred, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, )
googleapis/python-aiplatform
tests/unit/gapic/aiplatform_v1/test_tensorboard_service.py
Python
apache-2.0
360,461
0.000977
# http://deeplearning.net/tutorial/code/mlp.py """ This tutorial introduces the multilayer perceptron using Theano. A multilayer perceptron is a logistic regressor where instead of feeding the input to the logistic regression you insert a intermediate layer, called the hidden layer, that has a nonlinear activation function (usually tanh or sigmoid) . One can use many such hidden layers making the architecture deep. The tutorial will also tackle the problem of MNIST digit classification. .. math:: f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))), References: - textbooks: "Pattern Recognition and Machine Learning" - Christopher M. Bishop, section 5 """ __docformat__ = 'restructedtext en' import cPickle import gzip import os import sys import time import numpy import theano import theano.tensor as T from neuromancy.theano_tutorials.tutorial_logreg import LogisticRegression, load_data class HiddenLayer(object): def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=T.tanh): """ Typical hidden layer of a MLP: units are fully-connected and have sigmoidal activation function. Weight matrix W is of shape (n_in,n_out) and the bias vector b is of shape (n_out,). NOTE : The nonlinearity used here is tanh Hidden unit activation is given by: tanh(dot(input,W) + b) :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dmatrix :param input: a symbolic tensor of shape (n_examples, n_in) :type n_in: int :param n_in: dimensionality of input :type n_out: int :param n_out: number of hidden units :type activation: theano.Op or function :param activation: Non linearity to be applied in the hidden layer """ self.input = input # `W` is initialized with `W_values` which is uniformely sampled # from sqrt(-6./(n_in+n_hidden)) and sqrt(6./(n_in+n_hidden)) # for tanh activation function # the output of uniform if converted using asarray to dtype # theano.config.floatX so that the code is runable on GPU # Note : optimal initialization of weights is dependent on the # activation function used (among other things). # For example, results presented in [Xavier10] suggest that you # should use 4 times larger initial weights for sigmoid # compared to tanh # We have no info for other function, so we use the same as # tanh. if W is None: W_values = numpy.asarray(rng.uniform( low=-numpy.sqrt(6. / (n_in + n_out)), high=numpy.sqrt(6. / (n_in + n_out)), size=(n_in, n_out)), dtype=theano.config.floatX) if activation == theano.tensor.nnet.sigmoid: W_values *= 4 W = theano.shared(value=W_values, name='W', borrow=True) if b is None: b_values = numpy.zeros((n_out,), dtype=theano.config.floatX) b = theano.shared(value=b_values, name='b', borrow=True) self.W = W self.b = b lin_output = T.dot(input, self.W) + self.b self.output = (lin_output if activation is None else activation(lin_output)) # parameters of the model self.params = [self.W, self.b] class MLP(object): """Multi-Layer Perceptron Class A multilayer perceptron is a feedforward artificial neural network model that has one layer or more of hidden units and nonlinear activations. Intermediate layers usually have as activation function tanh or the sigmoid function (defined here by a ``HiddenLayer`` class) while the top layer is a softamx layer (defined here by a ``LogisticRegression`` class). """ def __init__(self, rng, input, n_in, n_hidden, n_out): """Initialize the parameters for the multilayer perceptron :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.TensorType :param input: symbolic variable that describes the input of the architecture (one minibatch) :type n_in: int :param n_in: number of input units, the dimension of the space in which the datapoints lie :type n_hidden: int :param n_hidden: number of hidden units :type n_out: int :param n_out: number of output units, the dimension of the space in which the labels lie """ # Since we are dealing with a one hidden layer MLP, this will translate # into a HiddenLayer with a tanh activation function connected to the # LogisticRegression layer; the activation function can be replaced by # sigmoid or any other nonlinear function self.hiddenLayer = HiddenLayer(rng=rng, input=input, n_in=n_in, n_out=n_hidden, activation=T.tanh) # The logistic regression layer gets as input the hidden units # of the hidden layer self.logRegressionLayer = LogisticRegression( input=self.hiddenLayer.output, n_in=n_hidden, n_out=n_out) # L1 norm ; one regularization option is to enforce L1 norm to # be small self.L1 = abs(self.hiddenLayer.W).sum() \ + abs(self.logRegressionLayer.W).sum() # square of L2 norm ; one regularization option is to enforce # square of L2 norm to be small self.L2_sqr = (self.hiddenLayer.W ** 2).sum() \ + (self.logRegressionLayer.W ** 2).sum() # negative log likelihood of the MLP is given by the negative # log likelihood of the output of the model, computed in the # logistic regression layer self.negative_log_likelihood = self.logRegressionLayer.negative_log_likelihood # same holds for the function computing the number of errors self.errors = self.logRegressionLayer.errors # the parameters of the model are the parameters of the two layer it is # made out of self.params = self.hiddenLayer.params + self.logRegressionLayer.params def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000, dataset='mnist.pkl.gz', batch_size=20, n_hidden=500): """ Demonstrate stochastic gradient descent optimization for a multilayer perceptron This is demonstrated on MNIST. :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient :type L1_reg: float :param L1_reg: L1-norm's weight when added to the cost (see regularization) :type L2_reg: float :param L2_reg: L2-norm's weight when added to the cost (see regularization) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset: string :param dataset: the path of the MNIST dataset file from http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz """ datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels rng = numpy.random.RandomState(1234) # construct the MLP class classifier = MLP(rng=rng, input=x, n_in=28 * 28, n_hidden=n_hidden, n_out=10) # compiling a Theano function that computes the mistakes that are made # by the model on a minibatch test_model = theano.function( inputs=[index], outputs=classifier.errors(y), givens={ x: test_set_x[index * batch_size:(index + 1) * batch_size], y: test_set_y[index * batch_size:(index + 1) * batch_size]}) validate_model = theano.function( inputs=[index], outputs=classifier.errors(y), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size]}) # the cost we minimize during training is the negative log likelihood # of the model plus the regularization terms (L1 and L2); # cost is expressed here symbolically cost = classifier.negative_log_likelihood(y) \ + L1_reg * classifier.L1 \ + L2_reg * classifier.L2_sqr # compute the gradient of cost with respect to theta (sotred in params) # the resulting gradients will be stored in a list gparams gparams = [] # try this: gparams = T.grad(cost, params) for param in classifier.params: gparam = T.grad(cost, param) gparams.append(gparam) # train_model is a function that updates the model parameters by SGD. # Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i],gparams[i]) pairs. updates = [] for param, gparam in zip(classifier.params, gparams): updates.append((param, param - learning_rate * gparam)) # compiling a Theano function `train_model` that returns the cost, but # in the same time updates the parameter of the model based on the rules # defined in `updates` train_model = theano.function( inputs=[index], outputs=cost, updates=updates, givens={ x: train_set_x[index * batch_size:(index + 1) * batch_size], y: train_set_y[index * batch_size:(index + 1) * batch_size]}) ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatches before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = time.clock() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): minibatch_avg_cost = train_model(minibatch_index) # iteration number iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: print 'training @ iter = ', iter if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [test_model(i) for i in xrange(n_test_batches)] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) if patience <= iter: done_looping = True break end_time = time.clock() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i, ' 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) if __name__ == '__main__': test_mlp()
cliffclive/neuromancy
neuromancy/theano_tutorials/tutorial_mlp.py
Python
mit
13,906
0.001582
import os import sys import logging import base64 from subprocess import check_call from transparencyscript.constants import TRANSPARENCY_SUFFIX from transparencyscript.utils import make_transparency_name, get_config_vars, get_password_vars, get_task_vars, \ get_transparency_vars, get_tree_head, get_lego_env, get_lego_command, get_save_command, get_chain, post_chain, \ write_to_file from transparencyscript.signed_certificate_timestamp import SignedCertificateTimestamp def main(name=None): if name not in (None, '__main__'): return # Initialize logging for script log = logging.getLogger() log.setLevel(logging.DEBUG) logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') # Store default parameters and keys in config_vars if len(sys.argv) > 1: config_path = sys.argv[1] config_vars = get_config_vars(config_path) else: print("ERROR: script_config.json path is required as an argument.") sys.exit(1) # Store AWS credentials in password_vars password_path = os.path.join(os.path.dirname(config_path), 'passwords.json') password_vars = get_password_vars(password_path) # Concatenate local config_vars with task_vars created from task.json if "task_json" in config_vars: task_path = config_vars["task_json"] task_vars = get_task_vars(task_path) config_vars = get_transparency_vars(config_vars, task_vars) # Parse tree head from summary file tree_head = get_tree_head(config_vars) if tree_head is None: raise Exception("No tree head found in summary file") base_name = "{}.{}".format("invalid", TRANSPARENCY_SUFFIX) trans_name = make_transparency_name(tree_head, config_vars["payload"]["version"], config_vars["payload"]["stage-product"]) # Issue and save the certificate, then delete the extra files lego created lego_env = get_lego_env(password_vars) lego_command = get_lego_command(config_vars, base_name, trans_name) save_command = get_save_command(config_vars, base_name) cleanup_command = "rm -rf {}/lego".format(config_vars["work_dir"]) check_call(lego_command, env=lego_env, shell=True) check_call(save_command, shell=True) check_call(cleanup_command, shell=True) # Submit chain to certificate transparency log if log_list exists if 'log_list' in config_vars: req = get_chain(config_vars) resp_list = post_chain(config_vars["log_list"], req) # Remove sct_list file if it already exists sct_file_path = os.path.join(config_vars["public_artifact_dir"], config_vars["sct_filename"]) try: os.remove(sct_file_path) except OSError: pass # Append to sct_list file for each chain for resp in resp_list: sct = SignedCertificateTimestamp(resp) sct = base64.b64encode(sct.to_rfc6962()).decode('utf-8') write_to_file(sct_file_path, sct, open_mode='a') main(name=__name__)
BrandonTang/binary-transparency
transparencyscript/script.py
Python
mpl-2.0
3,070
0.002606
from misc.standalone_helper import decode_string, double_decode_string from .__general_data_v1 import GeneralEndpointDataV1 class PartitionsPartitionEndpoint(GeneralEndpointDataV1): def _get(self) -> bool: partition_id = self._request_holder.get_params()["partition"] partition_id = decode_string(partition_id) persisted_info = self._outbound_gate.get_last_measurement("partition", partition_id, "info") if persisted_info is not None: self._response_holder.update_body_data({ "timestamp": persisted_info["timestamp"], "general-info": persisted_info["value"] }) return True @classmethod def get_paths(cls): return [ "/partitions/<string:partition>" ] @classmethod def get_name(cls): return "partition entity" @classmethod def _get_parent(cls): from .partitions import PartitionsEndpoint return PartitionsEndpoint @classmethod def _get_children(cls): from .partitions_partition_free import PartitionsPartitionFreeEndpoint from .partitions_partition_total import PartitionsPartitionTotalEndpoint from .partitions_partition_used import PartitionsPartitionUsedEndpoint return [ ("/free", PartitionsPartitionFreeEndpoint), ("/total", PartitionsPartitionTotalEndpoint), ("/used", PartitionsPartitionUsedEndpoint) ] @classmethod def _get_mandatory_parameters(cls): return [ cls.get_partition_id_validator() ] @classmethod def get_partition_id_validator(cls): return "partition", lambda x: cls._outbound_gate.is_argument_valid( "partition", double_decode_string(x))
OpServ-Monitoring/opserv-backend
app/server/restful_api/data/v1/endpoints/partitions_partition.py
Python
gpl-3.0
1,794
0.001115
#!/usr/bin/env python # This example script was ported from Perl Spreadsheet::WriteExcel module. # The author of the Spreadsheet::WriteExcel module is John McNamara # <jmcnamara@cpan.org> __revision__ = """$Id: hyperlink2.py,v 1.3 2004/01/31 18:56:07 fufff Exp $""" ############################################################################### # # Example of how to use the WriteExcel module to write internal and internal # hyperlinks. # # If you wish to run this program and follow the hyperlinks you should create # the following directory structure: # # C:\ -- Temp --+-- Europe # | # \-- Asia # # # See also hyperlink1.pl for web URL examples. # # reverse('(c)'), February 2002, John McNamara, jmcnamara@cpan.org # import pyXLWriter as xl # Create three workbooks: # C:\Temp\Europe\Ireland.xls # C:\Temp\Europe\Italy.xls # C:\Temp\Asia\China.xls # ireland = xl.Writer(r'C:\Temp\Europe\Ireland.xls') ire_links = ireland.add_worksheet('Links') ire_sales = ireland.add_worksheet('Sales') ire_data = ireland.add_worksheet('Product Data') italy = xl.Writer(r'C:\Temp\Europe\Italy.xls') ita_links = italy.add_worksheet('Links') ita_sales = italy.add_worksheet('Sales') ita_data = italy.add_worksheet('Product Data') china = xl.Writer(r'C:\Temp\Asia\China.xls') cha_links = china.add_worksheet('Links') cha_sales = china.add_worksheet('Sales') cha_data = china.add_worksheet('Product Data') # Add a format format = ireland.add_format(color='green', bold=1) ire_links.set_column('A:B', 25) ############################################################################### # # Examples of internal links # ire_links.write('A1', 'Internal links', format) # Internal link ire_links.write('A2', 'internal:Sales!A2') # Internal link to a range ire_links.write('A3', 'internal:Sales!A3:D3') # Internal link with an alternative string ire_links.write_url('A4', 'internal:Sales!A4', 'Link') # Internal link with a format ire_links.write('A5', 'internal:Sales!A5', format) # Internal link with an alternative string and format ire_links.write_url('A6', 'internal:Sales!A6', 'Link', format) # Internal link (spaces in worksheet name) ire_links.write('A7', "internal:'Product Data'!A7") ############################################################################### # # Examples of external links # ire_links.write('B1', 'External links', format) # External link to a local file ire_links.write('B2', 'external:Italy.xls') # External link to a local file with worksheet ire_links.write('B3', 'external:Italy.xls#Sales!B3') # External link to a local file with worksheet and alternative string ire_links.write_url('B4', 'external:Italy.xls#Sales!B4', 'Link') # External link to a local file with worksheet and format ire_links.write('B5', 'external:Italy.xls#Sales!B5', format) # External link to a remote file, absolute path ire_links.write('B6', 'external:c:/Temp/Asia/China.xls') # External link to a remote file, relative path ire_links.write('B7', 'external:../Asia/China.xls') # External link to a remote file with worksheet ire_links.write('B8', 'external:c:/Temp/Asia/China.xls#Sales!B8') # External link to a remote file with worksheet (with spaces in the name) ire_links.write('B9', "external:c:/Temp/Asia/China.xls#'Product Data'!B9") ############################################################################### # # Some utility links to return to the main sheet # ire_sales.write_url('A2', 'internal:Links!A2', 'Back') ire_sales.write_url('A3', 'internal:Links!A3', 'Back') ire_sales.write_url('A4', 'internal:Links!A4', 'Back') ire_sales.write_url('A5', 'internal:Links!A5', 'Back') ire_sales.write_url('A6', 'internal:Links!A6', 'Back') ire_data.write_url('A7', 'internal:Links!A7', 'Back') ita_links.write_url('A1', 'external:Ireland.xls#Links!B2', 'Back') ita_sales.write_url('B3', 'external:Ireland.xls#Links!B3', 'Back') ita_sales.write_url('B4', 'external:Ireland.xls#Links!B4', 'Back') ita_sales.write_url('B5', 'external:Ireland.xls#Links!B5', 'Back') cha_links.write_url('A1', 'external:../Europe/Ireland.xls#Links!B6', 'Back') cha_sales.write_url('B8', 'external:../Europe/Ireland.xls#Links!B8', 'Back') cha_data.write_url('B9', 'external:../Europe/Ireland.xls#Links!B9', 'Back') ireland.close() italy.close() china.close()
evgenybf/pyXLWriter
examples/hyperlink2.py
Python
lgpl-2.1
4,310
0.001624
import datetime import six try: from django.contrib.sites.requests import RequestSite except ImportError: # Django < 1.9 from django.contrib.sites.models import RequestSite from django.core.exceptions import ObjectDoesNotExist from django.core.serializers.json import DjangoJSONEncoder from django.forms.models import model_to_dict from django.shortcuts import render, get_object_or_404 from django.utils.timezone import now from django.core.paginator import Paginator, EmptyPage from django.views.decorators.cache import cache_page from graphite.util import json, epoch, epoch_to_dt, jsonResponse, HttpError, HttpResponse from graphite.events.models import Event from graphite.render.attime import parseATTime from graphite.settings import EVENTS_PER_PAGE, _PAGE_LINKS class EventEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, datetime.datetime): return epoch(obj) return json.JSONEncoder.default(self, obj) def get_page_range(paginator, page): """ Generate page range """ page_range = [] if 4>page: if len(paginator.page_range)>_PAGE_LINKS: page_range = [p for p in range(1, _PAGE_LINKS+1)] else: page_range=paginator.page_range else: for p in paginator.page_range: if p<page: if page-p<(_PAGE_LINKS)//2: page_range.append(p) if p>=page: if p-page<(_PAGE_LINKS)//2: page_range.append(p) if len(page_range)>_PAGE_LINKS and page>5: page_range = page_range[:-1] return page_range @cache_page(60 * 15) def view_events(request, page_id=1): if request.method == "GET": try: page_id = int(page_id) except ValueError: page_id = 1 events = fetch(request) paginator = Paginator(events, EVENTS_PER_PAGE) try: events = paginator.page(page_id) except EmptyPage: events = paginator.page(paginator.num_pages) pages = get_page_range(paginator, page_id) context = {'events': events, 'site': RequestSite(request), 'pages': pages, 'protocol': 'https' if request.is_secure() else 'http'} return render(request, 'events.html', context) else: return post_event(request) @jsonResponse(encoder=DjangoJSONEncoder) def jsonDetail(request, queryParams, event_id): try: e = Event.objects.get(id=event_id) e.tags = e.tags.split() return model_to_dict(e) except ObjectDoesNotExist: raise HttpError('Event matching query does not exist', status=404) def detail(request, event_id): if request.META.get('HTTP_ACCEPT') == 'application/json': return jsonDetail(request, event_id) e = get_object_or_404(Event, pk=event_id) context = {'event': e} return render(request, 'event.html', context) def post_event(request): if request.method == 'POST': event = json.loads(request.body) assert isinstance(event, dict) tags = event.get('tags') if tags is not None: if isinstance(tags, list): tags = ' '.join(tags) elif not isinstance(tags, six.string_types): return HttpResponse( json.dumps({'error': '"tags" must be an array or space-separated string'}), status=400) else: tags = None if 'when' in event: when = epoch_to_dt(event['when']) else: when = now() Event.objects.create( what=event.get('what'), tags=tags, when=when, data=event.get('data', ''), ) return HttpResponse(status=200) else: return HttpResponse(status=405) def get_data(request): query_params = request.GET.copy() query_params.update(request.POST) if 'jsonp' in query_params: response = HttpResponse( "%s(%s)" % (query_params.get('jsonp'), json.dumps(fetch(request), cls=EventEncoder)), content_type='text/javascript') else: response = HttpResponse( json.dumps(fetch(request), cls=EventEncoder), content_type='application/json') return response def fetch(request): if request.GET.get('from') is not None: time_from = parseATTime(request.GET['from']) else: time_from = epoch_to_dt(0) if request.GET.get('until') is not None: time_until = parseATTime(request.GET['until']) else: time_until = now() set_operation = request.GET.get('set') tags = request.GET.get('tags') if tags is not None: tags = request.GET.get('tags').split(' ') result = [] for x in Event.find_events(time_from, time_until, tags=tags, set_operation=set_operation): # django-tagging's with_intersection() returns matches with unknown tags # this is a workaround to ensure we only return positive matches if set_operation == 'intersection': if len(set(tags) & set(x.as_dict()['tags'])) == len(tags): result.append(x.as_dict()) else: result.append(x.as_dict()) return result
drax68/graphite-web
webapp/graphite/events/views.py
Python
apache-2.0
5,333
0.002813
# -*- coding: utf-8 -*- from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ class state(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-interfaces - based on the path /interfaces/interface/routed-vlan/ipv6/addresses/address/vrrp/vrrp-group/interface-tracking/state. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Operational state data for VRRP interface tracking """ __slots__ = ( "_path_helper", "_extmethods", "__track_interface", "__priority_decrement" ) _yang_name = "state" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__track_interface = YANGDynClass( base=six.text_type, is_leaf=True, yang_name="track-interface", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="leafref", is_config=False, ) self.__priority_decrement = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), restriction_dict={"range": ["0..254"]}, ), default=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 )( 0 ), is_leaf=True, yang_name="priority-decrement", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="uint8", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "interfaces", "interface", "routed-vlan", "ipv6", "addresses", "address", "vrrp", "vrrp-group", "interface-tracking", "state", ] def _get_track_interface(self): """ Getter method for track_interface, mapped from YANG variable /interfaces/interface/routed_vlan/ipv6/addresses/address/vrrp/vrrp_group/interface_tracking/state/track_interface (leafref) YANG Description: Sets an interface that should be tracked for up/down events to dynamically change the priority state of the VRRP group, and potentially change the mastership if the tracked interface going down lowers the priority sufficiently """ return self.__track_interface def _set_track_interface(self, v, load=False): """ Setter method for track_interface, mapped from YANG variable /interfaces/interface/routed_vlan/ipv6/addresses/address/vrrp/vrrp_group/interface_tracking/state/track_interface (leafref) If this variable is read-only (config: false) in the source YANG file, then _set_track_interface is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_track_interface() directly. YANG Description: Sets an interface that should be tracked for up/down events to dynamically change the priority state of the VRRP group, and potentially change the mastership if the tracked interface going down lowers the priority sufficiently """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=six.text_type, is_leaf=True, yang_name="track-interface", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="leafref", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """track_interface must be of a type compatible with leafref""", "defined-type": "leafref", "generated-type": """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="track-interface", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='leafref', is_config=False)""", } ) self.__track_interface = t if hasattr(self, "_set"): self._set() def _unset_track_interface(self): self.__track_interface = YANGDynClass( base=six.text_type, is_leaf=True, yang_name="track-interface", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="leafref", is_config=False, ) def _get_priority_decrement(self): """ Getter method for priority_decrement, mapped from YANG variable /interfaces/interface/routed_vlan/ipv6/addresses/address/vrrp/vrrp_group/interface_tracking/state/priority_decrement (uint8) YANG Description: Set the value to subtract from priority when the tracked interface goes down """ return self.__priority_decrement def _set_priority_decrement(self, v, load=False): """ Setter method for priority_decrement, mapped from YANG variable /interfaces/interface/routed_vlan/ipv6/addresses/address/vrrp/vrrp_group/interface_tracking/state/priority_decrement (uint8) If this variable is read-only (config: false) in the source YANG file, then _set_priority_decrement is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_priority_decrement() directly. YANG Description: Set the value to subtract from priority when the tracked interface goes down """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8, ), restriction_dict={"range": ["0..254"]}, ), default=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 )( 0 ), is_leaf=True, yang_name="priority-decrement", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="uint8", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """priority_decrement must be of a type compatible with uint8""", "defined-type": "uint8", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': ['0..254']}), default=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8)(0), is_leaf=True, yang_name="priority-decrement", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='uint8', is_config=False)""", } ) self.__priority_decrement = t if hasattr(self, "_set"): self._set() def _unset_priority_decrement(self): self.__priority_decrement = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), restriction_dict={"range": ["0..254"]}, ), default=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 )( 0 ), is_leaf=True, yang_name="priority-decrement", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="uint8", is_config=False, ) track_interface = __builtin__.property(_get_track_interface) priority_decrement = __builtin__.property(_get_priority_decrement) _pyangbind_elements = OrderedDict( [ ("track_interface", track_interface), ("priority_decrement", priority_decrement), ] )
napalm-automation/napalm-yang
napalm_yang/models/openconfig/interfaces/interface/routed_vlan/ipv6/addresses/address/vrrp/vrrp_group/interface_tracking/state/__init__.py
Python
apache-2.0
11,529
0.001475
# # Copyright (C) 2013,2014,2015,2016 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Tests particle property setters/getters import unittest as ut import espressomd import numpy as np from espressomd.magnetostatics import * from tests_common import * class MagnetostaticsInteractionsTests(ut.TestCase): # Handle to espresso system system = espressomd.System() def setUp(self): self.system.box_l = 10, 10, 10 if not self.system.part.exists(0): self.system.part.add(id=0, pos=(0.1, 0.1, 0.1), dip=(1.3, 2.1, -6)) if not self.system.part.exists(1): self.system.part.add(id=1, pos=(0, 0, 0), dip=(7.3, 6.1, -4)) if "DP3M" in espressomd.features(): test_DP3M = generate_test_for_class(DipolarP3M, dict(prefactor=1.0, epsilon=0.0, inter=1000, mesh_off=[ 0.5, 0.5, 0.5], r_cut=2.4, mesh=[ 8, 8, 8], cao=1, alpha=12, accuracy=0.01)) if "DIPOLAR_DIRECT_SUM" in espressomd.features(): test_DdsCpu = generate_test_for_class( DipolarDirectSumCpu, dict(prefactor=3.4)) test_DdsRCpu = generate_test_for_class( DipolarDirectSumWithReplicaCpu, dict(prefactor=3.4, n_replica=2)) if __name__ == "__main__": print("Features: ", espressomd.features()) ut.main()
tbereau/espresso
testsuite/python/magnetostaticInteractions.py
Python
gpl-3.0
2,692
0.007058
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding: utf-8 # pylint: disable=invalid-name, protected-access, too-many-arguments # pylint: disable=global-statement, unused-import """NDArray configuration API.""" from __future__ import absolute_import as _abs import ctypes from ..base import _LIB from ..base import c_str_array, c_handle_array from ..base import NDArrayHandle, CachedOpHandle from ..base import check_call class NDArrayBase(object): """Base data structure for ndarray""" __slots__ = ["handle", "writable"] # pylint: disable= no-member def __init__(self, handle, writable=True): """initialize a new NDArray Parameters ---------- handle : NDArrayHandle NDArray handle of C API """ if handle is not None: assert isinstance(handle, NDArrayHandle) self.handle = handle self.writable = writable def __del__(self): check_call(_LIB.MXNDArrayFree(self.handle)) def __reduce__(self): return (_ndarray_cls, (None,), self.__getstate__()) _ndarray_cls = None def _set_ndarray_class(cls): """Set the symbolic class to be cls""" global _ndarray_cls _ndarray_cls = cls def _imperative_invoke(handle, ndargs, keys, vals, out): """ctypes implementation of imperative invoke wrapper""" if out is not None: original_output = out if isinstance(out, NDArrayBase): out = (out,) num_output = ctypes.c_int(len(out)) output_vars = c_handle_array(out) output_vars = ctypes.cast(output_vars, ctypes.POINTER(NDArrayHandle)) else: original_output = None output_vars = ctypes.POINTER(NDArrayHandle)() num_output = ctypes.c_int(0) # return output stypes to avoid the c_api call for checking # a handle's stype in _ndarray_cls out_stypes = ctypes.POINTER(ctypes.c_int)() check_call(_LIB.MXImperativeInvokeEx( ctypes.c_void_p(handle), ctypes.c_int(len(ndargs)), c_handle_array(ndargs), ctypes.byref(num_output), ctypes.byref(output_vars), ctypes.c_int(len(keys)), c_str_array(keys), c_str_array([str(s) for s in vals]), ctypes.byref(out_stypes))) if original_output is not None: return original_output if num_output.value == 1: return _ndarray_cls(ctypes.cast(output_vars[0], NDArrayHandle), stype=out_stypes[0]) else: return [_ndarray_cls(ctypes.cast(output_vars[i], NDArrayHandle), stype=out_stypes[i]) for i in range(num_output.value)] class CachedOp(object): """Cached operator handle.""" __slots__ = ["handle"] def __init__(self, sym): self.handle = CachedOpHandle() check_call(_LIB.MXCreateCachedOp( sym.handle, ctypes.byref(self.handle))) def __del__(self): check_call(_LIB.MXFreeCachedOp(self.handle)) def __call__(self, *args, **kwargs): """ctypes implementation of imperative invoke wrapper""" out = kwargs.pop('out', None) if out is not None: original_output = out if isinstance(out, NDArrayBase): out = (out,) num_output = ctypes.c_int(len(out)) output_vars = c_handle_array(out) output_vars = ctypes.cast(output_vars, ctypes.POINTER(NDArrayHandle)) else: original_output = None output_vars = ctypes.POINTER(NDArrayHandle)() num_output = ctypes.c_int(0) if kwargs: raise TypeError( "CachedOp.__call__ got unexpected keyword argument(s): " + \ ', '.join(kwargs.keys())) # return output stypes to avoid the c_api call for checking # a handle's stype in _ndarray_cls out_stypes = ctypes.POINTER(ctypes.c_int)() check_call(_LIB.MXInvokeCachedOpEx( self.handle, ctypes.c_int(len(args)), c_handle_array(args), ctypes.byref(num_output), ctypes.byref(output_vars), ctypes.byref(out_stypes))) if original_output is not None: return original_output if num_output.value == 1: return _ndarray_cls(ctypes.cast(output_vars[0], NDArrayHandle), stype=out_stypes[0]) else: return [_ndarray_cls(ctypes.cast(output_vars[i], NDArrayHandle), stype=out_stypes[i]) for i in range(num_output.value)]
madjam/mxnet
python/mxnet/_ctypes/ndarray.py
Python
apache-2.0
5,374
0.000744
from django import http from django.conf.urls import patterns from django.contrib import admin from django.db import models from django.forms.models import modelform_factory from django.shortcuts import get_object_or_404 from django.template import loader, Context from django.views.generic import View def get_printable_field_value(instance, fieldname): """ Get the display value of a model field, showing a comma-delimited list for M2M fields. """ field = instance._meta.get_field(fieldname) field_value = getattr(instance, fieldname) if isinstance(field, models.ManyToManyField): field_value = ', '.join([unicode(f) for f in field_value.all()]) return field_value class AjaxModelFormView(View): """ Handles AJAX updates of a single field on an object (You likely don't need to use this directly as the admin registers a URL for it itself.) """ model = None valid_fields = None def __init__(self, model, valid_fields, **kwargs): self.model = model self.valid_fields = valid_fields def post(self, request, object_id, *args, **kwargs): if not request.user or not request.user.is_staff: return http.HttpResponseForbidden() request = request.POST.copy() fieldname = request.pop('field', None)[0] form_prefix = request.pop('prefix', None)[0] # prevent setting fields that weren't made AJAX-editable if fieldname not in self.valid_fields: return http.HttpResponseBadRequest() ItemForm = modelform_factory(self.model, fields=(fieldname,)) instance = get_object_or_404(self.model, pk=object_id) form = ItemForm(request, instance=instance, prefix=form_prefix) if not form or not form.is_valid(): return http.HttpResponseBadRequest() form.save() new_value = get_printable_field_value(instance, fieldname) return http.HttpResponse(new_value) class AjaxModelAdmin(admin.ModelAdmin): """ Admin class providing support for inline forms in listview that are submitted through AJAX. """ def __init__(self, *args, **kwargs): HANDLER_NAME_TPL = "_%s_ajax_handler" if not hasattr(self, 'ajax_list_display'): self.ajax_list_display = [] self.list_display = list(self.list_display) self.list_display = self.list_display + map(lambda name: HANDLER_NAME_TPL % name, self.ajax_list_display) super(AjaxModelAdmin, self).__init__(*args, **kwargs) for name in self.ajax_list_display: setattr(self, HANDLER_NAME_TPL % name, self._get_field_handler(name)) self.ajax_item_template = loader.get_template('ajax_changelist/' 'field_form.html') def get_urls(self): """ Add endpoint for saving a new field value. """ urls = super(AjaxModelAdmin, self).get_urls() list_urls = patterns('', (r'^(?P<object_id>\d+)$', AjaxModelFormView.as_view(model=self.model, valid_fields=self.ajax_list_display))) return list_urls + urls def _get_field_handler(self, fieldname): """ Handle rendering of AJAX-editable fields for the changelist, by dynamically building a callable for each field. """ def handler_function(obj, *args, **kwargs): ItemForm = modelform_factory(self.model, fields=(fieldname,)) form = ItemForm(instance=obj, prefix="c" + unicode(obj.id)) field_value = get_printable_field_value(obj, fieldname) # Render the field value and edit form return self.ajax_item_template.render(Context({ 'object_id': obj.id, 'field_name': fieldname, 'form': form.as_p(), 'field_value': field_value })) handler_function.allow_tags = True handler_function.short_description = fieldname return handler_function class Media: #FIXME: dripping jQueries is straight-up wack. js = ('//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js', 'ajax_changelist/js/lib/jquery.django_csrf.js', 'ajax_changelist/js/admin.js',) css = { 'all': ('ajax_changelist/css/admin.css',) }
SohoTechLabs/django-ajax-changelist
ajax_changelist/admin.py
Python
mit
4,495
0.001557
# -*- coding: utf-8 -*- #!/usr/bin/python import numpy as np import scipy from sklearn import preprocessing from sklearn.feature_extraction import DictVectorizer from sklearn.cross_validation import train_test_split from sklearn.metrics import classification_report, confusion_matrix from collections import Counter from scipy.stats.stats import pearsonr import data_readers import feature_extractors as fe import label_transformers as lt import training_functions as training import utils def build_dataset(reader, phi_list, class_func, vectorizer=None, verbose=False): """Core general function for building experimental hand-generated feature datasets. Parameters ---------- reader : iterator Should follow the format of data_readers. This is the dataset we'll be featurizing. phi_list : array of feature functions (default: [`manual_content_flags`]) Any function that takes a string as input and returns a bool/int/float-valued dict as output. class_func : function on the labels A function that modifies the labels based on the experimental design. If `class_func` returns None for a label, then that item is ignored. vectorizer : sklearn.feature_extraction.DictVectorizer If this is None, then a new `DictVectorizer` is created and used to turn the list of dicts created by `phi` into a feature matrix. This happens when we are training. If this is not None, then it's assumed to be a `DictVectorizer` and used to transform the list of dicts. This happens in assessment, when we take in new instances and need to featurize them as we did in training. Returns ------- dict A dict with keys 'X' (the feature matrix), 'y' (the list of labels), 'vectorizer' (the `DictVectorizer`), and 'raw_examples' (the example strings, for error analysis). """ labels = [] feat_dicts = [] raw_examples = [] rows = [] for i, (paragraph, parse, label) in enumerate(reader()): if i % 100 == 0: print " Starting feature extraction for unit #%d " % (i+1) cls = class_func(label) #print label, cls if cls != None: labels.append(cls) raw_examples.append(paragraph) if verbose: print cls, ":", paragraph features = Counter() for phi in phi_list: cur_feats = phi(paragraph, parse) if cur_feats is None: continue # If we won't accidentally blow away data, merge 'em. overlap_feature_names = features.viewkeys() & cur_feats.viewkeys() if verbose and len(overlap_feature_names) > 0: print "Note: Overlap features are ", overlap_feature_names features |= cur_feats rows.append(cur_feats['row']) feat_dicts.append(features) if verbose: print features print print "Completed all feature extraction: %d units" % (i+1) # In training, we want a new vectorizer, but in # assessment, we featurize using the existing vectorizer: feat_matrix = None if vectorizer == None: vectorizer = DictVectorizer(sparse=True) feat_matrix = vectorizer.fit_transform(feat_dicts) else: feat_matrix = vectorizer.transform(feat_dicts) return {'X': feat_matrix, 'y': labels, 'vectorizer': vectorizer, 'raw_examples': raw_examples} def experiment_features( train_reader=data_readers.toy, assess_reader=None, train_size=0.7, phi_list=[fe.manual_content_flags], class_func=lt.identity_class_func, train_func=training.fit_logistic_at_with_crossvalidation, score_func=scipy.stats.stats.pearsonr, verbose=True): """Generic experimental framework for hand-crafted features. Either assesses with a random train/test split of `train_reader` or with `assess_reader` if it is given. Parameters ---------- train_reader : data iterator (default: `train_reader`) Iterator for training data. assess_reader : iterator or None (default: None) If None, then the data from `train_reader` are split into a random train/test split, with the the train percentage determined by `train_size`. If not None, then this should be an iterator for assessment data (e.g., `dev_reader`). train_size : float (default: 0.7) If `assess_reader` is None, then this is the percentage of `train_reader` devoted to training. If `assess_reader` is not None, then this value is ignored. phi_list : array of feature functions (default: [`manual_content_flags`]) Any function that takes a string as input and returns a bool/int/float-valued dict as output. class_func : function on the labels A function that modifies the labels based on the experimental design. If `class_func` returns None for a label, then that item is ignored. train_func : model wrapper (default: `fit_logistic_at_with_crossvalidation`) Any function that takes a feature matrix and a label list as its values and returns a fitted model with a `predict` function that operates on feature matrices. score_metric : function name (default: `utils.safe_weighted_f1`) This should be an `sklearn.metrics` scoring function. The default is weighted average F1. verbose : bool (default: True) Whether to print out the model assessment to standard output. Prints ------- To standard output, if `verbose=True` Model confusion matrix and a model precision/recall/F1 report. Returns ------- float The overall scoring metric for assess set as determined by `score_metric`. float The overall Cronbach's alpha for assess set np.array The confusion matrix (rows are truth, columns are predictions) list of dictionaries A list of {truth:_ , prediction:_, example:_} dicts on the assessment data """ # Train dataset: train = build_dataset(train_reader, phi_list, class_func, vectorizer=None, verbose=verbose) # Manage the assessment set-up: indices = np.arange(0, len(train['y'])) X_train = train['X'] y_train = np.array(train['y']) train_examples = np.array(train['raw_examples']) X_assess = None y_assess = None assess_examples = None if assess_reader == None: print " Raw y training distribution:" print " ", np.bincount(y_train)[1:] indices_train, indices_assess, y_train, y_assess = train_test_split( indices, y_train, train_size=train_size, stratify=y_train) X_assess = X_train[indices_assess] assess_examples = train_examples[indices_assess] X_train = X_train[indices_train] train_examples = train_examples[indices_train] print " Train y distribution:" print " ", np.bincount(y_train)[1:] print " Test y distribution:" print " ", np.bincount(y_assess)[1:] else: assess = build_dataset( assess_reader, phi_list, class_func, vectorizer=train['vectorizer']) X_assess, y_assess, assess_examples = assess['X'], assess['y'], np.array(assess['raw_examples']) # Normalize: nonzero_cells = len(X_train.nonzero()[0]) total_cells = 1.*X_train.shape[0] * X_train.shape[1] proportion_nonzero = nonzero_cells/total_cells print "sparsity: %g/1 are nonzero" % proportion_nonzero if proportion_nonzero > 0.5: # if dense matrix X_train = X_train.toarray() X_assess = X_assess.toarray() scaler = preprocessing.StandardScaler().fit(X_train) X_train = scaler.transform(X_train) X_assess = scaler.transform(X_assess) else: scaler = preprocessing.MaxAbsScaler().fit(X_train) X_train = scaler.transform(X_train) X_assess = scaler.transform(X_assess) # Train: mod = train_func(X_train, y_train) # Predictions: predictions_on_assess = mod.predict(X_assess) assess_performance = get_score_example_pairs(y_assess, predictions_on_assess, assess_examples) predictions_on_train = mod.predict(X_train) train_performance = get_score_example_pairs(y_train, predictions_on_train, train_examples) # Report: if verbose: print "\n-- TRAINING RESULTS --" print_verbose_overview(y_train, predictions_on_train) print "\n-- ASSESSMENT RESULTS --" print_verbose_overview(y_assess, predictions_on_assess) try: the_score = score_func(y_assess, predictions_on_assess) except: the_score = (0,0) # Return the overall results on the assessment data: return the_score, \ utils.cronbach_alpha(y_assess, predictions_on_assess), \ confusion_matrix(y_assess, predictions_on_assess), \ assess_performance def get_score_example_pairs(y, y_hat, examples): """ Return a list of dicts: {truth score, predicted score, example} """ paired_results = sorted(zip(y, y_hat), key=lambda x: x[0]-x[1]) performance = [] for i, (truth, prediction) in enumerate(paired_results): performance.append({"truth": truth, "prediction": prediction, "example": examples[i]}) return performance def print_verbose_overview(y, yhat): """ Print a performance overview """ print "Correlation: ", pearsonr(y, yhat)[0] print "Alpha: ", utils.cronbach_alpha(y, yhat) print "Classification report:" print classification_report(y, yhat, digits=3) print "Confusion matrix:" print confusion_matrix(y, yhat) print " (Rows are truth; columns are predictions)" def experiment_features_iterated( train_reader=data_readers.toy, assess_reader=None, train_size=0.7, phi_list=[fe.manual_content_flags], class_func=lt.identity_class_func, train_func=training.fit_logistic_at_with_crossvalidation, score_func=utils.safe_weighted_f1, verbose=True, iterations=1): """ Generic iterated experimental framework for hand-crafted features. """ correlation_overall = [] cronbach_overall = [] conf_matrix_overall = None assess_performance = [] while len(correlation_overall) < iterations: print "\nStarting iteration: %d/%d" % (len(correlation_overall)+1, iterations) try: correlation_local, cronbach_local, conf_matrix_local, perf_local = experiment_features( train_reader=train_reader, assess_reader=assess_reader, train_size=train_size, phi_list=phi_list, class_func=class_func, train_func=train_func, score_func=score_func, verbose=verbose) correlation_overall.append(correlation_local[0]) cronbach_overall.append(cronbach_local) assess_performance.extend(perf_local) if conf_matrix_overall is None: conf_matrix_overall = conf_matrix_local else: conf_matrix_overall += conf_matrix_local except (ValueError,UserWarning) as e: print e if verbose: print "\n-- OVERALL --" print correlation_overall print cronbach_overall print conf_matrix_overall return correlation_overall, cronbach_overall, conf_matrix_overall, assess_performance
ptoman/icgauge
icgauge/experiment_frameworks.py
Python
mit
11,989
0.009425
''' Copyleft Mar 10, 2017 Arya Iranmehr, PhD Student, Bafna Lab, UC San Diego, Email: airanmehr@gmail.com ''' import numpy as np; np.set_printoptions(linewidth=200, precision=5, suppress=True) import pandas as pd; pd.options.display.max_rows = 20; pd.options.display.expand_frame_repr = False # import seaborn as sns import pylab as plt; import matplotlib as mpl import os; import simuPOP as sim from simuPOP.demography import * model = MultiStageModel([ InstantChangeModel(T=200, # start with an ancestral population of size 1000 N0=(1000, 'Ancestral'), # change population size at 50 and 60 G=[50, 60], # change to population size 200 and back to 1000 NG=[(200, 'bottleneck'), (1000, 'Post-Bottleneck')]), ExponentialGrowthModel( T=50, # split the population into two subpopulations N0=[(400, 'P1'), (600, 'P2')], # expand to size 4000 and 5000 respectively NT=[4000, 5000])] ) def exp(T=10):return ExponentialGrowthModel(T=T, N0=1000, NT=200) def lin(T=10):return LinearGrowthModel(T=T, N0=200, NT=1000) model=MultiStageModel([exp(),lin(),exp(),lin(),exp(),lin(),exp(),lin(),exp(),lin()]) # model.init_size returns the initial population size # migrate_to is required for migration model=exp(50) #model=lin(50) #model=MultiStageModel([exp(50),lin(50)]) pop = sim.Population(size=model.init_size, loci=1, infoFields=model.info_fields) pop.evolve( initOps=[ sim.InitSex(), sim.InitGenotype(freq=[0.5, 0.5]) ], matingScheme=sim.RandomMating(subPopSize=model), finalOps= sim.Stat(alleleFreq=0, vars=['alleleFreq_sp']), gen=model.num_gens ) model # print out population size and frequency #for idx, name in enumerate(pop.subPopNames()): #print('%s (%d): %.4f' % (name, pop.subPopSize(name), pop.dvars(idx).alleleFreq[0][0])) # get a visual presentation of the demographic model import matplotlib model.plot('/home/arya/bottleneck.png',title='bottleneck')
