data_source
stringclasses 1
value | prompt
stringlengths 1.02k
13.9k
| ability
stringclasses 1
value | reward_model
dict | extra_info
dict |
|---|---|---|---|---|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
36212, DRAMA
16138, JACOB GENTRY
6180, LOVE STORY
19613, MICHAEL HALL D'ADDARIO
19916, MONSIEUR LAZHAR
31312, PEOPLE LIKE US
28095, THE SIGNAL
src, edge_attr, dst
6180, has_genre, 36212
19916, has_genre, 36212
31312, has_genre, 36212
31312, has_tags, 36212
31312, starred_actors, 19613
28095, directed_by, 16138
28095, has_tags, 6180
28095, written_by, 16138
Question: For what reason are JACOB GENTRY, MICHAEL HALL D'ADDARIO, and MONSIEUR LAZHAR associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JACOB GENTRY",
"MICHAEL HALL D'ADDARIO",
"MONSIEUR LAZHAR"
],
"valid_edges": [
[
"LOVE STORY",
"has_genre",
"DRAMA"
],
[
"MONSIEUR LAZHAR",
"has_genre",
"DRAMA"
],
[
"PEOPLE LIKE US",
"has_genre",
"DRAMA"
],
[
"PEOPLE LIKE US",
"has_tags",
"DRAMA"
],
[
"PEOPLE LIKE US",
"starred_actors",
"MICHAEL HALL D'ADDARIO"
],
[
"THE SIGNAL",
"directed_by",
"JACOB GENTRY"
],
[
"THE SIGNAL",
"has_tags",
"LOVE STORY"
],
[
"THE SIGNAL",
"written_by",
"JACOB GENTRY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
8486, 1999
17254, AMERICAN BEAUTY
30463, COMEDY
7373, DALE VAN EVERY
36212, DRAMA
9624, IT'S A BOY GIRL THING
1555, LITTLE BLACK BOOK
5252, MID-LIFE CRISIS
37544, NICK HURRAN
3627, THE TALK OF THE TOWN
5147, VIRTUAL SEXUALITY
src, edge_attr, dst
17254, has_genre, 36212
17254, has_tags, 36212
17254, has_tags, 5252
17254, release_year, 8486
9624, directed_by, 37544
9624, has_genre, 30463
1555, directed_by, 37544
1555, has_genre, 30463
3627, has_genre, 30463
3627, has_genre, 36212
3627, written_by, 7373
5147, directed_by, 37544
5147, release_year, 8486
Question: How are DALE VAN EVERY, MID-LIFE CRISIS, and NICK HURRAN related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DALE VAN EVERY",
"MID-LIFE CRISIS",
"NICK HURRAN"
],
"valid_edges": [
[
"AMERICAN BEAUTY",
"has_genre",
"DRAMA"
],
[
"AMERICAN BEAUTY",
"has_tags",
"DRAMA"
],
[
"AMERICAN BEAUTY",
"has_tags",
"MID-LIFE CRISIS"
],
[
"AMERICAN BEAUTY",
"release_year",
"1999"
],
[
"IT'S A BOY GIRL THING",
"directed_by",
"NICK HURRAN"
],
[
"IT'S A BOY GIRL THING",
"has_genre",
"COMEDY"
],
[
"LITTLE BLACK BOOK",
"directed_by",
"NICK HURRAN"
],
[
"LITTLE BLACK BOOK",
"has_genre",
"COMEDY"
],
[
"THE TALK OF THE TOWN",
"has_genre",
"COMEDY"
],
[
"THE TALK OF THE TOWN",
"has_genre",
"DRAMA"
],
[
"THE TALK OF THE TOWN",
"written_by",
"DALE VAN EVERY"
],
[
"VIRTUAL SEXUALITY",
"directed_by",
"NICK HURRAN"
],
[
"VIRTUAL SEXUALITY",
"release_year",
"1999"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
6776, 2000
20719, A TIME FOR DRUNKEN HORSES
23160, BELLY
32815, BLACKBOARDS
36212, DRAMA
35079, HYPE WILLIAMS
15321, JUN FALKENSTEIN
13725, KURDISH
37753, THE TIGGER MOVIE
23247, TRIAGE
29947, TURTLES CAN FLY
22214, WAR
src, edge_attr, dst
20719, has_genre, 22214
20719, in_language, 13725
20719, release_year, 6776
23160, directed_by, 35079
23160, has_genre, 36212
23160, written_by, 35079
32815, has_genre, 22214
32815, in_language, 13725
32815, release_year, 6776
37753, directed_by, 15321
37753, release_year, 6776
37753, written_by, 15321
23247, has_genre, 36212
23247, has_genre, 22214
23247, in_language, 13725
29947, has_genre, 36212
29947, has_genre, 22214
29947, in_language, 13725
Question: For what reason are HYPE WILLIAMS, JUN FALKENSTEIN, and KURDISH associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"HYPE WILLIAMS",
"JUN FALKENSTEIN",
"KURDISH"
],
"valid_edges": [
[
"A TIME FOR DRUNKEN HORSES",
"has_genre",
"WAR"
],
[
"A TIME FOR DRUNKEN HORSES",
"in_language",
"KURDISH"
],
[
"A TIME FOR DRUNKEN HORSES",
"release_year",
"2000"
],
[
"BELLY",
"directed_by",
"HYPE WILLIAMS"
],
[
"BELLY",
"has_genre",
"DRAMA"
],
[
"BELLY",
"written_by",
"HYPE WILLIAMS"
],
[
"BLACKBOARDS",
"has_genre",
"WAR"
],
[
"BLACKBOARDS",
"in_language",
"KURDISH"
],
[
"BLACKBOARDS",
"release_year",
"2000"
],
[
"THE