airanmehr/bio
Scripts/Miscellaneous/Tutorials/demography.py
Python
mit
2,014
0.021351
# Copyright (c) 2014 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. '''Tests for `swift.common.splice`''' import os import errno import ctypes import logging import tempfile import unittest import contextlib import re import mock import six from swift.common.splice import splice, tee LOGGER = logging.getLogger(__name__) def NamedTemporaryFile(): '''Wrapper to tempfile.NamedTemporaryFile() disabling bufferring. The wrapper is used to support Python 2 and Python 3 in the same code base. ''' if six.PY3: return tempfile.NamedTemporaryFile(buffering=0) else: return tempfile.NamedTemporaryFile(bufsize=0) def safe_close(fd): '''Close a file descriptor, ignoring any exceptions''' try: os.close(fd) except Exception: LOGGER.exception('Error while closing FD') @contextlib.contextmanager def pipe(): '''Context-manager providing 2 ends of a pipe, closing them at exit''' fds = os.pipe() try: yield fds finally: safe_close(fds[0]) safe_close(fds[1]) class TestSplice(unittest.TestCase): '''Tests for `splice`''' def setUp(self): if not splice.available: raise unittest.SkipTest('splice not available') def test_flags(self): '''Test flag attribute availability''' self.assertTrue(hasattr(splice, 'SPLICE_F_MOVE')) self.assertTrue(hasattr(splice, 'SPLICE_F_NONBLOCK')) self.assertTrue(hasattr(splice, 'SPLICE_F_MORE')) self.assertTrue(hasattr(splice, 'SPLICE_F_GIFT')) @mock.patch('swift.common.splice.splice._c_splice', None) def test_available(self): '''Test `available` attribute correctness''' self.assertFalse(splice.available) def test_splice_pipe_to_pipe(self): '''Test `splice` from a pipe to a pipe''' with pipe() as (p1a, p1b): with pipe() as (p2a, p2b): os.write(p1b, b'abcdef') res = splice(p1a, None, p2b, None, 3, 0) self.assertEqual(res, (3, None, None)) self.assertEqual(os.read(p2a, 3), b'abc') self.assertEqual(os.read(p1a, 3), b'def') def test_splice_file_to_pipe(self): '''Test `splice` from a file to a pipe''' with NamedTemporaryFile() as fd: with pipe() as (pa, pb): fd.write(b'abcdef') fd.seek(0, os.SEEK_SET) res = splice(fd, None, pb, None, 3, 0) self.assertEqual(res, (3, None, None)) # `fd.tell()` isn't updated... self.assertEqual(os.lseek(fd.fileno(), 0, os.SEEK_CUR), 3) fd.seek(0, os.SEEK_SET) res = splice(fd, 3, pb, None, 3, 0) self.assertEqual(res, (3, 6, None)) self.assertEqual(os.lseek(fd.fileno(), 0, os.SEEK_CUR), 0) self.assertEqual(os.read(pa, 6), b'abcdef') def test_splice_pipe_to_file(self): '''Test `splice` from a pipe to a file''' with NamedTemporaryFile() as fd: with pipe() as (pa, pb): os.write(pb, b'abcdef') res = splice(pa, None, fd, None, 3, 0) self.assertEqual(res, (3, None, None)) self.assertEqual(fd.tell(), 3) fd.seek(0, os.SEEK_SET) res = splice(pa, None, fd, 3, 3, 0) self.assertEqual(res, (3, None, 6)) self.assertEqual(fd.tell(), 0) self.assertEqual(fd.read(6), b'abcdef') @mock.patch.object(splice, '_c_splice') def test_fileno(self, mock_splice): '''Test handling of file-descriptors''' splice(1, None, 2, None, 3, 0) self.assertEqual(mock_splice.call_args, ((1, None, 2, None, 3, 0), {})) mock_splice.reset_mock() with open('/dev/zero', 'r') as fd: splice(fd, None, fd, None, 3, 0) self.assertEqual(mock_splice.call_args, ((fd.fileno(), None, fd.fileno(), None, 3, 0), {})) @mock.patch.object(splice, '_c_splice') def test_flags_list(self, mock_splice): '''Test handling of flag lists''' splice(1, None, 2, None, 3, [splice.SPLICE_F_MOVE, splice.SPLICE_F_NONBLOCK]) flags = splice.SPLICE_F_MOVE | splice.SPLICE_F_NONBLOCK self.assertEqual(mock_splice.call_args, ((1, None, 2, None, 3, flags), {})) mock_splice.reset_mock() splice(1, None, 2, None, 3, []) self.assertEqual(mock_splice.call_args, ((1, None, 2, None, 3, 0), {})) def test_errno(self): '''Test handling of failures''' # Invoke EBADF by using a read-only FD as fd_out with open('/dev/null', 'r') as fd: err = errno.EBADF msg = r'\[Errno %d\] splice: %s' % (err, os.strerror(err)) try: splice(fd, None, fd, None, 3, 0) except IOError as e: self.assertTrue(re.match(msg, str(e))) else: self.fail('Expected IOError was not raised') self.assertEqual(ctypes.get_errno(), 0) @mock.patch('swift.common.splice.splice._c_splice', None) def test_unavailable(self): '''Test exception when unavailable''' self.assertRaises(EnvironmentError, splice, 1, None, 2, None, 2, 0) def test_unavailable_in_libc(self): '''Test `available` attribute when `libc` has no `splice` support''' class LibC(object): '''A fake `libc` object tracking `splice` attribute access''' def __init__(self): self.splice_retrieved = False @property def splice(self): self.splice_retrieved = True raise AttributeError libc = LibC() mock_cdll = mock.Mock(return_value=libc) with mock.patch('ctypes.CDLL', new=mock_cdll): # Force re-construction of a `Splice` instance # Something you're not supposed to do in actual code new_splice = type(splice)() self.assertFalse(new_splice.available) libc_name = ctypes.util.find_library('c') mock_cdll.assert_called_once_with(libc_name, use_errno=True) self.assertTrue(libc.splice_retrieved) class TestTee(unittest.TestCase): '''Tests for `tee`''' def setUp(self): if not tee.available: raise unittest.SkipTest('tee not available') @mock.patch('swift.common.splice.tee._c_tee', None) def test_available(self): '''Test `available` attribute correctness''' self.assertFalse(tee.available) def test_tee_pipe_to_pipe(self): '''Test `tee` from a pipe to a pipe''' with pipe() as (p1a, p1b): with pipe() as (p2a, p2b): os.write(p1b, b'abcdef') res = tee(p1a, p2b, 3, 0) self.assertEqual(res, 3) self.assertEqual(os.read(p2a, 3), b'abc') self.assertEqual(os.read(p1a, 6), b'abcdef') @mock.patch.object(tee, '_c_tee') def test_fileno(self, mock_tee): '''Test handling of file-descriptors''' with pipe() as (pa, pb): tee(pa, pb, 3, 0) self.assertEqual(mock_tee.call_args, ((pa, pb, 3, 0), {})) mock_tee.reset_mock() tee(os.fdopen(pa, 'r'), os.fdopen(pb, 'w'), 3, 0) self.assertEqual(mock_tee.call_args, ((pa, pb, 3, 0), {})) @mock.patch.object(tee, '_c_tee') def test_flags_list(self, mock_tee): '''Test handling of flag lists''' tee(1, 2, 3, [splice.SPLICE_F_MOVE | splice.SPLICE_F_NONBLOCK]) flags = splice.SPLICE_F_MOVE | splice.SPLICE_F_NONBLOCK self.assertEqual(mock_tee.call_args, ((1, 2, 3, flags), {})) mock_tee.reset_mock() tee(1, 2, 3, []) self.assertEqual(mock_tee.call_args, ((1, 2, 3, 0), {})) def test_errno(self): '''Test handling of failures''' # Invoke EBADF by using a read-only FD as fd_out with open('/dev/null', 'r') as fd: err = errno.EBADF msg = r'\[Errno %d\] tee: %s' % (err, os.strerror(err)) try: tee(fd, fd, 3, 0) except IOError as e: self.assertTrue(re.match(msg, str(e))) else: self.fail('Expected IOError was not raised') self.assertEqual(ctypes.get_errno(), 0) @mock.patch('swift.common.splice.tee._c_tee', None) def test_unavailable(self): '''Test exception when unavailable''' self.assertRaises(EnvironmentError, tee, 1, 2, 2, 0) def test_unavailable_in_libc(self): '''Test `available` attribute when `libc` has no `tee` support''' class LibC(object): '''A fake `libc` object tracking `tee` attribute access''' def __init__(self): self.tee_retrieved = False @property def tee(self): self.tee_retrieved = True raise AttributeError libc = LibC() mock_cdll = mock.Mock(return_value=libc) with mock.patch('ctypes.CDLL', new=mock_cdll): # Force re-construction of a `Tee` instance # Something you're not supposed to do in actual code new_tee = type(tee)() self.assertFalse(new_tee.available) libc_name = ctypes.util.find_library('c') mock_cdll.assert_called_once_with(libc_name, use_errno=True) self.assertTrue(libc.tee_retrieved)
nadeemsyed/swift
test/unit/common/test_splice.py
Python
apache-2.0
10,235
0
# -*- coding: utf-8 -*- import sys import pygeoip import os.path import socket import sqlite3 import time import re DATAFILE = os.path.join(sys.path[0], "GeoIP.dat") # STANDARD = reload from disk # MEMORY_CACHE = load to memory # MMAP_CACHE = memory using mmap gi4 = pygeoip.GeoIP(DATAFILE, pygeoip.MEMORY_CACHE) def init(botconfig): open_DB(True) def open_DB(createTable=False, db="module_geokick.db"): conn = sqlite3.connect(db) c = conn.cursor() if createTable: c.execute('CREATE TABLE IF NOT EXISTS exceptions (hostmask);') conn.commit() return conn, c def command_geo_exempt(bot, user, channel, args): """.geo_exempt nick!ident@hostname | Supports wildcards, for example *!*@*site.com (! and @ are required)""" if get_op_status(user): if not get_exempt_status(args): if len(args) < 4: conn, c = open_DB() insert = "INSERT INTO exceptions VALUES ('" + args + "');" c.execute(insert) conn.commit() conn.close() bot.say(channel, "Success: " + args.encode('utf-8') + " added to exempt list.") return True else: return bot.say(channel, "Error: invalid exempt. See .help geo_exempt") else: return bot.say(channel, "Error: exempt exists already!") def command_geo_list(bot, user, channel, args): if get_op_status(user): conn, c = open_DB() c.execute('SELECT hostmask FROM exceptions;') rows = c.fetchall() conn.close() if rows: excepts = str("") for i in rows: excepts += "[" + i[0] + "] " return bot.say(channel, "Exceptions: " + excepts) else: return bot.say(channel, "Error: no exceptions added. See .help geo_exempt") def command_geo_remove(bot, user, channel, args): """.geo_remove hostname""" if get_op_status(user): conn, c = open_DB() c.execute("SELECT hostmask FROM exceptions WHERE hostmask = '" + args + "'") if c.fetchone(): conn, c = open_DB() c.execute("DELETE FROM exceptions WHERE hostmask = '" + args + "'") conn.commit() conn.close() bot.say(channel, "Success: exception removed.") else: bot.say(channel, "Error: hostmask not found. Check .geo_list for broader exempts that would override what you are trying to add.") def get_op_status(user): if isAdmin(user): return True else: # käytetään authentikointiin qban_moduulin adminlistaa conn, c = open_DB(db="module_qban_ops.db") c.execute("SELECT hostmask FROM ops WHERE hostmask = '" + user + "' ") if c.fetchone(): retval = True else: retval = False conn.close() return retval # try to split user string as dictionary with nick, ident and hostname def get_data(user): try: temp = user.split('@')[0] data = {'nick':getNick(user), 'ident':temp.split('!')[1], 'host':user.split('@')[1] } return data except: return False #@todo blacklist = ['elisa-mobile.fi', 'nat-elisa-mobile.fi'] def get_exempt_status(user): if isAdmin(user): return True else: data = get_data(user) if data: conn, c = open_DB() c.execute('SELECT hostmask FROM exceptions;') rows = c.fetchall() conn.close() # iterate all hostmasks for i in rows: row = get_data(i[0]) j = 0 # check current row data against that of the user data for row_value in row.values(): for data_value in data.values(): # if a wildcard or exact match if row_value == "*" or ( row_value in data_value and "*" not in row_value ): j += 1 break # if contains a wildcard, we have to regex elif "*" in row_value: regex = re.escape(row_value) regex = row_value.replace("*",".*") if re.search(regex, data_value): j += 1 break # if counter reaches three, user matches exception list if j == 3: return True return False def handle_userJoined(bot, user, channel): # if tested user is in exception list if not get_exempt_status(user): host = user.split('@')[1] # attempt to get location data from the geoip database try: country = gi4.country_name_by_name(host) except socket.gaierror: country = None # if country information was found & if it wasn't Finland if country != "Finland" and country != "": # grab nickname and hostname of the user nick = getNick(user) banmask = "*!*@" + host banmask = banmask.encode('utf-8') # ban & kick bot.mode(channel, True, 'b', mask=banmask) bot.kick(channel, nick, "Hosted from a banned country (" + country + ") or host (" + host + "). If you think you should have access, /msg lolfi .request_exempt") # unban after 300s to avoid filling the banlist time.sleep(300) bot.mode(channel, False, 'b', mask=banmask) def command_request_exempt(bot, user, channel, args): if channel != "#projekti_lol": nick = getNick(user) bot.say("#projekti_lol".encode('utf-8'), "Notification: " + nick + " (" + user + ") requested and exempt.")
rnyberg/pyfibot
pyfibot/modules/module_geokick.py
Python
bsd-3-clause
5,174
0.015471
# -*- coding: utf-8 -*- ############################################################################### # # GetClicksForLink # Returns the number of clicks on a single Bitly link. # # Python versions 2.6, 2.7, 3.x # # Copyright 2014, Temboo Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific # language governing permissions and limitations under the License. # # ############################################################################### from temboo.core.choreography import Choreography from temboo.core.choreography import InputSet from temboo.core.choreography import ResultSet from temboo.core.choreography import ChoreographyExecution import json class GetClicksForLink(Choreography): def __init__(self, temboo_session): """ Create a new instance of the GetClicksForLink Choreo. A TembooSession object, containing a valid set of Temboo credentials, must be supplied. """ super(GetClicksForLink, self).__init__(temboo_session, '/Library/Bitly/LinkMetrics/GetClicksForLink') def new_input_set(self): return GetClicksForLinkInputSet() def _make_result_set(self, result, path): return GetClicksForLinkResultSet(result, path) def _make_execution(self, session, exec_id, path): return GetClicksForLinkChoreographyExecution(session, exec_id, path) class GetClicksForLinkInputSet(InputSet): """ An InputSet with methods appropriate for specifying the inputs to the GetClicksForLink Choreo. The InputSet object is used to specify input parameters when executing this Choreo. """ def set_AccessToken(self, value): """ Set the value of the AccessToken input for this Choreo. ((required, string) The OAuth access token provided by Bitly.) """ super(GetClicksForLinkInputSet, self)._set_input('AccessToken', value) def set_Limit(self, value): """ Set the value of the Limit input for this Choreo. ((optional, integer) The result limit. Defaults to 100. Range is 1 to 1000.) """ super(GetClicksForLinkInputSet, self)._set_input('Limit', value) def set_Link(self, value): """ Set the value of the Link input for this Choreo. ((required, string) A Bitly link.) """ super(GetClicksForLinkInputSet, self)._set_input('Link', value) def set_ResponseFormat(self, value): """ Set the value of the ResponseFormat input for this Choreo. ((optional, string) The format that you want the response to be in. Accepted values are "json" or "xml". Defaults to "json".) """ super(GetClicksForLinkInputSet, self)._set_input('ResponseFormat', value) def set_Rollup(self, value): """ Set the value of the Rollup input for this Choreo. ((optional, boolean) Accepted values are true or false. When set to true, this returns data for multiple units rolled up to a single result instead of a separate value for each period of time.) """ super(GetClicksForLinkInputSet, self)._set_input('Rollup', value) def set_Timestamp(self, value): """ Set the value of the Timestamp input for this Choreo. ((optional, date) An epoch timestamp, indicating the most recent time for which to pull metrics.) """ super(GetClicksForLinkInputSet, self)._set_input('Timestamp', value) def set_Timezone(self, value): """ Set the value of the Timezone input for this Choreo. ((optional, string) An integer hour offset from UTC (-12..12), or a timezone string. Defaults to "America/New_York".) """ super(GetClicksForLinkInputSet, self)._set_input('Timezone', value) def set_UnitName(self, value): """ Set the value of the UnitName input for this Choreo. ((optional, string) The unit of time that corresponds to query you want to run. Accepted values are: minute, hour, day, week, month, and day. Defaults to "day".) """ super(GetClicksForLinkInputSet, self)._set_input('UnitName', value) def set_UnitValue(self, value): """ Set the value of the UnitValue input for this Choreo. ((optional, integer) An integer representing the amount of time to query for. Corresponds to the UnitName input. Defaults to -1 indicating to return all units of time.) """ super(GetClicksForLinkInputSet, self)._set_input('UnitValue', value) class GetClicksForLinkResultSet(ResultSet): """ A ResultSet with methods tailored to the values returned by the GetClicksForLink Choreo. The ResultSet object is used to retrieve the results of a Choreo execution. """ def getJSONFromString(self, str): return json.loads(str) def get_Response(self): """ Retrieve the value for the "Response" output from this Choreo execution. (The response from Bitly.) """ return self._output.get('Response', None) class GetClicksForLinkChoreographyExecution(ChoreographyExecution): def _make_result_set(self, response, path): return GetClicksForLinkResultSet(response, path)
jordanemedlock/psychtruths
temboo/core/Library/Bitly/LinkMetrics/GetClicksForLink.py
Python
apache-2.0
5,517
0.005256
# encoding: utf-8 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with libstego. If not, see <http://www.gnu.org/licenses/>. # # Copyright 2009 2010 by Marko Krause <zeratul2099@googlemail.com> from django import forms class AESEncryptForm(forms.Form): message = forms.CharField(label='Klartext', required=True) key = forms.CharField(label='Schlüssel', required=True) block_values = ((1, 'ECB'), (2, 'CBC'), (3, 'CFB')) block_mode = forms.ChoiceField(choices=block_values, label='Blockmodus') class AESDecryptForm(forms.Form): cypher_text = forms.IntegerField(label='Geheimtext', required=True) key = forms.CharField(label='Schlüssel', required=True) block_values = ((1, 'ECB'), (2, 'CBC'), (3, 'CFB')) block_mode = forms.ChoiceField(choices=block_values, label='Blockmodus') class SimpleEncryptForm(forms.Form): message = forms.CharField(label='Klartext', required=True) key = forms.CharField(label='Schlüssel', required=True) class SimpleDecryptForm(forms.Form): cypher_text = forms.CharField(label='Geheimtext', required=True) key = forms.CharField(label='Schlüssel', required=True) class RSAEncryptForm(forms.Form): message = forms.CharField(label='Klartext', required=True) key = forms.FileField(label='Öffentlicher Schlüssel', required=True) class RSADecryptForm(forms.Form): cypher_text = forms.CharField(label='Geheimtext', required=True) key = forms.FileField(label='Privater Schluessel', required=True) class SimplestForm(forms.Form): message = forms.CharField(label='Klar-/Geheimtext', required=True) class CaesarEncryptForm(forms.Form): message = forms.CharField(label='Klartext', required=True) key_values = ((1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6, '6'), (7, '7'), (8, '8'), (9, '9'), (10, '10'), (11, '11'), (12, '12'), (13, '13'), (14, '14'), (15, '15'), (16, '16'), (17, '17'), (18, '18'), (19, '19'), (20, '20'), (21, '21'), (22, '22'), (23, '23'), (24, '24'), (25, '25')) key = forms.ChoiceField(choices=key_values, label='Schlüssel') class CaesarDecryptForm(forms.Form): cypher_text = forms.CharField(label='Geheimtext', required=True) key_values = ((1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6, '6'), (7, '7'), (8, '8'), (9, '9'), (10, '10'), (11, '11'), (12, '12'), (13, '13'), (14, '14'), (15, '15'), (16, '16'), (17, '17'), (18, '18'), (19, '19'), (20, '20'), (21, '21'), (22, '22'), (23, '23'), (24, '24'), (25, '25')) key = forms.ChoiceField(choices=key_values, label='Schlüssel') class AffineEncryptForm(forms.Form): message = forms.CharField(label='Klartext', required=True) a_values = ((1, '1'), (3, '3'), (5, '5'), (7, '7'), (9, '9'), (11, '11'), (15, '15'), (17, '17'), (19, '19'), (21, '21'), (23, '23'), (25, '25')) b_values = ((1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6, '6'), (7, '7'), (8, '8'), (9, '9'), (10, '10'), (11, '11'), (12, '12'), (13, '13'), (14, '14'), (15, '15'), (16, '16'), (17, '17'), (18, '18'), (19, '19'), (20, '20'), (21, '21'), (22, '22'), (23, '23'), (24, '24'), (25, '25')) keyA = forms.ChoiceField(choices=a_values, label='Schlüssel A') keyB = forms.ChoiceField(choices=b_values, label='Schlüssel B') class AffineDecryptForm(forms.Form): cypher_text = forms.CharField(label='Geheimtext', required=True) a_values = ((1, '1'), (9, '3'), (21, '5'), (15, '7'), (3, '9'), (19, '11'), (7, '15'), (23, '17'), (11, '19'), (5, '21'), (17, '23'), (25, '25')) b_values = ((1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6, '6'), (7, '7'), (8, '8'), (9, '9'), (10, '10'), (11, '11'), (12, '12'), (13, '13'), (14, '14'), (15, '15'), (16, '16'), (17, '17'), (18, '18'), (19, '19'), (20, '20'), (21, '21'), (22, '22'), (23, '23'), (24, '24'), (25, '25')) keyA = forms.ChoiceField(choices=a_values, label='Schlüssel A') keyB = forms.ChoiceField(choices=b_values, label='Schlüssel B')
zeratul2099/crypt_app
crypto/models.py
Python
gpl-3.0
4,784
0.005029
#!/usr/bin/env python import common import sys for name,ip,port in common.get_vm_config(): format_args = {'public_port': port, 'name': name, 'local_address': ip } print "%(local_address)s\t%(name)s %(name)s.acme.intern" % format_args
bcoding/docker-host-scripts
py/generate_etc_hosts.py
Python
unlicense
301
0.006645
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ ('user', '0002_auto_20150703_0836'), ] operations = [ migrations.AlterField( model_name='user', name='followers', field=models.ManyToManyField(to=settings.AUTH_USER_MODEL, related_name='followers_rel_+'), ), ]
28harishkumar/Social-website-django
user/migrations/0003_auto_20150703_0843.py
Python
mit
485
0.002062
# -*- coding: utf-8 -*- # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def listToDict(a): x = {} for b in a: x[b] = True return x """plainchars = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "1", "2", "3", "4", "5", "6", "7", "8", "9", "0", ".", "-", "_"] plaindict = listToDict(plainchars) print plaindict""" def isLocalAddress(address, localdict): splitaddress = address.split("@") if len(splitaddress) == 2 and localdict.get(splitaddress[-1], False): return True else: return False def isPlain(text): plaindict = {'-': True, '.': True, '1': True, '0': True, '3': True, '2': True, '5': True, '4': True, '7': True, '6': True, '9': True, '8': True, 'A': True, 'C': True, 'B': True, 'E': True, 'D': True, 'G': True, 'F': True, 'I': True, 'H': True, 'K': True, 'J': True, 'M': True, 'L': True, 'O': True, 'N': True, 'Q': True, 'P': True, 'S': True, 'R': True, 'U': True, 'T': True, 'W': True, 'V': True, 'Y': True, 'X': True, 'Z': True, '_': True, 'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': True, 'i': True, 'h': True, 'k': True, 'j': True, 'm': True, 'l': True, 'o': True, 'n': True, 'q': True, 'p': True, 's': True, 'r': True, 'u': True, 't': True, 'w': True, 'v': True, 'y': True, 'x': True, 'z': True} for c in text: if plaindict.get(c, False) == False: return False return True
sparkslabs/kamaelia_
Sketches/RJL/SMTP/MailShared.py
Python
apache-2.0
2,422
0.004129
import numpy as np import os from tensorutils.antisym import get_antisymmetrizer_product as asym test_dir_path = os.path.dirname(os.path.realpath(__file__)) array_path_template = os.path.join(test_dir_path, "random_arrays", "{:s}.npy") def test__composition_1(): array1 = np.load(array_path_template.format("15x15")) array2 = asym("0") * array1 assert (np.allclose(array1, array2)) def test__composition_1_1(): array1 = np.load(array_path_template.format("15x15")) array2 = asym("0/1") * array1 array3 = array1 - array1.transpose() assert (np.allclose(array2, array3)) def test__composition_1_2(): array1 = np.load(array_path_template.format("15x15x15")) array2 = asym("1/2") * array1 array3 = asym("0/1,2") * array2 array4 = array2 - array2.transpose((1, 0, 2)) - array2.transpose((2, 1, 0)) assert (np.allclose(array3, array4)) def test__composition_2_1(): array1 = np.load(array_path_template.format("15x15x15")) array2 = asym("0/1") * array1 array3 = asym("0,1/2") * array2 array4 = array2 - array2.transpose((2, 1, 0)) - array2.transpose((0, 2, 1)) assert (np.allclose(array3, array4)) def test__composition_1_1_1(): array1 = np.load(array_path_template.format("15x15x15")) array2 = asym("0/1/2") * array1 array3 = (array1 - array1.transpose((0, 2, 1)) - array1.transpose((1, 0, 2)) + array1.transpose((1, 2, 0)) + array1.transpose((2, 0, 1)) - array1.transpose((2, 1, 0))) assert (np.allclose(array2, array3)) def test__composition_1_3(): array1 = np.load(array_path_template.format("15x15x15x15")) array2 = asym("1/2/3") * array1 array3 = asym("0/1,2,3") * array2 array4 = (array2 - array2.transpose((1, 0, 2, 3)) - array2.transpose((2, 1, 0, 3)) - array2.transpose((3, 1, 2, 0))) assert (np.allclose(array3, array4)) def test__composition_2_2(): array1 = np.load(array_path_template.format("15x15x15x15")) array2 = asym("0/1|2/3") * array1 array3 = asym("0,1/2,3") * array2 array4 = (array2 - array2.transpose((2, 1, 0, 3)) - array2.transpose((3, 1, 2, 0)) - array2.transpose((0, 2, 1, 3)) - array2.transpose((0, 3, 2, 1)) + array2.transpose((2, 3, 0, 1))) assert (np.allclose(array3, array4)) def test__composition_3_1(): array1 = np.load(array_path_template.format("15x15x15x15")) array2 = asym("0/1/2") * array1 array3 = asym("0,1,2/3") * array2 array4 = (array2 - array2.transpose((3, 1, 2, 0)) - array2.transpose((0, 3, 2, 1)) - array2.transpose((0, 1, 3, 2))) assert (np.allclose(array3, array4)) def test__composition_1_2_1(): array1 = np.load(array_path_template.format("15x15x15x15")) array2 = asym("1/2") * array1 array3 = asym("0/1,2/3") * array2 array4 = (array2 - array2.transpose((1, 0, 2, 3)) - array2.transpose((2, 1, 0, 3)) - array2.transpose((3, 1, 2, 0)) - array2.transpose((0, 3, 2, 1)) - array2.transpose((0, 1, 3, 2)) + array2.transpose((1, 0, 3, 2)) + array2.transpose((2, 3, 0, 1)) + array2.transpose((1, 3, 2, 0)) + array2.transpose((2, 1, 3, 0)) + array2.transpose((3, 0, 2, 1)) + array2.transpose((3, 1, 0, 2))) assert (np.allclose(array3, array4)) def test__expression_01(): array1 = np.load(array_path_template.format("15x15x15x15")) array2 = 0.25 * asym("0/1|2/3") * array1 array3 = 0.25 * (array1 - array1.transpose((1, 0, 2, 3)) - array1.transpose((0, 1, 3, 2)) + array1.transpose((1, 0, 3, 2))) assert (np.allclose(array2, array3)) def test__expression_02(): array1 = np.load(array_path_template.format("15x15x15x15")) array2 = (0.25 * asym("0/1")) * asym("2/3") * array1 array3 = 0.25 * (array1 - array1.transpose((1, 0, 2, 3)) - array1.transpose((0, 1, 3, 2)) + array1.transpose((1, 0, 3, 2))) assert (np.allclose(array2, array3)) def test__expression_03(): array1 = np.load(array_path_template.format("15x15x15x15")) array2 = asym("0/1") * (asym("2/3") * 0.25) * array1 array3 = 0.25 * (array1 - array1.transpose((1, 0, 2, 3)) - array1.transpose((0, 1, 3, 2)) + array1.transpose((1, 0, 3, 2))) assert (np.allclose(array2, array3)) if __name__ == "__main__": test__composition_1() test__composition_1_1() test__composition_1_2() test__composition_2_1() test__composition_1_1_1() test__composition_1_3() test__composition_2_2() test__composition_3_1() test__composition_1_2_1() test__expression_01() test__expression_02() test__expression_03()
avcopan/meinsum
test/test_antisym.py
Python
gpl-3.0
5,061
0
# -*- coding: utf-8 -*- """ sleekxmpp.util ~~~~~~~~~~~~~~ Part of SleekXMPP: The Sleek XMPP Library :copyright: (c) 2012 Nathanael C. Fritz, Lance J.T. Stout :license: MIT, see LICENSE for more details """ from sleekxmpp.util.misc_ops import bytes, unicode, hashes, hash, \ num_to_bytes, bytes_to_num, quote, \ XOR, safedict # ===================================================================== # Standardize import of Queue class: import sys def _gevent_threads_enabled(): if not 'gevent' in sys.modules: return False try: from gevent import thread as green_thread thread = __import__('thread') return thread.LockType is green_thread.LockType except ImportError: return False if _gevent_threads_enabled(): import gevent.queue as queue Queue = queue.JoinableQueue else: try: import queue except ImportError: import Queue as queue Queue = queue.Queue QueueEmpty = queue.Empty
danielvdao/facebookMacBot
venv/lib/python2.7/site-packages/sleekxmpp/util/__init__.py
Python
mit
1,067
0.002812
# -*- coding: utf-8 -*- # quiz/quiz.py from flask import Flask app = Flask(__name__) @app.route('/') def index(): return 'Cześć, tu Python!' if __name__ == '__main__': app.run(debug=True)
koduj-z-klasa/python101
docs/webflask/quiz/quiz2.py
Python
mit
204
0
import logging import page_objects def option_should_be_selected(text): ''' Verifies specified dropdown option is selected. Parameters ---------- text : str Returns ------- None Raises ------ AssertionError If the specified option is not selected. ''' page = page_objects.dropdown.DropdownPage() selected_option = page.selected_option() if selected_option != text: log_str = 'FAIL:\n Actual option selected: {}\n Expected option selected: {}'.format(selected_option, text) logging.error(log_str) raise AssertionError(log_str) logging.info('PASS: Option "{}" selected.'.format(selected_option)) return
MooMan272/selenium_the_internet
verify/dropdown.py
Python
mit
710
0.002817
import httplib, time, inspect import selenium.webdriver.remote.webdriver from pytanium_element import PytaniumElement OldRemoteWebDriver = selenium.webdriver.remote.webdriver.WebDriver # Redefine the RemoteWebDriver class RemoteWebDriver(OldRemoteWebDriver): # NOTE: Both desired_capabilities and capabilities have to be # defined due to inconsistencies in the Firefox WebDriver def __init__(self, desired_capabilities = None, capabilities = None, *args, **kwargs): # Modify the existing WebElement identification functions old_find_element = OldRemoteWebDriver.find_element def find_element(*args, **kwargs): webelement = old_find_element(*args, **kwargs) return PytaniumElement(selenium_element = webelement) OldRemoteWebDriver.find_element = find_element # Override the ability to identify multiple elements old_find_elements = OldRemoteWebDriver.find_elements def find_elements(*args, **kwargs): webelements = old_find_elements(*args, **kwargs) webelements = [PytaniumElement(selenium_element = webelement) for webelement in webelements] return webelements OldRemoteWebDriver.find_elements = find_elements # Allows you to inject a custom script on every page self.browser_js = "" # Determines what XHR states should pause execution by default self.xhr_wait_states = [1, 2, 3] # Create the default pytanium_capabilities pytanium_capabilities = {'unexpectedAlertBehaviour' : 'ignore', 'suppressAlerts' : False, 'suppressConfirms' : False, 'suppressPrompts' : False, 'suppressPrints' : False, 'enableRecorder' : False, 'waitForAjax' : True, 'waitForImages' : True, 'recorderHost' : 'localhost', 'recorderPort' : 9999 } # If desired_capabilities were passed, update the defaults if desired_capabilities and capabilities: raise Exception("Both desired_capabilites or capabilities were passed to the WebDriver") elif desired_capabilities: if type(desired_capabilities) is dict: pytanium_capabilities.update(desired_capabilities) else: raise Exception("desired_capabilities must be a dictionary") elif capabilities: if type(capabilities) is dict: pytanium_capabilities.update(capabilities) else: raise Exception("capabilities must be a dictionary") # Set the custom pytanium_capabilities of pytanium self.suppress_alerts = pytanium_capabilities['suppressAlerts'] self.suppress_confirms = pytanium_capabilities['suppressConfirms'] self.suppress_prompts = pytanium_capabilities['suppressPrompts'] self.suppress_prints = pytanium_capabilities['suppressPrints'] self.wait_for_ajax = pytanium_capabilities['waitForAjax'] self.wait_for_images = pytanium_capabilities['waitForImages'] self.enable_recorder = pytanium_capabilities['enableRecorder'] self.recorder_host = pytanium_capabilities['recorderHost'] self.recorder_port = pytanium_capabilities['recorderPort'] # If we're using the recorder, check the proxy if self.enable_recorder: self.check_recorder_proxy() extra_ie_capabilities = {"proxy": { "httpProxy":"{0}:{1}".format(self.recorder_host, str(self.recorder_port)), "ftpProxy":None, "sslProxy":None, "noProxy":None, "proxyType":"MANUAL", "class":"org.openqa.selenium.Proxy", "autodetect":False }} pytanium_capabilities.update(extra_ie_capabilities) # Build accessors to help identify objects using Sahi's style self.accessors = [] self.accessors_name_set = set() self.load_accessors() # Build the old remote webdriver if desired_capabilities: OldRemoteWebDriver.__init__(self, desired_capabilities = pytanium_capabilities, *args, **kwargs) elif capabilities: # Firefox only OldRemoteWebDriver.__init__(self, capabilities = pytanium_capabilities, *args, **kwargs) else: OldRemoteWebDriver.__init__(self, *args, **kwargs) # Set the default window as the first open window self.default_window = self.current_window_handle def check_recorder_proxy(self): try: testconn = httplib.HTTPConnection(self.recorder_host, self.recorder_port) testconn.connect() testconn.request("GET", "/_s_/spr/blank.htm") testconn.getresponse(); testconn.close() except Exception: raise Exception("The recorder proxy is not available. Please start Sahi on {0}:{1}.".format(self.recorder_host, self.recorder_port)) def get_alert(self): a = self.switch_to_alert() try: a.text except Exception: print "There was no alert, confirm, or prompt found" a = None return a alert = property(get_alert) confirm = property(get_alert) prompt = property(get_alert) def addAD(self, accessor): self.accessors.append(accessor) self.accessors_name_set.add(accessor['name']) # Taken *almost* directly from concat.js in Sahi def load_accessors(self): # self.addAD({'tag': "INPUT", 'type': "text", 'event':"change", 'name': "textbox", 'attributes': ["name", "id", "index", "className"], 'action': "_setValue", 'value': "value"}) self.addAD({'tag': "A", 'type': None, 'event':"click", 'name': "link", 'attributes': ["sahiText", "title|alt", "id", "index", "href", "className"], 'action': "click", 'value': "sahiText"}) # self.addAD({'tag': "IMG", 'type': None, 'event':"click", 'name': "image", 'attributes': ["title|alt", "id", this.getFileFromURL, "index", "className"], 'action': "click"}) self.addAD({'tag': "IMG", 'type': None, 'event':"click", 'name': "image", 'attributes': ["title|alt", "id", "fileFromURL", "index", "className"], 'action': "click"}) self.addAD({'tag': "LABEL", 'type': None, 'event':"click", 'name': "label", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "LI", 'type': None, 'event':"click", 'name': "listItem", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "UL", 'type': None, 'event':"click", 'name': "list", 'attributes': ["id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "OL", 'type': None, 'event':"click", 'name': "list", 'attributes': ["id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "DIV", 'type': None, 'event':"click", 'name': "div", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "SPAN", 'type': None, 'event':"click", 'name': "span", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "TABLE", 'type': None, 'event':"click", 'name': "table", 'attributes': ["id", "className", "index"], 'action': None, 'value': "sahiText"}) self.addAD({'tag': "TR", 'type': None, 'event':"click", 'name': "row", 'attributes': ["id", "className", "sahiText", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "TD", 'type': None, 'event':"click", 'name': "cell", 'attributes': ["sahiText", "id", "className", "index", "encaps_TR", "encaps_TABLE"], 'action': "click", 'idOnly': False, 'value': "sahiText"}) self.addAD({'tag': "TH", 'type': None, 'event':"click", 'name': "tableHeader", 'attributes': ["sahiText", "id", "className", "encaps_TABLE"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "INPUT", 'type': "button", 'event':"click", 'name': "button", 'attributes': ["value", "name", "id", "index", "className"], 'action': "click", 'value': "value"}) self.addAD({'tag': "BUTTON", 'type': "button", 'event':"click", 'name': "button", 'attributes': ["sahiText", "name", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) # self.addAD({'tag': "INPUT", 'type': "checkbox", 'event':"click", 'name': "checkbox", 'attributes': ["name", "id", "value", "className", "index"], 'action': "click", 'value': "checked", 'assertions': function(value){return [("true" == ("" + value)) ? _sahi.language.ASSERT_CHECKED : _sahi.language.ASSERT_NOT_CHECKED];}}) self.addAD({'tag': "INPUT", 'type': "checkbox", 'event':"click", 'name': "checkbox", 'attributes': ["name", "id", "value", "className", "index"], 'action': "click", 'value': "checked"}) self.addAD({'tag': "INPUT", 'type': "password", 'event':"change", 'name': "password", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) # self.addAD({'tag': "INPUT", 'type': "radio", 'event':"click", 'name': "radio", 'attributes': ["id", "name", "value", "className", "index"], 'action': "click", 'value': "checked", assertions: function(value){return [("true" == ("" + value)) ? _sahi.language.ASSERT_CHECKED : _sahi.language.ASSERT_NOT_CHECKED];}}) self.addAD({'tag': "INPUT", 'type': "radio", 'event':"click", 'name': "radio", 'attributes': ["id", "name", "value", "className", "index"], 'action': "click", 'value': "checked"}) self.addAD({'tag': "INPUT", 'type': "submit", 'event':"click", 'name': "submit", 'attributes': ["value", "name", "id", "className", "index"], 'action': "click", 'value': "value"}) self.addAD({'tag': "BUTTON", 'type': "submit", 'event':"click", 'name': "submit", 'attributes': ["sahiText", "name", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "INPUT", 'type': "text", 'event':"change", 'name': "textbox", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "INPUT", 'type': "reset", 'event':"click", 'name': "reset", 'attributes': ["value", "name", "id", "className", "index"], 'action': "click", 'value': "value"}) self.addAD({'tag': "BUTTON", 'type': "reset", 'event':"click", 'name': "reset", 'attributes': ["sahiText", "name", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "INPUT", 'type': "hidden", 'event':"", 'name': "hidden", 'attributes': ["name", "id", "className", "index"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "INPUT", 'type': "file", 'event':"click", 'name': "file", 'attributes': ["name", "id", "index", "className"], 'action': "setFile", 'value': "value"}) # self.addAD({'tag': "INPUT", 'type': "image", 'event':"click", 'name': "imageSubmitButton", 'attributes': ["title|alt", "name", "id", this.getFileFromURL, "index", "className"], 'action': "click"}) self.addAD({'tag': "INPUT", 'type': "image", 'event':"click", 'name': "imageSubmitButton", 'attributes': ["title|alt", "name", "id", "fileFromURL", "index", "className"], 'action': "click"}) self.addAD({'tag': "INPUT", 'type': "date", 'event':"change", 'name': "datebox", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "INPUT", 'type': "datetime", 'event':"change", 'name': "datetimebox", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "INPUT", 'type': "datetime-local", 'event':"change", 'name': "datetimelocalbox", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "INPUT", 'type': "email", 'event':"change", 'name': "emailbox", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "INPUT", 'type': "month", 'event':"change", 'name': "monthbox", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "INPUT", 'type': "number", 'event':"change", 'name': "numberbox", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "INPUT", 'type': "range", 'event':"change", 'name': "rangebox", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "INPUT", 'type': "search", 'event':"change", 'name': "searchbox", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "INPUT", 'type': "tel", 'event':"change", 'name': "telephonebox", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "INPUT", 'type': "time", 'event':"change", 'name': "timebox", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "INPUT", 'type': "url", 'event':"change", 'name': "urlbox", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "INPUT", 'type': "week", 'event':"change", 'name': "weekbox", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) # self.addAD({'tag': "SELECT", 'type': None, 'event':"change", 'name': "select", 'attributes': ["name", "id", "index", "className"], 'action': "setSelected", 'value': function(el){return _sahi._getSelectedText(el) || _sahi.getOptionId(el, el.value) || el.value;},assertions: function(value){return [_sahi.language.ASSERT_SELECTION];}}) self.addAD({'tag': "SELECT", 'type': None, 'event':"change", 'name': "select", 'attributes': ["name", "id", "index", "className"], 'action': "setSelected"}) self.addAD({'tag': "OPTION", 'type': None, 'event':"none", 'name': "option", 'attributes': ["encaps_SELECT", "sahiText", "value", "id", "index"], 'action': "", 'value': "sahiText"}) self.addAD({'tag': "TEXTAREA", 'type': None, 'event':"change", 'name': "textarea", 'attributes': ["name", "id", "index", "className"], 'action': "setValue", 'value': "value"}) self.addAD({'tag': "H1", 'type': None, 'event':"click", 'name': "heading1", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "H2", 'type': None, 'event':"click", 'name': "heading2", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "H3", 'type': None, 'event':"click", 'name': "heading3", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "H4", 'type': None, 'event':"click", 'name': "heading4", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "H5", 'type': None, 'event':"click", 'name': "heading5", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "H6", 'type': None, 'event':"click", 'name': "heading6", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "AREA", 'type': None, 'event':"click", 'name': "area", 'attributes': ["id", "title|alt", "href", "shape", "className", "index"], 'action': "click"}) self.addAD({'tag': "MAP", 'type': None, 'event':"click", 'name': "map", 'attributes': ["name", "id", "title", "className", "index"], 'action': "click"}) self.addAD({'tag': "P", 'type': None, 'event':"click", 'name': "paragraph", 'attributes': ["encaps_A", "id", "className", "sahiText", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "I", 'type': None, 'event':"click", 'name': "italic", 'attributes': ["encaps_A", "sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "EM", 'type': None, 'event':"click", 'name': "emphasis", 'attributes': ["encaps_A", "sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "B", 'type': None, 'event':"click", 'name': "bold", 'attributes': ["encaps_A", "sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "STRONG", 'type': None, 'event':"click", 'name': "strong", 'attributes': ["encaps_A", "sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "PRE", 'type': None, 'event':"click", 'name': "preformatted", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "CODE", 'type': None, 'event':"click", 'name': "code", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "BLOCKQUOTE", 'type': None, 'event':"click", 'name': "blockquote", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "CANVAS", 'type': None, 'event':"click", 'name': "canvas", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "ABBR", 'type': None, 'event':"click", 'name': "abbr", 'attributes': ["encaps_A", "sahiText", "title", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "HR", 'type': None, 'event':"click", 'name': "hr", 'attributes': ["id", "className", "index"], 'action': "click", 'value': ""}) # var o_fn1 = function(o){try{return o._sahi_getFlexId()}catch(e){}}; # var o_fn2 = function(o){try{return o._sahi_getUID()}catch(e){}}; # self.addAD({'tag': "OBJECT", 'type': None, 'event':"click", 'name': "object", 'attributes': ["id", "name", "data", o_fn1, o_fn2], 'action': "click", 'value': ""}) # self.addAD({'tag': "EMBED", 'type': None, 'event':"click", 'name': "embed", 'attributes': ["name", "id", o_fn1, o_fn2], 'action': "click", 'value': ""}) self.addAD({'tag': "OBJECT", 'type': None, 'event':"click", 'name': "object", 'attributes': ["id", "name", "data"], 'action': "click", 'value': ""}) self.addAD({'tag': "EMBED", 'type': None, 'event':"click", 'name': "embed", 'attributes': ["name", "id"], 'action': "click", 'value': ""}) self.addAD({'tag': "DL", 'type': None, 'event':"click", 'name': "dList", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "DT", 'type': None, 'event':"click", 'name': "dTerm", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "DD", 'type': None, 'event':"click", 'name': "dDesc", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "RECT", 'type': None, 'event':"click", 'name': "svg_rect", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "TSPAN", 'type': None, 'event':"click", 'name': "svg_tspan", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "CIRCLE", 'type': None, 'event':"click", 'name': "svg_circle", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "ELLIPSE", 'type': None, 'event':"click", 'name': "svg_ellipse", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "LINE", 'type': None, 'event':"click", 'name': "svg_line", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "POLYGONE", 'type': None, 'event':"click", 'name': "svg_polygon", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "POLYLINE", 'type': None, 'event':"click", 'name': "svg_polyline", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "PATH", 'type': None, 'event':"click", 'name': "svg_path", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) self.addAD({'tag': "TEXT", 'type': None, 'event':"click", 'name': "svg_text", 'attributes': ["sahiText", "id", "className", "index"], 'action': "click", 'value': "sahiText"}) def link(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "link", identifier = identifier, *args, **kwargs) def image(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "image", identifier = identifier, *args, **kwargs) def label(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "label", identifier = identifier, *args, **kwargs) def listItem(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "listItem", identifier = identifier, *args, **kwargs) def list(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "list", identifier = identifier, *args, **kwargs) def div(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "div", identifier = identifier, *args, **kwargs) def span(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "span", identifier = identifier, *args, **kwargs) def table(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "table", identifier = identifier, *args, **kwargs) def row(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "row", identifier = identifier, *args, **kwargs) def cell(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "cell", identifier = identifier, *args, **kwargs) def tableHeader(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "tableHeader", identifier = identifier, *args, **kwargs) def button(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "button", identifier = identifier, *args, **kwargs) def checkbox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "checkbox", identifier = identifier, *args, **kwargs) def password(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "password", identifier = identifier, *args, **kwargs) def radio(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "radio", identifier = identifier, *args, **kwargs) def submit(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "submit", identifier = identifier, *args, **kwargs) def textbox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "textbox", identifier = identifier, *args, **kwargs) def reset(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "reset", identifier = identifier, *args, **kwargs) def hidden(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "hidden", identifier = identifier, *args, **kwargs) def file(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "file", identifier = identifier, *args, **kwargs) def imageSubmitButton(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "imageSubmitButton", identifier = identifier, *args, **kwargs) def datebox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "datebox", identifier = identifier, *args, **kwargs) def datetimebox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "datetimebox", identifier = identifier, *args, **kwargs) def datetimelocalbox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "datetimelocalbox", identifier = identifier, *args, **kwargs) def emailbox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "emailbox", identifier = identifier, *args, **kwargs) def monthbox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "monthbox", identifier = identifier, *args, **kwargs) def numberbox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "numberbox", identifier = identifier, *args, **kwargs) def rangebox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "rangebox", identifier = identifier, *args, **kwargs) def searchbox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "searchbox", identifier = identifier, *args, **kwargs) def telephonebox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "telephonebox", identifier = identifier, *args, **kwargs) def timebox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "timebox", identifier = identifier, *args, **kwargs) def urlbox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "urlbox", identifier = identifier, *args, **kwargs) def weekbox(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "weekbox", identifier = identifier, *args, **kwargs) def select(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "select", identifier = identifier, *args, **kwargs) def option(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "option", identifier = identifier, *args, **kwargs) def textarea(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "textarea", identifier = identifier, *args, **kwargs) def heading1(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "heading1", identifier = identifier, *args, **kwargs) def heading2(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "heading2", identifier = identifier, *args, **kwargs) def heading3(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "heading3", identifier = identifier, *args, **kwargs) def heading4(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "heading4", identifier = identifier, *args, **kwargs) def heading5(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "heading5", identifier = identifier, *args, **kwargs) def heading6(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "heading6", identifier = identifier, *args, **kwargs) def area(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "area", identifier = identifier, *args, **kwargs) def map(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "map", identifier = identifier, *args, **kwargs) def paragraph(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "paragraph", identifier = identifier, *args, **kwargs) def italic(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "italic", identifier = identifier, *args, **kwargs) def emphasis(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "emphasis", identifier = identifier, *args, **kwargs) def bold(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "bold", identifier = identifier, *args, **kwargs) def strong(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "strong", identifier = identifier, *args, **kwargs) def preformatted(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "preformatted", identifier = identifier, *args, **kwargs) def code(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "code", identifier = identifier, *args, **kwargs) def blockquote(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "blockquote", identifier = identifier, *args, **kwargs) def canvas(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "canvas", identifier = identifier, *args, **kwargs) def abbr(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "abbr", identifier = identifier, *args, **kwargs) def hr(self, identifier, *args, **kwargs): return PytaniumElement(pytanium_parent = self, accessor_name = "hr", identifier = identifier, *args, **kwargs) confirm_action = True prompt_text = "" def inject_extensions(self): # Inject javascript to supplement Selenium functionality if self.suppress_alerts: alert = """ // Backup the old alert window.oldalert = window.oldalert || window.alert; // Override the window.alert window.alert = function() { window.lastAlertText = arguments[0]; return true; }; """ else: alert = """ // Reset alert if it's been changed window.alert = window.oldalert || window.alert; """ if self.suppress_confirms: confirm = """ // Backup the old confirm window.oldconfirm = window.oldconfirm || window.confirm; // Override the window.confirm window.confirm = function() { window.lastConfirmText = arguments[0]; return """ + str(self.confirm_action).lower() + """; }; """ else: confirm = """ // Reset confirm if it's been changed window.confirm = window.oldconfirm || window.confirm; """ if self.suppress_prompts: prompt = """ // Backup the old prompt window.oldprompt = window.oldprompt || window.prompt; // Override the window.prompt window.prompt = function() { window.lastPromptText = arguments[0]; return '""" + str(self.prompt_text) + """'; }; """ else: prompt = """ // Reset prompt if it's been changed window.prompt = window.oldprompt || window.prompt; """ if self.suppress_prints: print_override = """ // Backup the old print window.print = window.oldprint || window.print; // Override the window.print window.print = function() { window.printCalled = true; return true; }; """ else: print_override = """ // Reset print if it's been changed window.print = window.oldprint || window.print; """ #TODO: If an array of wait states is empty, then don't inject if self.wait_for_ajax: # Build the wait logic with booleans instead of indexOf # because IE8 doesn't have indexOf by default wait_logic = ' == readyState || '.join(str(i) for i in self.xhr_wait_states) + ' == readyState' ajax = """ // Create a list of XMLHttpRequests window.XHRs = window.XHRs || []; // Use the proxy pattern on open XMLHttpRequest.prototype.oldopen = XMLHttpRequest.prototype.oldopen || XMLHttpRequest.prototype.open; XMLHttpRequest.prototype.open = function(method, url, async, username, password){ // Push the XHR to our global list window.XHRs.push(this); return this.oldopen.apply(this, arguments); }; // Define a way to check if the requests are done window.pytaniumAjaxReady = function(){ for(var XHR = 0; XHR < window.XHRs.length; XHR++){ readyState = window.XHRs[XHR].readyState; if(""" + wait_logic + """){ return false; } } return true; } """ else: ajax = """ // Reset open if it's been changed XMLHttpRequest.prototype.open = XMLHttpRequest.prototype.oldopen || XMLHttpRequest.prototype.open; """ script = alert + confirm + prompt + print_override + ajax + self.browser_js self.execute_script(script) def last_alert(self): return self.execute_script("return window.lastAlertText;") def clear_last_alert(self): return self.execute_script("window.lastAlertText = null;") def print_called(self): return self.execute_script("return window.printCalled || false;") def clear_print_called(self): return self.execute_script("window.printCalled = false;") def last_confirm(self): return self.execute_script("return window.lastConfirmText;") def clear_last_confirm(self): return self.execute_script("window.lastConfirmText = null;") def last_prompt(self): return self.execute_script("return window.lastPromptText;") def clear_last_prompt(self): return self.execute_script("window.lastPromptText = null;") def is_ajax_complete(self): if self.wait_for_ajax: # Check if all the ajax requests are complete javascript_check = self.execute_script(""" if(window.pytaniumAjaxReady){ return window.pytaniumAjaxReady(); } else{ return true; } """) return javascript_check else: return True def are_images_complete(self): if self.wait_for_images: # Check if all the images are loaded images = self.find_elements_by_tag_name("img") for image in images: is_complete = image.get_attribute("complete") if is_complete is None or is_complete == False: return False return True def wait_until_load_complete(self): timeout_limit = 30 timeout = time.time() + timeout_limit interval = .5 while time.time() < timeout: if self.is_ajax_complete() and self.are_images_complete(): return time.sleep(interval) raise Exception("Ajax requests and picture loads on the page took longer than " + str(timeout_limit) + " seconds to execute") # Modify the base webdriver selenium.webdriver.remote.webdriver.WebDriver = RemoteWebDriver # Reload all the drivers that use the base webdriver reload(selenium.webdriver.firefox.webdriver) Firefox = selenium.webdriver.firefox.webdriver.WebDriver reload(selenium.webdriver.chrome.webdriver) Chrome = selenium.webdriver.chrome.webdriver.WebDriver reload(selenium.webdriver.ie.webdriver) Ie = selenium.webdriver.ie.webdriver.WebDriver
kevlened/pytanium
pytanium/webdriver.py
Python
lgpl-3.0
39,315
0.019407
# -*- coding: utf-8 -*- """ {{ project_name }}.libs.common.models ~~~~~~~~~~~~~~~~~~~~~~~~~ This module contains all models that can be used across apps :copyright: (c) 2015 """ from django.db import models from django.utils.translation import ugettext_lazy as _ from .utils.text import slugify class SlugModel(models.Model): """ A base class for any model that wants to implement an auto generated slug field. """ # how many times we'll retry creating a slug before giving up MAX_RETRIES = 100 slug = models.SlugField(_('slug'), max_length=255, unique=True) class Meta: abstract = True @classmethod def is_valid_slug(cls, slug): """Convenience method to check if the given slug already exists.""" return not cls.objects.filter(slug=slug).exists() @classmethod def get_by_slug(cls, slug): """ Return the :class:`{{ project_name }}.libs.common.models.SlugModel` for the given slug. If the slug dosen't exist, return None. :param slug: the slug value to search for """ try: return cls.objects.get(slug=slug) except cls.DoesNotExist: return None def base_slug_value(self): """ As a subclass of :class:`{{ project_name }}.libs.common.models.SlugModel` one must implement the :method:`{{ project_name }}.libs.common.models.SlugModel.base_slug_value` which returns a unicode value that is used as the basis of the slug value. """ raise NotImplementedError def generate_slug(self, value=None): """ Create a slug based on the value of :method:`{{ project_name }}.libs.common.models.SlugModel.base_slug_value`, ensure that the slug is unique by comparing it to existing slugs. """ if value is None: value = self.base_slug_value() field = self._meta.get_field('slug') return slugify(value, max_length=field.max_length, usable=self.is_valid_slug, max_retries=self.MAX_RETRIES) def save(self, *args, **kwargs): """ Right before a model is saved, check to see if the slug field has yet to be defined. If so, generate and set the :attr:`{{ project_name }}.libs.common.models.SlugModel.slug`. """ if not self.slug: # a slug has not yet been defined, generate one self.slug = self.generate_slug() return super(SlugModel, self).save(*args, **kwargs)
ericbuckley/django-project-template
project_name/libs/common/models.py
Python
bsd-3-clause
2,547
0.002356
# IMAP folder support # Copyright (C) 2002-2012 John Goerzen & contributors # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA import email import random import binascii import re import time from sys import exc_info from .Base import BaseFolder from offlineimap import imaputil, imaplibutil, OfflineImapError from offlineimap.imaplib2 import MonthNames class IMAPFolder(BaseFolder): def __init__(self, imapserver, name, repository): name = imaputil.dequote(name) self.sep = imapserver.delim super(IMAPFolder, self).__init__(name, repository) self.expunge = repository.getexpunge() self.root = None # imapserver.root self.imapserver = imapserver self.messagelist = None self.randomgenerator = random.Random() #self.ui is set in BaseFolder def selectro(self, imapobj, force = False): """Select this folder when we do not need write access. Prefer SELECT to EXAMINE if we can, since some servers (Courier) do not stabilize UID validity until the folder is selected. .. todo: Still valid? Needs verification :param: Enforce new SELECT even if we are on that folder already. :returns: raises :exc:`OfflineImapError` severity FOLDER on error""" try: imapobj.select(self.getfullname(), force = force) except imapobj.readonly: imapobj.select(self.getfullname(), readonly = True, force = force) def suggeststhreads(self): return 1 def waitforthread(self): self.imapserver.connectionwait() def getcopyinstancelimit(self): return 'MSGCOPY_' + self.repository.getname() def get_uidvalidity(self): """Retrieve the current connections UIDVALIDITY value UIDVALIDITY value will be cached on the first call. :returns: The UIDVALIDITY as (long) number.""" if hasattr(self, '_uidvalidity'): # use cached value if existing return self._uidvalidity imapobj = self.imapserver.acquireconnection() try: # SELECT (if not already done) and get current UIDVALIDITY self.selectro(imapobj) typ, uidval = imapobj.response('UIDVALIDITY') assert uidval != [None] and uidval != None, \ "response('UIDVALIDITY') returned [None]!" self._uidvalidity = long(uidval[-1]) return self._uidvalidity finally: self.imapserver.releaseconnection(imapobj) def quickchanged(self, statusfolder): # An IMAP folder has definitely changed if the number of # messages or the UID of the last message have changed. Otherwise # only flag changes could have occurred. retry = True # Should we attempt another round or exit? while retry: retry = False imapobj = self.imapserver.acquireconnection() try: # Select folder and get number of messages restype, imapdata = imapobj.select(self.getfullname(), True, True) self.imapserver.releaseconnection(imapobj) except OfflineImapError as e: # retry on dropped connections, raise otherwise self.imapserver.releaseconnection(imapobj, True) if e.severity == OfflineImapError.ERROR.FOLDER_RETRY: retry = True else: raise except: # cleanup and raise on all other errors self.imapserver.releaseconnection(imapobj, True) raise # 1. Some mail servers do not return an EXISTS response # if the folder is empty. 2. ZIMBRA servers can return # multiple EXISTS replies in the form 500, 1000, 1500, # 1623 so check for potentially multiple replies. if imapdata == [None]: return True maxmsgid = 0 for msgid in imapdata: maxmsgid = max(long(msgid), maxmsgid) # Different number of messages than last time? if maxmsgid != statusfolder.getmessagecount(): return True return False def cachemessagelist(self): maxage = self.config.getdefaultint("Account %s" % self.accountname, "maxage", -1) maxsize = self.config.getdefaultint("Account %s" % self.accountname, "maxsize", -1) self.messagelist = {} imapobj = self.imapserver.acquireconnection() try: res_type, imapdata = imapobj.select(self.getfullname(), True, True) if imapdata == [None] or imapdata[0] == '0': # Empty folder, no need to populate message list return # By default examine all UIDs in this folder msgsToFetch = '1:*' if (maxage != -1) | (maxsize != -1): search_cond = "("; if(maxage != -1): #find out what the oldest message is that we should look at oldest_struct = time.gmtime(time.time() - (60*60*24*maxage)) if oldest_struct[0] < 1900: raise OfflineImapError("maxage setting led to year %d. " "Abort syncing." % oldest_struct[0], OfflineImapError.ERROR.REPO) search_cond += "SINCE %02d-%s-%d" % ( oldest_struct[2], MonthNames[oldest_struct[1]], oldest_struct[0]) if(maxsize != -1): if(maxage != -1): # There are two conditions, add space search_cond += " " search_cond += "SMALLER %d" % maxsize search_cond += ")" res_type, res_data = imapobj.search(None, search_cond) if res_type != 'OK': raise OfflineImapError("SEARCH in folder [%s]%s failed. " "Search string was '%s'. Server responded '[%s] %s'" % ( self.getrepository(), self, search_cond, res_type, res_data), OfflineImapError.ERROR.FOLDER) # Result UIDs are seperated by space, coalesce into ranges msgsToFetch = imaputil.uid_sequence(res_data[0].split()) if not msgsToFetch: return # No messages to sync # Get the flags and UIDs for these. single-quotes prevent # imaplib2 from quoting the sequence. res_type, response = imapobj.fetch("'%s'" % msgsToFetch, '(FLAGS UID)') if res_type != 'OK': raise OfflineImapError("FETCHING UIDs in folder [%s]%s failed. " "Server responded '[%s] %s'" % ( self.getrepository(), self, res_type, response), OfflineImapError.ERROR.FOLDER) finally: self.imapserver.releaseconnection(imapobj) for messagestr in response: # looks like: '1 (FLAGS (\\Seen Old) UID 4807)' or None if no msg # Discard initial message number. if messagestr == None: continue messagestr = messagestr.split(' ', 1)[1] options = imaputil.flags2hash(messagestr) if not 'UID' in options: self.ui.warn('No UID in message with options %s' %\ str(options), minor = 1) else: uid = long(options['UID']) flags = imaputil.flagsimap2maildir(options['FLAGS']) rtime = imaplibutil.Internaldate2epoch(messagestr) self.messagelist[uid] = {'uid': uid, 'flags': flags, 'time': rtime} def getmessagelist(self): return self.messagelist def getmessage(self, uid): """Retrieve message with UID from the IMAP server (incl body) :returns: the message body or throws and OfflineImapError (probably severity MESSAGE) if e.g. no message with this UID could be found. """ imapobj = self.imapserver.acquireconnection() try: fails_left = 2 # retry on dropped connection while fails_left: try: imapobj.select(self.getfullname(), readonly = True) res_type, data = imapobj.uid('fetch', str(uid), '(BODY.PEEK[])') fails_left = 0 except imapobj.abort as e: # Release dropped connection, and get a new one self.imapserver.releaseconnection(imapobj, True) imapobj = self.imapserver.acquireconnection() self.ui.error(e, exc_info()[2]) fails_left -= 1 if not fails_left: raise e if data == [None] or res_type != 'OK': #IMAP server says bad request or UID does not exist severity = OfflineImapError.ERROR.MESSAGE reason = "IMAP server '%s' failed to fetch message UID '%d'."\ "Server responded: %s %s" % (self.getrepository(), uid, res_type, data) if data == [None]: #IMAP server did not find a message with this UID reason = "IMAP server '%s' does not have a message "\ "with UID '%s'" % (self.getrepository(), uid) raise OfflineImapError(reason, severity) # data looks now e.g. [('320 (UID 17061 BODY[] # {2565}','msgbody....')] we only asked for one message, # and that msg is in data[0]. msbody is in [0][1] data = data[0][1].replace("\r\n", "\n") if len(data)>200: dbg_output = "%s...%s" % (str(data)[:150], str(data)[-50:]) else: dbg_output = data self.ui.debug('imap', "Returned object from fetching %d: '%s'" % (uid, dbg_output)) finally: self.imapserver.releaseconnection(imapobj) return data def getmessagetime(self, uid): return self.messagelist[uid]['time'] def getmessageflags(self, uid): return self.messagelist[uid]['flags'] def generate_randomheader(self, content): """Returns a unique X-OfflineIMAP header Generate an 'X-OfflineIMAP' mail header which contains a random unique value (which is based on the mail content, and a random number). This header allows us to fetch a mail after APPENDing it to an IMAP server and thus find out the UID that the server assigned it. :returns: (headername, headervalue) tuple, consisting of strings headername == 'X-OfflineIMAP' and headervalue will be a random string """ headername = 'X-OfflineIMAP' # We need a random component too. If we ever upload the same # mail twice (e.g. in different folders), we would still need to # get the UID for the correct one. As we won't have too many # mails with identical content, the randomness requirements are # not extremly critial though. # compute unsigned crc32 of 'content' as unique hash # NB: crc32 returns unsigned only starting with python 3.0 headervalue = str( binascii.crc32(content) & 0xffffffff ) + '-' headervalue += str(self.randomgenerator.randint(0,9999999999)) return (headername, headervalue) def savemessage_addheader(self, content, headername, headervalue): self.ui.debug('imap', 'savemessage_addheader: called to add %s: %s' % (headername, headervalue)) insertionpoint = content.find("\r\n\r\n") self.ui.debug('imap', 'savemessage_addheader: insertionpoint = %d' % insertionpoint) leader = content[0:insertionpoint] self.ui.debug('imap', 'savemessage_addheader: leader = %s' % repr(leader)) if insertionpoint == 0 or insertionpoint == -1: newline = '' insertionpoint = 0 else: newline = "\r\n" newline += "%s: %s" % (headername, headervalue) self.ui.debug('imap', 'savemessage_addheader: newline = ' + repr(newline)) trailer = content[insertionpoint:] self.ui.debug('imap', 'savemessage_addheader: trailer = ' + repr(trailer)) return leader + newline + trailer def savemessage_searchforheader(self, imapobj, headername, headervalue): self.ui.debug('imap', 'savemessage_searchforheader called for %s: %s' % \ (headername, headervalue)) # Now find the UID it got. headervalue = imapobj._quote(headervalue) try: matchinguids = imapobj.uid('search', 'HEADER', headername, headervalue)[1][0] except imapobj.error as err: # IMAP server doesn't implement search or had a problem. self.ui.debug('imap', "savemessage_searchforheader: got IMAP error '%s' while attempting to UID SEARCH for message with header %s" % (err, headername)) return 0 self.ui.debug('imap', 'savemessage_searchforheader got initial matchinguids: ' + repr(matchinguids)) if matchinguids == '': self.ui.debug('imap', "savemessage_searchforheader: UID SEARCH for message with header %s yielded no results" % headername) return 0 matchinguids = matchinguids.split(' ') self.ui.debug('imap', 'savemessage_searchforheader: matchinguids now ' + \ repr(matchinguids)) if len(matchinguids) != 1 or matchinguids[0] == None: raise ValueError("While attempting to find UID for message with " "header %s, got wrong-sized matchinguids of %s" %\ (headername, str(matchinguids))) return long(matchinguids[0]) def savemessage_fetchheaders(self, imapobj, headername, headervalue): """ We fetch all new mail headers and search for the right X-OfflineImap line by hand. The response from the server has form: ( 'OK', [ ( '185 (RFC822.HEADER {1789}', '... mail headers ...' ), ' UID 2444)', ( '186 (RFC822.HEADER {1789}', '... 2nd mail headers ...' ), ' UID 2445)' ] ) We need to locate the UID just after mail headers containing our X-OfflineIMAP line. Returns UID when found, 0 when not found. """ self.ui.debug('imap', 'savemessage_fetchheaders called for %s: %s' % \ (headername, headervalue)) # run "fetch X:* rfc822.header" # since we stored the mail we are looking for just recently, it would # not be optimal to fetch all messages. So we'll find highest message # UID in our local messagelist and search from there (exactly from # UID+1). That works because UIDs are guaranteed to be unique and # ascending. if self.getmessagelist(): start = 1+max(self.getmessagelist().keys()) else: # Folder was empty - start from 1 start = 1 # Imaplib quotes all parameters of a string type. That must not happen # with the range X:*. So we use bytearray to stop imaplib from getting # in our way result = imapobj.uid('FETCH', bytearray('%d:*' % start), 'rfc822.header') if result[0] != 'OK': raise OfflineImapError('Error fetching mail headers: ' + '. '.join(result[1]), OfflineImapError.ERROR.MESSAGE) result = result[1] found = 0 for item in result: if found == 0 and type(item) == type( () ): # Walk just tuples if re.search("(?:^|\\r|\\n)%s:\s*%s(?:\\r|\\n)" % (headername, headervalue), item[1], flags=re.IGNORECASE): found = 1 elif found == 1: if type(item) == type (""): uid = re.search("UID\s+(\d+)", item, flags=re.IGNORECASE) if uid: return int(uid.group(1)) else: self.ui.warn("Can't parse FETCH response, can't find UID: %s", result.__repr__()) else: self.ui.warn("Can't parse FETCH response, we awaited string: %s", result.__repr__()) return 0 def getmessageinternaldate(self, content, rtime=None): """Parses mail and returns an INTERNALDATE string It will use information in the following order, falling back as an attempt fails: - rtime parameter - Date header of email We return None, if we couldn't find a valid date. In this case the IMAP server will use the server local time when appening (per RFC). Note, that imaplib's Time2Internaldate is inherently broken as it returns localized date strings which are invalid for IMAP servers. However, that function is called for *every* append() internally. So we need to either pass in `None` or the correct string (in which case Time2Internaldate() will do nothing) to append(). The output of this function is designed to work as input to the imapobj.append() function. TODO: We should probably be returning a bytearray rather than a string here, because the IMAP server will expect plain ASCII. However, imaplib.Time2INternaldate currently returns a string so we go with the same for now. :param rtime: epoch timestamp to be used rather than analyzing the email. :returns: string in the form of "DD-Mmm-YYYY HH:MM:SS +HHMM" (including double quotes) or `None` in case of failure (which is fine as value for append).""" if rtime is None: message = email.message_from_string(content) # parsedate returns a 9-tuple that can be passed directly to # time.mktime(); Will be None if missing or not in a valid # format. Note that indexes 6, 7, and 8 of the result tuple are # not usable. datetuple = email.utils.parsedate(message.get('Date')) if datetuple is None: #could not determine the date, use the local time. return None #make it a real struct_time, so we have named attributes datetuple = time.struct_time(datetuple) else: #rtime is set, use that instead datetuple = time.localtime(rtime) try: # Check for invalid dates if datetuple[0] < 1981: raise ValueError # Check for invalid dates datetuple_check = time.localtime(time.mktime(datetuple)) if datetuple[:2] != datetuple_check[:2]: raise ValueError except (ValueError, OverflowError): # Argh, sometimes it's a valid format but year is 0102 # or something. Argh. It seems that Time2Internaldate # will rause a ValueError if the year is 0102 but not 1902, # but some IMAP servers nonetheless choke on 1902. self.ui.debug('imap', "Message with invalid date %s. Server will use local time." \ % datetuple) return None #produce a string representation of datetuple that works as #INTERNALDATE num2mon = {1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May', 6:'Jun', 7:'Jul', 8:'Aug', 9:'Sep', 10:'Oct', 11:'Nov', 12:'Dec'} #tm_isdst coming from email.parsedate is not usable, we still use it here, mhh if datetuple.tm_isdst == '1': zone = -time.altzone else: zone = -time.timezone offset_h, offset_m = divmod(zone//60, 60) internaldate = '"%02d-%s-%04d %02d:%02d:%02d %+03d%02d"' \ % (datetuple.tm_mday, num2mon[datetuple.tm_mon], datetuple.tm_year, \ datetuple.tm_hour, datetuple.tm_min, datetuple.tm_sec, offset_h, offset_m) return internaldate def savemessage(self, uid, content, flags, rtime): """Save the message on the Server This backend always assigns a new uid, so the uid arg is ignored. This function will update the self.messagelist dict to contain the new message after sucessfully saving it. See folder/Base for details. Note that savemessage() does not check against dryrun settings, so you need to ensure that savemessage is never called in a dryrun mode. :param rtime: A timestamp to be used as the mail date :returns: the UID of the new message as assigned by the server. If the message is saved, but it's UID can not be found, it will return 0. If the message can't be written (folder is read-only for example) it will return -1.""" self.ui.savemessage('imap', uid, flags, self) # already have it, just save modified flags if uid > 0 and self.uidexists(uid): self.savemessageflags(uid, flags) return uid retry_left = 2 # succeeded in APPENDING? imapobj = self.imapserver.acquireconnection() try: while retry_left: # UIDPLUS extension provides us with an APPENDUID response. use_uidplus = 'UIDPLUS' in imapobj.capabilities # get the date of the message, so we can pass it to the server. date = self.getmessageinternaldate(content, rtime) content = re.sub("(?<!\r)\n", "\r\n", content) if not use_uidplus: # insert a random unique header that we can fetch later (headername, headervalue) = self.generate_randomheader( content) self.ui.debug('imap', 'savemessage: header is: %s: %s' %\ (headername, headervalue)) content = self.savemessage_addheader(content, headername, headervalue) if len(content)>200: dbg_output = "%s...%s" % (content[:150], content[-50:]) else: dbg_output = content self.ui.debug('imap', "savemessage: date: %s, content: '%s'" % (date, dbg_output)) try: # Select folder for append and make the box READ-WRITE imapobj.select(self.getfullname()) except imapobj.readonly: # readonly exception. Return original uid to notify that # we did not save the message. (see savemessage in Base.py) self.ui.msgtoreadonly(self, uid, content, flags) return uid #Do the APPEND try: (typ, dat) = imapobj.append(self.getfullname(), imaputil.flagsmaildir2imap(flags), date, content) retry_left = 0 # Mark as success except imapobj.abort as e: # connection has been reset, release connection and retry. retry_left -= 1 self.imapserver.releaseconnection(imapobj, True) imapobj = self.imapserver.acquireconnection() if not retry_left: raise OfflineImapError("Saving msg in folder '%s', " "repository '%s' failed (abort). Server reponded: %s\n" "Message content was: %s" % (self, self.getrepository(), str(e), dbg_output), OfflineImapError.ERROR.MESSAGE) self.ui.error(e, exc_info()[2]) except imapobj.error as e: # APPEND failed # If the server responds with 'BAD', append() # raise()s directly. So we catch that too. # drop conn, it might be bad. self.imapserver.releaseconnection(imapobj, True) imapobj = None raise OfflineImapError("Saving msg folder '%s', repo '%s'" "failed (error). Server reponded: %s\nMessage content was: " "%s" % (self, self.getrepository(), str(e), dbg_output), OfflineImapError.ERROR.MESSAGE) # Checkpoint. Let it write out stuff, etc. Eg searches for # just uploaded messages won't work if we don't do this. (typ,dat) = imapobj.check() assert(typ == 'OK') # get the new UID. Test for APPENDUID response even if the # server claims to not support it, as e.g. Gmail does :-( if use_uidplus or imapobj._get_untagged_response('APPENDUID', True): # get new UID from the APPENDUID response, it could look # like OK [APPENDUID 38505 3955] APPEND completed with # 38505 bein folder UIDvalidity and 3955 the new UID. # note: we would want to use .response() here but that # often seems to return [None], even though we have # data. TODO resp = imapobj._get_untagged_response('APPENDUID') if resp == [None]: self.ui.warn("Server supports UIDPLUS but got no APPENDUID " "appending a message.") return 0 uid = long(resp[-1].split(' ')[1]) if uid == 0: self.ui.warn("savemessage: Server supports UIDPLUS, but" " we got no usable uid back. APPENDUID reponse was " "'%s'" % str(resp)) else: # we don't support UIDPLUS uid = self.savemessage_searchforheader(imapobj, headername, headervalue) # See docs for savemessage in Base.py for explanation # of this and other return values if uid == 0: self.ui.debug('imap', 'savemessage: attempt to get new UID ' 'UID failed. Search headers manually.') uid = self.savemessage_fetchheaders(imapobj, headername, headervalue) self.ui.warn('imap', "savemessage: Searching mails for new " "Message-ID failed. Could not determine new UID.") finally: self.imapserver.releaseconnection(imapobj) if uid: # avoid UID FETCH 0 crash happening later on self.messagelist[uid] = {'uid': uid, 'flags': flags} self.ui.debug('imap', 'savemessage: returning new UID %d' % uid) return uid def savemessageflags(self, uid, flags): """Change a message's flags to `flags`. Note that this function does not check against dryrun settings, so you need to ensure that it is never called in a dryrun mode.""" imapobj = self.imapserver.acquireconnection() try: try: imapobj.select(self.getfullname()) except imapobj.readonly: self.ui.flagstoreadonly(self, [uid], flags) return result = imapobj.uid('store', '%d' % uid, 'FLAGS', imaputil.flagsmaildir2imap(flags)) assert result[0] == 'OK', 'Error with store: ' + '. '.join(result[1]) finally: self.imapserver.releaseconnection(imapobj) result = result[1][0] if not result: self.messagelist[uid]['flags'] = flags else: flags = imaputil.flags2hash(imaputil.imapsplit(result)[1])['FLAGS'] self.messagelist[uid]['flags'] = imaputil.flagsimap2maildir(flags) def addmessageflags(self, uid, flags): self.addmessagesflags([uid], flags) def addmessagesflags_noconvert(self, uidlist, flags): self.processmessagesflags('+', uidlist, flags) def addmessagesflags(self, uidlist, flags): """This is here for the sake of UIDMaps.py -- deletemessages must add flags and get a converted UID, and if we don't have noconvert, then UIDMaps will try to convert it twice.""" self.addmessagesflags_noconvert(uidlist, flags) def deletemessageflags(self, uid, flags): self.deletemessagesflags([uid], flags) def deletemessagesflags(self, uidlist, flags): self.processmessagesflags('-', uidlist, flags) def processmessagesflags(self, operation, uidlist, flags): if len(uidlist) > 101: # Hack for those IMAP ervers with a limited line length self.processmessagesflags(operation, uidlist[:100], flags) self.processmessagesflags(operation, uidlist[100:], flags) return imapobj = self.imapserver.acquireconnection() try: try: imapobj.select(self.getfullname()) except imapobj.readonly: self.ui.flagstoreadonly(self, uidlist, flags) return r = imapobj.uid('store', imaputil.uid_sequence(uidlist), operation + 'FLAGS', imaputil.flagsmaildir2imap(flags)) assert r[0] == 'OK', 'Error with store: ' + '. '.join(r[1]) r = r[1] finally: self.imapserver.releaseconnection(imapobj) # Some IMAP servers do not always return a result. Therefore, # only update the ones that it talks about, and manually fix # the others. needupdate = list(uidlist) for result in r: if result == None: # Compensate for servers that don't return anything from # STORE. continue attributehash = imaputil.flags2hash(imaputil.imapsplit(result)[1]) if not ('UID' in attributehash and 'FLAGS' in attributehash): # Compensate for servers that don't return a UID attribute. continue flagstr = attributehash['FLAGS'] uid = long(attributehash['UID']) self.messagelist[uid]['flags'] = imaputil.flagsimap2maildir(flagstr) try: needupdate.remove(uid) except ValueError: # Let it slide if it's not in the list pass for uid in needupdate: if operation == '+': self.messagelist[uid]['flags'] |= flags elif operation == '-': self.messagelist[uid]['flags'] -= flags def change_message_uid(self, uid, new_uid): """Change the message from existing uid to new_uid If the backend supports it. IMAP does not and will throw errors.""" raise OfflineImapError('IMAP backend cannot change a messages UID from ' '%d to %d' % (uid, new_uid), OfflineImapError.ERROR.MESSAGE) def deletemessage(self, uid): self.deletemessages_noconvert([uid]) def deletemessages(self, uidlist): self.deletemessages_noconvert(uidlist) def deletemessages_noconvert(self, uidlist): # Weed out ones not in self.messagelist uidlist = [uid for uid in uidlist if self.uidexists(uid)] if not len(uidlist): return self.addmessagesflags_noconvert(uidlist, set('T')) imapobj = self.imapserver.acquireconnection() try: try: imapobj.select(self.getfullname()) except imapobj.readonly: self.ui.deletereadonly(self, uidlist) return if self.expunge: assert(imapobj.expunge()[0] == 'OK') finally: self.imapserver.releaseconnection(imapobj) for uid in uidlist: del self.messagelist[uid]
spaetz/offlineimap
offlineimap/folder/IMAP.py
Python
gpl-2.0
33,949
0.004242
# -*- coding: utf-8 -*- """ Acceptance tests for CMS Video Editor. """ from nose.plugins.attrib import attr from .test_studio_video_module import CMSVideoBaseTest @attr('shard_2') class VideoEditorTest(CMSVideoBaseTest): """ CMS Video Editor Test Class """ def setUp(self): super(VideoEditorTest, self).setUp() def _create_video_component(self, subtitles=False): """ Create a video component and navigate to unit page Arguments: subtitles (bool): Upload subtitles or not """ if subtitles: self.assets.append('subs_3_yD_cEKoCk.srt.sjson') self.navigate_to_course_unit() def test_default_settings(self): """ Scenario: User can view Video metadata Given I have created a Video component And I edit the component Then I see the correct video settings and default values """ self._create_video_component() self.edit_component() self.assertTrue(self.video.verify_settings()) def test_modify_video_display_name(self): """ Scenario: User can modify Video display name Given I have created a Video component And I edit the component And I open tab "Advanced" Then I can modify video display name And my video display name change is persisted on save """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.set_field_value('Component Display Name', 'Transformers') self.save_unit_settings() self.edit_component() self.open_advanced_tab() self.assertTrue(self.video.verify_field_value('Component Display Name', 'Transformers')) def test_hidden_captions(self): """ Scenario: Captions are hidden when "transcript display" is false Given I have created a Video component with subtitles And I have set "transcript display" to False Then when I view the video it does not show the captions """ self._create_video_component(subtitles=True) # Prevent cookies from overriding course settings self.browser.delete_cookie('hide_captions') self.edit_component() self.open_advanced_tab() self.video.set_field_value('Show Transcript', 'False', 'select') self.save_unit_settings() self.assertFalse(self.video.is_captions_visible()) def test_shown_captions(self): """ Scenario: Captions are shown when "transcript display" is true Given I have created a Video component with subtitles And I have set "transcript display" to True Then when I view the video it does show the captions """ self._create_video_component(subtitles=True) # Prevent cookies from overriding course settings self.browser.delete_cookie('hide_captions') self.edit_component() self.open_advanced_tab() self.video.set_field_value('Show Transcript', 'True', 'select') self.save_unit_settings() self.assertTrue(self.video.is_captions_visible()) def test_translations_uploading(self): """ Scenario: Translations uploading works correctly Given I have created a Video component And I edit the component And I open tab "Advanced" And I upload transcript file "chinese_transcripts.srt" for "zh" language code And I save changes Then when I view the video it does show the captions And I see "好 各位同学" text in the captions And I edit the component And I open tab "Advanced" And I see translations for "zh" And I upload transcript file "uk_transcripts.srt" for "uk" language code And I save changes Then when I view the video it does show the captions And I see "好 各位同学" text in the captions And video language menu has "uk, zh" translations """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.upload_translation('chinese_transcripts.srt', 'zh') self.save_unit_settings() self.assertTrue(self.video.is_captions_visible()) unicode_text = "好 各位同学".decode('utf-8') self.assertIn(unicode_text, self.video.captions_text) self.edit_component() self.open_advanced_tab() self.assertEqual(self.video.translations(), ['zh']) self.video.upload_translation('uk_transcripts.srt', 'uk') self.save_unit_settings() self.assertTrue(self.video.is_captions_visible()) self.assertIn(unicode_text, self.video.captions_text) self.assertEqual(self.video.caption_languages.keys(), ['zh', 'uk']) def test_upload_large_transcript(self): """ Scenario: User can upload transcript file with > 1mb size Given I have created a Video component And I edit the component And I open tab "Advanced" And I upload transcript file "1mb_transcripts.srt" for "uk" language code And I save changes Then when I view the video it does show the captions And I see "Привіт, edX вітає вас." text in the captions """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.upload_translation('1mb_transcripts.srt', 'uk') self.save_unit_settings() self.assertTrue(self.video.is_captions_visible()) unicode_text = "Привіт, edX вітає вас.".decode('utf-8') self.assertIn(unicode_text, self.video.captions_lines()) def test_translations_download_works_w_saving(self): """ Scenario: Translations downloading works correctly w/ preliminary saving Given I have created a Video component And I edit the component And I open tab "Advanced" And I upload transcript files: |lang_code|filename | |uk |uk_transcripts.srt | |zh |chinese_transcripts.srt| And I save changes And I edit the component And I open tab "Advanced" And I see translations for "uk, zh" And video language menu has "uk, zh" translations Then I can download transcript for "zh" language code, that contains text "好 各位同学" And I can download transcript for "uk" language code, that contains text "Привіт, edX вітає вас." """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.upload_translation('uk_transcripts.srt', 'uk') self.video.upload_translation('chinese_transcripts.srt', 'zh') self.save_unit_settings() self.edit_component() self.open_advanced_tab() self.assertEqual(self.video.translations(), ['zh', 'uk']) self.assertEqual(self.video.caption_languages.keys(), ['zh', 'uk']) zh_unicode_text = "好 各位同学".decode('utf-8') self.assertTrue(self.video.download_translation('zh', zh_unicode_text)) uk_unicode_text = "Привіт, edX вітає вас.".decode('utf-8') self.assertTrue(self.video.download_translation('uk', uk_unicode_text)) def test_translations_download_works_wo_saving(self): """ Scenario: Translations downloading works correctly w/o preliminary saving Given I have created a Video component And I edit the component And I open tab "Advanced" And I upload transcript files: |lang_code|filename | |uk |uk_transcripts.srt | |zh |chinese_transcripts.srt| Then I can download transcript for "zh" language code, that contains text "好 各位同学" And I can download transcript for "uk" language code, that contains text "Привіт, edX вітає вас." """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.upload_translation('uk_transcripts.srt', 'uk') self.video.upload_translation('chinese_transcripts.srt', 'zh') zh_unicode_text = "好 各位同学".decode('utf-8') self.assertTrue(self.video.download_translation('zh', zh_unicode_text)) uk_unicode_text = "Привіт, edX вітає вас.".decode('utf-8') self.assertTrue(self.video.download_translation('uk', uk_unicode_text)) def test_translations_remove_works_w_saving(self): """ Scenario: Translations removing works correctly w/ preliminary saving Given I have created a Video component And I edit the component And I open tab "Advanced" And I upload transcript files: |lang_code|filename | |uk |uk_transcripts.srt | |zh |chinese_transcripts.srt| And I save changes Then when I view the video it does show the captions And I see "Привіт, edX вітає вас." text in the captions And video language menu has "uk, zh" translations And I edit the component And I open tab "Advanced" And I see translations for "uk, zh" Then I remove translation for "uk" language code And I save changes Then when I view the video it does show the captions And I see "好 各位同学" text in the captions And I edit the component And I open tab "Advanced" And I see translations for "zh" Then I remove translation for "zh" language code And I save changes Then when I view the video it does not show the captions """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.upload_translation('uk_transcripts.srt', 'uk') self.video.upload_translation('chinese_transcripts.srt', 'zh') self.save_unit_settings() self.assertTrue(self.video.is_captions_visible()) unicode_text = "Привіт, edX вітає вас.".decode('utf-8') self.assertIn(unicode_text, self.video.captions_text) self.assertEqual(self.video.caption_languages.keys(), ['zh', 'uk']) self.edit_component() self.open_advanced_tab() self.assertEqual(self.video.translations(), ['zh', 'uk']) self.video.remove_translation('uk') self.save_unit_settings() self.assertTrue(self.video.is_captions_visible()) unicode_text = "好 各位同学".decode('utf-8') self.assertIn(unicode_text, self.video.captions_text) self.edit_component() self.open_advanced_tab() self.assertEqual(self.video.translations(), ['zh']) self.video.remove_translation('zh') self.save_unit_settings() self.assertFalse(self.video.is_captions_visible()) def test_translations_remove_works_wo_saving(self): """ Scenario: Translations removing works correctly w/o preliminary saving Given I have created a Video component And I edit the component And I open tab "Advanced" And I upload transcript file "uk_transcripts.srt" for "uk" language code And I see translations for "uk" Then I remove translation for "uk" language code And I save changes Then when I view the video it does not show the captions """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.upload_translation('uk_transcripts.srt', 'uk') self.assertEqual(self.video.translations(), ['uk']) self.video.remove_translation('uk') self.save_unit_settings() self.assertFalse(self.video.is_captions_visible()) def test_translations_clearing_works_w_saving(self): """ Scenario: Translations clearing works correctly w/ preliminary saving Given I have created a Video component And I edit the component And I open tab "Advanced" And I upload transcript files: |lang_code|filename | |uk |uk_transcripts.srt | |zh |chinese_transcripts.srt| And I save changes Then when I view the video it does show the captions And I see "Привіт, edX вітає вас." text in the captions And video language menu has "uk, zh" translations And I edit the component And I open tab "Advanced" And I see translations for "uk, zh" And I click button "Clear" And I save changes Then when I view the video it does not show the captions """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.upload_translation('uk_transcripts.srt', 'uk') self.video.upload_translation('chinese_transcripts.srt', 'zh') self.save_unit_settings() self.assertTrue(self.video.is_captions_visible()) unicode_text = "Привіт, edX вітає вас.".decode('utf-8') self.assertIn(unicode_text, self.video.captions_text) self.assertEqual(self.video.caption_languages.keys(), ['zh', 'uk']) self.edit_component() self.open_advanced_tab() self.assertEqual(self.video.translations(), ['zh', 'uk']) self.video.click_button('translations_clear') self.save_unit_settings() self.assertFalse(self.video.is_captions_visible()) def test_translations_clearing_works_wo_saving(self): """ Scenario: Translations clearing works correctly w/o preliminary saving Given I have created a Video component And I edit the component And I open tab "Advanced" And I upload transcript files: |lang_code|filename | |uk |uk_transcripts.srt | |zh |chinese_transcripts.srt| And I click button "Clear" And I save changes Then when I view the video it does not show the captions """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.upload_translation('uk_transcripts.srt', 'uk') self.video.upload_translation('chinese_transcripts.srt', 'zh') self.video.click_button('translations_clear') self.save_unit_settings() self.assertFalse(self.video.is_captions_visible()) def test_cannot_upload_sjson_translation(self): """ Scenario: User cannot upload translations in sjson format Given I have created a Video component And I edit the component And I open tab "Advanced" And I click button "Add" And I choose "uk" language code And I try to upload transcript file "subs_3_yD_cEKoCk.srt.sjson" Then I see validation error "Only SRT files can be uploaded. Please select a file ending in .srt to upload." """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.click_button('translation_add') self.video.select_translation_language('uk') self.video.upload_asset('subs_3_yD_cEKoCk.srt.sjson', asset_type='transcript') error_msg = 'Only SRT files can be uploaded. Please select a file ending in .srt to upload.' self.assertEqual(self.video.upload_status_message, error_msg) def test_replace_translation_w_save(self): """ Scenario: User can easy replace the translation by another one w/ preliminary saving Given I have created a Video component And I edit the component And I open tab "Advanced" And I upload transcript file "chinese_transcripts.srt" for "zh" language code And I save changes Then when I view the video it does show the captions And I see "好 各位同学" text in the captions And I edit the component And I open tab "Advanced" And I see translations for "zh" And I replace transcript file for "zh" language code by "uk_transcripts.srt" And I save changes Then when I view the video it does show the captions And I see "Привіт, edX вітає вас." text in the captions """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.upload_translation('chinese_transcripts.srt', 'zh') self.save_unit_settings() self.assertTrue(self.video.is_captions_visible()) unicode_text = "好 各位同学".decode('utf-8') self.assertIn(unicode_text, self.video.captions_text) self.edit_component() self.open_advanced_tab() self.assertEqual(self.video.translations(), ['zh']) self.video.replace_translation('zh', 'uk', 'uk_transcripts.srt') self.save_unit_settings() self.assertTrue(self.video.is_captions_visible()) unicode_text = "Привіт, edX вітає вас.".decode('utf-8') self.assertIn(unicode_text, self.video.captions_text) def test_replace_translation_wo_save(self): """ Scenario: User can easy replace the translation by another one w/o preliminary saving Given I have created a Video component And I edit the component And I open tab "Advanced" And I upload transcript file "chinese_transcripts.srt" for "zh" language code And I see translations for "zh" And I replace transcript file for "zh" language code by "uk_transcripts.srt" And I save changes Then when I view the video it does show the captions And I see "Привіт, edX вітає вас." text in the captions """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.upload_translation('chinese_transcripts.srt', 'zh') self.assertEqual(self.video.translations(), ['zh']) self.video.replace_translation('zh', 'uk', 'uk_transcripts.srt') self.save_unit_settings() self.assertTrue(self.video.is_captions_visible()) unicode_text = "Привіт, edX вітає вас.".decode('utf-8') self.assertIn(unicode_text, self.video.captions_text) def test_translation_upload_remove_upload(self): """ Scenario: Upload "zh" file "A" -> Remove "zh" -> Upload "zh" file "B" Given I have created a Video component And I edit the component And I open tab "Advanced" And I upload transcript file "chinese_transcripts.srt" for "zh" language code And I see translations for "zh" Then I remove translation for "zh" language code And I upload transcript file "uk_transcripts.srt" for "zh" language code And I save changes Then when I view the video it does show the captions And I see "Привіт, edX вітає вас." text in the captions """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.upload_translation('chinese_transcripts.srt', 'zh') self.assertEqual(self.video.translations(), ['zh']) self.video.remove_translation('zh') self.video.upload_translation('uk_transcripts.srt', 'zh') self.save_unit_settings() self.assertTrue(self.video.is_captions_visible()) unicode_text = "Привіт, edX вітає вас.".decode('utf-8') self.assertIn(unicode_text, self.video.captions_text) def test_select_language_twice(self): """ Scenario: User cannot select the same language twice Given I have created a Video component And I edit the component And I open tab "Advanced" And I click button "Add" And I choose "zh" language code And I click button "Add" Then I cannot choose "zh" language code """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.click_button('translation_add') self.video.select_translation_language('zh') self.video.click_button('translation_add') self.video.select_translation_language('zh') self.assertEqual(self.video.translations(), [u'zh', u'']) def test_table_of_contents(self): """ Scenario: User can see table of content at the first position Given I have created a Video component And I edit the component And I open tab "Advanced" And I upload transcript files: |lang_code|filename | |uk |uk_transcripts.srt | |table |chinese_transcripts.srt| And I save changes Then when I view the video it does show the captions And I see "好 各位同学" text in the captions And video language menu has "table, uk" translations And I see video language with code "table" at position "0" """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.upload_translation('uk_transcripts.srt', 'uk') self.video.upload_translation('chinese_transcripts.srt', 'table') self.save_unit_settings() self.assertTrue(self.video.is_captions_visible()) unicode_text = "好 各位同学".decode('utf-8') self.assertIn(unicode_text, self.video.captions_text) self.assertEqual(self.video.caption_languages.keys(), [u'table', u'uk']) self.assertEqual(self.video.caption_languages.keys()[0], 'table') def test_upload_transcript_with_BOM(self): """ Scenario: User can upload transcript file with BOM(Byte Order Mark) in it. Given I have created a Video component And I edit the component And I open tab "Advanced" And I upload transcript file "chinese_transcripts_with_BOM.srt" for "zh" language code And I save changes Then when I view the video it does show the captions And I see "莎拉·佩林 (Sarah Palin)" text in the captions """ self._create_video_component() self.edit_component() self.open_advanced_tab() self.video.upload_translation('chinese_transcripts_with_BOM.srt', 'zh') self.save_unit_settings() self.assertTrue(self.video.is_captions_visible()) unicode_text = "莎拉·佩林 (Sarah Palin)".decode('utf-8') self.assertIn(unicode_text, self.video.captions_lines())
eestay/edx-platform
common/test/acceptance/tests/video/test_studio_video_editor.py
Python
agpl-3.0
22,804
0.001114
# Copyright 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid from oslo.config import cfg import webob from cinder.api import extensions from cinder.api.v2 import snapshot_metadata from cinder.api.v2 import snapshots import cinder.db from cinder import exception from cinder.openstack.common import jsonutils from cinder import test from cinder.tests.api import fakes CONF = cfg.CONF def return_create_snapshot_metadata_max(context, snapshot_id, metadata, delete): return stub_max_snapshot_metadata() def return_create_snapshot_metadata(context, snapshot_id, metadata, delete): return stub_snapshot_metadata() def return_create_snapshot_metadata_insensitive(context, snapshot_id, metadata, delete): return stub_snapshot_metadata_insensitive() def return_new_snapshot_metadata(context, snapshot_id, metadata, delete): return stub_new_snapshot_metadata() def return_snapshot_metadata(context, snapshot_id): if not isinstance(snapshot_id, str) or not len(snapshot_id) == 36: msg = 'id %s must be a uuid in return snapshot metadata' % snapshot_id raise Exception(msg) return stub_snapshot_metadata() def return_empty_snapshot_metadata(context, snapshot_id): return {} def return_empty_container_metadata(context, snapshot_id, metadata, delete): return {} def delete_snapshot_metadata(context, snapshot_id, key): pass def stub_snapshot_metadata(): metadata = { "key1": "value1", "key2": "value2", "key3": "value3", } return metadata def stub_snapshot_metadata_insensitive(): metadata = { "key1": "value1", "key2": "value2", "key3": "value3", "KEY4": "value4", } return metadata def stub_new_snapshot_metadata(): metadata = { 'key10': 'value10', 'key99': 'value99', 'KEY20': 'value20', } return metadata def stub_max_snapshot_metadata(): metadata = {"metadata": {}} for num in range(CONF.quota_metadata_items): metadata['metadata']['key%i' % num] = "blah" return metadata def return_snapshot(context, snapshot_id): return {'id': '0cc3346e-9fef-4445-abe6-5d2b2690ec64', 'name': 'fake', 'status': 'available', 'metadata': {}} def return_volume(context, volume_id): return {'id': 'fake-vol-id', 'size': 100, 'name': 'fake', 'host': 'fake-host', 'status': 'available', 'encryption_key_id': None, 'volume_type_id': None, 'migration_status': None, 'metadata': {}} def return_snapshot_nonexistent(context, snapshot_id): raise exception.SnapshotNotFound('bogus test message') def fake_update_snapshot_metadata(self, context, snapshot, diff): pass class SnapshotMetaDataTest(test.TestCase): def setUp(self): super(SnapshotMetaDataTest, self).setUp() self.volume_api = cinder.volume.api.API() fakes.stub_out_key_pair_funcs(self.stubs) self.stubs.Set(cinder.db, 'volume_get', return_volume) self.stubs.Set(cinder.db, 'snapshot_get', return_snapshot) self.stubs.Set(cinder.db, 'snapshot_metadata_get', return_snapshot_metadata) self.stubs.Set(self.volume_api, 'update_snapshot_metadata', fake_update_snapshot_metadata) self.ext_mgr = extensions.ExtensionManager() self.ext_mgr.extensions = {} self.snapshot_controller = snapshots.SnapshotsController(self.ext_mgr) self.controller = snapshot_metadata.Controller() self.req_id = str(uuid.uuid4()) self.url = '/v2/fake/snapshots/%s/metadata' % self.req_id snap = {"volume_size": 100, "volume_id": "fake-vol-id", "display_name": "Volume Test Name", "display_description": "Volume Test Desc", "availability_zone": "zone1:host1", "host": "fake-host", "metadata": {}} body = {"snapshot": snap} req = fakes.HTTPRequest.blank('/v2/snapshots') self.snapshot_controller.create(req, body) def test_index(self): req = fakes.HTTPRequest.blank(self.url) res_dict = self.controller.index(req, self.req_id) expected = { 'metadata': { 'key1': 'value1', 'key2': 'value2', 'key3': 'value3', }, } self.assertEqual(expected, res_dict) def test_index_nonexistent_snapshot(self): self.stubs.Set(cinder.db, 'snapshot_metadata_get', return_snapshot_nonexistent) req = fakes.HTTPRequest.blank(self.url) self.assertRaises(webob.exc.HTTPNotFound, self.controller.index, req, self.url) def test_index_no_data(self): self.stubs.Set(cinder.db, 'snapshot_metadata_get', return_empty_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url) res_dict = self.controller.index(req, self.req_id) expected = {'metadata': {}} self.assertEqual(expected, res_dict) def test_show(self): req = fakes.HTTPRequest.blank(self.url + '/key2') res_dict = self.controller.show(req, self.req_id, 'key2') expected = {'meta': {'key2': 'value2'}} self.assertEqual(expected, res_dict) def test_show_nonexistent_snapshot(self): self.stubs.Set(cinder.db, 'snapshot_metadata_get', return_snapshot_nonexistent) req = fakes.HTTPRequest.blank(self.url + '/key2') self.assertRaises(webob.exc.HTTPNotFound, self.controller.show, req, self.req_id, 'key2') def test_show_meta_not_found(self): self.stubs.Set(cinder.db, 'snapshot_metadata_get', return_empty_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url + '/key6') self.assertRaises(webob.exc.HTTPNotFound, self.controller.show, req, self.req_id, 'key6') def test_delete(self): self.stubs.Set(cinder.db, 'snapshot_metadata_get', return_snapshot_metadata) self.stubs.Set(cinder.db, 'snapshot_metadata_delete', delete_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url + '/key2') req.method = 'DELETE' res = self.controller.delete(req, self.req_id, 'key2') self.assertEqual(200, res.status_int) def test_delete_nonexistent_snapshot(self): self.stubs.Set(cinder.db, 'snapshot_get', return_snapshot_nonexistent) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'DELETE' self.assertRaises(webob.exc.HTTPNotFound, self.controller.delete, req, self.req_id, 'key1') def test_delete_meta_not_found(self): self.stubs.Set(cinder.db, 'snapshot_metadata_get', return_empty_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url + '/key6') req.method = 'DELETE' self.assertRaises(webob.exc.HTTPNotFound, self.controller.delete, req, self.req_id, 'key6') def test_create(self): self.stubs.Set(cinder.db, 'snapshot_metadata_get', return_empty_snapshot_metadata) self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank('/v2/snapshot_metadata') req.method = 'POST' req.content_type = "application/json" body = {"metadata": {"key1": "value1", "key2": "value2", "key3": "value3"}} req.body = jsonutils.dumps(body) res_dict = self.controller.create(req, self.req_id, body) self.assertEqual(body, res_dict) def test_create_with_keys_in_uppercase_and_lowercase(self): # if the keys in uppercase_and_lowercase, should return the one # which server added self.stubs.Set(cinder.db, 'snapshot_metadata_get', return_empty_snapshot_metadata) self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata_insensitive) req = fakes.HTTPRequest.blank('/v2/snapshot_metadata') req.method = 'POST' req.content_type = "application/json" body = {"metadata": {"key1": "value1", "KEY1": "value1", "key2": "value2", "KEY2": "value2", "key3": "value3", "KEY4": "value4"}} expected = {"metadata": {"key1": "value1", "key2": "value2", "key3": "value3", "KEY4": "value4"}} req.body = jsonutils.dumps(body) res_dict = self.controller.create(req, self.req_id, body) self.assertEqual(expected, res_dict) def test_create_empty_body(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'POST' req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, self.req_id, None) def test_create_item_empty_key(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {"": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, self.req_id, body) def test_create_item_key_too_long(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {("a" * 260): "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, self.req_id, body) def test_create_nonexistent_snapshot(self): self.stubs.Set(cinder.db, 'snapshot_get', return_snapshot_nonexistent) self.stubs.Set(cinder.db, 'snapshot_metadata_get', return_snapshot_metadata) self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank('/v2/snapshot_metadata') req.method = 'POST' req.content_type = "application/json" body = {"metadata": {"key9": "value9"}} req.body = jsonutils.dumps(body) self.assertRaises(webob.exc.HTTPNotFound, self.controller.create, req, self.req_id, body) def test_update_all(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_new_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'PUT' req.content_type = "application/json" expected = { 'metadata': { 'key10': 'value10', 'key99': 'value99', 'KEY20': 'value20', }, } req.body = jsonutils.dumps(expected) res_dict = self.controller.update_all(req, self.req_id, expected) self.assertEqual(expected, res_dict) def test_update_all_with_keys_in_uppercase_and_lowercase(self): self.stubs.Set(cinder.db, 'snapshot_metadata_get', return_create_snapshot_metadata) self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_new_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'PUT' req.content_type = "application/json" body = { 'metadata': { 'key10': 'value10', 'KEY10': 'value10', 'key99': 'value99', 'KEY20': 'value20', }, } expected = { 'metadata': { 'key10': 'value10', 'key99': 'value99', 'KEY20': 'value20', }, } req.body = jsonutils.dumps(expected) res_dict = self.controller.update_all(req, self.req_id, body) self.assertEqual(expected, res_dict) def test_update_all_empty_container(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_empty_container_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'PUT' req.content_type = "application/json" expected = {'metadata': {}} req.body = jsonutils.dumps(expected) res_dict = self.controller.update_all(req, self.req_id, expected) self.assertEqual(expected, res_dict) def test_update_all_malformed_container(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'PUT' req.content_type = "application/json" expected = {'meta': {}} req.body = jsonutils.dumps(expected) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update_all, req, self.req_id, expected) def test_update_all_malformed_data(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'PUT' req.content_type = "application/json" expected = {'metadata': ['asdf']} req.body = jsonutils.dumps(expected) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update_all, req, self.req_id, expected) def test_update_all_nonexistent_snapshot(self): self.stubs.Set(cinder.db, 'snapshot_get', return_snapshot_nonexistent) req = fakes.HTTPRequest.blank(self.url) req.method = 'PUT' req.content_type = "application/json" body = {'metadata': {'key10': 'value10'}} req.body = jsonutils.dumps(body) self.assertRaises(webob.exc.HTTPNotFound, self.controller.update_all, req, '100', body) def test_update_item(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {"key1": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" res_dict = self.controller.update(req, self.req_id, 'key1', body) expected = {'meta': {'key1': 'value1'}} self.assertEqual(expected, res_dict) def test_update_item_nonexistent_snapshot(self): self.stubs.Set(cinder.db, 'snapshot_get', return_snapshot_nonexistent) req = fakes.HTTPRequest.blank( '/v2/fake/snapshots/asdf/metadata/key1') req.method = 'PUT' body = {"meta": {"key1": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPNotFound, self.controller.update, req, self.req_id, 'key1', body) def test_update_item_empty_body(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update, req, self.req_id, 'key1', None) def test_update_item_empty_key(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {"": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update, req, self.req_id, '', body) def test_update_item_key_too_long(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {("a" * 260): "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPRequestEntityTooLarge, self.controller.update, req, self.req_id, ("a" * 260), body) def test_update_item_value_too_long(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {"key1": ("a" * 260)}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPRequestEntityTooLarge, self.controller.update, req, self.req_id, "key1", body) def test_update_item_too_many_keys(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {"key1": "value1", "key2": "value2"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update, req, self.req_id, 'key1', body) def test_update_item_body_uri_mismatch(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url + '/bad') req.method = 'PUT' body = {"meta": {"key1": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update, req, self.req_id, 'bad', body) def test_invalid_metadata_items_on_create(self): self.stubs.Set(cinder.db, 'snapshot_metadata_update', return_create_snapshot_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'POST' req.headers["content-type"] = "application/json" #test for long key data = {"metadata": {"a" * 260: "value1"}} req.body = jsonutils.dumps(data) self.assertRaises(webob.exc.HTTPRequestEntityTooLarge, self.controller.create, req, self.req_id, data) #test for long value data = {"metadata": {"key": "v" * 260}} req.body = jsonutils.dumps(data) self.assertRaises(webob.exc.HTTPRequestEntityTooLarge, self.controller.create, req, self.req_id, data) #test for empty key. data = {"metadata": {"": "value1"}} req.body = jsonutils.dumps(data) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, self.req_id, data)
Thingee/cinder
cinder/tests/api/v2/test_snapshot_metadata.py
Python
apache-2.0
21,148
0.000142
#! /usr/bin/env python import os _proc_status = '/proc/%d/status' % os.getpid() _scale = {'kB': 1024.0, 'mB': 1024.0*1024.0, 'KB': 1024.0, 'MB': 1024.0*1024.0} def _VmB(VmKey): '''Private. ''' global _proc_status, _scale # get pseudo file /proc/<pid>/status try: t = open(_proc_status) v = t.read() t.close() except: return 0.0 # non-Linux? # get VmKey line e.g. 'VmRSS: 9999 kB\n ...' i = v.index(VmKey) v = v[i:].split(None, 3) # whitespace if len(v) < 3: return 0.0 # invalid format? # convert Vm value to bytes return float(v[1]) * _scale[v[2]] def memory(since=0.0): '''Return memory usage in bytes. ''' return _VmB('VmSize:') - since def resident(since=0.0): '''Return resident memory usage in bytes. ''' return _VmB('VmRSS:') - since def stacksize(since=0.0): '''Return stack size in bytes. ''' return _VmB('VmStk:') - since
mattduan/proof
util/memory.py
Python
bsd-3-clause
982
0.003055
#!usr/bin/python ''' Get satellite data according to input file. ''' from random import shuffle,random import os,json from utils.mapbox_static import MapboxStatic from utils.coordinate_converter import CoordConvert from modules.getFeatures import latLon,getBBox from libs.foldernames import satDataFolder,testDataFolder def get_satellite(inputFile,mapboxtoken=None,count=1000,zoomLevel=17, outputFolder='data',xpixel=480,ypixel=360,epsg=None,elements=None, randomImages=False): ''' Get satellite data in order to input GIS information. Parameters: 'inputFile': Input file (GeoJSON format or parsed into GeoJSON) 'mapboxtoken': Access token for Mapbox (go to mapbox.com to create one) 'count': Number of satellite images to be downloaded 'zoomLevel': Zoom level (see libs/zoomLevel.csv for resolutions) 'outputFolder': Folder to store output data in 'xpixel': Number of pixels of satellite images (width) 'ypixel': Number of pixels of satellite images (height) 'epsg': EPSG code for coordinate system in GIS data (will try to find automatically if not provided) 'elements': GIS data can also be input directly 'randomImages': Get center of random polygons (False) or within Boundary Box of data (True) ''' if (not inputFile) and (not elements): print "Error: Provide input file." exit() if not mapboxtoken: print "Error: Provide mapbox token (more informations on www.mapbox.com)." exit() #parser.add_argument('--sport', # type=str, default='baseball', # help='Sport tag, for example: baseball, tennis, or soccer.') # We need the elements if not elements: print 'Loading %s...' % inputFile with open(inputFile, 'r') as f: elements = json.load(f) #get coordinate system myCoordConvert = CoordConvert() code=myCoordConvert.getCoordSystem(elements,epsg) #create folders subpath=outputFolder+"/"+os.path.split(inputFile)[-1][:-5] if not os.path.isdir(subpath): os.mkdir(subpath) print 'Directory',subpath,'created' if not os.path.isdir(subpath+satDataFolder): os.mkdir(subpath+satDataFolder) print 'Directory',subpath+satDataFolder,'created' if not os.path.isdir(subpath+testDataFolder): os.mkdir(subpath+testDataFolder) print 'Directory',subpath+testDataFolder,'created' #Write metadata with open(subpath+satDataFolder+"meta.csv","a+") as f: f.write("ZoomLevel,,"+str(zoomLevel)+"\n") #get bbox if set to random if randomImages: xlist=[] ylist=[] for element in elements['features']: minxe,maxxe,minye,maxye=getBBox(element) xlist.append(minxe) xlist.append(maxxe) ylist.append(minye) ylist.append(maxye) minx=min(xlist) maxx=max(xlist) miny=min(ylist) maxy=max(ylist) element_list = [] index_list = range(len(elements['features'])) #featue map # Randomize elements list to make sure we don't download all pics from the shuffle(index_list) for i in index_list: element_list.append(elements['features'][i]) #feature map # Now we're gonna download the satellite images for these locations namespace= os.path.split(inputFile)[-1][:-5] #get input file name as namespace mapbox_static = MapboxStatic( namespace=namespace, root_folder=subpath+satDataFolder[0:-1]) total_downloaded = 0 c = 0 print "------------------- Getting Satellite data -------------------" for element in element_list: if randomImages: randomValue=random() av_lon=minx+((maxx-minx)*randomValue) av_lat=miny+((maxy-miny)*randomValue) element_id_str=1000000+c #1000000 indicates random value with open(subpath+satDataFolder+"meta.csv","a+") as f: f.write(str(element_id_str)+","+str(av_lon)+","+str(av_lat)+"\n") else: element_id_str = index_list[c] #figure out center of polygon av_lon,av_lat=latLon(element) #Convert to standard format if code != 4319: # if not already in wgs84 standard format lotlan= myCoordConvert.convert(av_lon,av_lat) longitude=lotlan[0] latitude=lotlan[1] else: #if already in wgs84 format latitude= av_lat longitude= av_lon #get url print "Coordinates WSG64: "+str(longitude)+','+str(latitude) if (av_lon != longitude) and (av_lat != latitude): print "Coordinates Native: "+str(av_lon)+','+str(av_lat) url = mapbox_static.get_url( latitude=latitude, longitude=longitude, mapbox_zoom=zoomLevel, access_token=mapboxtoken, width=xpixel, height=ypixel) #download data success = mapbox_static.download_tile( element_id=element_id_str, url=url,verbose=True) if success: total_downloaded += 1 print total_downloaded,'/',count c += 1 if total_downloaded >= count: break
worldbank/cv4ag
modules/get_satellite.py
Python
mit
4,605
0.044517
__author__ = 'yinjun' class Solution: """ @param nums: The integer array @return: The length of LIS (longest increasing subsequence) """ def longestIncreasingSubsequence(self, nums): # write your code here if nums == None or nums == []: return 0 l = len(nums) length = [0 for i in range()] maxLength = 0 for i in range(l): length[i] = 1 for j in range(0, i): if nums[j] <= nums[i]: length[i] = max(length[i], length[j] + 1) maxLength = max(maxLength, length[i]) return maxLength
shootsoft/practice
lintcode/NineChapters/04/longest-increasing-subsequence.py
Python
apache-2.0
646
0.006192
import pandas as pd import numpy as np import cython as cy #coding=UTF8 class Strategy(object): _capital = cy.declare(cy.double) _net_flows = cy.declare(cy.double) _last_value = cy.declare(cy.double) _last_price = cy.declare(cy.double) _last_fee = cy.declare(cy.double) def run(self): pass def setup(self,data): self.data=data @property def values(self): if self.root.stale: self.root.update(self.now, None) return self._values.ix[:self.now] class SMAStrategy(Strategy): def __init__(self,short,long): self.short=short self.long=long def run(self): short_avg=pd.rolling_mean(self.data,self.short) long_avg=pd.rolling_meam(self.data,self.long) print(short_avg) for day in self.data.index: pass print(self.data[day]) '''if(self.short_avg[]>self.long_avg): pass else: pass'''
dingmingliu/quanttrade
quanttrade/core/strategy.py
Python
apache-2.0
1,007
0.017875
#!/usr/bin/env python """ Copyright (c) 2020 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import itertools import logging import os import pytest import cocotb_test.simulator import cocotb from cocotb.clock import Clock from cocotb.triggers import RisingEdge from cocotb.regression import TestFactory from cocotbext.eth import XgmiiFrame, XgmiiSource, XgmiiSink from cocotbext.axi import AxiStreamBus, AxiStreamSource, AxiStreamSink class TB: def __init__(self, dut): self.dut = dut self.log = logging.getLogger("cocotb.tb") self.log.setLevel(logging.DEBUG) if len(dut.xgmii_txd) == 64: cocotb.start_soon(Clock(dut.rx_clk, 6.4, units="ns").start()) cocotb.start_soon(Clock(dut.tx_clk, 6.4, units="ns").start()) else: cocotb.start_soon(Clock(dut.rx_clk, 3.2, units="ns").start()) cocotb.start_soon(Clock(dut.tx_clk, 3.2, units="ns").start()) self.xgmii_source = XgmiiSource(dut.xgmii_rxd, dut.xgmii_rxc, dut.rx_clk, dut.rx_rst) self.xgmii_sink = XgmiiSink(dut.xgmii_txd, dut.xgmii_txc, dut.tx_clk, dut.tx_rst) self.axis_source = AxiStreamSource(AxiStreamBus.from_prefix(dut, "tx_axis"), dut.tx_clk, dut.tx_rst) self.axis_sink = AxiStreamSink(AxiStreamBus.from_prefix(dut, "rx_axis"), dut.rx_clk, dut.rx_rst) dut.rx_ptp_ts.setimmediatevalue(0) dut.tx_ptp_ts.setimmediatevalue(0) async def reset(self): self.dut.rx_rst.setimmediatevalue(0) self.dut.tx_rst.setimmediatevalue(0) await RisingEdge(self.dut.rx_clk) await RisingEdge(self.dut.rx_clk) self.dut.rx_rst <= 1 self.dut.tx_rst <= 1 await RisingEdge(self.dut.rx_clk) await RisingEdge(self.dut.rx_clk) self.dut.rx_rst <= 0 self.dut.tx_rst <= 0 await RisingEdge(self.dut.rx_clk) await RisingEdge(self.dut.rx_clk) async def run_test_rx(dut, payload_lengths=None, payload_data=None, ifg=12): tb = TB(dut) tb.xgmii_source.ifg = ifg tb.dut.ifg_delay <= ifg await tb.reset() test_frames = [payload_data(x) for x in payload_lengths()] for test_data in test_frames: test_frame = XgmiiFrame.from_payload(test_data) await tb.xgmii_source.send(test_frame) for test_data in test_frames: rx_frame = await tb.axis_sink.recv() assert rx_frame.tdata == test_data assert rx_frame.tuser == 0 assert tb.axis_sink.empty() await RisingEdge(dut.rx_clk) await RisingEdge(dut.rx_clk) async def run_test_tx(dut, payload_lengths=None, payload_data=None, ifg=12): tb = TB(dut) tb.xgmii_source.ifg = ifg tb.dut.ifg_delay <= ifg await tb.reset() test_frames = [payload_data(x) for x in payload_lengths()] for test_data in test_frames: await tb.axis_source.send(test_data) for test_data in test_frames: rx_frame = await tb.xgmii_sink.recv() assert rx_frame.get_payload() == test_data assert rx_frame.check_fcs() assert tb.xgmii_sink.empty() await RisingEdge(dut.tx_clk) await RisingEdge(dut.tx_clk) async def run_test_tx_alignment(dut, payload_data=None, ifg=12): enable_dic = int(os.getenv("PARAM_ENABLE_DIC")) tb = TB(dut) byte_width = tb.axis_source.width // 8 tb.xgmii_source.ifg = ifg tb.dut.ifg_delay <= ifg for length in range(60, 92): await tb.reset() test_frames = [payload_data(length) for k in range(10)] start_lane = [] for test_data in test_frames: await tb.axis_source.send(test_data) for test_data in test_frames: rx_frame = await tb.xgmii_sink.recv() assert rx_frame.get_payload() == test_data assert rx_frame.check_fcs() assert rx_frame.ctrl is None start_lane.append(rx_frame.start_lane) tb.log.info("length: %d", length) tb.log.info("start_lane: %s", start_lane) start_lane_ref = [] # compute expected starting lanes lane = 0 deficit_idle_count = 0 for test_data in test_frames: if ifg == 0: lane = 0 start_lane_ref.append(lane) lane = (lane + len(test_data)+4+ifg) % byte_width if enable_dic: offset = lane % 4 if deficit_idle_count+offset >= 4: offset += 4 lane = (lane - offset) % byte_width deficit_idle_count = (deficit_idle_count + offset) % 4 else: offset = lane % 4 if offset > 0: offset += 4 lane = (lane - offset) % byte_width tb.log.info("start_lane_ref: %s", start_lane_ref) assert start_lane_ref == start_lane await RisingEdge(dut.tx_clk) assert tb.xgmii_sink.empty() await RisingEdge(dut.tx_clk) await RisingEdge(dut.tx_clk) def size_list(): return list(range(60, 128)) + [512, 1514, 9214] + [60]*10 def incrementing_payload(length): return bytearray(itertools.islice(itertools.cycle(range(256)), length)) def cycle_en(): return itertools.cycle([0, 0, 0, 1]) if cocotb.SIM_NAME: for test in [run_test_rx, run_test_tx]: factory = TestFactory(test) factory.add_option("payload_lengths", [size_list]) factory.add_option("payload_data", [incrementing_payload]) factory.add_option("ifg", [12, 0]) factory.generate_tests() factory = TestFactory(run_test_tx_alignment) factory.add_option("payload_data", [incrementing_payload]) factory.add_option("ifg", [12]) factory.generate_tests() # cocotb-test tests_dir = os.path.abspath(os.path.dirname(__file__)) rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', 'rtl')) lib_dir = os.path.abspath(os.path.join(rtl_dir, '..', 'lib')) axis_rtl_dir = os.path.abspath(os.path.join(lib_dir, 'axis', 'rtl')) @pytest.mark.parametrize("enable_dic", [1, 0]) @pytest.mark.parametrize("data_width", [32, 64]) def test_eth_mac_10g(request, data_width, enable_dic): dut = "eth_mac_10g" module = os.path.splitext(os.path.basename(__file__))[0] toplevel = dut verilog_sources = [ os.path.join(rtl_dir, f"{dut}.v"), os.path.join(rtl_dir, "axis_xgmii_rx_32.v"), os.path.join(rtl_dir, "axis_xgmii_rx_64.v"), os.path.join(rtl_dir, "axis_xgmii_tx_32.v"), os.path.join(rtl_dir, "axis_xgmii_tx_64.v"), os.path.join(rtl_dir, "lfsr.v"), ] parameters = {} parameters['DATA_WIDTH'] = data_width parameters['KEEP_WIDTH'] = parameters['DATA_WIDTH'] // 8 parameters['CTRL_WIDTH'] = parameters['DATA_WIDTH'] // 8 parameters['ENABLE_PADDING'] = 1 parameters['ENABLE_DIC'] = enable_dic parameters['MIN_FRAME_LENGTH'] = 64 parameters['PTP_PERIOD_NS'] = 0x6 if parameters['DATA_WIDTH'] == 64 else 0x3 parameters['PTP_PERIOD_FNS'] = 0x6666 if parameters['DATA_WIDTH'] == 64 else 0x3333 parameters['TX_PTP_TS_ENABLE'] = 0 parameters['TX_PTP_TS_WIDTH'] = 96 parameters['TX_PTP_TAG_ENABLE'] = parameters['TX_PTP_TS_ENABLE'] parameters['TX_PTP_TAG_WIDTH'] = 16 parameters['RX_PTP_TS_ENABLE'] = 0 parameters['RX_PTP_TS_WIDTH'] = 96 parameters['TX_USER_WIDTH'] = (parameters['TX_PTP_TAG_WIDTH'] if parameters['TX_PTP_TS_ENABLE'] and parameters['TX_PTP_TAG_ENABLE'] else 0) + 1 parameters['RX_USER_WIDTH'] = (parameters['RX_PTP_TS_WIDTH'] if parameters['RX_PTP_TS_ENABLE'] else 0) + 1 extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()} sim_build = os.path.join(tests_dir, "sim_build", request.node.name.replace('[', '-').replace(']', '')) cocotb_test.simulator.run( python_search=[tests_dir], verilog_sources=verilog_sources, toplevel=toplevel, module=module, parameters=parameters, sim_build=sim_build, extra_env=extra_env, )
alexforencich/verilog-ethernet
tb/eth_mac_10g/test_eth_mac_10g.py
Python
mit
9,014
0.000998
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-05-22 17:47 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('wishes', '0001_squashed_0002_auto_20160522_1408'), ] operations = [ migrations.AlterField( model_name='wish', name='brief', field=models.CharField(blank=True, max_length=140, null=True, verbose_name='Brief'), ), ]
dvl/imagefy-web
imagefy/wishes/migrations/0002_auto_20160522_1447.py
Python
mit
506
0.001976
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2014 Luis Alejandro Martínez Faneyth # # This file is part of Condiment. # # Condiment is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Condiment is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ condiment.common.setup.report ========================= This module contains common functions to process the information needed by Setuptools/Distutils setup script. """ from distutils.cmd import Command class report_setup_data(Command): description = 'Compress CSS files.' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): from pprint import pprint from condiment import BASEDIR from condiment.common.setup.utils import (get_packages, get_data_files, get_package_data, get_setup_data) from condiment.config.pkg import (exclude_sources, exclude_patterns, include_data_patterns, exclude_packages) setup_data = get_setup_data(BASEDIR) packages = get_packages(path=BASEDIR, exclude_packages=exclude_packages) data_files = get_data_files(path=BASEDIR, patterns=include_data_patterns, exclude_files=exclude_sources + \ exclude_patterns) package_data = get_package_data(path=BASEDIR, packages=packages, data_files=data_files, exclude_files=exclude_sources + \ exclude_patterns, exclude_packages=exclude_packages) setup_data['data_files'] = data_files setup_data['package_data'] = package_data pprint(setup_data)
LuisAlejandro/condiment
condiment/common/setup/report.py
Python
gpl-3.0
2,481
0.003226
""" Defines forms for providing validation of embargo admin details. """ import ipaddress from django import forms from django.utils.translation import ugettext as _ from opaque_keys import InvalidKeyError from opaque_keys.edx.keys import CourseKey from xmodule.modulestore.django import modulestore from .models import IPFilter, RestrictedCourse class RestrictedCourseForm(forms.ModelForm): """Validate course keys for the RestrictedCourse model. The default behavior in Django admin is to: * Save course keys for courses that do not exist. * Return a 500 response if the course key format is invalid. Using this form ensures that we display a user-friendly error message instead. """ class Meta: model = RestrictedCourse fields = '__all__' def clean_course_key(self): """Validate the course key. Checks that the key format is valid and that the course exists. If not, displays an error message. Arguments: field_name (str): The name of the field to validate. Returns: CourseKey """ cleaned_id = self.cleaned_data['course_key'] error_msg = _('COURSE NOT FOUND. Please check that the course ID is valid.') try: course_key = CourseKey.from_string(cleaned_id) except InvalidKeyError: raise forms.ValidationError(error_msg) # lint-amnesty, pylint: disable=raise-missing-from if not modulestore().has_course(course_key): raise forms.ValidationError(error_msg) return course_key class IPFilterForm(forms.ModelForm): """Form validating entry of IP addresses""" class Meta: model = IPFilter fields = '__all__' def _is_valid_ip(self, address): """Whether or not address is a valid ipv4 address or ipv6 address""" try: # Is this an valid ip address? ipaddress.ip_network(address) except ValueError: return False return True def _valid_ip_addresses(self, addresses): """ Checks if a csv string of IP addresses contains valid values. If not, raises a ValidationError. """ if addresses == '': return '' error_addresses = [] for addr in addresses.split(','): address = addr.strip() if not self._is_valid_ip(address): error_addresses.append(address) if error_addresses: msg = f'Invalid IP Address(es): {error_addresses}' msg += ' Please fix the error(s) and try again.' raise forms.ValidationError(msg) return addresses def clean_whitelist(self): """Validates the whitelist""" whitelist = self.cleaned_data["whitelist"] return self._valid_ip_addresses(whitelist) def clean_blacklist(self): """Validates the blacklist""" blacklist = self.cleaned_data["blacklist"] return self._valid_ip_addresses(blacklist)
eduNEXT/edunext-platform
openedx/core/djangoapps/embargo/forms.py
Python
agpl-3.0
3,045
0.000657
# Author: legend # Mail: kygx.legend@gmail.com # File: mesos.py #!/usr/bin/python # -*- coding: utf-8 -*- import argparse import os import re MASTER_IP = '172.16.104.62' MESOS_PATH = '/data/opt/mesos-1.4.0/build' WORK_DIR = '/tmp/mesos/work_dir' MASTER_SH = 'bin/mesos-master.sh' WORKER_SH = 'bin/mesos-agent.sh' def print_cmd(cmd, tag=None): if not tag: print cmd return print '[{}] {}'.format(tag, cmd) def run(cmd): cmd = '{} --work_dir={}'.format(cmd, WORK_DIR) print_cmd(cmd, tag='Run') print os.system(cmd) def run_master(): run('{} --ip={}'.format(os.path.join(MESOS_PATH, MASTER_SH), MASTER_IP)) def run_agent(): run('{} --master={}:5050'.format(os.path.join(MESOS_PATH, WORKER_SH), MASTER_IP)) def kill_master(): cmd = 'pkill lt-mesos-master' print_cmd(cmd, tag='Run') print os.system(cmd) def kill_agent(): cmd = 'pkill lt-mesos-agent' print_cmd(cmd, tag='Run') print os.system(cmd) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Mesos Cluster Tools') parser.add_argument('-rm', '--runmaster', help='Run master', action='store_true') parser.add_argument('-ra', '--runagent', help='Run agent', action='store_true') parser.add_argument('-km', '--killmaster', help='Kill master', action='store_true') parser.add_argument('-ka', '--killagent', help='Kill agent', action='store_true') args = parser.parse_args() if args.runmaster: run_master() if args.runagent: run_agent() if args.killmaster: kill_master() if args.killagent: kill_agent()
legendlee1314/ooni
mesos.py
Python
mit
1,625
0.008
#OBJ2VXP: Converts simple OBJ files to VXP expansions #Copyright (C) 2004-2015 Foone Turing # #This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. # #This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. # #You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA import sys sys.path.append('code') import pygame from pygame.constants import * import sockgui sockgui.setDataPath('code') from converterbase import ConverterBase import os import time import obj2vxp import obj2vxptex from error import SaveError,LoadError import ConfigParser import vxpinstaller class obj2vxpGUI(ConverterBase): def __init__(self,screen): ConverterBase.__init__(self,screen) ui=self.ui ys=self.makeTab(10,94,'CFG settings') ui.add(sockgui.Label(ui,[20,ys+10],'Expansion name:')) ui.add(sockgui.Label(ui,[20,ys+26],'Author name:')) ui.add(sockgui.Label(ui,[20,ys+42],'Orig. Author name:')) ui.add(sockgui.Label(ui,[20,ys+58],'Shortname:')) ui.add(sockgui.Label(ui,[20,ys+74],'Filename:')) self.filenamelabel=sockgui.Label(ui,[120,ys+74],'') ui.add(self.filenamelabel) self.namebox= sockgui.TextBox(ui,[120,ys+10-3],40) self.authorbox= sockgui.TextBox(ui,[120,ys+26-3],40) self.origauthorbox= sockgui.TextBox(ui,[120,ys+42-3],40) self.shortnamebox= sockgui.TextBox(ui,[120,ys+58-3],40,callback=self.onShortNameChanged) self.shortnamebox.setAllowedKeys(sockgui.UPPERCASE+sockgui.LOWERCASE+sockgui.DIGITS+'._-') self.authorbox.setText(self.getAuthor()) ui.add(self.namebox) ui.add(self.authorbox) ui.add(self.origauthorbox) ui.add(sockgui.Button(ui,[330,ys+42-3],'Same',callback=self.copyAuthorToOrigAuthor)) ui.add(self.shortnamebox) self.namebox.activate() ys=self.makeTab(ys+94+5,120,'OBJ to convert') self.files=sockgui.ListBox(ui,[20,ys+10],[62,10],items=self.getOBJList()) if self.files.getNumItems()>0: self.files.select(0) ui.add(self.files) self.enhance_color=sockgui.CheckBox(ui,[100,ys+103],'Enhance Color',self.getEnhanceColor()) self.textured=sockgui.CheckBox(ui,[200,ys+103],'Textured',self.getTextured()) ui.add(sockgui.Button(ui,[20,ys+99],'Refresh list',callback=self.refreshList)) ui.add(self.enhance_color) ui.add(self.textured) #ui.add(sockgui.BorderBox(ui,[10,224],[screen.get_width()-20,110])) ys=self.makeTab(ys+120+5,30,'3dmm IDs') ui.add(sockgui.Label(ui,[20,ys+10],'ID:')) self.idbox=sockgui.TextBox(ui,[40,ys+7],10) self.idbox.setAllowedKeys('0123456789') ui.add(self.idbox) ui.add(sockgui.Button(ui,[110,ys+7],'Generate ID',callback=self.generateNewID)) ys=self.makeTab(ys+30+5,66,'Control') self.install_check=sockgui.CheckBox(ui,[240,ys+13],'Install VXP',self.getInstallCheck()) ui.add(self.install_check) self.progress=sockgui.ProgressBox(ui,[20,ys+10],[200,16],maxvalue=6) ui.add(self.progress) self.errortext=sockgui.Label(ui,[20,ys+32],'') ui.add(self.errortext) self.startbutton=sockgui.Button(ui,[20,ys+46],'Create VXP',callback=self.createVXP) ui.add(self.startbutton) ui.registerHotKey(K_F5,self.updateListBox) def refreshList(self,junk): self.files.setItems(self.getOBJList()) def updateListBox(self,event): if event.type==KEYUP: self.refreshList(0) def statusCallback(self,text): self.errortext.setText(text) self.ui.draw() def createVXP(self,junk): self.saveSettings() self.progress.setValue(0) try: outfile=str(self.shortnamebox.getText())+'.vxp' objfile=self.files.getSelectedText() if objfile is None: raise SaveError('no OBJ selected') try: uniqueid=int(self.idbox.getText()) except ValueError: raise SaveError('Failed: Bad ID!') name=str(self.namebox.getText()) author=str(self.authorbox.getText()) origauthor=str(self.origauthorbox.getText()) shortname=str(self.shortnamebox.getText()) enhance=self.enhance_color.isChecked() self.errortext.setText('Converting...') if self.textured.isChecked(): ret=obj2vxptex.CreateVXPExpansionFromOBJTextured(name,author,origauthor,outfile,shortname,objfile, uniqueid,self.progressCallback,self.statusCallback) else: ret=obj2vxp.CreateVXPExpansionFromOBJ(name,author,origauthor,outfile,shortname,objfile, uniqueid,self.progressCallback,enhance,self.statusCallback) if ret: self.errortext.setText('VXP saved as %s' % (outfile)) self.idbox.setText('') #So we don't reuse them by mistake. if self.install_check.isChecked(): vxpinstaller.installVXP(outfile) self.errortext.setText('VXP saved as %s, and installed.' % (outfile)) else: self.errortext.setText('Failed: unknown error (!ret)') except SaveError,e: self.errortext.setText('Failed: ' + str(e).strip('"')) except LoadError,e: self.errortext.setText('Failed: ' + str(e).strip('"')) except ValueError: self.errortext.setText('Failed: Bad ID!') except pygame.error,e: self.errortext.setText('Failed: ' + str(e).strip('"')) def copyAuthorToOrigAuthor(self,junk): self.origauthorbox.setText(self.authorbox.getText()) def saveExtraSettings(self): try: self.config.add_section('obj2vxp') except: pass self.config.set('obj2vxp','enhance',`self.enhance_color.isChecked()`) self.config.set('obj2vxp','textured',`self.textured.isChecked()`) def getEnhanceColor(self): try: val=self.config.get('obj2vxp','enhance') return sockgui.BoolConv(val) except: return False def getTextured(self): try: val=self.config.get('obj2vxp','textured') return sockgui.BoolConv(val) except: return False def getOBJList(self): out=[] for file in os.listdir('.'): flower=file.lower() if flower.endswith('.obj'): out.append(file) return out def onShortNameChanged(self,data,newtext): if newtext=='': out='' else: out=self.shortnamebox.getText() + '.vxp' self.filenamelabel.setRed(os.path.exists(out)) self.filenamelabel.setText(out) def RunConverter(title): pygame.display.set_caption(title+'obj2vxpGUI '+obj2vxp.version) screen=pygame.display.set_mode((375,397)) gui=obj2vxpGUI(screen) return gui.run() if __name__=='__main__': pygame.init() RunConverter('') def GetInfo(): return ('obj2vxp','Convert OBJs to props',None,obj2vxp.version) # None is the ICONOS.
foone/7gen
bin/obj2vxpGUI.py
Python
gpl-2.0
6,717
0.056573
""" Flask-EasyWebDAV ------------- This is the description for that library """ from setuptools import setup setup( name='Flask-EasyWebDAV', version='0.1', url='http://github.com/ghachey/flask-easywebdav', license='MIT', author='Ghislain Hachey', author_email='ghachey@outlook.com', description='Very simple extension to add support for easywebdav', long_description=__doc__, py_modules=['flask_easywebdav'], # if you would be using a package instead use packages instead # of py_modules: # packages=['flask_easywebdav'], zip_safe=False, include_package_data=True, platforms='any', install_requires=[ 'Flask', 'easywebdav' ], classifiers=[ 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules' ] )
ghachey/flask-easywebdav
setup.py
Python
mit
1,092
0
# # Copyright (c) 2016 Juniper Networks, Inc. All rights reserved. # """ This file contains implementation of data model for mesos manager """ import json from cfgm_common.vnc_db import DBBase from bitstring import BitArray from vnc_api.vnc_api import (KeyValuePair) from mesos_manager.vnc.vnc_mesos_config import VncMesosConfig as vnc_mesos_config from mesos_manager.sandesh.mesos_introspect import ttypes as introspect class DBBaseMM(DBBase): obj_type = __name__ # Infra annotations that will be added on objects with custom annotations. ann_fq_name_infra_key = ["project", "cluster", "owner"] def __init__(self, uuid, obj_dict=None): # By default there are no annotations added on an object. self.ann_fq_name = None @staticmethod def get_infra_annotations(): """Get infra annotations.""" annotations = {} annotations['owner'] = vnc_mesos_config.cluster_owner() annotations['cluster'] = vnc_mesos_config.cluster_name() return annotations @classmethod def _get_annotations(cls, vnc_caller, name, mesos_type, **custom_ann_kwargs): """Get all annotations. Annotations are aggregated from multiple sources like infra info, input params and custom annotations. This method is meant to be an aggregator of all possible annotations. """ # Get annotations declared on the caller. annotations = dict(vnc_caller.get_annotations()) # Update annotations with infra specific annotations. infra_anns = cls.get_infra_annotations() infra_anns['project'] = vnc_mesos_config.cluster_project_name() annotations.update(infra_anns) # Update annotations based on explicity input params. input_anns = {} input_anns['name'] = name if mesos_type: input_anns['kind'] = mesos_type annotations.update(input_anns) # Append other custom annotations. annotations.update(custom_ann_kwargs) return annotations @classmethod def add_annotations(cls, vnc_caller, obj, name, mesos_type=None, **custom_ann_kwargs): """Add annotations on the input object. Given an object, this method will add all required and specfied annotations on that object. """ # Construct annotations to be added on the object. annotations = cls._get_annotations(vnc_caller, name, mesos_type, **custom_ann_kwargs) # Validate that annotations have all the info to construct # the annotations-based-fq-name as required by the object's db. if hasattr(cls, 'ann_fq_name_key'): if not set(cls.ann_fq_name_key).issubset(annotations): err_msg = "Annotations required to contruct mesos_fq_name for"+\ " object (%s:%s) was not found in input keyword args." %\ (name) raise Exception(err_msg) # Annotate the object. for ann_key, ann_value in annotations.iteritems(): obj.add_annotations(KeyValuePair(key=ann_key, value=ann_value)) @classmethod def _update_fq_name_to_uuid(cls, uuid, obj_dict): cls._fq_name_to_uuid[tuple(obj_dict['fq_name'])] = uuid @classmethod def get_fq_name_to_uuid(cls, fq_name): return cls._fq_name_to_uuid.get(tuple(fq_name)) @classmethod def _get_ann_fq_name_from_obj(cls, obj_dict): """Get the annotated fully qualified name from the object. Annotated-fq-names are contructed from annotations found on the object. The format of the fq-name is specified in the object's db class. This method will construct the annoated-fq-name of the input object. """ fq_name = None if hasattr(cls, 'ann_fq_name_key'): fq_name = [] fq_name_key = cls.ann_fq_name_infra_key + cls.ann_fq_name_key if obj_dict.get('annotations') and\ obj_dict['annotations'].get('key_value_pair'): kvps = obj_dict['annotations']['key_value_pair'] for elem in fq_name_key: for kvp in kvps: if kvp.get("key") != elem: continue fq_name.append(kvp.get("value")) break return fq_name @classmethod def _get_ann_fq_name_from_params(cls, **kwargs): """Construct annotated fully qualified name using input params.""" fq_name = [] fq_name_key = cls.ann_fq_name_infra_key + cls.ann_fq_name_key for elem in fq_name_key: for key, value in kwargs.iteritems(): if key != elem: continue fq_name.append(value) break return fq_name @classmethod def get_ann_fq_name_to_uuid(cls, vnc_caller, name, mesos_type=None, **kwargs): """Get vnc object uuid corresponding to an annotated-fq-name. The annotated-fq-name is constructed from the input params given by the caller. """ # Construct annotations based on input params. annotations = cls._get_annotations(vnc_caller, name, mesos_type, **kwargs) # Validate that annoatations has all info required for construction # of annotated-fq-name. if hasattr(cls, 'ann_fq_name_key'): if not set(cls.ann_fq_name_key).issubset(annotations): err_msg = "Annotations required to contruct mesos_fq_name for"+\ " object (%s:%s) was not found in input keyword args." %\ (name) raise Exception(err_msg) # Lookup annnoated-fq-name in annotated-fq-name to uuid table. return cls._ann_fq_name_to_uuid.get( tuple(cls._get_ann_fq_name_from_params(**annotations))) @classmethod def _update_ann_fq_name_to_uuid(cls, uuid, ann_fq_name): cls._ann_fq_name_to_uuid[tuple(ann_fq_name)] = uuid def build_fq_name_to_uuid(self, uuid, obj_dict): """Populate uuid in all tables tracking uuid.""" if not obj_dict: return # Update annotated-fq-name to uuid table. self.ann_fq_name = self._get_ann_fq_name_from_obj(obj_dict) if self.ann_fq_name: self._update_ann_fq_name_to_uuid(uuid, self.ann_fq_name) # Update vnc fq-name to uuid table. self._update_fq_name_to_uuid(uuid, obj_dict) @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] if obj.ann_fq_name: if tuple(obj.ann_fq_name) in cls._ann_fq_name_to_uuid: del cls._ann_fq_name_to_uuid[tuple(obj.ann_fq_name)] if tuple(obj.fq_name) in cls._fq_name_to_uuid: del cls._fq_name_to_uuid[tuple(obj.fq_name)] def evaluate(self): # Implement in the derived class pass @classmethod def objects(cls): # Get all vnc objects of this class. return cls._dict.values() @staticmethod def _build_annotation_dict(annotation_dict): return {str(annot['key']): str(annot['value']) for annot in annotation_dict['key_value_pair']} \ if annotation_dict and annotation_dict.get('key_value_pair') \ else {} @staticmethod def _build_string_dict(src_dict): dst_dict = {} if src_dict: for key, value in src_dict.iteritems(): dst_dict[str(key)] = str(value) return dst_dict @staticmethod def _build_cls_uuid_list(cls, collection): return [cls(str(list(collection)[i])) for i in xrange(len(collection))] \ if collection else [] class VirtualMachineMM(DBBaseMM): _dict = {} obj_type = 'virtual_machine' _ann_fq_name_to_uuid = {} ann_fq_name_key = ["kind", "name"] _fq_name_to_uuid = {} def __init__(self, uuid, obj_dict=None): self.uuid = uuid self.owner = None self.cluster = None self.virtual_router = None self.virtual_machine_interfaces = set() self.pod_labels = None self.pod_node = None self.node_ip = None super(VirtualMachineMM, self).__init__(uuid, obj_dict) obj_dict = self.update(obj_dict) def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) if not obj: return self.name = obj['fq_name'][-1] self.fq_name = obj['fq_name'] self.annotations = obj.get('annotations', None) self.build_fq_name_to_uuid(self.uuid, obj) if self.annotations: for kvp in self.annotations['key_value_pair'] or []: if kvp['key'] == 'owner': self.owner = kvp['value'] elif kvp['key'] == 'cluster': self.cluster = kvp['value'] elif kvp['key'] == 'labels': self.pod_labels = json.loads(kvp['value']) self.update_single_ref('virtual_router', obj) self.update_multiple_refs('virtual_machine_interface', obj) return obj @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] obj.update_single_ref('virtual_router', {}) obj.update_multiple_refs('virtual_machine_interface', {}) super(VirtualMachineMM, cls).delete(uuid) del cls._dict[uuid] @classmethod def sandesh_handle_db_list_request(cls, req): """ Reply to Virtual Machine DB lookup/introspect request. """ vm_resp = introspect.VirtualMachineDatabaseListResp(vms=[]) # Iterate through all elements of Virtual Machine DB. for vm in VirtualMachineMM.objects(): # If the request is for a specific entry, then locate the entry. if req.vm_uuid and req.vm_uuid != vm.uuid: continue vm_annotations = cls._build_annotation_dict(vm.annotations) vmis = cls._build_cls_uuid_list( introspect.VMIUuid, vm.virtual_machine_interfaces) vr = introspect.VRUuid(vr_uuid=str(vm.virtual_router)) \ if vm.virtual_router else None # Construct response for an element. vm_instance = introspect.VirtualMachineInstance( uuid=vm.uuid, name=vm.name, cluster=vm.cluster, annotations=vm_annotations, owner=vm.owner, node_ip=str(vm.node_ip), pod_node=vm.pod_node, pod_labels=vm.pod_labels, vm_interfaces=vmis, vrouter_uuid=vr) # Append the constructed element info to the response. vm_resp.vms.append(vm_instance) # Send the reply out. vm_resp.response(req.context()) class VirtualRouterMM(DBBaseMM): _dict = {} obj_type = 'virtual_router' _ann_fq_name_to_uuid = {} _fq_name_to_uuid = {} _ip_addr_to_uuid = {} def __init__(self, uuid, obj_dict=None): super(VirtualRouterMM, self).__init__(uuid, obj_dict) self.uuid = uuid self.virtual_machines = set() self.update(obj_dict) def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.name = obj['fq_name'][-1] self.fq_name = obj['fq_name'] self.annotations = obj.get('annotations', None) self.build_fq_name_to_uuid(self.uuid, obj) self.update_multiple_refs('virtual_machine', obj) self.virtual_router_ip_address = obj.get('virtual_router_ip_address') if self.virtual_router_ip_address: self.build_ip_addr_to_uuid( self.uuid, self.virtual_router_ip_address) @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] obj.update_multiple_refs('virtual_machine', {}) del cls._dict[uuid] @classmethod def build_ip_addr_to_uuid(cls, uuid, ip_addr): cls._ip_addr_to_uuid[tuple(ip_addr)] = uuid @classmethod def get_ip_addr_to_uuid(cls, ip_addr): return cls._ip_addr_to_uuid.get(tuple(ip_addr)) @classmethod def sandesh_handle_db_list_request(cls, req): """ Reply to Virtual Router DB lookup/introspect request. """ vr_resp = introspect.VirtualRouterDatabaseListResp(vrs=[]) # Iterate through all elements of Virtual Router DB. for vr in VirtualRouterMM.objects(): # If the request is for a specific entry, then locate the entry. if req.vr_uuid and req.vr_uuid != vr.uuid: continue vr_annotations = cls._build_annotation_dict(vr.annotations) vms = cls._build_cls_uuid_list( introspect.VMUuid, vr.virtual_machines) # Construct response for an element. vr_instance = introspect.VirtualRouterInstance( uuid=vr.uuid, name=vr.fq_name[-1], fq_name=vr.fq_name, annotations=vr_annotations, virtual_machines=vms) # Append the constructed element info to the response. vr_resp.vrs.append(vr_instance) # Send the reply out. vr_resp.response(req.context()) class VirtualMachineInterfaceMM(DBBaseMM): _dict = {} obj_type = 'virtual_machine_interface' _ann_fq_name_to_uuid = {} ann_fq_name_key = ["kind", "name"] _fq_name_to_uuid = {} def __init__(self, uuid, obj_dict=None): super(VirtualMachineInterfaceMM, self).__init__(uuid, obj_dict) self.uuid = uuid self.host_id = None self.virtual_network = None self.virtual_machine = None self.instance_ips = set() self.floating_ips = set() self.virtual_machine_interfaces = set() self.security_groups = set() obj_dict = self.update(obj_dict) self.add_to_parent(obj_dict) def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.name = obj['fq_name'][-1] self.fq_name = obj['fq_name'] self.annotations = obj.get('annotations', None) self.build_fq_name_to_uuid(self.uuid, obj) # Cache bindings on this VMI. if obj.get('virtual_machine_interface_bindings', None): bindings = obj['virtual_machine_interface_bindings'] kvps = bindings.get('key_value_pair', None) for kvp in kvps or []: if kvp['key'] == 'host_id': self.host_id = kvp['value'] self.update_multiple_refs('instance_ip', obj) self.update_multiple_refs('floating_ip', obj) self.update_single_ref('virtual_network', obj) self.update_single_ref('virtual_machine', obj) self.update_multiple_refs('security_group', obj) self.update_multiple_refs('virtual_machine_interface', obj) return obj @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] obj.update_multiple_refs('instance_ip', {}) obj.update_multiple_refs('floating_ip', {}) obj.update_single_ref('virtual_network', {}) obj.update_single_ref('virtual_machine', {}) obj.update_multiple_refs('security_group', {}) obj.update_multiple_refs('virtual_machine_interface', {}) obj.remove_from_parent() del cls._dict[uuid] @classmethod def sandesh_handle_db_list_request(cls, req): """ Reply to Virtual Machine Interface DB lookup/introspect request. """ vmi_resp = introspect.VirtualMachineInterfaceDatabaseListResp(vmis=[]) # Iterate through all elements of Virtual Router DB. for vmi in VirtualMachineInterfaceMM.objects(): # If the request is for a specific entry, then locate the entry. if req.vmi_uuid and req.vmi_uuid != vmi.uuid: continue vmi_annotations = cls._build_annotation_dict(vmi.annotations) fips = cls._build_cls_uuid_list( introspect.FIPUuid, vmi.floating_ips) sgs = cls._build_cls_uuid_list( introspect.SGUuid, vmi.security_groups) vmis = cls._build_cls_uuid_list( introspect.VMIUuid, vmi.virtual_machine_interfaces) # Construct response for an element. vmi_instance = introspect.VirtualMachineInterfaceInstance( uuid=vmi.uuid, name=vmi.fq_name[-1], fq_name=vmi.fq_name, annotations=vmi_annotations, floating_ips=fips, host_id=vmi.host_id, security_groups=sgs, virtual_machine=str(vmi.virtual_machine), virtual_machine_interfaces=vmis, virtual_network=str(vmi.virtual_network)) # Append the constructed element info to the response. vmi_resp.vmis.append(vmi_instance) # Send the reply out. vmi_resp.response(req.context()) class VirtualNetworkMM(DBBaseMM): _dict = {} obj_type = 'virtual_network' _ann_fq_name_to_uuid = {} _fq_name_to_uuid = {} ann_fq_name_key = ["kind", "name"] def __init__(self, uuid, obj_dict=None): super(VirtualNetworkMM, self).__init__(uuid, obj_dict) self.uuid = uuid self.virtual_machine_interfaces = set() self.instance_ips = set() self.network_ipams = set() self.network_ipam_subnets = {} self.annotations = None obj_dict = self.update(obj_dict) self.add_to_parent(obj_dict) def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.name = obj['fq_name'][-1] self.fq_name = obj['fq_name'] self.build_fq_name_to_uuid(self.uuid, obj) # Cache ipam-subnet-uuid to ipam-fq-name mapping. # This is useful when we would like to locate an ipam in a VN, # from which we would like to request ip allocation. self.network_ipam_subnets = {} # Iterate through ipam's on this VN. for ipam in obj.get('network_ipam_refs', []): # Get the ipam's attributes. ipam_attr = ipam.get('attr', None) # Get the ipam fq-name. ipam_fq_name = ipam['to'] if ipam_attr: # Iterate through ipam subnets to cache uuid - fqname mapping. for subnet in ipam_attr.get('ipam_subnets', []): subnet_uuid = subnet.get('subnet_uuid', None) if subnet_uuid: self.network_ipam_subnets[subnet_uuid] = ipam_fq_name # Get annotations on this virtual network. self.annotations = obj.get('annotations', {}) self.update_multiple_refs('virtual_machine_interface', obj) self.update_multiple_refs('instance_ip', obj) self.update_multiple_refs('network_ipam', obj) return obj @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] obj.update_multiple_refs('virtual_machine_interface', {}) obj.update_multiple_refs('instance_ip', {}) obj.update_multiple_refs('network_ipam', {}) obj.remove_from_parent() del cls._dict[uuid] # Given an ipam-fq-name, return its subnet uuid on this VN. def get_ipam_subnet_uuid(self, ipam_fq_name): for subnet_uuid, fq_name in self.network_ipam_subnets.iteritems(): if fq_name == ipam_fq_name: return subnet_uuid return None @classmethod def sandesh_handle_db_list_request(cls, req): """ Reply to Virtual Network DB lookup/introspect request. """ vn_resp = introspect.VirtualNetworkDatabaseListResp(vns=[]) # Iterate through all elements of Virtual Network DB. for vn in VirtualNetworkMM.objects(): # If the request is for a specific entry, then locate the entry. if req.vn_uuid and req.vn_uuid != vn.uuid: continue vn_annotations = cls._build_annotation_dict(vn.annotations) ipam_subnets = [introspect.NetworkIpamSubnetInstance( uuid=sub[0], fq_name=sub[1]) for sub in vn.network_ipam_subnets.iteritems()] vmis = cls._build_cls_uuid_list( introspect.VMIUuid, vn.virtual_machine_interfaces) iips = cls._build_cls_uuid_list( introspect.IIPUuid, vn.instance_ips) nipams = cls._build_cls_uuid_list( introspect.NIPAMUuid, vn.network_ipams) # Construct response for an element. vn_instance = introspect.VirtualNetworkInstance( uuid=vn.uuid, name=vn.fq_name[-1], fq_name=vn.fq_name, annotations=vn_annotations, virtual_machine_interfaces=vmis, instance_ips=iips, network_ipams=nipams, network_ipam_subnets=ipam_subnets) # Append the constructed element info to the response. vn_resp.vns.append(vn_instance) # Send the reply out. vn_resp.response(req.context()) class InstanceIpMM(DBBaseMM): _dict = {} obj_type = 'instance_ip' _ann_fq_name_to_uuid = {} ann_fq_name_key = ["kind", "name"] _fq_name_to_uuid = {} def __init__(self, uuid, obj_dict=None): super(InstanceIpMM, self).__init__(uuid, obj_dict) self.uuid = uuid self.address = None self.family = None self.virtual_machine_interfaces = set() self.virtual_networks = set() self.floating_ips = set() self.update(obj_dict) def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.name = obj['fq_name'][-1] self.fq_name = obj['fq_name'] self.family = obj.get('instance_ip_family', 'v4') self.address = obj.get('instance_ip_address', None) self.update_multiple_refs('virtual_machine_interface', obj) self.update_multiple_refs('virtual_network', obj) self.floating_ips = set([fip['uuid'] for fip in obj.get('floating_ips', [])]) @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] obj.update_multiple_refs('virtual_machine_interface', {}) obj.update_multiple_refs('virtual_network', {}) del cls._dict[uuid] @classmethod def get_object(cls, ip, vn_fq_name): items = cls._dict.items() for uuid, iip_obj in items: if ip == iip_obj.address: vn_uuid = VirtualNetworkMM.get_fq_name_to_uuid(vn_fq_name) if vn_uuid and vn_uuid in iip_obj.virtual_networks: return iip_obj return None @classmethod def sandesh_handle_db_list_request(cls, req): """ Reply to InstanceIp DB lookup/introspect request. """ iip_resp = introspect.InstanceIpDatabaseListResp(iips=[]) # Iterate through all elements of InstanceIp DB. for iip in InstanceIpMM.objects(): # If the request is for a specific entry, then locate the entry. if req.iip_uuid and req.iip_uuid != iip.uuid: continue vmis = cls._build_cls_uuid_list( introspect.VMIUuid, iip.virtual_machine_interfaces) vns = cls._build_cls_uuid_list( introspect.VNUuid, iip.virtual_networks) fips = cls._build_cls_uuid_list( introspect.FIPUuid, iip.floating_ips) # Construct response for an element. iip_instance = introspect.InstanceIpInstance( uuid=iip.uuid, name=iip.fq_name[-1], fq_name=iip.fq_name, address=str(iip.address), family=iip.family, vm_interfaces=vmis, virtual_networks=vns, floating_ips=fips) # Append the constructed element info to the response. iip_resp.iips.append(iip_instance) # Send the reply out. iip_resp.response(req.context()) # end class InstanceIpMM class ProjectMM(DBBaseMM): _dict = {} obj_type = 'project' _ann_fq_name_to_uuid = {} _fq_name_to_uuid = {} def __init__(self, uuid, obj_dict=None): super(ProjectMM, self).__init__(uuid, obj_dict) self.uuid = uuid self.ns_labels = {} self.virtual_networks = set() self.annotations = None self.security_groups = set() obj_dict = self.update(obj_dict) self.set_children('virtual_network', obj_dict) def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.name = obj['fq_name'][-1] self.fq_name = obj['fq_name'] self.build_fq_name_to_uuid(self.uuid, obj) # Update SecurityGroup info. sg_list = obj.get('security_groups', []) for sg in sg_list: self.security_groups.add(sg['uuid']) self.annotations = obj.get('annotations', {}) return obj @classmethod def delete(cls, uuid): if uuid not in cls._dict: return del cls._dict[uuid] def get_security_groups(self): return set(self.security_groups) def add_security_group(self, sg_uuid): self.security_groups.add(sg_uuid) def remove_security_group(self, sg_uuid): self.security_groups.discard(sg_uuid) @classmethod def sandesh_handle_db_list_request(cls, req): """ Reply to Project DB lookup/introspect request. """ project_resp = introspect.ProjectDatabaseListResp(projects=[]) # Iterate through all elements of Project DB. for project in ProjectMM.objects(): # If the request is for a specific entry, then locate the entry. if req.project_uuid and req.project_uuid != project.uuid: continue project_annotations = cls._build_annotation_dict( project.annotations) ns_labels = cls._build_string_dict(project.ns_labels) sgs = cls._build_cls_uuid_list( introspect.SGUuid, project.security_groups) vns = cls._build_cls_uuid_list( introspect.VNUuid, project.virtual_networks) # Construct response for an element. project_instance = introspect.ProjectInstance( uuid=project.uuid, name=project.fq_name[-1], fq_name=project.fq_name, annotations=project_annotations, ns_labels=ns_labels, security_groups=sgs, virtual_networks=vns) # Append the constructed element info to the response. project_resp.projects.append(project_instance) # Send the reply out. project_resp.response(req.context()) class DomainMM(DBBaseMM): _dict = {} obj_type = 'domain' _ann_fq_name_to_uuid = {} _fq_name_to_uuid = {} def __init__(self, uuid, obj_dict=None): super(DomainMM, self).__init__(uuid, obj_dict) self.uuid = uuid self.update(obj_dict) def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.fq_name = obj['fq_name'] self.annotations = obj.get('annotations', None) self.build_fq_name_to_uuid(self.uuid, obj) @classmethod def delete(cls, uuid): if uuid not in cls._dict: return del cls._dict[uuid] @classmethod def sandesh_handle_db_list_request(cls, req): """ Reply to Domain DB lookup/introspect request. """ domain_resp = introspect.DomainDatabaseListResp(domains=[]) # Iterate through all elements of Domain DB. for domain in DomainMM.objects(): # If the request is for a specific entry, then locate the entry. if req.domain_uuid and req.domain_uuid != domain.uuid: continue domain_annotations = cls._build_annotation_dict( domain.annotations) # Construct response for an element. domain_instance = introspect.DomainInstance( uuid=domain.uuid, name=domain.fq_name[-1], fq_name=domain.fq_name, annotations=domain_annotations) # Append the constructed element info to the response. domain_resp.domains.append(domain_instance) # Send the reply out. domain_resp.response(req.context()) class NetworkIpamMM(DBBaseMM): _dict = {} obj_type = 'network_ipam' _ann_fq_name_to_uuid = {} _fq_name_to_uuid = {} def __init__(self, uuid, obj_dict=None): super(NetworkIpamMM, self).__init__(uuid, obj_dict) self.uuid = uuid self.update(obj_dict) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.name = obj['fq_name'][-1] self.fq_name = obj['fq_name'] self.annotations = obj.get('annotations', None) self.build_fq_name_to_uuid(self.uuid, obj) # end update @classmethod def delete(cls, uuid): if uuid not in cls._dict: return del cls._dict[uuid] @classmethod def sandesh_handle_db_list_request(cls, req): """ Reply to NetworkIpam DB lookup/introspect request. """ network_ipam_resp = introspect.NetworkIpamDatabaseListResp( network_ipams=[]) # Iterate through all elements of NetworkIpam DB. for network_ipam in NetworkIpamMM.objects(): # If the request is for a specific entry, then locate the entry. if req.network_ipam_uuid \ and req.network_ipam_uuid != network_ipam.uuid: continue network_ipam_annotations = cls._build_annotation_dict( network_ipam.annotations) # Construct response for an element. network_ipam_instance = introspect.NetworkIpamInstance( uuid=network_ipam.uuid, name=network_ipam.fq_name[-1], fq_name=network_ipam.fq_name, annotations=network_ipam_annotations) # Append the constructed element info to the response. network_ipam_resp.network_ipams.append(network_ipam_instance) # Send the reply out. network_ipam_resp.response(req.context()) # end class NetworkIpamMM class NetworkPolicyMM(DBBaseMM): _dict = {} obj_type = 'network_policy' _ann_fq_name_to_uuid = {} _fq_name_to_uuid = {} def __init__(self, uuid, obj_dict=None): super(NetworkPolicyMM, self).__init__(uuid, obj_dict) self.uuid = uuid self.update(obj_dict) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.name = obj['fq_name'][-1] self.fq_name = obj['fq_name'] self.annotations = obj.get('annotations', None) self.build_fq_name_to_uuid(self.uuid, obj) # end update @classmethod def delete(cls, uuid): if uuid not in cls._dict: return del cls._dict[uuid] # end class NetworkPolicyMM
rombie/contrail-controller
src/container/mesos-manager/mesos_manager/vnc/config_db.py
Python
apache-2.0
32,110
0.000685
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class UpdateClusterUpgradeDescription(Model): """Parameters for updating a cluster upgrade. :param upgrade_kind: Possible values include: 'Invalid', 'Rolling', 'Rolling_ForceRestart'. Default value: "Rolling" . :type upgrade_kind: str or :class:`enum <azure.servicefabric.models.enum>` :param update_description: :type update_description: :class:`RollingUpgradeUpdateDescription <azure.servicefabric.models.RollingUpgradeUpdateDescription>` :param cluster_health_policy: :type cluster_health_policy: :class:`ClusterHealthPolicy <azure.servicefabric.models.ClusterHealthPolicy>` :param enable_delta_health_evaluation: :type enable_delta_health_evaluation: bool :param cluster_upgrade_health_policy: :type cluster_upgrade_health_policy: :class:`ClusterUpgradeHealthPolicyObject <azure.servicefabric.models.ClusterUpgradeHealthPolicyObject>` :param application_health_policy_map: :type application_health_policy_map: :class:`ApplicationHealthPolicies <azure.servicefabric.models.ApplicationHealthPolicies>` """ _attribute_map = { 'upgrade_kind': {'key': 'UpgradeKind', 'type': 'str'}, 'update_description': {'key': 'UpdateDescription', 'type': 'RollingUpgradeUpdateDescription'}, 'cluster_health_policy': {'key': 'ClusterHealthPolicy', 'type': 'ClusterHealthPolicy'}, 'enable_delta_health_evaluation': {'key': 'EnableDeltaHealthEvaluation', 'type': 'bool'}, 'cluster_upgrade_health_policy': {'key': 'ClusterUpgradeHealthPolicy', 'type': 'ClusterUpgradeHealthPolicyObject'}, 'application_health_policy_map': {'key': 'ApplicationHealthPolicyMap', 'type': 'ApplicationHealthPolicies'}, } def __init__(self, upgrade_kind="Rolling", update_description=None, cluster_health_policy=None, enable_delta_health_evaluation=None, cluster_upgrade_health_policy=None, application_health_policy_map=None): self.upgrade_kind = upgrade_kind self.update_description = update_description self.cluster_health_policy = cluster_health_policy self.enable_delta_health_evaluation = enable_delta_health_evaluation self.cluster_upgrade_health_policy = cluster_upgrade_health_policy self.application_health_policy_map = application_health_policy_map
AutorestCI/azure-sdk-for-python
azure-servicefabric/azure/servicefabric/models/update_cluster_upgrade_description.py
Python
mit
2,832
0.002119
import unittest import xen.xend.sxp class test_sxp(unittest.TestCase): def testAllFromString(self): def t(inp, expected): self.assertEqual(xen.xend.sxp.all_from_string(inp), expected) t('String', ['String']) t('(String Thing)', [['String', 'Thing']]) t('(String) (Thing)', [['String'], ['Thing']]) def testParseFixed(self): fin = file('../xen/xend/tests/xend-config.sxp', 'rb') try: config = xen.xend.sxp.parse(fin) self.assertEqual( xen.xend.sxp.child_value( config, 'xend-relocation-hosts-allow'), '^localhost$ ^localhost\\.localdomain$') finally: fin.close() def testParseConfigExample(self): fin = file('../../examples/xend-config.sxp', 'rb') try: config = xen.xend.sxp.parse(fin) finally: fin.close() def test_suite(): return unittest.makeSuite(test_sxp)
YongMan/Xen-4.3.1
tools/python/xen/xend/tests/test_sxp.py
Python
gpl-2.0
1,015
0.003941
from .theuerkaufPeak import PeakModelTheuerkauf from .eePeak import PeakModelEE # dictionary of available peak models PeakModels = dict() PeakModels["theuerkauf"] = PeakModelTheuerkauf PeakModels["ee"] = PeakModelEE
op3/hdtv
hdtv/peakmodels/__init__.py
Python
gpl-2.0
217
0
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): depends_on = ( ("django_facebook", "0001_initial"), ) def forwards(self, orm): # Adding model 'Party' db.create_table(u'votes_party', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=200)), ('official_site', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), ('facebook_page', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), ('wikpedia_article', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), ('wikpedia_url', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), ('open_k_url', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), ('logo_url', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), )) db.send_create_signal(u'votes', ['Party']) # Adding model 'Candidate' db.create_table(u'votes_candidate', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('party', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['votes.Party'], null=True, blank=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=200)), ('number_of_votes', self.gf('django.db.models.fields.PositiveIntegerField')(default=0)), ('is_knesset_member', self.gf('django.db.models.fields.BooleanField')(default=False)), ('pesonal_site', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), ('facebook_page', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), ('wikpedia_article', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), ('wikpedia_url', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), ('open_k_url', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), ('image_url', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), )) db.send_create_signal(u'votes', ['Candidate']) # Adding M2M table for field voters on 'Candidate' m2m_table_name = db.shorten_name(u'votes_candidate_voters') db.create_table(m2m_table_name, ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('candidate', models.ForeignKey(orm[u'votes.candidate'], null=False)), ('facebookcustomuser', models.ForeignKey(orm[u'django_facebook.facebookcustomuser'], null=False)) )) db.create_unique(m2m_table_name, ['candidate_id', 'facebookcustomuser_id']) def backwards(self, orm): # Deleting model 'Party' db.delete_table(u'votes_party') # Deleting model 'Candidate' db.delete_table(u'votes_candidate') # Removing M2M table for field voters on 'Candidate' db.delete_table(db.shorten_name(u'votes_candidate_voters')) models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'django_facebook.facebookcustomuser': { 'Meta': {'object_name': 'FacebookCustomUser'}, 'about_me': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'access_token': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'blog_url': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_of_birth': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'facebook_id': ('django.db.models.fields.BigIntegerField', [], {'unique': 'True', 'null': 'True', 'blank': 'True'}), 'facebook_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'facebook_open_graph': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'facebook_profile_url': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'new_token_required': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'raw_data': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'state': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}), 'website_url': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}) }, u'votes.candidate': { 'Meta': {'ordering': "['-number_of_votes']", 'object_name': 'Candidate'}, 'facebook_page': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'is_knesset_member': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'number_of_votes': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'open_k_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'party': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['votes.Party']", 'null': 'True', 'blank': 'True'}), 'pesonal_site': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'voters': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['django_facebook.FacebookCustomUser']", 'null': 'True', 'blank': 'True'}), 'wikpedia_article': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'wikpedia_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}) }, u'votes.party': { 'Meta': {'object_name': 'Party'}, 'facebook_page': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'logo_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'official_site': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'open_k_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'wikpedia_article': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'wikpedia_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}) } } complete_apps = ['votes']
AriMeidan/Fantasy-Knesset
votes/migrations/0001_initial.py
Python
gpl-3.0
10,925
0.008055
from vt_manager_kvm.communication.sfa.util.xrn import urn_to_hrn from vt_manager_kvm.communication.sfa.trust.credential import Credential from vt_manager_kvm.communication.sfa.trust.auth import Auth class Start: def __init__(self, xrn, creds, **kwargs): hrn, type = urn_to_hrn(xrn) valid_creds = Auth().checkCredentials(creds, 'startslice', hrn) origin_hrn = Credential(string=valid_creds[0]).get_gid_caller().get_hrn() return
ict-felix/stack
vt_manager_kvm/src/python/vt_manager_kvm/communication/sfa/methods/Start.py
Python
apache-2.0
471
0.008493
# -*- coding: utf-8 -*- # # Project of Information-Theoretic Modeling documentation build configuration file, created by # sphinx-quickstart on Fri Dec 12 14:45:52 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Project of Information-Theoretic Modeling' copyright = u'2014, Simo Linkola, Teemu Pitkänen and Kalle Timperi' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.0.1' # The full version, including alpha/beta/rc tags. release = '0.0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinxdoc' on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'ProjectofInformation-TheoreticModelingdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'ProjectofInformation-TheoreticModeling.tex', u'Project of Information-Theoretic Modeling Documentation', u'Simo Linkola, Teemu Pitkänen and Kalle Timperi', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'projectofinformation-theoreticmodeling', u'Project of Information-Theoretic Modeling Documentation', [u'Simo Linkola, Teemu Pitkänen and Kalle Timperi'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'ProjectofInformation-TheoreticModeling', u'Project of Information-Theoretic Modeling Documentation', u'Simo Linkola, Teemu Pitkänen and Kalle Timperi', 'ProjectofInformation-TheoreticModeling', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
assamite/itm_project
docs/source/conf.py
Python
gpl-2.0
8,919
0.006282
""" Cross Site Request Forgery Middleware. This module provides a middleware that implements protection against request forgeries from other sites. """ from __future__ import unicode_literals import logging import re import string from django.conf import settings from django.core.urlresolvers import get_callable from django.utils.cache import patch_vary_headers from django.utils.crypto import constant_time_compare, get_random_string from django.utils.encoding import force_text from django.utils.http import same_origin from django.utils.six.moves import zip from django.utils.six.moves.urllib.parse import urlparse logger = logging.getLogger('django.request') REASON_NO_REFERER = "Referer checking failed - no Referer." REASON_BAD_REFERER = "Referer checking failed - %s does not match any trusted origins." REASON_NO_CSRF_COOKIE = "CSRF cookie not set." REASON_BAD_TOKEN = "CSRF token missing or incorrect." REASON_MALFORMED_REFERER = "Referer checking failed - Referer is malformed." REASON_INSECURE_REFERER = "Referer checking failed - Referer is insecure while host is secure." CSRF_SECRET_LENGTH = 32 CSRF_TOKEN_LENGTH = 2 * CSRF_SECRET_LENGTH CSRF_ALLOWED_CHARS = string.ascii_letters + string.digits def _get_failure_view(): """ Returns the view to be used for CSRF rejections """ return get_callable(settings.CSRF_FAILURE_VIEW) def _get_new_csrf_string(): return get_random_string(CSRF_SECRET_LENGTH, allowed_chars=CSRF_ALLOWED_CHARS) def _salt_cipher_secret(secret): """ Given a secret (assumed to be a string of CSRF_ALLOWED_CHARS), generate a token by adding a salt and using it to encrypt the secret. """ salt = _get_new_csrf_string() chars = CSRF_ALLOWED_CHARS pairs = zip((chars.index(x) for x in secret), (chars.index(x) for x in salt)) cipher = ''.join(chars[(x + y) % len(chars)] for x, y in pairs) return salt + cipher def _unsalt_cipher_token(token): """ Given a token (assumed to be a string of CSRF_ALLOWED_CHARS, of length CSRF_TOKEN_LENGTH, and that its first half is a salt), use it to decrypt the second half to produce the original secret. """ salt = token[:CSRF_SECRET_LENGTH] token = token[CSRF_SECRET_LENGTH:] chars = CSRF_ALLOWED_CHARS pairs = zip((chars.index(x) for x in token), (chars.index(x) for x in salt)) secret = ''.join(chars[x - y] for x, y in pairs) # Note negative values are ok return secret def _get_new_csrf_token(): return _salt_cipher_secret(_get_new_csrf_string()) def get_token(request): """ Returns the CSRF token required for a POST form. The token is an alphanumeric value. A new token is created if one is not already set. A side effect of calling this function is to make the csrf_protect decorator and the CsrfViewMiddleware add a CSRF cookie and a 'Vary: Cookie' header to the outgoing response. For this reason, you may need to use this function lazily, as is done by the csrf context processor. """ if "CSRF_COOKIE" not in request.META: csrf_secret = _get_new_csrf_string() request.META["CSRF_COOKIE"] = _salt_cipher_secret(csrf_secret) else: csrf_secret = _unsalt_cipher_token(request.META["CSRF_COOKIE"]) request.META["CSRF_COOKIE_USED"] = True return _salt_cipher_secret(csrf_secret) def rotate_token(request): """ Changes the CSRF token in use for a request - should be done on login for security purposes. """ request.META.update({ "CSRF_COOKIE_USED": True, "CSRF_COOKIE": _get_new_csrf_token(), }) request.csrf_cookie_needs_reset = True def _sanitize_token(token): # Allow only ASCII alphanumerics if re.search('[^a-zA-Z0-9]', force_text(token)): return _get_new_csrf_token() elif len(token) == CSRF_TOKEN_LENGTH: return token elif len(token) == CSRF_SECRET_LENGTH: # Older Django versions set cookies to values of CSRF_SECRET_LENGTH # alphanumeric characters. For backwards compatibility, accept # such values as unsalted secrets. # It's easier to salt here and be consistent later, rather than add # different code paths in the checks, although that might be a tad more # efficient. return _salt_cipher_secret(token) return _get_new_csrf_token() def _compare_salted_tokens(request_csrf_token, csrf_token): # Assume both arguments are sanitized -- that is, strings of # length CSRF_TOKEN_LENGTH, all CSRF_ALLOWED_CHARS. return constant_time_compare( _unsalt_cipher_token(request_csrf_token), _unsalt_cipher_token(csrf_token), ) class CsrfViewMiddleware(object): """ Middleware that requires a present and correct csrfmiddlewaretoken for POST requests that have a CSRF cookie, and sets an outgoing CSRF cookie. This middleware should be used in conjunction with the csrf_token template tag. """ # The _accept and _reject methods currently only exist for the sake of the # requires_csrf_token decorator. def _accept(self, request): # Avoid checking the request twice by adding a custom attribute to # request. This will be relevant when both decorator and middleware # are used. request.csrf_processing_done = True return None def _reject(self, request, reason): logger.warning( 'Forbidden (%s): %s', reason, request.path, extra={ 'status_code': 403, 'request': request, } ) return _get_failure_view()(request, reason=reason) def process_view(self, request, callback, callback_args, callback_kwargs): if getattr(request, 'csrf_processing_done', False): return None try: cookie_token = request.COOKIES[settings.CSRF_COOKIE_NAME] except KeyError: csrf_token = None else: csrf_token = _sanitize_token(cookie_token) if csrf_token != cookie_token: # Cookie token needed to be replaced; # the cookie needs to be reset. request.csrf_cookie_needs_reset = True # Use same token next time. request.META['CSRF_COOKIE'] = csrf_token # Wait until request.META["CSRF_COOKIE"] has been manipulated before # bailing out, so that get_token still works if getattr(callback, 'csrf_exempt', False): return None # Assume that anything not defined as 'safe' by RFC7231 needs protection if request.method not in ('GET', 'HEAD', 'OPTIONS', 'TRACE'): if getattr(request, '_dont_enforce_csrf_checks', False): # Mechanism to turn off CSRF checks for test suite. # It comes after the creation of CSRF cookies, so that # everything else continues to work exactly the same # (e.g. cookies are sent, etc.), but before any # branches that call reject(). return self._accept(request) if request.is_secure(): # Suppose user visits http://example.com/ # An active network attacker (man-in-the-middle, MITM) sends a # POST form that targets https://example.com/detonate-bomb/ and # submits it via JavaScript. # # The attacker will need to provide a CSRF cookie and token, but # that's no problem for a MITM and the session-independent # secret we're using. So the MITM can circumvent the CSRF # protection. This is true for any HTTP connection, but anyone # using HTTPS expects better! For this reason, for # https://example.com/ we need additional protection that treats # http://example.com/ as completely untrusted. Under HTTPS, # Barth et al. found that the Referer header is missing for # same-domain requests in only about 0.2% of cases or less, so # we can use strict Referer checking. referer = base_referer = force_text( request.META.get('HTTP_REFERER'), strings_only=True, errors='replace' ) if referer is None: return self._reject(request, REASON_NO_REFERER) referer = urlparse(referer) # Make sure we have a valid URL for Referer. if '' in (referer.scheme, referer.netloc): return self._reject(request, REASON_MALFORMED_REFERER) # Ensure that our Referer is also secure. if referer.scheme != 'https': return self._reject(request, REASON_INSECURE_REFERER) # If there isn't a CSRF_COOKIE_DOMAIN, assume we need an exact # match on host:port. If not, obey the cookie rules. if settings.CSRF_COOKIE_DOMAIN is None: # request.get_host() includes the port. good_referer = request.get_host() else: good_referer = settings.CSRF_COOKIE_DOMAIN server_port = request.get_port() if server_port not in ('443', '80'): good_referer = '%s:%s' % (good_referer, server_port) # if not any(is_same_domain(referer.netloc, host) for host in good_hosts): # reason = REASON_BAD_REFERER % referer.geturl() good_referer = 'https://%s/' % request.get_host() if not same_origin(base_referer, good_referer): reason = REASON_BAD_REFERER % (base_referer, good_referer) return self._reject(request, reason) if csrf_token is None: # No CSRF cookie. For POST requests, we insist on a CSRF cookie, # and in this way we can avoid all CSRF attacks, including login # CSRF. return self._reject(request, REASON_NO_CSRF_COOKIE) # Check non-cookie token for match. request_csrf_token = "" if request.method == "POST": try: request_csrf_token = request.POST.get('csrfmiddlewaretoken', '') except IOError: # Handle a broken connection before we've completed reading # the POST data. process_view shouldn't raise any # exceptions, so we'll ignore and serve the user a 403 # (assuming they're still listening, which they probably # aren't because of the error). pass if request_csrf_token == "": # Fall back to X-CSRFToken, to make things easier for AJAX, # and possible for PUT/DELETE. request_csrf_token = request.META.get(settings.CSRF_HEADER_NAME, '') request_csrf_token = _sanitize_token(request_csrf_token) if not _compare_salted_tokens(request_csrf_token, csrf_token): return self._reject(request, REASON_BAD_TOKEN) return self._accept(request) def process_response(self, request, response): if not getattr(request, 'csrf_cookie_needs_reset', False): if getattr(response, 'csrf_cookie_set', False): return response if not request.META.get("CSRF_COOKIE_USED", False): return response # Set the CSRF cookie even if it's already set, so we renew # the expiry timer. response.set_cookie(settings.CSRF_COOKIE_NAME, request.META["CSRF_COOKIE"], max_age=settings.CSRF_COOKIE_AGE, domain=settings.CSRF_COOKIE_DOMAIN, path=settings.CSRF_COOKIE_PATH, secure=settings.CSRF_COOKIE_SECURE, httponly=settings.CSRF_COOKIE_HTTPONLY ) # Content varies with the CSRF cookie, so set the Vary header. patch_vary_headers(response, ('Cookie',)) response.csrf_cookie_set = True return response
jyotsna1820/django
django/middleware/csrf.py
Python
bsd-3-clause
12,394
0.001291
import math from log_parser import parse_loglines from event_timer import add_realtimes_to_datapoint_list class HeartBeatTimings(object): def __init__(self, hrm_datapoint_iter): self.samples = list(_generate_beat_samples(hrm_datapoint_iter)) def first_beat_time(self): return self.samples[0][0] def last_beat_time(self): return self.samples[-1][0] def __str__(self): duration = self.samples[-1][0] - self.samples[0][0] beats = self.samples[-1][1] - self.samples[0][1] samples = len(self.samples) return 'HeartBeatTimings: %d beats in %d samples over %f seconds from %f' % (beats, samples, duration, self.first_beat_time()) def idx_last_datapoint_before(self, timestamp): if len(self.samples) == 0 or self.samples[0][0] >= timestamp: return None lower = 0 upper = len(self.samples) - 1 while upper > lower+1: mid = int((upper + lower) / 2) if self.samples[mid][0] >= timestamp: upper = mid else: lower = mid return lower def timeslice(self, from_time=None, to_time=None): "Return a subset of the data by time interval" return HeartBeatTimingsTimeslice(self, from_time, to_time) def realtimes_of_beats(self): """ Generate the real clock time of each heart beat Yield the time of each heartbeat the occured within the data set. Where there is incomplete data, use None as a placeholder for the beats whos exact time is unknown. """ prev_count = self.samples[0][1] - 1 for timestamp, count in self.samples: beats_between_samples = count - prev_count if beats_between_samples > 1: for _ in xrange(beats_between_samples-1): yield None yield timestamp prev_count = count def compute_mean_hr_bpm(self): start_timestamp, start_count = self.samples[0] end_timestamp, end_count = self.samples[-1] exact_interval = end_timestamp - start_timestamp beats_over_interval = end_count - start_count hr_bps = beats_over_interval / exact_interval hr_bpm = 60 * hr_bps return hr_bpm def compute_hrv_ms(self): """ Compute a metric of heart rate variability http://en.wikipedia.org/wiki/Heart_rate_variability#Time-domain_methods This is an attempt at the "root mean square of successive differences" metric of HRV. The result in is milliseconds. """ def hrv_sample(times): if None in times: return None int1 = times[1] - times[0] int2 = times[2] - times[1] int_diff = int2 - int1 return int_diff * int_diff beattimes = list(self.realtimes_of_beats()) if len(beattimes) < 3: return None total_var = 0 sample_count = 0 for i in xrange(len(beattimes)-2): var = hrv_sample(beattimes[i:i+3]) if var is not None: total_var += var sample_count += 1 if sample_count == 0: return None else: return 1000 * math.sqrt(total_var / sample_count) class HeartBeatTimingsTimeslice(HeartBeatTimings): def __init__(self, parent, from_time, to_time): from_idx = None if from_time is not None: from_idx = parent.idx_last_datapoint_before(from_time) if from_idx is None: from_idx = 0 to_idx = None if to_time is not None: to_idx = parent.idx_last_datapoint_before(to_time) if to_idx is None: to_idx = len(parent.samples) - 1 self.samples = parent.samples[from_idx:to_idx+1] def _generate_beat_samples(hrm_datapoint_iter): """ Generate the times of individual heart beats Yield a sequence of (last_beat_time, beat_count) tuples giving the clock time at which individual heart beats occurred and the cumulative beat count. Normally beat_count will increase by 1 with each returned value, but it may jump by more if a gap in the data means that we have incomplete information. """ prev = None for dp in hrm_datapoint_iter: count = dp.beat_ets.count if prev is None: prev_beat_realtime = dp.prev_beat_realtime() if prev_beat_realtime is not None: yield prev_beat_realtime, count-1 yield dp.beat_ets.last_at_realtime, count else: beats_in_interval = count - prev.beat_ets.count if beats_in_interval > 1: prev_beat_realtime = dp.prev_beat_realtime() if prev_beat_realtime is not None: yield prev_beat_realtime, count-1 if beats_in_interval > 0: yield dp.beat_ets.last_at_realtime, count prev = dp
ncleaton/njcant
njcant/hr_analysis.py
Python
mit
4,240
0.027123
# Author: Mr_Orange <mr_orange@hotmail.it> # URL: http://code.google.com/p/sickbeard/ # # This file is part of SickRage. # # SickRage is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # SickRage is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with SickRage. If not, see <http://www.gnu.org/licenses/>. import sickbeard from .generic import GenericClient from requests.auth import HTTPDigestAuth class qbittorrentAPI(GenericClient): def __init__(self, host=None, username=None, password=None): super(qbittorrentAPI, self).__init__('qbittorrent', host, username, password) self.url = self.host self.session.auth = HTTPDigestAuth(self.username, self.password); def _get_auth(self): try: self.response = self.session.get(self.host, verify=False) self.auth = self.response.content except: return None return self.auth if not self.response.status_code == 404 else None def _add_torrent_uri(self, result): self.url = self.host+'command/download' data = {'urls': result.url} return self._request(method='post', data=data) def _add_torrent_file(self, result): self.url = self.host+'command/upload' files = {'torrents': (result.name + '.torrent', result.content)} return self._request(method='post', files=files) def _set_torrent_priority(self, result): self.url = self.host+'command/decreasePrio ' if result.priority == 1: self.url = self.host+'command/increasePrio' data = {'hashes': result.hash} return self._request(method='post', data=data) def _set_torrent_pause(self, result): self.url = self.host+'command/resume' if sickbeard.TORRENT_PAUSED: self.url = self.host+'command/pause' data = {'hash': result.hash} return self._request(method='post', data=data) api = qbittorrentAPI()
guijomatos/SickRage
sickbeard/clients/qbittorrent_client.py
Python
gpl-3.0
2,391
0.002509
import json import urllib2 # open the url and the screen name # (The screen name is the screen name of the user for whom to return results for) def get_data(): url = "http://api.twitter.com/1/statuses/user_timeline.json?screen_name=python" # this takes a python object and dumps it to a string which is a JSON # representation of that object data = json.load(urllib2.urlopen(url)) # print the result print data get_data()
anthonyndunguwanja/Anthony-Ndungu-bootcamp-17
Day 3/http_client.py
Python
mit
439
0.013667
""" Base logic for pywow structures """ from structures import Structure, Skeleton from .fields import * from .main import * from .generated import GeneratedStructure class StructureNotFound(Exception): pass class StructureLoader(): wowfiles = None @classmethod def setup(cls): if cls.wowfiles is None: cls.wowfiles = {} for name in globals(): try: if not issubclass(globals()[name], Structure): continue except TypeError: continue cls.wowfiles[name.lower()] = globals()[name] @classmethod def getstructure(cls, name, build=0, parent=None): name = name.replace("-", "_") if name in cls.wowfiles: return cls.wowfiles[name](build, parent) raise StructureNotFound("Structure not found for file %r" % (name)) StructureLoader.setup() getstructure = StructureLoader.getstructure class LocalizedStringField(Structure): """ Structure for the LocalizedField class """ fields = Skeleton( StringField("enus"), StringField("kokr"), StringField("frfr"), StringField("dede"), StringField("zhcn"), StringField("zhtw"), StringField("eses"), StringField("esmx"), BitMaskField("locflags") ) def changed_5595(self, fields): fields.insert_fields(( StringField("ruru"), StringField("unk1"), StringField("unk2"), StringField("unk3"), StringField("unk4"), StringField("unk5"), StringField("unk6"), StringField("unk7"), ), before="locflags") def changed_11927(self, fields): self.changed_5595(fields) fields.delete_fields( "kokr", "frfr", "dede", "zhcn", "zhtw", "eses", "esmx", "ruru", "unk1", "unk2", "unk3", "unk4", "unk5", "unk6", "unk7", "locflags", ) def changed_11993(self, fields): self.changed_5595(fields) def changed_12025(self, fields): self.changed_11927(fields)
jleclanche/pywow
wdbc/structures/__init__.py
Python
cc0-1.0
1,799
0.033352
"""Conditional module is the xmodule, which you can use for disabling some xmodules by conditions. """ import json import logging from lxml import etree from pkg_resources import resource_string from xmodule.x_module import XModule from xmodule.modulestore import Location from xmodule.seq_module import SequenceDescriptor from xblock.core import Scope, List from xmodule.modulestore.exceptions import ItemNotFoundError log = logging.getLogger('mitx.' + __name__) class ConditionalFields(object): show_tag_list = List(help="Poll answers", scope=Scope.content) class ConditionalModule(ConditionalFields, XModule): """ Blocks child module from showing unless certain conditions are met. Example: <conditional sources="i4x://.../problem_1; i4x://.../problem_2" completed="True"> <show sources="i4x://.../test_6; i4x://.../Avi_resources"/> <video url_name="secret_video" /> </conditional> <conditional> tag attributes: sources - location id of required modules, separated by ';' submitted - map to `is_submitted` module method. (pressing RESET button makes this function to return False.) attempted - map to `is_attempted` module method correct - map to `is_correct` module method poll_answer - map to `poll_answer` module attribute voted - map to `voted` module attribute <show> tag attributes: sources - location id of required modules, separated by ';' You can add you own rules for <conditional> tag, like "completed", "attempted" etc. To do that yo must extend `ConditionalModule.conditions_map` variable and add pair: my_attr: my_property/my_method After that you can use it: <conditional my_attr="some value" ...> ... </conditional> And my_property/my_method will be called for required modules. """ js = {'coffee': [resource_string(__name__, 'js/src/javascript_loader.coffee'), resource_string(__name__, 'js/src/conditional/display.coffee'), resource_string(__name__, 'js/src/collapsible.coffee'), ]} js_module_name = "Conditional" css = {'scss': [resource_string(__name__, 'css/capa/display.scss')]} # Map # key: <tag attribute in xml> # value: <name of module attribute> conditions_map = { 'poll_answer': 'poll_answer', # poll_question attr # problem was submitted (it can be wrong) # if student will press reset button after that, # state will be reverted 'submitted': 'is_submitted', # capa_problem attr # if student attempted problem 'attempted': 'is_attempted', # capa_problem attr # if problem is full points 'correct': 'is_correct', 'voted': 'voted' # poll_question attr } def _get_condition(self): # Get first valid condition. for xml_attr, attr_name in self.conditions_map.iteritems(): xml_value = self.descriptor.xml_attributes.get(xml_attr) if xml_value: return xml_value, attr_name raise Exception('Error in conditional module: unknown condition "%s"' % xml_attr) def is_condition_satisfied(self): self.required_modules = [self.system.get_module(descriptor) for descriptor in self.descriptor.get_required_module_descriptors()] xml_value, attr_name = self._get_condition() if xml_value and self.required_modules: for module in self.required_modules: if not hasattr(module, attr_name): # We don't throw an exception here because it is possible for # the descriptor of a required module to have a property but # for the resulting module to be a (flavor of) ErrorModule. # So just log and return false. log.warn('Error in conditional module: \ required module {module} has no {module_attr}'.format(module=module, module_attr=attr_name)) return False attr = getattr(module, attr_name) if callable(attr): attr = attr() if xml_value != str(attr): break else: return True return False def get_html(self): # Calculate html ids of dependencies self.required_html_ids = [descriptor.location.html_id() for descriptor in self.descriptor.get_required_module_descriptors()] return self.system.render_template('conditional_ajax.html', { 'element_id': self.location.html_id(), 'id': self.id, 'ajax_url': self.system.ajax_url, 'depends': ';'.join(self.required_html_ids) }) def handle_ajax(self, _dispatch, _data): """This is called by courseware.moduleodule_render, to handle an AJAX call. """ if not self.is_condition_satisfied(): defmsg = "{link} must be attempted before this will become visible." message = self.descriptor.xml_attributes.get('message', defmsg) context = {'module': self, 'message': message} html = self.system.render_template('conditional_module.html', context) return json.dumps({'html': [html], 'message': bool(message)}) html = [child.get_html() for child in self.get_display_items()] return json.dumps({'html': html}) def get_icon_class(self): new_class = 'other' # HACK: This shouldn't be hard-coded to two types # OBSOLETE: This obsoletes 'type' class_priority = ['video', 'problem'] child_classes = [self.system.get_module(child_descriptor).get_icon_class() for child_descriptor in self.descriptor.get_children()] for c in class_priority: if c in child_classes: new_class = c return new_class class ConditionalDescriptor(ConditionalFields, SequenceDescriptor): """Descriptor for conditional xmodule.""" _tag_name = 'conditional' module_class = ConditionalModule filename_extension = "xml" has_score = False @staticmethod def parse_sources(xml_element, system, return_descriptor=False): """Parse xml_element 'sources' attr and: if return_descriptor=True - return list of descriptors if return_descriptor=False - return list of locations """ result = [] sources = xml_element.get('sources') if sources: locations = [location.strip() for location in sources.split(';')] for location in locations: if Location.is_valid(location): # Check valid location url. try: if return_descriptor: descriptor = system.load_item(location) result.append(descriptor) else: result.append(location) except ItemNotFoundError: msg = "Invalid module by location." log.exception(msg) system.error_tracker(msg) return result def get_required_module_descriptors(self): """Returns a list of XModuleDescritpor instances upon which this module depends. """ return ConditionalDescriptor.parse_sources( self.xml_attributes, self.system, True) @classmethod def definition_from_xml(cls, xml_object, system): children = [] show_tag_list = [] for child in xml_object: if child.tag == 'show': location = ConditionalDescriptor.parse_sources( child, system) children.extend(location) show_tag_list.extend(location) else: try: descriptor = system.process_xml(etree.tostring(child)) module_url = descriptor.location.url() children.append(module_url) except: msg = "Unable to load child when parsing Conditional." log.exception(msg) system.error_tracker(msg) return {'show_tag_list': show_tag_list}, children def definition_to_xml(self, resource_fs): xml_object = etree.Element(self._tag_name) for child in self.get_children(): location = str(child.location) if location in self.show_tag_list: show_str = '<{tag_name} sources="{sources}" />'.format( tag_name='show', sources=location) xml_object.append(etree.fromstring(show_str)) else: xml_object.append( etree.fromstring(child.export_to_xml(resource_fs))) return xml_object
IITBinterns13/edx-platform-dev
common/lib/xmodule/xmodule/conditional_module.py
Python
agpl-3.0
9,200
0.001413
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin # Register your models here. from timeline.models import AlumniInfo admin.site.register(AlumniInfo)
csriharsha/fosswebsite
timeline/admin.py
Python
mit
200
0
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for UpdateMuteConfig # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-securitycenter # [START securitycenter_v1_generated_SecurityCenter_UpdateMuteConfig_async] from google.cloud import securitycenter_v1 async def sample_update_mute_config(): # Create a client client = securitycenter_v1.SecurityCenterAsyncClient() # Initialize request argument(s) mute_config = securitycenter_v1.MuteConfig() mute_config.filter = "filter_value" request = securitycenter_v1.UpdateMuteConfigRequest( mute_config=mute_config, ) # Make the request response = await client.update_mute_config(request=request) # Handle the response print(response) # [END securitycenter_v1_generated_SecurityCenter_UpdateMuteConfig_async]
googleapis/python-securitycenter
samples/generated_samples/securitycenter_v1_generated_security_center_update_mute_config_async.py
Python
apache-2.0
1,620
0.000617
__author__ = 'roy' import logging logger = logging.getLogger() class TestA(): _multiprocess_can_split_ = True def setup(self): logger.info("I'm in setup") def teardown(self): logger.info("I'm in teardown") def test1(self): logger.info("I'm in test 1") assert 1 == 1 def test2(self): logger.info("I'm in test 2") assert 2 == 2 def test3(self): logger.info("I'm in test 3") assert 3 == 3 def test4(self): logger.info("I'm in test 4") assert 4 == 4 class TestB(): _multiprocess_can_split_ = True def setup(self): logger.info("I'm in setup") def teardown(self): logger.info("I'm in teardown") def test1(self): logger.info("I'm in test 1") assert 1 == 1 def test2(self): logger.info("I'm in test 2") assert 2 == 2 def test3(self): logger.info("I'm in test 3") assert 3 == 3 def test4(self): logger.info("I'm in test 4") assert 4 == 4
taykey/nose-logpertest
tests/tests_logpertest.py
Python
apache-2.0
1,068
0.000936
from django.conf.urls import url from django.contrib.admin.sites import AdminSite from functools import update_wrapper from templatesadmin import views as ta_views urlpatterns = [ url(r'^$', ta_views.listing, name='templatesadmin-overview'), url(r'^edit/(?P<path>.*)/$', ta_views.modify, name='templatesadmin-edit'), ]
GrandComicsDatabase/django-templatesadmin
templatesadmin/urls.py
Python
bsd-3-clause
328
0
# -*- encoding: utf-8 -*- ############################################################################## # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses/. # ############################################################################## from openerp import models, fields, api, _ import math class MrpBom(models.Model): _inherit = 'mrp.bom' @api.model def _bom_explode(self, bom, product, factor, properties=None, level=0, routing_id=False, previous_products=None, master_bom=None): routing_id = bom.routing_id.id or routing_id result, result2 = super(MrpBom, self)._bom_explode( bom, product, factor, properties=properties, level=level, routing_id=routing_id, previous_products=previous_products, master_bom=master_bom) result2 = self._get_workorder_operations( result2, factor=factor, level=level, routing_id=routing_id) return result, result2 def _get_routing_line_from_workorder(self, routing_id, seq, workcenter_id, wo_name): """ Returns first routing line from a given data if found @param routing_id: Routing id @param seq: workorder sequence @param workcenter_id: Workcenter id @return: wo_name = Workorder name """ routing_line_obj = self.env['mrp.routing.workcenter'] domain = [('routing_id', '=', routing_id), ('sequence', '=', seq), ('workcenter_id', '=', workcenter_id)] routing_lines = routing_line_obj.search(domain) for rl in routing_lines: if rl.name in wo_name: return rl return routing_line_obj def _get_workorder_operations(self, result2, factor, level=0, routing_id=False): for work_order in result2: if (work_order['sequence'] < level or work_order.get('routing_wc_line')): continue seq = work_order['sequence'] - level rl = self._get_routing_line_from_workorder( routing_id, seq, work_order['workcenter_id'], work_order['name']) cycle = rl.cycle_nbr and int(math.ceil(factor / rl.cycle_nbr)) or 0 hour = rl.hour_nbr * cycle default_wc_line = rl.op_wc_lines.filtered(lambda r: r.default) work_order['cycle'] = cycle work_order['hour'] = hour work_order['time_start'] = default_wc_line.time_start or 0.0 work_order['time_stop'] = default_wc_line.time_stop or 0.0 work_order['routing_wc_line'] = rl.id work_order['do_production'] = rl.do_production return result2 @api.multi @api.onchange('routing_id') def onchange_routing_id(self): for line in self.bom_line_ids: line.operation = (self.routing_id.workcenter_lines and self.routing_id.workcenter_lines[0]) if self.routing_id: return {'warning': { 'title': _('Changing Routing'), 'message': _("Changing routing will cause to change the" " operation in which each component will be" " consumed, by default it is set the first" " one of the routing") }} return {} class MrpBomLine(models.Model): _inherit = 'mrp.bom.line' operation = fields.Many2one( comodel_name='mrp.routing.workcenter', string='Consumed in')
jorsea/odoomrp-wip
mrp_operations_extension/models/mrp_bom.py
Python
agpl-3.0
4,254
0
# Copyright (C) 2013 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Blink IDL Intermediate Representation (IR) classes. Classes are primarily constructors, which build an IdlDefinitions object (and various contained objects) from an AST (produced by blink_idl_parser). IR stores typedefs and they are resolved by the code generator. Typedef resolution uses some auxiliary classes and OOP techniques to make this a generic call, via the resolve_typedefs() method. Class hierarchy (mostly containment, '<' for inheritance): IdlDefinitions IdlCallbackFunction < TypedObject IdlEnum :: FIXME: remove, just use a dict for enums IdlInterface IdlAttribute < TypedObject IdlConstant < TypedObject IdlLiteral IdlOperation < TypedObject IdlArgument < TypedObject IdlStringifier IdlException < IdlInterface (same contents as IdlInterface) TypedObject :: mixin for typedef resolution IdlArgument is 'picklable', as it is stored in interfaces_info. Design doc: http://www.chromium.org/developers/design-documents/idl-compiler """ import abc from idl_types import IdlType, IdlUnionType, IdlArrayType, IdlSequenceType, IdlNullableType SPECIAL_KEYWORD_LIST = ['GETTER', 'SETTER', 'DELETER'] STANDARD_TYPEDEFS = { # http://www.w3.org/TR/WebIDL/#common-DOMTimeStamp 'DOMTimeStamp': 'unsigned long long', } ################################################################################ # TypedObject (mixin for typedef resolution) ################################################################################ class TypedObject(object): """Object with a type, such as an Attribute or Operation (return value). The type can be an actual type, or can be a typedef, which must be resolved before passing data to the code generator. """ __metaclass__ = abc.ABCMeta idl_type = None def resolve_typedefs(self, typedefs): """Resolve typedefs to actual types in the object.""" # Constructors don't have their own return type, because it's the # interface itself. if not self.idl_type: return # Need to re-assign self.idl_type, not just mutate idl_type, # since type(idl_type) may change. self.idl_type = self.idl_type.resolve_typedefs(typedefs) ################################################################################ # Definitions (main container class) ################################################################################ class IdlDefinitions(object): def __init__(self, idl_name, node): """Args: node: AST root node, class == 'File'""" self.callback_functions = {} self.dictionaries = {} self.enumerations = {} self.implements = [] self.interfaces = {} self.idl_name = idl_name self.typedefs = {} node_class = node.GetClass() if node_class != 'File': raise ValueError('Unrecognized node class: %s' % node_class) children = node.GetChildren() for child in children: child_class = child.GetClass() if child_class == 'Interface': interface = IdlInterface(idl_name, child) self.interfaces[interface.name] = interface elif child_class == 'Exception': exception = IdlException(idl_name, child) # For simplicity, treat exceptions as interfaces self.interfaces[exception.name] = exception elif child_class == 'Typedef': type_name = child.GetName() self.typedefs[type_name] = typedef_node_to_type(child) elif child_class == 'Enum': enumeration = IdlEnum(idl_name, child) self.enumerations[enumeration.name] = enumeration elif child_class == 'Callback': callback_function = IdlCallbackFunction(idl_name, child) self.callback_functions[callback_function.name] = callback_function elif child_class == 'Implements': self.implements.append(IdlImplement(child)) elif child_class == 'Dictionary': dictionary = IdlDictionary(idl_name, child) self.dictionaries[dictionary.name] = dictionary else: raise ValueError('Unrecognized node class: %s' % child_class) def resolve_typedefs(self, typedefs): # Resolve typedefs with the actual types. # http://www.w3.org/TR/WebIDL/#idl-typedefs typedefs.update(dict((typedef_name, IdlType(type_name)) for typedef_name, type_name in STANDARD_TYPEDEFS.iteritems())) for callback_function in self.callback_functions.itervalues(): callback_function.resolve_typedefs(typedefs) for interface in self.interfaces.itervalues(): interface.resolve_typedefs(typedefs) def update(self, other): """Update with additional IdlDefinitions.""" for interface_name, new_interface in other.interfaces.iteritems(): if not new_interface.is_partial: # Add as new interface self.interfaces[interface_name] = new_interface continue # Merge partial to existing interface try: self.interfaces[interface_name].merge(new_interface) except KeyError: raise Exception('Tried to merge partial interface for {0}, ' 'but no existing interface by that name' .format(interface_name)) # Merge callbacks and enumerations self.enumerations.update(other.enumerations) self.callback_functions.update(other.callback_functions) ################################################################################ # Callback Functions ################################################################################ class IdlCallbackFunction(TypedObject): def __init__(self, idl_name, node): children = node.GetChildren() num_children = len(children) if num_children != 2: raise ValueError('Expected 2 children, got %s' % num_children) type_node, arguments_node = children arguments_node_class = arguments_node.GetClass() if arguments_node_class != 'Arguments': raise ValueError('Expected Arguments node, got %s' % arguments_node_class) self.idl_name = idl_name self.name = node.GetName() self.idl_type = type_node_to_type(type_node) self.arguments = arguments_node_to_arguments(idl_name, arguments_node) def resolve_typedefs(self, typedefs): TypedObject.resolve_typedefs(self, typedefs) for argument in self.arguments: argument.resolve_typedefs(typedefs) ################################################################################ # Dictionary ################################################################################ class IdlDictionary(object): def __init__(self, idl_name, node): self.extended_attributes = {} self.is_partial = bool(node.GetProperty('Partial')) self.idl_name = idl_name self.name = node.GetName() self.members = [] self.parent = None for child in node.GetChildren(): child_class = child.GetClass() if child_class == 'Inherit': self.parent = child.GetName() elif child_class == 'Key': self.members.append(IdlDictionaryMember(idl_name, child)) elif child_class == 'ExtAttributes': self.extended_attributes = ( ext_attributes_node_to_extended_attributes(idl_name, child)) else: raise ValueError('Unrecognized node class: %s' % child_class) class IdlDictionaryMember(object): def __init__(self, idl_name, node): self.default_value = None self.extended_attributes = {} self.idl_type = None self.idl_name = idl_name self.name = node.GetName() for child in node.GetChildren(): child_class = child.GetClass() if child_class == 'Type': self.idl_type = type_node_to_type(child) elif child_class == 'Default': self.default_value = default_node_to_idl_literal(child) elif child_class == 'ExtAttributes': self.extended_attributes = ( ext_attributes_node_to_extended_attributes(idl_name, child)) else: raise ValueError('Unrecognized node class: %s' % child_class) ################################################################################ # Enumerations ################################################################################ class IdlEnum(object): # FIXME: remove, just treat enums as a dictionary def __init__(self, idl_name, node): self.idl_name = idl_name self.name = node.GetName() self.values = [] for child in node.GetChildren(): self.values.append(child.GetName()) ################################################################################ # Interfaces and Exceptions ################################################################################ class IdlInterface(object): def __init__(self, idl_name, node=None): self.attributes = [] self.constants = [] self.constructors = [] self.custom_constructors = [] self.extended_attributes = {} self.operations = [] self.parent = None self.stringifier = None self.iterable = None self.maplike = None self.setlike = None self.original_interface = None self.partial_interfaces = [] if not node: # Early exit for IdlException.__init__ return self.is_callback = bool(node.GetProperty('CALLBACK')) self.is_exception = False # FIXME: uppercase 'Partial' => 'PARTIAL' in base IDL parser self.is_partial = bool(node.GetProperty('Partial')) self.idl_name = idl_name self.name = node.GetName() self.idl_type = IdlType(self.name) children = node.GetChildren() for child in children: child_class = child.GetClass() if child_class == 'Attribute': self.attributes.append(IdlAttribute(idl_name, child)) elif child_class == 'Const': self.constants.append(IdlConstant(idl_name, child)) elif child_class == 'ExtAttributes': extended_attributes = ext_attributes_node_to_extended_attributes(idl_name, child) self.constructors, self.custom_constructors = ( extended_attributes_to_constructors(idl_name, extended_attributes)) clear_constructor_attributes(extended_attributes) self.extended_attributes = extended_attributes elif child_class == 'Operation': self.operations.append(IdlOperation(idl_name, child)) elif child_class == 'Inherit': self.parent = child.GetName() elif child_class == 'Stringifier': self.stringifier = IdlStringifier(idl_name, child) self.process_stringifier() elif child_class == 'Iterable': self.iterable = IdlIterable(idl_name, child) elif child_class == 'Maplike': self.maplike = IdlMaplike(idl_name, child) elif child_class == 'Setlike': self.setlike = IdlSetlike(idl_name, child) else: raise ValueError('Unrecognized node class: %s' % child_class) if len(filter(None, [self.iterable, self.maplike, self.setlike])) > 1: raise ValueError('Interface can only have one of iterable<>, maplike<> and setlike<>.') def resolve_typedefs(self, typedefs): for attribute in self.attributes: attribute.resolve_typedefs(typedefs) for constant in self.constants: constant.resolve_typedefs(typedefs) for constructor in self.constructors: constructor.resolve_typedefs(typedefs) for custom_constructor in self.custom_constructors: custom_constructor.resolve_typedefs(typedefs) for operation in self.operations: operation.resolve_typedefs(typedefs) def process_stringifier(self): """Add the stringifier's attribute or named operation child, if it has one, as a regular attribute/operation of this interface.""" if self.stringifier.attribute: self.attributes.append(self.stringifier.attribute) elif self.stringifier.operation: self.operations.append(self.stringifier.operation) def merge(self, other): """Merge in another interface's members (e.g., partial interface)""" self.attributes.extend(other.attributes) self.constants.extend(other.constants) self.operations.extend(other.operations) class IdlException(IdlInterface): # Properly exceptions and interfaces are distinct, and thus should inherit a # common base class (say, "IdlExceptionOrInterface"). # However, there is only one exception (DOMException), and new exceptions # are not expected. Thus it is easier to implement exceptions as a # restricted subclass of interfaces. # http://www.w3.org/TR/WebIDL/#idl-exceptions def __init__(self, idl_name, node): # Exceptions are similar to Interfaces, but simpler IdlInterface.__init__(self, idl_name) self.is_callback = False self.is_exception = True self.is_partial = False self.idl_name = idl_name self.name = node.GetName() self.idl_type = IdlType(self.name) children = node.GetChildren() for child in children: child_class = child.GetClass() if child_class == 'Attribute': attribute = IdlAttribute(idl_name, child) self.attributes.append(attribute) elif child_class == 'Const': self.constants.append(IdlConstant(idl_name, child)) elif child_class == 'ExtAttributes': self.extended_attributes = ext_attributes_node_to_extended_attributes(idl_name, child) elif child_class == 'ExceptionOperation': self.operations.append(IdlOperation.from_exception_operation_node(idl_name, child)) else: raise ValueError('Unrecognized node class: %s' % child_class) ################################################################################ # Attributes ################################################################################ class IdlAttribute(TypedObject): def __init__(self, idl_name, node): self.is_read_only = bool(node.GetProperty('READONLY')) self.is_static = bool(node.GetProperty('STATIC')) self.idl_name = idl_name self.name = node.GetName() # Defaults, overridden below self.idl_type = None self.extended_attributes = {} children = node.GetChildren() for child in children: child_class = child.GetClass() if child_class == 'Type': self.idl_type = type_node_to_type(child) elif child_class == 'ExtAttributes': self.extended_attributes = ext_attributes_node_to_extended_attributes(idl_name, child) else: raise ValueError('Unrecognized node class: %s' % child_class) ################################################################################ # Constants ################################################################################ class IdlConstant(TypedObject): def __init__(self, idl_name, node): children = node.GetChildren() num_children = len(children) if num_children < 2 or num_children > 3: raise ValueError('Expected 2 or 3 children, got %s' % num_children) type_node = children[0] value_node = children[1] value_node_class = value_node.GetClass() if value_node_class != 'Value': raise ValueError('Expected Value node, got %s' % value_node_class) self.idl_name = idl_name self.name = node.GetName() # ConstType is more limited than Type, so subtree is smaller and # we don't use the full type_node_to_type function. self.idl_type = type_node_inner_to_type(type_node) # FIXME: This code is unnecessarily complicated due to the rather # inconsistent way the upstream IDL parser outputs default values. # http://crbug.com/374178 if value_node.GetProperty('TYPE') == 'float': self.value = value_node.GetProperty('VALUE') else: self.value = value_node.GetName() if num_children == 3: ext_attributes_node = children[2] self.extended_attributes = ext_attributes_node_to_extended_attributes(idl_name, ext_attributes_node) else: self.extended_attributes = {} ################################################################################ # Literals ################################################################################ class IdlLiteral(object): def __init__(self, idl_type, value): self.idl_type = idl_type self.value = value self.is_null = False def __str__(self): if self.idl_type == 'DOMString': return 'String("%s")' % self.value if self.idl_type == 'integer': return '%d' % self.value if self.idl_type == 'float': return '%g' % self.value if self.idl_type == 'boolean': return 'true' if self.value else 'false' raise ValueError('Unsupported literal type: %s' % self.idl_type) class IdlLiteralNull(IdlLiteral): def __init__(self): self.idl_type = 'NULL' self.value = None self.is_null = True def __str__(self): return 'nullptr' def default_node_to_idl_literal(node): # FIXME: This code is unnecessarily complicated due to the rather # inconsistent way the upstream IDL parser outputs default values. # http://crbug.com/374178 idl_type = node.GetProperty('TYPE') if idl_type == 'DOMString': value = node.GetProperty('NAME') if '"' in value or '\\' in value: raise ValueError('Unsupported string value: %r' % value) return IdlLiteral(idl_type, value) if idl_type == 'integer': return IdlLiteral(idl_type, int(node.GetProperty('NAME'), base=0)) if idl_type == 'float': return IdlLiteral(idl_type, float(node.GetProperty('VALUE'))) if idl_type == 'boolean': return IdlLiteral(idl_type, node.GetProperty('VALUE')) if idl_type == 'NULL': return IdlLiteralNull() raise ValueError('Unrecognized default value type: %s' % idl_type) ################################################################################ # Operations ################################################################################ class IdlOperation(TypedObject): def __init__(self, idl_name, node=None): self.arguments = [] self.extended_attributes = {} self.specials = [] self.is_constructor = False if not node: self.is_static = False return self.idl_name = idl_name self.name = node.GetName() # FIXME: should just be: or '' # FIXME: AST should use None internally if self.name == '_unnamed_': self.name = '' self.is_static = bool(node.GetProperty('STATIC')) property_dictionary = node.GetProperties() for special_keyword in SPECIAL_KEYWORD_LIST: if special_keyword in property_dictionary: self.specials.append(special_keyword.lower()) self.idl_type = None children = node.GetChildren() for child in children: child_class = child.GetClass() if child_class == 'Arguments': self.arguments = arguments_node_to_arguments(idl_name, child) elif child_class == 'Type': self.idl_type = type_node_to_type(child) elif child_class == 'ExtAttributes': self.extended_attributes = ext_attributes_node_to_extended_attributes(idl_name, child) else: raise ValueError('Unrecognized node class: %s' % child_class) @classmethod def from_exception_operation_node(cls, idl_name, node): # Needed to handle one case in DOMException.idl: # // Override in a Mozilla compatible format # [NotEnumerable] DOMString toString(); # FIXME: can we remove this? replace with a stringifier? operation = cls(idl_name) operation.name = node.GetName() children = node.GetChildren() if len(children) < 1 or len(children) > 2: raise ValueError('ExceptionOperation node with %s children, expected 1 or 2' % len(children)) type_node = children[0] operation.idl_type = type_node_to_type(type_node) if len(children) > 1: ext_attributes_node = children[1] operation.extended_attributes = ext_attributes_node_to_extended_attributes(idl_name, ext_attributes_node) return operation @classmethod def constructor_from_arguments_node(cls, name, idl_name, arguments_node): constructor = cls(idl_name) constructor.name = name constructor.arguments = arguments_node_to_arguments(idl_name, arguments_node) constructor.is_constructor = True return constructor def resolve_typedefs(self, typedefs): TypedObject.resolve_typedefs(self, typedefs) for argument in self.arguments: argument.resolve_typedefs(typedefs) ################################################################################ # Arguments ################################################################################ class IdlArgument(TypedObject): def __init__(self, idl_name, node): self.extended_attributes = {} self.idl_type = None self.is_optional = node.GetProperty('OPTIONAL') # syntax: (optional T) self.is_variadic = False # syntax: (T...) self.idl_name = idl_name self.name = node.GetName() self.default_value = None children = node.GetChildren() for child in children: child_class = child.GetClass() if child_class == 'Type': self.idl_type = type_node_to_type(child) elif child_class == 'ExtAttributes': self.extended_attributes = ext_attributes_node_to_extended_attributes(idl_name, child) elif child_class == 'Argument': child_name = child.GetName() if child_name != '...': raise ValueError('Unrecognized Argument node; expected "...", got "%s"' % child_name) self.is_variadic = bool(child.GetProperty('ELLIPSIS')) elif child_class == 'Default': self.default_value = default_node_to_idl_literal(child) else: raise ValueError('Unrecognized node class: %s' % child_class) def __getstate__(self): # FIXME: Return a picklable object which has enough information to # unpickle. return {} def __setstate__(self, state): pass def arguments_node_to_arguments(idl_name, node): # [Constructor] and [CustomConstructor] without arguments (the bare form) # have None instead of an arguments node, but have the same meaning as using # an empty argument list, [Constructor()], so special-case this. # http://www.w3.org/TR/WebIDL/#Constructor if node is None: return [] return [IdlArgument(idl_name, argument_node) for argument_node in node.GetChildren()] ################################################################################ # Stringifiers ################################################################################ class IdlStringifier(object): def __init__(self, idl_name, node): self.attribute = None self.operation = None self.extended_attributes = {} self.idl_name = idl_name for child in node.GetChildren(): child_class = child.GetClass() if child_class == 'Attribute': self.attribute = IdlAttribute(idl_name, child) elif child_class == 'Operation': operation = IdlOperation(idl_name, child) if operation.name: self.operation = operation elif child_class == 'ExtAttributes': self.extended_attributes = ext_attributes_node_to_extended_attributes(idl_name, child) else: raise ValueError('Unrecognized node class: %s' % child_class) # Copy the stringifier's extended attributes (such as [Unforgable]) onto # the underlying attribute or operation, if there is one. if self.attribute or self.operation: (self.attribute or self.operation).extended_attributes.update( self.extended_attributes) ################################################################################ # Iterable, Maplike, Setlike ################################################################################ class IdlIterable(object): def __init__(self, idl_name, node): children = node.GetChildren() # FIXME: Support extended attributes. if len(children) == 1: self.key_type = None self.value_type = type_node_to_type(children[0]) elif len(children) == 2: self.key_type = type_node_to_type(children[0]) self.value_type = type_node_to_type(children[1]) else: raise ValueError('Unexpected number of children: %d' % len(children)) class IdlMaplike(object): def __init__(self, idl_name, node): self.is_read_only = bool(node.GetProperty('READONLY')) children = node.GetChildren() # FIXME: Support extended attributes. if len(children) == 2: self.key_type = type_node_to_type(children[0]) self.value_type = type_node_to_type(children[1]) else: raise ValueError('Unexpected number of children: %d' % len(children)) class IdlSetlike(object): def __init__(self, idl_name, node): self.is_read_only = bool(node.GetProperty('READONLY')) children = node.GetChildren() # FIXME: Support extended attributes. if len(children) == 1: self.value_type = type_node_to_type(children[0]) else: raise ValueError('Unexpected number of children: %d' % len(children)) ################################################################################ # Implement statements ################################################################################ class IdlImplement(object): def __init__(self, node): self.left_interface = node.GetName() self.right_interface = node.GetProperty('REFERENCE') ################################################################################ # Extended attributes ################################################################################ class Exposure: """An Exposure holds one Exposed or RuntimeEnabled condition. Each exposure has two properties: exposed and runtime_enabled. Exposure(e, r) corresponds to [Exposed(e r)]. Exposure(e) corresponds to [Exposed=e]. """ def __init__(self, exposed, runtime_enabled=None): self.exposed = exposed self.runtime_enabled = runtime_enabled def ext_attributes_node_to_extended_attributes(idl_name, node): """ Returns: Dictionary of {ExtAttributeName: ExtAttributeValue}. Value is usually a string, with these exceptions: Constructors: value is a list of Arguments nodes, corresponding to possible signatures of the constructor. CustomConstructors: value is a list of Arguments nodes, corresponding to possible signatures of the custom constructor. NamedConstructor: value is a Call node, corresponding to the single signature of the named constructor. SetWrapperReferenceTo: value is an Arguments node. """ # Primarily just make a dictionary from the children. # The only complexity is handling various types of constructors: # Constructors and Custom Constructors can have duplicate entries due to # overloading, and thus are stored in temporary lists. # However, Named Constructors cannot be overloaded, and thus do not have # a list. # FIXME: move Constructor logic into separate function, instead of modifying # extended attributes in-place. constructors = [] custom_constructors = [] extended_attributes = {} def child_node(extended_attribute_node): children = extended_attribute_node.GetChildren() if not children: return None if len(children) > 1: raise ValueError('ExtAttributes node with %s children, expected at most 1' % len(children)) return children[0] extended_attribute_node_list = node.GetChildren() for extended_attribute_node in extended_attribute_node_list: name = extended_attribute_node.GetName() child = child_node(extended_attribute_node) child_class = child and child.GetClass() if name == 'Constructor': if child_class and child_class != 'Arguments': raise ValueError('Constructor only supports Arguments as child, but has child of class: %s' % child_class) constructors.append(child) elif name == 'CustomConstructor': if child_class and child_class != 'Arguments': raise ValueError('[CustomConstructor] only supports Arguments as child, but has child of class: %s' % child_class) custom_constructors.append(child) elif name == 'NamedConstructor': if child_class and child_class != 'Call': raise ValueError('[NamedConstructor] only supports Call as child, but has child of class: %s' % child_class) extended_attributes[name] = child elif name == 'SetWrapperReferenceTo': if not child: raise ValueError('[SetWrapperReferenceTo] requires a child, but has none.') if child_class != 'Arguments': raise ValueError('[SetWrapperReferenceTo] only supports Arguments as child, but has child of class: %s' % child_class) extended_attributes[name] = arguments_node_to_arguments(idl_name, child) elif name == 'Exposed': if child_class and child_class != 'Arguments': raise ValueError('[Exposed] only supports Arguments as child, but has child of class: %s' % child_class) exposures = [] if child_class == 'Arguments': exposures = [Exposure(exposed=str(arg.idl_type), runtime_enabled=arg.name) for arg in arguments_node_to_arguments('*', child)] else: value = extended_attribute_node.GetProperty('VALUE') if type(value) is str: exposures = [Exposure(exposed=value)] else: exposures = [Exposure(exposed=v) for v in value] extended_attributes[name] = exposures elif child: raise ValueError('ExtAttributes node with unexpected children: %s' % name) else: value = extended_attribute_node.GetProperty('VALUE') extended_attributes[name] = value # Store constructors and custom constructors in special list attributes, # which are deleted later. Note plural in key. if constructors: extended_attributes['Constructors'] = constructors if custom_constructors: extended_attributes['CustomConstructors'] = custom_constructors return extended_attributes def extended_attributes_to_constructors(idl_name, extended_attributes): """Returns constructors and custom_constructors (lists of IdlOperations). Auxiliary function for IdlInterface.__init__. """ constructor_list = extended_attributes.get('Constructors', []) constructors = [ IdlOperation.constructor_from_arguments_node('Constructor', idl_name, arguments_node) for arguments_node in constructor_list] custom_constructor_list = extended_attributes.get('CustomConstructors', []) custom_constructors = [ IdlOperation.constructor_from_arguments_node('CustomConstructor', idl_name, arguments_node) for arguments_node in custom_constructor_list] if 'NamedConstructor' in extended_attributes: # FIXME: support overloaded named constructors, and make homogeneous name = 'NamedConstructor' call_node = extended_attributes['NamedConstructor'] extended_attributes['NamedConstructor'] = call_node.GetName() children = call_node.GetChildren() if len(children) != 1: raise ValueError('NamedConstructor node expects 1 child, got %s.' % len(children)) arguments_node = children[0] named_constructor = IdlOperation.constructor_from_arguments_node('NamedConstructor', idl_name, arguments_node) # FIXME: should return named_constructor separately; appended for Perl constructors.append(named_constructor) return constructors, custom_constructors def clear_constructor_attributes(extended_attributes): # Deletes Constructor*s* (plural), sets Constructor (singular) if 'Constructors' in extended_attributes: del extended_attributes['Constructors'] extended_attributes['Constructor'] = None if 'CustomConstructors' in extended_attributes: del extended_attributes['CustomConstructors'] extended_attributes['CustomConstructor'] = None ################################################################################ # Types ################################################################################ def type_node_to_type(node): children = node.GetChildren() if len(children) < 1 or len(children) > 2: raise ValueError('Type node expects 1 or 2 children (type + optional array []), got %s (multi-dimensional arrays are not supported).' % len(children)) base_type = type_node_inner_to_type(children[0]) if node.GetProperty('NULLABLE'): base_type = IdlNullableType(base_type) if len(children) == 2: array_node = children[1] array_node_class = array_node.GetClass() if array_node_class != 'Array': raise ValueError('Expected Array node as TypeSuffix, got %s node.' % array_node_class) array_type = IdlArrayType(base_type) if array_node.GetProperty('NULLABLE'): return IdlNullableType(array_type) return array_type return base_type def type_node_inner_to_type(node): node_class = node.GetClass() # Note Type*r*ef, not Typedef, meaning the type is an identifier, thus # either a typedef shorthand (but not a Typedef declaration itself) or an # interface type. We do not distinguish these, and just use the type name. if node_class in ['PrimitiveType', 'Typeref']: # unrestricted syntax: unrestricted double | unrestricted float is_unrestricted = bool(node.GetProperty('UNRESTRICTED')) return IdlType(node.GetName(), is_unrestricted=is_unrestricted) elif node_class == 'Any': return IdlType('any') elif node_class == 'Sequence': return sequence_node_to_type(node) elif node_class == 'UnionType': return union_type_node_to_idl_union_type(node) elif node_class == 'Promise': return IdlType('Promise') raise ValueError('Unrecognized node class: %s' % node_class) def sequence_node_to_type(node): children = node.GetChildren() if len(children) != 1: raise ValueError('Sequence node expects exactly 1 child, got %s' % len(children)) sequence_child = children[0] sequence_child_class = sequence_child.GetClass() if sequence_child_class != 'Type': raise ValueError('Unrecognized node class: %s' % sequence_child_class) element_type = type_node_to_type(sequence_child) sequence_type = IdlSequenceType(element_type) if node.GetProperty('NULLABLE'): return IdlNullableType(sequence_type) return sequence_type def typedef_node_to_type(node): children = node.GetChildren() if len(children) != 1: raise ValueError('Typedef node with %s children, expected 1' % len(children)) child = children[0] child_class = child.GetClass() if child_class != 'Type': raise ValueError('Unrecognized node class: %s' % child_class) return type_node_to_type(child) def union_type_node_to_idl_union_type(node): member_types = [type_node_to_type(member_type_node) for member_type_node in node.GetChildren()] return IdlUnionType(member_types)
mxOBS/deb-pkg_trusty_chromium-browser
third_party/WebKit/Source/bindings/scripts/idl_definitions.py
Python
bsd-3-clause
38,904
0.001954
'''Package for Banded Min Hash based Similarity Calculations''' from min_hash import *
ClickSecurity/data_hacking
data_hacking/min_hash/__init__.py
Python
mit
87
0
import os import sys try: import cPickle as _pickle except ImportError: import pickle as _pickle if sys.version_info[0] == 2: bytes = str pathjoin = os.path.join pathexists = os.path.exists expanduser = os.path.expanduser abspath = os.path.abspath dirname = os.path.dirname def pickle(value): return _pickle.dumps(value, protocol=_pickle.HIGHEST_PROTOCOL) def unpickle(encoded_value): return _pickle.loads(bytes(encoded_value)) def import_module(path): __import__(path) return sys.modules[path] def import_object(name): """Imports an object by name. import_object('x.y.z') is equivalent to 'from x.y import z'. """ parts = name.split('.') m = '.'.join(parts[:-1]) attr = parts[-1] obj = __import__(m, None, None, [attr], 0) try: return getattr(obj, attr) except AttributeError as e: raise ImportError("'%s' does not exist in module '%s'" % (attr, m))
gmflanagan/waterboy
waterboy/utils.py
Python
bsd-3-clause
941
0.005313
# -*- coding: utf-8; -*- # # This file is part of Superdesk. # # Copyright 2013, 2014 Sourcefabric z.u. and contributors. # # For the full copyright and license information, please see the # AUTHORS and LICENSE files distributed with this source code, or # at https://www.sourcefabric.org/superdesk/license from typing import NamedTuple from copy import deepcopy from superdesk.resource import Resource, not_analyzed, not_indexed, not_enabled, text_with_keyword, not_dynamic from .packages import LINKED_IN_PACKAGES, PACKAGE from eve.utils import config from superdesk.utils import SuperdeskBaseEnum GUID_TAG = "tag" GUID_FIELD = "guid" GUID_NEWSML = "newsml" INGEST_ID = "ingest_id" INGEST_VERSION = "ingest_version" FAMILY_ID = "family_id" ASSOCIATIONS = "associations" #: item public states class PubStatuses(NamedTuple): USABLE: str HOLD: str CANCELED: str PUB_STATUS: PubStatuses = PubStatuses("usable", "withheld", "canceled") class ContentTypes(NamedTuple): TEXT: str PREFORMATTED: str AUDIO: str VIDEO: str PICTURE: str GRAPHIC: str COMPOSITE: str EVENT: str CONTENT_TYPE: ContentTypes = ContentTypes( "text", "preformatted", "audio", "video", "picture", "graphic", "composite", "event" ) MEDIA_TYPES = ("audio", "video", "picture", "graphic") ITEM_TYPE = "type" ITEM_STATE = "state" ITEM_PRIORITY = "priority" ITEM_URGENCY = "urgency" #: item internal states class ContentStates(NamedTuple): DRAFT: str INGESTED: str ROUTED: str FETCHED: str SUBMITTED: str PROGRESS: str SPIKED: str PUBLISHED: str KILLED: str CORRECTED: str SCHEDULED: str RECALLED: str UNPUBLISHED: str CORRECTION: str BEING_CORRECTED: str CONTENT_STATE: ContentStates = ContentStates( "draft", "ingested", "routed", "fetched", "submitted", "in_progress", "spiked", "published", "killed", "corrected", "scheduled", "recalled", "unpublished", "correction", "being_corrected", ) PUBLISH_STATES = { CONTENT_STATE.PUBLISHED, CONTENT_STATE.SCHEDULED, CONTENT_STATE.CORRECTED, CONTENT_STATE.KILLED, CONTENT_STATE.RECALLED, CONTENT_STATE.UNPUBLISHED, CONTENT_STATE.BEING_CORRECTED, } class Formats(NamedTuple): HTML: str PRESERVED: str FORMAT = "format" FORMATS: Formats = Formats("HTML", "preserved") BYLINE = "byline" SIGN_OFF = "sign_off" EMBARGO = "embargo" PUBLISH_SCHEDULE = "publish_schedule" SCHEDULE_SETTINGS = "schedule_settings" PROCESSED_FROM = "processed_from" # part the task dict LAST_DESK = "last_desk" LAST_AUTHORING_DESK = "last_authoring_desk" LAST_PRODUCTION_DESK = "last_production_desk" DESK_HISTORY = "desk_history" ITEM_EVENT_ID = "event_id" geopoint = { "type": "dict", "mapping": {"type": "geo_point"}, "nullable": True, "schema": { "lat": {"type": "float"}, "lon": {"type": "float"}, }, } entity_metadata = { "type": "list", "nullable": True, "mapping": { "type": "object", "dynamic": False, "properties": { "name": text_with_keyword, "qcode": not_analyzed, "scheme": not_analyzed, "source": not_analyzed, }, }, } metadata_schema = { config.ID_FIELD: {"type": "string", "unique": True}, #: Identifiers "guid": {"type": "string", "unique": True, "mapping": not_analyzed}, "uri": { "type": "string", "mapping": not_analyzed, }, "unique_id": { "type": "integer", "unique": True, }, "unique_name": {"type": "string", "unique": True, "mapping": not_analyzed}, "version": {"type": "integer"}, "ingest_id": {"type": "string", "mapping": not_analyzed}, "ingest_version": {"type": "string", "mapping": not_analyzed}, "family_id": {"type": "string", "mapping": not_analyzed}, "related_to": { # this field keeps a reference to the related item from which metadata has been copied "type": "string", "mapping": not_analyzed, }, # Audit Information "original_creator": Resource.rel("users"), "version_creator": Resource.rel("users"), "firstcreated": {"type": "datetime"}, "versioncreated": {"type": "datetime"}, "firstpublished": { "type": "datetime", "required": False, "nullable": True, }, # Ingest Details "ingest_provider": Resource.rel("ingest_providers"), "source": {"type": "string", "mapping": not_analyzed}, # The value is copied from the ingest_providers vocabulary "original_source": {"type": "string", "mapping": not_analyzed}, # This value is extracted from the ingest "ingest_provider_sequence": {"type": "string", "mapping": not_analyzed}, # Copyright Information "usageterms": { "type": "string", "nullable": True, }, "copyrightnotice": {"type": "string", "nullable": True, "mapping": not_indexed}, "copyrightholder": {"type": "string", "nullable": True}, # Category Details "anpa_category": { "type": "list", "nullable": True, "mapping": { "type": "object", "properties": { "qcode": not_analyzed, "name": not_analyzed, "scheme": not_analyzed, }, }, }, "subject": { "type": "list", "mapping": {"type": "object", "dynamic": False, "properties": {"qcode": not_analyzed, "name": not_analyzed}}, }, "genre": { "type": "list", "nullable": True, "mapping": {"type": "object", "properties": {"name": not_analyzed, "qcode": not_analyzed}}, }, "company_codes": { "type": "list", "mapping": { "type": "object", "properties": {"qcode": not_analyzed, "name": not_analyzed, "security_exchange": not_analyzed}, }, }, # Item Metadata ITEM_TYPE: { "type": "string", "allowed": tuple(CONTENT_TYPE), "default": "text", "mapping": not_analyzed, }, "package_type": {"type": "string", "allowed": ["takes"]}, # deprecated "language": { "type": "string", "mapping": not_analyzed, "nullable": True, }, "abstract": { "type": "string", "nullable": True, }, "headline": { "type": "string", "mapping": { "type": "string", "analyzer": "html_field_analyzer", "search_analyzer": "html_field_analyzer", }, }, "slugline": { "type": "string", "mapping": { "type": "string", "fielddata": True, "fields": { "phrase": { "type": "string", "analyzer": "phrase_prefix_analyzer", "search_analyzer": "phrase_prefix_analyzer", "fielddata": True, }, "keyword": { "type": "keyword", }, }, }, }, "anpa_take_key": { "type": "string", "nullable": True, }, "correction_sequence": {"type": "integer", "nullable": True, "mapping": not_analyzed}, "rewrite_sequence": {"type": "integer", "nullable": True, "mapping": not_analyzed}, "rewrite_of": { "type": "string", "nullable": True, "mapping": not_analyzed, }, "rewritten_by": { "type": "string", "nullable": True, "mapping": not_analyzed, }, "sequence": { "type": "integer", "nullable": True, }, "keywords": {"type": "list", "mapping": {"type": "string"}}, "word_count": {"type": "integer"}, "priority": {"type": "integer", "nullable": True}, "urgency": {"type": "integer", "nullable": True}, "profile": { "type": "string", "nullable": True, "mapping": not_analyzed, }, # Related to state of an article ITEM_STATE: { "type": "string", "allowed": tuple(CONTENT_STATE), "mapping": not_analyzed, }, # The previous state the item was in before for example being spiked, when un-spiked it will revert to this state "revert_state": { "type": "string", "allowed": tuple(CONTENT_STATE), "mapping": not_analyzed, }, "pubstatus": { "type": "string", "allowed": tuple(PUB_STATUS), "default": PUB_STATUS.USABLE, "mapping": not_analyzed, "nullable": True, }, "signal": { "type": "list", "mapping": { "type": "object", "properties": {"qcode": not_analyzed, "name": not_analyzed, "scheme": not_analyzed}, }, }, BYLINE: { "type": "string", "nullable": True, }, "ednote": { "type": "string", "nullable": True, }, "authors": { "type": "list", "nullable": True, "mapping": { "type": "object", "dynamic": False, "properties": { "uri": not_analyzed, "parent": not_analyzed, "name": not_analyzed, "role": not_analyzed, "jobtitle": not_enabled, }, }, }, "description_text": {"type": "string", "nullable": True}, # This is a description of the item as recieved from its source. "archive_description": {"type": "string", "nullable": True}, "groups": { "type": "list", "minlength": 1, "nullable": True, "mapping": { "dynamic": False, "properties": { "id": not_analyzed, "refs": { "dynamic": False, "properties": { "idRef": not_analyzed, "_id": not_analyzed, "uri": not_analyzed, "guid": not_analyzed, "type": not_analyzed, "location": not_analyzed, "headline": {"type": "string"}, "slugline": {"type": "string"}, }, }, }, }, }, "deleted_groups": { "type": "list", "minlength": 1, "nullable": True, }, "body_html": { "type": "string", "nullable": True, "mapping": {"type": "string", "analyzer": "html_field_analyzer", "search_analyzer": "html_field_analyzer"}, }, "body_text": { "type": "string", "nullable": True, }, "dateline": { "type": "dict", "nullable": True, "schema": { "located": { "type": "dict", "nullable": True, "schema": { "state_code": {"type": "string"}, "city": {"type": "string"}, "tz": {"type": "string"}, "country_code": {"type": "string"}, "dateline": {"type": "string"}, "alt_name": {"type": "string"}, "state": {"type": "string"}, "city_code": {"type": "string"}, "country": {"type": "string"}, "code": {"type": "string"}, "scheme": {"type": "string"}, "location": geopoint, "place": { "type": "dict", "nullable": True, "mapping": not_enabled, "schema": { "code": {"type": "string"}, "name": {"type": "string"}, "qcode": {"type": "string"}, "scheme": {"type": "string"}, "feature_class": {"type": "string"}, "location": geopoint, "continent_code": {"type": "string", "nullable": True}, "region": {"type": "string", "nullable": True}, "region_code": {"type": "string", "nullable": True}, "locality": {"type": "string", "nullable": True}, "state": {"type": "string", "nullable": True}, "country": {"type": "string", "nullable": True}, "world_region": {"type": "string", "nullable": True}, "locality_code": {"type": "string", "nullable": True}, "state_code": {"type": "string", "nullable": True}, "country_code": {"type": "string", "nullable": True}, "world_region_code": {"type": "string", "nullable": True}, "rel": {"type": "string", "nullable": True}, "tz": {"type": "string", "nullable": True}, }, }, }, }, "date": {"type": "datetime", "nullable": True}, "source": {"type": "string"}, "text": {"type": "string", "nullable": True}, }, }, "expiry": {"type": "datetime"}, # Media Related "media": {"type": "file"}, "mimetype": {"type": "string", "mapping": not_analyzed}, "poi": { "type": "dict", "schema": {"x": {"type": "float", "nullable": False}, "y": {"type": "float", "nullable": False}}, }, "renditions": { "type": "dict", "schema": {}, "allow_unknown": True, "mapping": not_enabled, }, "filemeta": { "type": "dict", "schema": {}, "allow_unknown": True, "mapping": not_enabled, }, "filemeta_json": {"type": "string"}, "media_file": {"type": "string"}, "contents": {"type": "list"}, ASSOCIATIONS: { "type": "dict", "allow_unknown": True, "schema": {}, "mapping": { "type": "object", "dynamic": False, "properties": { "featuremedia": { # keep indexing featuremedia - we do some filtering using it "type": "object", "dynamic": False, "properties": { "_id": not_analyzed, "guid": not_analyzed, "unique_id": {"type": "integer"}, }, } }, }, }, # track references to other objects, # based on associations but allows queries "refs": { "type": "list", "readonly": True, "schema": { "_id": {"type": "string"}, "key": {"type": "string"}, "uri": {"type": "string"}, "guid": {"type": "string"}, "type": {"type": "string"}, "source": {"type": "string", "nullable": True}, }, "mapping": { "type": "object", "properties": { "_id": not_analyzed, "key": not_analyzed, "uri": not_analyzed, "guid": not_analyzed, "type": not_analyzed, "source": not_analyzed, }, }, }, "alt_text": {"type": "string", "nullable": True}, # aka Locator as per NewML Specification "place": { "type": "list", "nullable": True, "mapping": { "type": "object", "dynamic": False, "properties": { "scheme": not_analyzed, "qcode": not_analyzed, "code": not_analyzed, # content api "name": not_analyzed, "locality": not_analyzed, # can be used for city/town/village etc. "state": not_analyzed, "country": not_analyzed, "world_region": not_analyzed, "locality_code": not_analyzed, "state_code": not_analyzed, "country_code": not_analyzed, "world_region_code": not_analyzed, "feature_class": not_analyzed, "location": {"type": "geo_point"}, "rel": not_analyzed, }, }, }, "event": deepcopy(entity_metadata), "person": deepcopy(entity_metadata), "object": deepcopy(entity_metadata), "organisation": deepcopy(entity_metadata), # Not Categorized "creditline": {"type": "string"}, LINKED_IN_PACKAGES: { "type": "list", "readonly": True, "schema": { "type": "dict", "schema": {PACKAGE: Resource.rel("archive"), "package_type": {"type": "string"}}, # deprecated }, }, "highlight": Resource.rel("highlights"), "highlights": {"type": "list", "schema": Resource.rel("highlights", True)}, "marked_desks": { "type": "list", "nullable": True, "schema": { "type": "dict", "schema": { "desk_id": Resource.rel("desks", True), "date_marked": {"type": "datetime", "nullable": True}, "user_marked": Resource.rel("users", required=False, nullable=True), "date_acknowledged": {"type": "datetime", "nullable": True}, "user_acknowledged": Resource.rel("users", required=False, nullable=True), }, }, }, "more_coming": {"type": "boolean"}, # deprecated # Field which contains all the sign-offs done on this article, eg. twd/jwt/ets SIGN_OFF: { "type": "string", "nullable": True, }, # Desk and Stage Details "task": { "type": "dict", "schema": { "user": {"type": "string", "mapping": not_analyzed, "nullable": True}, "desk": {"type": "string", "mapping": not_analyzed, "nullable": True}, "desk_history": {"type": "list", "mapping": not_analyzed}, "last_desk": {"type": "string", "mapping": not_analyzed}, "stage": {"type": "string", "mapping": not_analyzed, "nullable": True}, "status": {"type": "string", "mapping": not_analyzed}, }, }, # Task and Lock Details "task_id": {"type": "string", "mapping": not_analyzed, "versioned": False}, "lock_user": Resource.rel("users"), "lock_time": {"type": "datetime", "versioned": False}, "lock_session": Resource.rel("auth"), # Action when the story is locked: edit, correct, kill "lock_action": {"type": "string", "mapping": not_analyzed, "nullable": True}, # template used to create an item "template": Resource.rel("content_templates"), "body_footer": { # Public Service Announcements "type": "string", "nullable": True, "mapping": not_indexed, }, "flags": { "type": "dict", "schema": { "marked_for_not_publication": {"type": "boolean", "default": False}, "marked_for_legal": {"type": "boolean", "default": False}, "marked_archived_only": {"type": "boolean", "default": False}, "marked_for_sms": {"type": "boolean", "default": False}, }, "default": { "marked_for_not_publication": False, "marked_for_legal": False, "marked_archived_only": False, "marked_for_sms": False, }, }, "sms_message": {"type": "string", "mapping": not_analyzed, "nullable": True}, FORMAT: {"type": "string", "mapping": not_analyzed, "default": FORMATS.HTML}, # True indicates that the item has been or is to be published as a result of a routing rule "auto_publish": {"type": "boolean"}, # draft-js internal data "fields_meta": { "type": "dict", "schema": {}, "allow_unknown": True, "nullable": True, "mapping": not_enabled, }, "annotations": { "type": "list", "mapping": not_enabled, "schema": { "type": "dict", "schema": { "id": {"type": "integer"}, "type": {"type": "string"}, "body": {"type": "string"}, }, }, }, "extra": { "type": "dict", "schema": {}, "mapping": not_dynamic, "allow_unknown": True, }, "attachments": { "type": "list", "nullable": True, "schema": { "type": "dict", "schema": { "attachment": Resource.rel("attachments", nullable=False), }, }, }, # references assignment related to the coverage "assignment_id": {"type": "string", "mapping": not_analyzed}, "translated_from": { "type": "string", "mapping": not_analyzed, }, "translation_id": { "type": "string", "mapping": not_analyzed, }, "translations": { "type": "list", "mapping": not_analyzed, }, # references item id for items auto published using internal destinations PROCESSED_FROM: {"type": "string", "mapping": not_analyzed}, # ingested embargoed info, not using embargo to avoid validation "embargoed": {"type": "datetime"}, "embargoed_text": {"type": "string", "mapping": not_indexed}, "marked_for_user": Resource.rel("users", required=False, nullable=True), "marked_for_sign_off": {"type": "string", "nullable": True}, "broadcast": { "type": "dict", "schema": { "status": {"type": "string", "mapping": not_analyzed}, "master_id": {"type": "string", "mapping": not_analyzed}, "rewrite_id": {"type": "string", "mapping": not_analyzed}, }, }, ITEM_EVENT_ID: {"type": "string", "mapping": not_analyzed}, # schedules EMBARGO: {"type": "datetime", "nullable": True}, PUBLISH_SCHEDULE: {"type": "datetime", "nullable": True}, SCHEDULE_SETTINGS: { "type": "dict", "schema": { "time_zone": {"type": "string", "nullable": True, "mapping": not_analyzed}, "utc_embargo": {"type": "datetime", "nullable": True}, "utc_publish_schedule": {"type": "datetime", "nullable": True}, }, }, # usage tracking "used": {"type": "boolean"}, "used_count": {"type": "integer"}, "used_updated": {"type": "datetime"}, "metrics": { "type": "dict", "readonly": True, "allow_unknown": True, }, # system fields "_type": {"type": "string", "mapping": None}, "operation": {"type": "string"}, "es_highlight": {"type": "dict", "allow_unknown": True, "readonly": True}, # targeting fields "target_regions": { "type": "list", "nullable": True, "schema": { "type": "dict", "schema": {"qcode": {"type": "string"}, "name": {"type": "string"}, "allow": {"type": "boolean"}}, }, }, "target_types": { "type": "list", "nullable": True, "schema": { "type": "dict", "schema": {"qcode": {"type": "string"}, "name": {"type": "string"}, "allow": {"type": "boolean"}}, }, }, "target_subscribers": {"type": "list", "nullable": True}, } metadata_schema["lock_user"]["versioned"] = False metadata_schema["lock_session"]["versioned"] = False crop_schema = { "CropLeft": {"type": "integer"}, "CropRight": {"type": "integer"}, "CropTop": {"type": "integer"}, "CropBottom": {"type": "integer"}, } def remove_metadata_for_publish(item): """Remove metadata from item that should not be public. :param item: Item containing the metadata :return: item """ from superdesk.attachments import is_attachment_public if len(item.get("attachments", [])) > 0: item["attachments"] = [attachment for attachment in item["attachments"] if is_attachment_public(attachment)] return item class Priority(SuperdeskBaseEnum): """Priority values.""" Flash = 1 Urgent = 2 Three_Paragraph = 3 Screen_Finance = 4 Continuous_News = 5 Ordinary = 6 def get_schema(versioning=False): schema = metadata_schema.copy() if versioning: schema.update( { "_id_document": {"type": "string"}, "_current_version": {"type": "integer"}, } ) return schema
petrjasek/superdesk-core
superdesk/metadata/item.py
Python
agpl-3.0
24,541
0.001589
#!/usr/bin/env python # coding: utf-8 import unittest import sys import os PROJECT_PATH = os.path.sep.join(os.path.abspath(__file__).split(os.path.sep)[:-2]) ROOT_PATH = os.path.dirname(__file__) if __name__ == '__main__': if 'GAE_SDK' in os.environ: SDK_PATH = os.environ['GAE_SDK'] sys.path.insert(0, SDK_PATH) import dev_appserver dev_appserver.fix_sys_path() sys.path.append(os.path.join(PROJECT_PATH, 'src')) tests = unittest.TestLoader().discover(ROOT_PATH, "*.py") result = unittest.TextTestRunner().run(tests) if not result.wasSuccessful(): sys.exit(1)
renzon/blob_app
test/testloader.py
Python
mit
630
0.001587
from .plotter import *
brain-research/mirage-rl-qprop
rllab/plotter/__init__.py
Python
mit
23
0
# Copyright 2015 Huawei Technologies Co., Ltd. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import fixture as fixture_config import oslo_messaging from ceilometer.api import hooks from ceilometer.tests import base class TestTestNotifierHook(base.BaseTestCase): def setUp(self): super(TestTestNotifierHook, self).setUp() self.CONF = self.useFixture(fixture_config.Config()).conf def test_init_notifier_with_drivers(self): self.CONF.set_override('telemetry_driver', 'messagingv2', group='publisher_notifier') hook = hooks.NotifierHook(self.CONF) notifier = hook.notifier self.assertIsInstance(notifier, oslo_messaging.Notifier) self.assertEqual(['messagingv2'], notifier._driver_names)
ityaptin/ceilometer
ceilometer/tests/unit/api/test_hooks.py
Python
apache-2.0
1,354
0
""" Views for a student's profile information. """ from django.conf import settings from django.contrib.auth.decorators import login_required from django.contrib.staticfiles.storage import staticfiles_storage from django.core.exceptions import ObjectDoesNotExist from django.core.urlresolvers import reverse from django.http import Http404 from django.views.decorators.http import require_http_methods from django_countries import countries from badges.utils import badges_enabled from edxmako.shortcuts import marketing_link, render_to_response from openedx.core.djangoapps.site_configuration import helpers as configuration_helpers from openedx.core.djangoapps.user_api.accounts.api import get_account_settings from openedx.core.djangoapps.user_api.errors import UserNotAuthorized, UserNotFound from openedx.core.djangoapps.user_api.preferences.api import get_user_preferences from student.models import User @login_required @require_http_methods(['GET']) def learner_profile(request, username): """Render the profile page for the specified username. Args: request (HttpRequest) username (str): username of user whose profile is requested. Returns: HttpResponse: 200 if the page was sent successfully HttpResponse: 302 if not logged in (redirect to login page) HttpResponse: 405 if using an unsupported HTTP method Raises: Http404: 404 if the specified user is not authorized or does not exist Example usage: GET /account/profile """ try: return render_to_response( 'student_profile/learner_profile.html', learner_profile_context(request, username, request.user.is_staff) ) except (UserNotAuthorized, UserNotFound, ObjectDoesNotExist): raise Http404 def learner_profile_context(request, profile_username, user_is_staff): """Context for the learner profile page. Args: logged_in_user (object): Logged In user. profile_username (str): username of user whose profile is requested. user_is_staff (bool): Logged In user has staff access. build_absolute_uri_func (): Returns: dict Raises: ObjectDoesNotExist: the specified profile_username does not exist. """ profile_user = User.objects.get(username=profile_username) logged_in_user = request.user own_profile = (logged_in_user.username == profile_username) account_settings_data = get_account_settings(request, [profile_username])[0] preferences_data = get_user_preferences(profile_user, profile_username) context = { 'data': { 'profile_user_id': profile_user.id, 'default_public_account_fields': settings.ACCOUNT_VISIBILITY_CONFIGURATION['public_fields'], 'default_visibility': settings.ACCOUNT_VISIBILITY_CONFIGURATION['default_visibility'], 'accounts_api_url': reverse("accounts_api", kwargs={'username': profile_username}), 'preferences_api_url': reverse('preferences_api', kwargs={'username': profile_username}), 'preferences_data': preferences_data, 'account_settings_data': account_settings_data, 'profile_image_upload_url': reverse('profile_image_upload', kwargs={'username': profile_username}), 'profile_image_remove_url': reverse('profile_image_remove', kwargs={'username': profile_username}), 'profile_image_max_bytes': settings.PROFILE_IMAGE_MAX_BYTES, 'profile_image_min_bytes': settings.PROFILE_IMAGE_MIN_BYTES, 'account_settings_page_url': reverse('account_settings'), 'has_preferences_access': (logged_in_user.username == profile_username or user_is_staff), 'own_profile': own_profile, 'country_options': list(countries), 'find_courses_url': marketing_link('COURSES'), 'language_options': settings.ALL_LANGUAGES, 'badges_logo': staticfiles_storage.url('certificates/images/backpack-logo.png'), 'badges_icon': staticfiles_storage.url('certificates/images/ico-mozillaopenbadges.png'), 'backpack_ui_img': staticfiles_storage.url('certificates/images/backpack-ui.png'), 'platform_name': configuration_helpers.get_value('platform_name', settings.PLATFORM_NAME), }, 'disable_courseware_js': True, } if badges_enabled(): context['data']['badges_api_url'] = reverse("badges_api:user_assertions", kwargs={'username': profile_username}) return context
miptliot/edx-platform
lms/djangoapps/student_profile/views.py
Python
agpl-3.0
4,548
0.003518
# Copyright (c) 2013, Web Notes Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import webnotes from webnotes.utils import flt, cstr from webnotes import msgprint from webnotes.model.controller import DocListController status_map = { "Contact": [ ["Replied", "communication_sent"], ["Open", "communication_received"] ], "Job Applicant": [ ["Replied", "communication_sent"], ["Open", "communication_received"] ], "Lead": [ ["Replied", "communication_sent"], ["Converted", "has_customer"], ["Opportunity", "has_opportunity"], ["Open", "communication_received"], ], "Opportunity": [ ["Draft", None], ["Submitted", "eval:self.doc.docstatus==1"], ["Lost", "eval:self.doc.status=='Lost'"], ["Quotation", "has_quotation"], ["Replied", "communication_sent"], ["Cancelled", "eval:self.doc.docstatus==2"], ["Open", "communication_received"], ], "Quotation": [ ["Draft", None], ["Submitted", "eval:self.doc.docstatus==1"], ["Lost", "eval:self.doc.status=='Lost'"], ["Ordered", "has_sales_order"], ["Replied", "communication_sent"], ["Cancelled", "eval:self.doc.docstatus==2"], ["Open", "communication_received"], ], "Sales Order": [ ["Draft", None], ["Submitted", "eval:self.doc.docstatus==1"], ["Stopped", "eval:self.doc.status=='Stopped'"], ["Cancelled", "eval:self.doc.docstatus==2"], ], "Support Ticket": [ ["Replied", "communication_sent"], ["Open", "communication_received"] ], } class StatusUpdater(DocListController): """ Updates the status of the calling records Delivery Note: Update Delivered Qty, Update Percent and Validate over delivery Sales Invoice: Update Billed Amt, Update Percent and Validate over billing Installation Note: Update Installed Qty, Update Percent Qty and Validate over installation """ def update_prevdoc_status(self): self.update_qty() self.validate_qty() def set_status(self, update=False): if self.doc.get("__islocal"): return if self.doc.doctype in status_map: sl = status_map[self.doc.doctype][:] sl.reverse() for s in sl: if not s[1]: self.doc.status = s[0] break elif s[1].startswith("eval:"): if eval(s[1][5:]): self.doc.status = s[0] break elif getattr(self, s[1])(): self.doc.status = s[0] break if update: webnotes.conn.set_value(self.doc.doctype, self.doc.name, "status", self.doc.status) def on_communication(self): self.communication_set = True self.set_status(update=True) del self.communication_set def communication_received(self): if getattr(self, "communication_set", False): last_comm = self.doclist.get({"doctype":"Communication"}) if last_comm: return last_comm[-1].sent_or_received == "Received" def communication_sent(self): if getattr(self, "communication_set", False): last_comm = self.doclist.get({"doctype":"Communication"}) if last_comm: return last_comm[-1].sent_or_received == "Sent" def validate_qty(self): """ Validates qty at row level """ self.tolerance = {} self.global_tolerance = None for args in self.status_updater: # get unique transactions to update for d in self.doclist: if d.doctype == args['source_dt'] and d.fields.get(args["join_field"]): args['name'] = d.fields[args['join_field']] # get all qty where qty > target_field item = webnotes.conn.sql("""select item_code, `%(target_ref_field)s`, `%(target_field)s`, parenttype, parent from `tab%(target_dt)s` where `%(target_ref_field)s` < `%(target_field)s` and name="%(name)s" and docstatus=1""" % args, as_dict=1) if item: item = item[0] item['idx'] = d.idx item['target_ref_field'] = args['target_ref_field'].replace('_', ' ') if not item[args['target_ref_field']]: msgprint("""As %(target_ref_field)s for item: %(item_code)s in \ %(parenttype)s: %(parent)s is zero, system will not check \ over-delivery or over-billed""" % item) elif args.get('no_tolerance'): item['reduce_by'] = item[args['target_field']] - \ item[args['target_ref_field']] if item['reduce_by'] > .01: msgprint(""" Row #%(idx)s: Max %(target_ref_field)s allowed for <b>Item \ %(item_code)s</b> against <b>%(parenttype)s %(parent)s</b> \ is <b>""" % item + cstr(item[args['target_ref_field']]) + """</b>.<br>You must reduce the %(target_ref_field)s by \ %(reduce_by)s""" % item, raise_exception=1) else: self.check_overflow_with_tolerance(item, args) def check_overflow_with_tolerance(self, item, args): """ Checks if there is overflow condering a relaxation tolerance """ # check if overflow is within tolerance tolerance, self.tolerance, self.global_tolerance = get_tolerance_for(item['item_code'], self.tolerance, self.global_tolerance) overflow_percent = ((item[args['target_field']] - item[args['target_ref_field']]) / item[args['target_ref_field']]) * 100 if overflow_percent - tolerance > 0.01: item['max_allowed'] = flt(item[args['target_ref_field']] * (100+tolerance)/100) item['reduce_by'] = item[args['target_field']] - item['max_allowed'] msgprint(""" Row #%(idx)s: Max %(target_ref_field)s allowed for <b>Item %(item_code)s</b> \ against <b>%(parenttype)s %(parent)s</b> is <b>%(max_allowed)s</b>. If you want to increase your overflow tolerance, please increase tolerance %% in \ Global Defaults or Item master. Or, you must reduce the %(target_ref_field)s by %(reduce_by)s Also, please check if the order item has already been billed in the Sales Order""" % item, raise_exception=1) def update_qty(self, change_modified=True): """ Updates qty at row level """ for args in self.status_updater: # condition to include current record (if submit or no if cancel) if self.doc.docstatus == 1: args['cond'] = ' or parent="%s"' % self.doc.name else: args['cond'] = ' and parent!="%s"' % self.doc.name args['modified_cond'] = '' if change_modified: args['modified_cond'] = ', modified = now()' # update quantities in child table for d in self.doclist: if d.doctype == args['source_dt']: # updates qty in the child table args['detail_id'] = d.fields.get(args['join_field']) args['second_source_condition'] = "" if args.get('second_source_dt') and args.get('second_source_field') \ and args.get('second_join_field'): args['second_source_condition'] = """ + (select sum(%(second_source_field)s) from `tab%(second_source_dt)s` where `%(second_join_field)s`="%(detail_id)s" and (docstatus=1))""" % args if args['detail_id']: webnotes.conn.sql("""update `tab%(target_dt)s` set %(target_field)s = (select sum(%(source_field)s) from `tab%(source_dt)s` where `%(join_field)s`="%(detail_id)s" and (docstatus=1 %(cond)s)) %(second_source_condition)s where name='%(detail_id)s'""" % args) # get unique transactions to update for name in set([d.fields.get(args['percent_join_field']) for d in self.doclist if d.doctype == args['source_dt']]): if name: args['name'] = name # update percent complete in the parent table webnotes.conn.sql("""update `tab%(target_parent_dt)s` set %(target_parent_field)s = (select sum(if(%(target_ref_field)s > ifnull(%(target_field)s, 0), %(target_field)s, %(target_ref_field)s))/sum(%(target_ref_field)s)*100 from `tab%(target_dt)s` where parent="%(name)s") %(modified_cond)s where name='%(name)s'""" % args) # update field if args.get('status_field'): webnotes.conn.sql("""update `tab%(target_parent_dt)s` set %(status_field)s = if(ifnull(%(target_parent_field)s,0)<0.001, 'Not %(keyword)s', if(%(target_parent_field)s>=99.99, 'Fully %(keyword)s', 'Partly %(keyword)s')) where name='%(name)s'""" % args) def get_tolerance_for(item_code, item_tolerance={}, global_tolerance=None): """ Returns the tolerance for the item, if not set, returns global tolerance """ if item_tolerance.get(item_code): return item_tolerance[item_code], item_tolerance, global_tolerance tolerance = flt(webnotes.conn.get_value('Item',item_code,'tolerance') or 0) if not tolerance: if global_tolerance == None: global_tolerance = flt(webnotes.conn.get_value('Global Defaults', None, 'tolerance')) tolerance = global_tolerance item_tolerance[item_code] = tolerance return tolerance, item_tolerance, global_tolerance
saurabh6790/med_app_rels
controllers/status_updater.py
Python
agpl-3.0
8,752
0.035078
"""renaming Jan COPE to Feb Revision ID: 942d61446bfa Revises: 99fb6b79b5f7 Create Date: 2021-01-18 13:37:50.121134 """ from alembic import op import sqlalchemy as sa import rdr_service.model.utils from sqlalchemy.dialects import mysql from rdr_service.participant_enums import PhysicalMeasurementsStatus, QuestionnaireStatus, OrderStatus from rdr_service.participant_enums import WithdrawalStatus, WithdrawalReason, SuspensionStatus, QuestionnaireDefinitionStatus from rdr_service.participant_enums import EnrollmentStatus, Race, SampleStatus, OrganizationType, BiobankOrderStatus from rdr_service.participant_enums import OrderShipmentTrackingStatus, OrderShipmentStatus from rdr_service.participant_enums import MetricSetType, MetricsKey, GenderIdentity from rdr_service.model.base import add_table_history_table, drop_table_history_table from rdr_service.model.code import CodeType from rdr_service.model.site_enums import SiteStatus, EnrollingStatus, DigitalSchedulingStatus, ObsoleteStatus # revision identifiers, used by Alembic. revision = '942d61446bfa' down_revision = '99fb6b79b5f7' branch_labels = None depends_on = None def upgrade(engine_name): globals()["upgrade_%s" % engine_name]() def downgrade(engine_name): globals()["downgrade_%s" % engine_name]() def upgrade_rdr(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('participant_summary', sa.Column('questionnaire_on_cope_feb', rdr_service.model.utils.Enum(QuestionnaireStatus), nullable=True)) op.add_column('participant_summary', sa.Column('questionnaire_on_cope_feb_authored', rdr_service.model.utils.UTCDateTime(), nullable=True)) op.add_column('participant_summary', sa.Column('questionnaire_on_cope_feb_time', rdr_service.model.utils.UTCDateTime(), nullable=True)) op.drop_column('participant_summary', 'questionnaire_on_cope_jan_time') op.drop_column('participant_summary', 'questionnaire_on_cope_jan') op.drop_column('participant_summary', 'questionnaire_on_cope_jan_authored') # ### end Alembic commands ### def downgrade_rdr(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('participant_summary', sa.Column('questionnaire_on_cope_jan_authored', mysql.DATETIME(), nullable=True)) op.add_column('participant_summary', sa.Column('questionnaire_on_cope_jan', mysql.SMALLINT(display_width=6), autoincrement=False, nullable=True)) op.add_column('participant_summary', sa.Column('questionnaire_on_cope_jan_time', mysql.DATETIME(), nullable=True)) op.drop_column('participant_summary', 'questionnaire_on_cope_feb_time') op.drop_column('participant_summary', 'questionnaire_on_cope_feb_authored') op.drop_column('participant_summary', 'questionnaire_on_cope_feb') # ### end Alembic commands ### def upgrade_metrics(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ### def downgrade_metrics(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ###
all-of-us/raw-data-repository
rdr_service/alembic/versions/942d61446bfa_renaming_jan_cope_to_feb.py
Python
bsd-3-clause
3,082
0.004867
"""Auto-generated file, do not edit by hand. FO metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_FO = PhoneMetadata(id='FO', country_code=298, international_prefix='00', general_desc=PhoneNumberDesc(national_number_pattern='[2-9]\\d{5}', possible_number_pattern='\\d{6}'), fixed_line=PhoneNumberDesc(national_number_pattern='(?:20|[3-4]\\d|8[19])\\d{4}', possible_number_pattern='\\d{6}', example_number='201234'), mobile=PhoneNumberDesc(national_number_pattern='(?:[27][1-9]|5\\d)\\d{4}', possible_number_pattern='\\d{6}', example_number='211234'), toll_free=PhoneNumberDesc(national_number_pattern='80[257-9]\\d{3}', possible_number_pattern='\\d{6}', example_number='802123'), premium_rate=PhoneNumberDesc(national_number_pattern='90(?:[1345][15-7]|2[125-7]|99)\\d{2}', possible_number_pattern='\\d{6}', example_number='901123'), shared_cost=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), personal_number=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), voip=PhoneNumberDesc(national_number_pattern='(?:6[0-36]|88)\\d{4}', possible_number_pattern='\\d{6}', example_number='601234'), pager=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), uan=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), voicemail=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), no_international_dialling=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), national_prefix_for_parsing='(10(?:01|[12]0|88))', number_format=[NumberFormat(pattern='(\\d{6})', format='\\1', domestic_carrier_code_formatting_rule='$CC \\1')])
titansgroup/python-phonenumbers
python/phonenumbers/data/region_FO.py
Python
apache-2.0
1,769
0.008479
import os import sys from setuptools import setup # Utility function to read the README file. def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() # The argparse module was introduced in python 2.7 or python 3.2 REQUIRES = ["argparse"] if sys.version[:3] in ('2.6', '3.0', '3.1') else [] setup( version='0.2.1.dev0', zip_safe = True, name = "seqfile", author = "Utkarsh Upadhyay", author_email = "musically.ut@gmail.com", description = ("Find the next file in a sequence of files in a thread-safe way."), license = "MIT", keywords = "file threadsafe sequence", install_requires = REQUIRES + [ "natsort>=3.5.6" ], url = "https://github.com/musically-ut/seqfile", packages = ["seqfile"], setup_requires = REQUIRES + ["nose>=1.0", "natsort>=3.5.6", "pep8>=1.6.2"], test_suite = "nose.collector", long_description = read("README.rst"), entry_points = {"console_scripts": [ "seqfile = seqfile.seqfile:_run" ] }, classifiers = [ "Intended Audience :: Developers", "Intended Audience :: Science/Research", "Development Status :: 3 - Alpha", "Operating System :: OS Independent", "Topic :: Utilities", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Natural Language :: English" ], )
musically-ut/seqfile
setup.py
Python
mit
1,646
0.031592
# -*- coding: utf-8 -*- # Python stdlib import unittest # Unit tests from unit_tests.test_tfstate import test_base, test_provider def suite(): suite = unittest.TestSuite() suite.addTests(test_base.suite()) suite.addTests(test_provider.suite()) return suite if __name__ == '__main__': unittest.TextTestRunner(verbosity=2).run(suite())
rodynnz/python-tfstate
unit_tests/test_tfstate/__init__.py
Python
lgpl-3.0
359
0.002786
# pib.py - functions for handling Serbian VAT numbers # coding: utf-8 # # Copyright (C) 2017 Arthur de Jong # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301 USA """PIB (Poreski Identifikacioni Broj, Serbian tax identification number). The Serbian tax identification number consists of 9 digits where the last digit is a check digit. >>> validate('101134702') '101134702' >>> validate('101134703') Traceback (most recent call last): ... InvalidChecksum: ... """ from stdnum.exceptions import * from stdnum.iso7064 import mod_11_10 from stdnum.util import clean, isdigits def compact(number): """Convert the number to the minimal representation. This strips the number of any valid separators and removes surrounding whitespace.""" return clean(number, ' -.').strip() def validate(number): """Check if the number is a valid VAT number. This checks the length, formatting and check digit.""" number = compact(number) if not isdigits(number): raise InvalidFormat() if len(number) != 9: raise InvalidLength() mod_11_10.validate(number) return number def is_valid(number): """Check if the number is a valid VAT number.""" try: return bool(validate(number)) except ValidationError: return False
arthurdejong/python-stdnum
stdnum/rs/pib.py
Python
lgpl-2.1
1,963
0
""" Urls for idea app """ from django.conf.urls import url from openedx.features.idea.api_views import FavoriteAPIView from openedx.features.idea.views import ChallengeLandingView, IdeaCreateView, IdeaDetailView, IdeaListingView urlpatterns = [ url( r'^overview/$', ChallengeLandingView.as_view(), name='challenge-landing' ), url( r'^$', IdeaListingView.as_view(), name='idea-listing' ), url( r'^create/$', IdeaCreateView.as_view(), name='idea-create' ), url( r'^(?P<pk>[0-9]+)/$', IdeaDetailView.as_view(), name='idea-details' ), url( r'^api/favorite/(?P<idea_id>[0-9]+)/$', FavoriteAPIView.as_view(), name='mark-favorite-api-view' ) ]
philanthropy-u/edx-platform
openedx/features/idea/urls.py
Python
agpl-3.0
799
0.001252
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from gaebusiness.gaeutil import SaveCommand, ModelSearchCommand from gaeforms.ndb.form import ModelForm from gaegraph.business_base import UpdateNode from course_app.model import Course class CourseForm(ModelForm): """ Form used do save and update operations """ _model_class = Course _include = [Course.price, Course.start_date, Course.name] class CourseFormDetail(ModelForm): """ Form used to show entity details """ _model_class = Course _include = [Course.price, Course.creation, Course.start_date, Course.name] def populate_form(self, model): dct = super(CourseFormDetail, self).populate_form(model) dct['id'] = unicode(model.key.id()) return dct class CourseFormShort(CourseFormDetail): """ Form used to show entity short version, mainly for tables """ _model_class = Course _include = [Course.price, Course.creation, Course.start_date, Course.name] class SaveCourseCommand(SaveCommand): _model_form_class = CourseForm class UpdateCourseCommand(UpdateNode): _model_form_class = CourseForm class ListCourseCommand(ModelSearchCommand): def __init__(self, page_size=100, start_cursor=None, offset=0, use_cache=True, cache_begin=True, **kwargs): super(ListCourseCommand, self).__init__(Course.query_by_creation(), page_size, start_cursor, offset, use_cache, cache_begin, **kwargs)
gamunax/pyhtongamunax
backend/apps/course_app/commands.py
Python
mit
1,665
0.007207
from cStringIO import StringIO from json.tests import PyTest, CTest class TestDump(object): def test_dump(self): sio = StringIO() self.json.dump({}, sio) self.assertEqual(sio.getvalue(), '{}') def test_dumps(self): self.assertEqual(self.dumps({}), '{}') def test_encode_truefalse(self): self.assertEqual(self.dumps( {True: False, False: True}, sort_keys=True), '{"false": true, "true": false}') self.assertEqual(self.dumps( {2: 3.0, 4.0: 5L, False: 1, 6L: True}, sort_keys=True), '{"false": 1, "2": 3.0, "4.0": 5, "6": true}') class TestPyDump(TestDump, PyTest): pass class TestCDump(TestDump, CTest): pass
ArneBab/pypyjs
website/demo/home/rfk/repos/pypy/lib-python/2.7/json/tests/test_dump.py
Python
mit
738
0.004065
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid from tempest_lib.common.utils import data_utils from tempest_lib import exceptions as lib_exc from tempest.api.compute import base from tempest import config from tempest import test CONF = config.CONF class FloatingIPDetailsNegativeTestJSON(base.BaseV2ComputeTest): @classmethod def setup_clients(cls): super(FloatingIPDetailsNegativeTestJSON, cls).setup_clients() cls.client = cls.floating_ips_client @test.attr(type=['negative']) @test.idempotent_id('7ab18834-4a4b-4f28-a2c5-440579866695') @test.services('network') def test_get_nonexistent_floating_ip_details(self): # Negative test:Should not be able to GET the details # of non-existent floating IP # Creating a non-existent floatingIP id if CONF.service_available.neutron: non_exist_id = str(uuid.uuid4()) else: non_exist_id = data_utils.rand_int_id(start=999) self.assertRaises(lib_exc.NotFound, self.client.get_floating_ip_details, non_exist_id)
danielmellado/tempest
tempest/api/compute/floating_ips/test_list_floating_ips_negative.py
Python
apache-2.0
1,698
0
__all__ = [ "command_statistics", "json_reader", "mongo", "sata", "xgig" ]
LoneKirov/PyTrace
pytrace/__init__.py
Python
bsd-3-clause
78
0.025641
#@TODO: Support for html parsing!! import sys try: from colorama import init, Fore, Back, Style colorama = True except ImportError: colorama = False __all__ = ["console"] class Console: def __init__(self): self.reset() self.color = False def set_color(self, color): self.color = color if colorama and color: init(autoreset=True) def reset(self): self.indent = 0 self.flags = '' self.fill_up = '' self.fill_down = '' self.center_width = False self.center_char = ' ' def eprint(self, msg, indent=0, flags='', fill_up=None, fill_down=None, center_width=False, center_char=' ', end="\n"): """Prints a message to stdout with many coloring and style options. msg: message to print indent: insert spaces before the beginning flags: bold, light, red fill_up: char to use to create a bar above the string fill_down: char to use to create a bar below the string center_width, center_char: see center method of strings - help("".center) end: string to append before printing (see python3 print function) """ if indent: msg = (' ' * 4 * indent) + msg elif self.indent: msg = (' ' * 4 * self.indent) + msg size = len(msg) if center_width: msg = msg.center(center_width, center_char) elif self.center_width: if center_char: msg = msg.center(self.center_width, center_char) else: msg = msg.center(self.center_width, self.center_char) if fill_up: title = (fill_up * size) + "\n" msg = title + msg elif self.fill_up: title = (self.fill_up * size) + "\n" msg = title + msg if fill_down: title = "\n" + (fill_down * size) msg += title elif self.fill_down: title = "\n" + (self.fill_down * size) msg += title if colorama and self.color: allflags = flags + self.flags if 'bold' in allflags: msg = Style.BRIGHT + msg if 'light' in allflags: msg = Style.DIM + msg if 'red' in allflags: msg = Fore.RED + msg elif 'blue' in allflags: msg = Fore.BLUE + msg elif 'green' in allflags: msg = Fore.GREEN + msg #@TODO: add other flags here msg += end sys.stdout.write(msg) sys.stdout.flush() def print_success(self, success): if success: self.eprint('[OK]', flags='green,bold') else: self.eprint('[FAIL]', flags='red,bold') def title(self, msg): self.eprint(msg, flags='bold', fill_up='=', fill_down='=') console = Console()
BackupGGCode/pkgcreator
pkgcreator/PkgCreator/console.py
Python
gpl-3.0
2,947
0.003054
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def findTilt(self, root): """ :type root: TreeNode :rtype: int """ def dfs(root): if not root: return 0 left = dfs(root.left) right = dfs(root.right) diff[0] += abs(left - right) return left + root.val + right diff = [0] dfs(root) return diff[0]
zqfan/leetcode
algorithms/563. Binary Tree Tilt/solution.py
Python
gpl-3.0
585
0
########################################################################### # # Support code for the 'psyco.compact' type. from __future__ import generators try: from UserDict import DictMixin except ImportError: # backported from Python 2.3 to Python 2.2 class DictMixin: # Mixin defining all dictionary methods for classes that already have # a minimum dictionary interface including getitem, setitem, delitem, # and keys. Without knowledge of the subclass constructor, the mixin # does not define __init__() or copy(). In addition to the four base # methods, progressively more efficiency comes with defining # __contains__(), __iter__(), and iteritems(). # second level definitions support higher levels def __iter__(self): for k in self.keys(): yield k def has_key(self, key): try: value = self[key] except KeyError: return False return True def __contains__(self, key): return self.has_key(key) # third level takes advantage of second level definitions def iteritems(self): for k in self: yield (k, self[k]) def iterkeys(self): return self.__iter__() # fourth level uses definitions from lower levels def itervalues(self): for _, v in self.iteritems(): yield v def values(self): return [v for _, v in self.iteritems()] def items(self): return list(self.iteritems()) def clear(self): for key in self.keys(): del self[key] def setdefault(self, key, default): try: return self[key] except KeyError: self[key] = default return default def pop(self, key, *args): if len(args) > 1: raise TypeError, "pop expected at most 2 arguments, got "\ + repr(1 + len(args)) try: value = self[key] except KeyError: if args: return args[0] raise del self[key] return value def popitem(self): try: k, v = self.iteritems().next() except StopIteration: raise KeyError, 'container is empty' del self[k] return (k, v) def update(self, other): # Make progressively weaker assumptions about "other" if hasattr(other, 'iteritems'): # iteritems saves memory and lookups for k, v in other.iteritems(): self[k] = v elif hasattr(other, '__iter__'): # iter saves memory for k in other: self[k] = other[k] else: for k in other.keys(): self[k] = other[k] def get(self, key, default=None): try: return self[key] except KeyError: return default def __repr__(self): return repr(dict(self.iteritems())) def __cmp__(self, other): if other is None: return 1 if isinstance(other, DictMixin): other = dict(other.iteritems()) return cmp(dict(self.iteritems()), other) def __len__(self): return len(self.keys()) ########################################################################### from _psyco import compact class compactdictproxy(DictMixin): def __init__(self, ko): self._ko = ko # compact object of which 'self' is the dict def __getitem__(self, key): return compact.__getslot__(self._ko, key) def __setitem__(self, key, value): compact.__setslot__(self._ko, key, value) def __delitem__(self, key): compact.__delslot__(self._ko, key) def keys(self): return compact.__members__.__get__(self._ko) def clear(self): keys = self.keys() keys.reverse() for key in keys: del self[key] def __repr__(self): keys = ', '.join(self.keys()) return '<compactdictproxy object {%s}>' % (keys,)
Southpaw-TACTIC/Team
src/python/Lib/site-packages/psyco/kdictproxy.py
Python
epl-1.0
4,502
0.00422
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from airflow.jobs import BackfillJob from airflow.models import DagRun, TaskInstance from airflow.operators.subdag_operator import SubDagOperator from airflow.settings import Session from airflow.utils import timezone from airflow.utils.state import State from sqlalchemy import or_ def _create_dagruns(dag, execution_dates, state, run_id_template): """ Infers from the dates which dag runs need to be created and does so. :param dag: the dag to create dag runs for :param execution_dates: list of execution dates to evaluate :param state: the state to set the dag run to :param run_id_template:the template for run id to be with the execution date :return: newly created and existing dag runs for the execution dates supplied """ # find out if we need to create any dag runs drs = DagRun.find(dag_id=dag.dag_id, execution_date=execution_dates) dates_to_create = list(set(execution_dates) - set([dr.execution_date for dr in drs])) for date in dates_to_create: dr = dag.create_dagrun( run_id=run_id_template.format(date.isoformat()), execution_date=date, start_date=timezone.utcnow(), external_trigger=False, state=state, ) drs.append(dr) return drs def set_state(task, execution_date, upstream=False, downstream=False, future=False, past=False, state=State.SUCCESS, commit=False): """ Set the state of a task instance and if needed its relatives. Can set state for future tasks (calculated from execution_date) and retroactively for past tasks. Will verify integrity of past dag runs in order to create tasks that did not exist. It will not create dag runs that are missing on the schedule (but it will as for subdag dag runs if needed). :param task: the task from which to work. task.task.dag needs to be set :param execution_date: the execution date from which to start looking :param upstream: Mark all parents (upstream tasks) :param downstream: Mark all siblings (downstream tasks) of task_id, including SubDags :param future: Mark all future tasks on the interval of the dag up until last execution date. :param past: Retroactively mark all tasks starting from start_date of the DAG :param state: State to which the tasks need to be set :param commit: Commit tasks to be altered to the database :return: list of tasks that have been created and updated """ assert timezone.is_localized(execution_date) # microseconds are supported by the database, but is not handled # correctly by airflow on e.g. the filesystem and in other places execution_date = execution_date.replace(microsecond=0) assert task.dag is not None dag = task.dag latest_execution_date = dag.latest_execution_date assert latest_execution_date is not None # determine date range of dag runs and tasks to consider end_date = latest_execution_date if future else execution_date if 'start_date' in dag.default_args: start_date = dag.default_args['start_date'] elif dag.start_date: start_date = dag.start_date else: start_date = execution_date start_date = execution_date if not past else start_date if dag.schedule_interval == '@once': dates = [start_date] else: dates = dag.date_range(start_date=start_date, end_date=end_date) # find relatives (siblings = downstream, parents = upstream) if needed task_ids = [task.task_id] if downstream: relatives = task.get_flat_relatives(upstream=False) task_ids += [t.task_id for t in relatives] if upstream: relatives = task.get_flat_relatives(upstream=True) task_ids += [t.task_id for t in relatives] # verify the integrity of the dag runs in case a task was added or removed # set the confirmed execution dates as they might be different # from what was provided confirmed_dates = [] drs = DagRun.find(dag_id=dag.dag_id, execution_date=dates) for dr in drs: dr.dag = dag dr.verify_integrity() confirmed_dates.append(dr.execution_date) # go through subdagoperators and create dag runs. We will only work # within the scope of the subdag. We wont propagate to the parent dag, # but we will propagate from parent to subdag. session = Session() dags = [dag] sub_dag_ids = [] while len(dags) > 0: current_dag = dags.pop() for task_id in task_ids: if not current_dag.has_task(task_id): continue current_task = current_dag.get_task(task_id) if isinstance(current_task, SubDagOperator): # this works as a kind of integrity check # it creates missing dag runs for subdagoperators, # maybe this should be moved to dagrun.verify_integrity drs = _create_dagruns(current_task.subdag, execution_dates=confirmed_dates, state=State.RUNNING, run_id_template=BackfillJob.ID_FORMAT_PREFIX) for dr in drs: dr.dag = current_task.subdag dr.verify_integrity() if commit: dr.state = state session.merge(dr) dags.append(current_task.subdag) sub_dag_ids.append(current_task.subdag.dag_id) # now look for the task instances that are affected TI = TaskInstance # get all tasks of the main dag that will be affected by a state change qry_dag = session.query(TI).filter( TI.dag_id == dag.dag_id, TI.execution_date.in_(confirmed_dates), TI.task_id.in_(task_ids)).filter( or_(TI.state.is_(None), TI.state != state) ) # get *all* tasks of the sub dags if len(sub_dag_ids) > 0: qry_sub_dag = session.query(TI).filter( TI.dag_id.in_(sub_dag_ids), TI.execution_date.in_(confirmed_dates)).filter( or_(TI.state.is_(None), TI.state != state) ) if commit: tis_altered = qry_dag.with_for_update().all() if len(sub_dag_ids) > 0: tis_altered += qry_sub_dag.with_for_update().all() for ti in tis_altered: ti.state = state session.commit() else: tis_altered = qry_dag.all() if len(sub_dag_ids) > 0: tis_altered += qry_sub_dag.all() session.expunge_all() session.close() return tis_altered def set_dag_run_state(dag, execution_date, state=State.SUCCESS, commit=False): """ Set the state of a dag run and all task instances associated with the dag run for a specific execution date. :param dag: the DAG of which to alter state :param execution_date: the execution date from which to start looking :param state: the state to which the DAG need to be set :param commit: commit DAG and tasks to be altered to the database :return: list of tasks that have been created and updated :raises: AssertionError if dag or execution_date is invalid """ res = [] if not dag or not execution_date: return res # Mark all task instances in the dag run for task in dag.tasks: task.dag = dag new_state = set_state(task=task, execution_date=execution_date, state=state, commit=commit) res.extend(new_state) # Mark the dag run if commit: drs = DagRun.find(dag.dag_id, execution_date=execution_date) for dr in drs: dr.dag = dag dr.update_state() return res
yk5/incubator-airflow
airflow/api/common/experimental/mark_tasks.py
Python
apache-2.0
8,610
0.000697
def save_bacteria_dna(): """ 0 = A, 1 = T, 2 = C, 3 = G footnote: >>>ord('c') 99 >>>chr(97) 'c' same unichr() command """ char_list = [] binary_list = [] request_word = raw_input("Please enter the word," "you want to save in bacteria dna.") for i in request_word: char_list.append(ord(i)) result = radix_changer(char_list, binary_list) print result def radix_changer(char_list, binary_list): """ 10radix to 4radix number system for ex.: we've got only one character. And our character is c. 'c' in ascii table; c=99 function doing this; 99 % 4 = 3 ** 99 / 4 = 24 in this step: 3 -> will be save value. 24 -> in next process, value of c and every step doing this again. like; 24 % 4 = 0 ** 24 / 4 = 6 ---------- 6 % 4 = 2 ** 6 / 4 = 1 ** ... so our binary code in starred lines real character: c in_ascii_format: 99 binary: 1203 :) """ counter = 0 while counter < len(char_list): number = char_list[counter] binary = "" while number >= 4: binary += str(number % 4) number /= 4 binary += str(number) binary_list.append(binary[::-1]) counter += 1 # turn to genetic format # like 1203 -> TCAG result = recombinant_dna(binary_list) return result def recombinant_dna(binary_list): """ each binary_list value is 4base number its mean max_value for each character is 3 for ex.: entering string: can by one by for chars; ascii: 1203 - 1201 - 1232 and I will format this blocks for first char 1 -> T 2 -> C 0 -> A 3 -> G and finally c character saved 'TCAG' :) """ counter = 0 tmp_str, result_str = "", "" while counter < len(binary_list): tmp_str = binary_list[counter] for j in range(0, 4): if tmp_str[j] == '0': result_str += 'A' if tmp_str[j] == '1': result_str += 'T' if tmp_str[j] == '2': result_str += 'C' if tmp_str[j] == '3': result_str += 'G' result_str += chr(10) counter += 1 return result_str if __name__ == '__main__': save_bacteria_dna()
dogancankilment/UnixTools
utils/biology/storage_in_bacterias.py
Python
gpl-2.0
2,800
0.000357
import unittest import asyncio import aiozmq import aiozmq.rpc import logging from unittest import mock from asyncio.test_utils import run_briefly from aiozmq._test_util import log_hook, RpcMixin class MyHandler(aiozmq.rpc.AttrHandler): def __init__(self, queue, loop): self.queue = queue self.loop = loop @asyncio.coroutine @aiozmq.rpc.method def coro(self, arg): yield from self.queue.put(arg) @aiozmq.rpc.method def func(self, arg): self.queue.put_nowait(arg) @asyncio.coroutine @aiozmq.rpc.method def add(self, arg: int=1): yield from self.queue.put(arg + 1) @aiozmq.rpc.method def func_error(self): raise ValueError @aiozmq.rpc.method def suspicious(self, arg: int): self.queue.put_nowait(arg) return 3 @aiozmq.rpc.method @asyncio.coroutine def fut(self): f = asyncio.Future(loop=self.loop) yield from self.queue.put(f) yield from f class PipelineTestsMixin(RpcMixin): @classmethod def setUpClass(self): logger = logging.getLogger() self.log_level = logger.getEffectiveLevel() logger.setLevel(logging.DEBUG) @classmethod def tearDownClass(self): logger = logging.getLogger() logger.setLevel(self.log_level) def exception_handler(self, loop, context): self.err_queue.put_nowait(context) def make_pipeline_pair(self, log_exceptions=False, exclude_log_exceptions=(), use_loop=True): @asyncio.coroutine def create(): server = yield from aiozmq.rpc.serve_pipeline( MyHandler(self.queue, self.loop), bind='tcp://127.0.0.1:*', loop=self.loop if use_loop else None, log_exceptions=log_exceptions, exclude_log_exceptions=exclude_log_exceptions) connect = next(iter(server.transport.bindings())) client = yield from aiozmq.rpc.connect_pipeline( connect=connect, loop=self.loop if use_loop else None) return client, server self.client, self.server = self.loop.run_until_complete(create()) return self.client, self.server def test_coro(self): client, server = self.make_pipeline_pair() @asyncio.coroutine def communicate(): yield from client.notify.coro(1) ret = yield from self.queue.get() self.assertEqual(1, ret) yield from client.notify.coro(2) ret = yield from self.queue.get() self.assertEqual(2, ret) self.loop.run_until_complete(communicate()) def test_add(self): client, server = self.make_pipeline_pair() @asyncio.coroutine def communicate(): yield from client.notify.add() ret = yield from self.queue.get() self.assertEqual(ret, 2) yield from client.notify.add(2) ret = yield from self.queue.get() self.assertEqual(ret, 3) self.loop.run_until_complete(communicate()) def test_bad_handler(self): client, server = self.make_pipeline_pair() @asyncio.coroutine def communicate(): with log_hook('aiozmq.rpc', self.err_queue): yield from client.notify.bad_handler() ret = yield from self.err_queue.get() self.assertEqual(logging.ERROR, ret.levelno) self.assertEqual("Call to %r caused error: %r", ret.msg) self.assertEqual(('bad_handler', mock.ANY), ret.args) self.assertIsNotNone(ret.exc_info) self.loop.run_until_complete(communicate()) def test_func(self): client, server = self.make_pipeline_pair() @asyncio.coroutine def communicate(): yield from client.notify.func(123) ret = yield from self.queue.get() self.assertEqual(ret, 123) self.loop.run_until_complete(communicate()) def test_func_error(self): client, server = self.make_pipeline_pair(log_exceptions=True) @asyncio.coroutine def communicate(): with log_hook('aiozmq.rpc', self.err_queue): yield from client.notify.func_error() ret = yield from self.err_queue.get() self.assertEqual(logging.ERROR, ret.levelno) self.assertEqual("An exception %r from method %r " "call occurred.\n" "args = %s\nkwargs = %s\n", ret.msg) self.assertEqual((mock.ANY, 'func_error', '()', '{}'), ret.args) self.assertIsNotNone(ret.exc_info) self.loop.run_until_complete(communicate()) def test_default_event_loop(self): asyncio.set_event_loop_policy(aiozmq.ZmqEventLoopPolicy()) self.addCleanup(asyncio.set_event_loop_policy, None) self.addCleanup(self.loop.close) self.loop = asyncio.get_event_loop() self.client, self.server = self.make_pipeline_pair(use_loop=False) self.assertIs(self.client._loop, self.loop) self.assertIs(self.server._loop, self.loop) def test_warning_if_remote_return_not_None(self): client, server = self.make_pipeline_pair() @asyncio.coroutine def communicate(): with log_hook('aiozmq.rpc', self.err_queue): yield from client.notify.suspicious(1) ret = yield from self.queue.get() self.assertEqual(1, ret) ret = yield from self.err_queue.get() self.assertEqual(logging.WARNING, ret.levelno) self.assertEqual('Pipeline handler %r returned not None', ret.msg) self.assertEqual(('suspicious',), ret.args) self.assertIsNone(ret.exc_info) self.loop.run_until_complete(communicate()) run_briefly(self.loop) def test_call_closed_pipeline(self): client, server = self.make_pipeline_pair() @asyncio.coroutine def communicate(): client.close() yield from client.wait_closed() with self.assertRaises(aiozmq.rpc.ServiceClosedError): yield from client.notify.func() self.loop.run_until_complete(communicate()) def test_server_close(self): client, server = self.make_pipeline_pair() @asyncio.coroutine def communicate(): client.notify.fut() fut = yield from self.queue.get() self.assertEqual(1, len(server._proto.pending_waiters)) task = next(iter(server._proto.pending_waiters)) self.assertIsInstance(task, asyncio.Task) server.close() yield from server.wait_closed() yield from asyncio.sleep(0, loop=self.loop) self.assertEqual(0, len(server._proto.pending_waiters)) fut.cancel() self.loop.run_until_complete(communicate()) class LoopPipelineTests(unittest.TestCase, PipelineTestsMixin): def setUp(self): self.loop = aiozmq.ZmqEventLoop() asyncio.set_event_loop(None) self.client = self.server = None self.queue = asyncio.Queue(loop=self.loop) self.err_queue = asyncio.Queue(loop=self.loop) self.loop.set_exception_handler(self.exception_handler) def tearDown(self): self.close_service(self.client) self.close_service(self.server) self.loop.close() asyncio.set_event_loop(None) # zmq.Context.instance().term() class LooplessPipelineTests(unittest.TestCase, PipelineTestsMixin): def setUp(self): self.loop = asyncio.new_event_loop() asyncio.set_event_loop(None) self.client = self.server = None self.queue = asyncio.Queue(loop=self.loop) self.err_queue = asyncio.Queue(loop=self.loop) self.loop.set_exception_handler(self.exception_handler) def tearDown(self): self.close_service(self.client) self.close_service(self.server) self.loop.close() asyncio.set_event_loop(None) # zmq.Context.instance().term()
MetaMemoryT/aiozmq
tests/rpc_pipeline_test.py
Python
bsd-2-clause
8,374
0.000239
"""Jinja2's i18n functionality is not exactly the same as Django's. In particular, the tags names and their syntax are different: 1. The Django ``trans`` tag is replaced by a _() global. 2. The Django ``blocktrans`` tag is called ``trans``. (1) isn't an issue, since the whole ``makemessages`` process is based on converting the template tags to ``_()`` calls. However, (2) means that those Jinja2 ``trans`` tags will not be picked up my Django's ``makemessage`` command. There aren't any nice solutions here. While Jinja2's i18n extension does come with extraction capabilities built in, the code behind ``makemessages`` unfortunately isn't extensible, so we can: * Duplicate the command + code behind it. * Offer a separate command for Jinja2 extraction. * Try to get Django to offer hooks into makemessages(). * Monkey-patch. We are currently doing that last thing. It turns out there we are lucky for once: It's simply a matter of extending two regular expressions. Credit for the approach goes to: http://stackoverflow.com/questions/2090717/getting-translation-strings-for-jinja2-templates-integrated-with-django-1-x """ import re from django.core.management.commands import makemessages from django.utils.translation import trans_real class Command(makemessages.Command): def handle(self, *args, **options): old_endblock_re = trans_real.endblock_re old_block_re = trans_real.block_re # Extend the regular expressions that are used to detect # translation blocks with an "OR jinja-syntax" clause. trans_real.endblock_re = re.compile( trans_real.endblock_re.pattern + '|' + r"""^\s*endtrans$""") trans_real.block_re = re.compile( trans_real.block_re.pattern + '|' + r"""^\s*trans(?:\s+(?!'|")(?=.*?=.*?)|$)""") trans_real.plural_re = re.compile( trans_real.plural_re.pattern + '|' + r"""^\s*pluralize(?:\s+.+|$)""") try: super(Command, self).handle(*args, **options) finally: trans_real.endblock_re = old_endblock_re trans_real.block_re = old_block_re
akx/coffin
coffin/management/commands/makemessages.py
Python
bsd-3-clause
2,126
0.000941
# -*- coding: utf-8 -*- import logging import re import matplotlib.pyplot as plt import matplotlib.dates as mdates from PIL import Image from urllib.request import urlopen from urllib.parse import urlencode import json from bs4 import BeautifulSoup, element from datetime import datetime, timedelta from waybackscraper.exceptions import ScrapeError from waybackscraper import wayback logger = logging.getLogger('mrot.imdb') OMDB_API_TEMPLATE = 'http://www.omdbapi.com/?{query}' IMDB_MOVIE_TEMPLATE = "http://www.imdb.com/title/{movie_id}/" IMDB_NO_POSTER = 'http://www.imdb.com/images/nopicture/medium/video.png' class IMDbMovie(object): def __init__(self, title, year, imdb_id, poster): self.title = title self.year = year self.imdb_id = imdb_id self.poster = poster def download_ratings(self, concurrency=5, delta=30): """ Download the ratings of the movie over time :param concurrency: Maximum of concurrent requests to the wayback machine :param delta: Minimum number of days between two ratings :return: The ratings of the movie indexed by their date """ logger.info('Downloading ratings for the movie {movie_name}.'.format(movie_name=self.title)) # The URL for this movie on IMDb imdb_url = IMDB_MOVIE_TEMPLATE.format(movie_id=self.imdb_id) # Use the wayback machine to scrape the ratings of the movie over time ratings = wayback.scrape_archives(url=imdb_url, scrape_function=read_ratings, min_date=datetime(self.year, 1, 1, 0, 0), max_date=datetime.now(), user_agent='mrot', min_timedelta=timedelta(days=delta), concurrency=concurrency) return ratings def plot_ratings(self, concurrency=5, delta=30): """ Show a time series representing the ratings of the movie over time :param concurrency: Maximum of concurrent requests to the wayback machine :param delta: Minimum number of days between two ratings """ # Download the movie ratings ratings = self.download_ratings(concurrency, delta) if ratings: # Show the ratings and the movie poster on one figure fig = plt.figure() # 1 row, 2 columns position 1 img_fig = fig.add_subplot(121) # Hide axis around the poster img_fig.axes.get_xaxis().set_visible(False) img_fig.axes.get_yaxis().set_visible(False) # Show the poster on the first column poster = self.poster if self.poster != 'N/A' else IMDB_NO_POSTER f = urlopen(poster) img = Image.open(f) img_fig.imshow(img) # 1 row, 2 columns position 2 ratings_fig = fig.add_subplot(122) # Show ratings on the second column sorted_keys = sorted(ratings.keys()) axis_values = mdates.date2num(sorted_keys) ratings_fig.plot_date(x=axis_values, y=[ratings[key] for key in sorted_keys], fmt="r-") ratings_fig.set_title('Ratings of the movie "{title}" over time'.format(title=self.title)) ratings_fig.set_ylabel("Ratings") # Set the range of the y value to (min_rating - 1), (max_rating + 1) ratings_fig.set_ylim([max(min(ratings.values()) - 1, 0), min(max(ratings.values()) + 1, 10)]) # Show the figure plt.setp(ratings_fig.get_xticklabels(), rotation=30, horizontalalignment='right') plt.show() else: logger.info('No ratings found for the movie {movie_name}.'.format(movie_name=self.title)) def find_movies(movie_name): """ Find the movies corresponding to the given movie name :param movie_name: :return: A list of movies """ logger.info('Searching for movies named {movie_name}.'.format(movie_name=movie_name)) movies = [] # Query OMDb API with the given movie name api_response = query_search_api(s=movie_name, type_filter='movie') if api_response['Response'] == 'True': movies = [IMDbMovie(movie['Title'], int(movie['Year']), movie['imdbID'], movie['Poster']) for movie in api_response['Search']] return movies def query_search_api(s='', type_filter='movie'): """ Query OMDb API to obtain movie information :param s: Movie title to search for. :param type_filter: Type of result to return. :return: """ query = urlencode({'s': s, 'type': type_filter}) omdb_api_url = OMDB_API_TEMPLATE.format(query=query) with urlopen(omdb_api_url) as response: # Read and decode the API response json_response = response.read().decode("utf-8") result = json.loads(json_response) return result async def read_ratings(session, archive_url, archive_timestamp, archive_content): """ Extract a movie rating from its imdb page :raise: A ScrapeError if the rating could not be extracted :return: """ try: soup = BeautifulSoup(archive_content, 'html.parser') ratings_element = soup.find('span', itemprop="ratingValue") if ratings_element is not None and ratings_element.string != '-': return float(ratings_element.string.replace(',', '.')) ratings_element = soup.find('div', class_="star-box-giga-star") if ratings_element is not None: return float(ratings_element.string) ratings_element = soup.find('span', class_="rating-rating") if ratings_element is not None: if type(ratings_element.contents[0]) is element.NavigableString: return float(ratings_element.contents[0].string) else: return float(ratings_element.span.string) # Fallback, find a string matching "float/10" ratings_ovr_ten = soup.find(string=re.compile("^[\d\.]+/10$")) if ratings_ovr_ten is not None: return float(ratings_ovr_ten.string.split('/')[0]) raise ScrapeError('Ratings not found') except ValueError: raise ScrapeError('Not a valid number')
abrenaut/mrot
mrot/imdb.py
Python
mit
6,223
0.002732
# -*- coding: utf-8 -*- # # Picard, the next-generation MusicBrainz tagger # Copyright (C) 2011 Lukáš Lalinský # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. import os from PyQt4 import QtCore, QtGui from picard.util import webbrowser2, find_executable from picard.const import FPCALC_NAMES from picard.config import BoolOption, TextOption from picard.ui.options import OptionsPage, register_options_page from picard.ui.ui_options_fingerprinting import Ui_FingerprintingOptionsPage class FingerprintingOptionsPage(OptionsPage): NAME = "fingerprinting" TITLE = N_("Fingerprinting") PARENT = None SORT_ORDER = 45 ACTIVE = True options = [ TextOption("setting", "fingerprinting_system", "acoustid"), TextOption("setting", "acoustid_fpcalc", ""), TextOption("setting", "acoustid_apikey", ""), ] def __init__(self, parent=None): super(FingerprintingOptionsPage, self).__init__(parent) self.ui = Ui_FingerprintingOptionsPage() self.ui.setupUi(self) self.ui.disable_fingerprinting.clicked.connect(self.update_groupboxes) self.ui.use_acoustid.clicked.connect(self.update_groupboxes) self.ui.acoustid_fpcalc_browse.clicked.connect(self.acoustid_fpcalc_browse) self.ui.acoustid_fpcalc_download.clicked.connect(self.acoustid_fpcalc_download) self.ui.acoustid_apikey_get.clicked.connect(self.acoustid_apikey_get) def load(self): if self.config.setting["fingerprinting_system"] == "acoustid": self.ui.use_acoustid.setChecked(True) else: self.ui.disable_fingerprinting.setChecked(True) self.ui.acoustid_fpcalc.setText(self.config.setting["acoustid_fpcalc"]) self.ui.acoustid_apikey.setText(self.config.setting["acoustid_apikey"]) self.update_groupboxes() def save(self): if self.ui.use_acoustid.isChecked(): self.config.setting["fingerprinting_system"] = "acoustid" else: self.config.setting["fingerprinting_system"] = "" self.config.setting["acoustid_fpcalc"] = unicode(self.ui.acoustid_fpcalc.text()) self.config.setting["acoustid_apikey"] = unicode(self.ui.acoustid_apikey.text()) def update_groupboxes(self): if self.ui.use_acoustid.isChecked(): self.ui.acoustid_settings.setEnabled(True) if self.ui.acoustid_fpcalc.text().isEmpty(): fpcalc_path = find_executable(*FPCALC_NAMES) if fpcalc_path: self.ui.acoustid_fpcalc.setText(fpcalc_path) else: self.ui.acoustid_settings.setEnabled(False) def acoustid_fpcalc_browse(self): path = QtGui.QFileDialog.getOpenFileName(self, "", self.ui.acoustid_fpcalc.text()) if path: path = os.path.normpath(unicode(path)) self.ui.acoustid_fpcalc.setText(path) def acoustid_fpcalc_download(self): webbrowser2.open("http://acoustid.org/chromaprint#download") def acoustid_apikey_get(self): webbrowser2.open("http://acoustid.org/api-key") register_options_page(FingerprintingOptionsPage)
mwiencek/picard
picard/ui/options/fingerprinting.py
Python
gpl-2.0
3,809
0.001576
from pymongo import MongoClient from vaderSentiment.vaderSentiment import sentiment as vs import os # File for writing sentiment for storage and analysis __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) outputFile = "sentiment.json" f = open(os.path.join(__location__, outputFile), 'w+') # Open mongodb client, access the database collection, and find documents # based on criteria client = MongoClient() db = client["Virus"] coll = db["Zika"] criteria = {"lang": "en"} cursor = coll.find(criteria) # Dictionary of months for date conversion and empty array for documents months = {"Jan": 1, "Feb": 2, "Mar": 3, "Apr": 4, "May": 5, "Jun": 6, "Jul": 7, "Aug": 8, "Sep": 9, "Oct": 10, "Nov": 11, "Dec": 12} docs = [] for document in cursor: # Convert time from Tue Mar 29 04:04:22 +0000 2016 to 2016-3-29 time = document["created_at"].split() month = months[time[1]] day = time[2] year = time[5] date = str(year) + "-" + str(month) + "-" + str(day) docs.append({"text": document["text"], "date": '"' + date + '"'}) aggregate = {} count = {} for doc in docs: text = doc["text"].encode('utf-8') sentiment = vs(text) value = (sentiment['neg'] * -1) + (sentiment['pos']) if doc["date"] not in aggregate: aggregate[doc["date"]] = value count[doc["date"]] = 1 else: aggregate[doc["date"]] += value count[doc["date"]] += 1 # normalize f.write("[ \n") for date in aggregate: aggregate[date] = aggregate[date]/count[date] f.write('{ \t "date": ' + str(date) + ',\n \t "value": ' + str(aggregate[date]) + "\n }") f.write(", \n") f.close()
kearnsw/Twitt.IR
src/VaderSentiment.py
Python
gpl-3.0
1,714
0.001167
# Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html class Unity3DPipeline(object): def process_item(self, item, spider): return item
TheWaWaR/scrapy-snippets
projects/unity3d/unity3d/pipelines.py
Python
mit
261
0
import rcblog if __name__ == '__main__': rcblog.main()
sanchopanca/rcblog
run.py
Python
mit
60
0
import os import sys from django.conf import settings if not settings.configured: settings_dict = dict( INSTALLED_APPS=( #'django.contrib.contenttypes', 'inspector_panel', 'inspector_panel.tests', ), DATABASES={ "default": { "ENGINE": "django.db.backends.sqlite3" } }, ) settings.configure(**settings_dict) def runtests(*test_args): if not test_args: test_args = ['tests'] parent = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, parent) from django.test.simple import DjangoTestSuiteRunner failures = DjangoTestSuiteRunner( verbosity=1, interactive=True, failfast=False).run_tests(test_args) sys.exit(failures)
NESCent/feedingdb
debug-inspector-panel/runtests.py
Python
gpl-3.0
808
0.001238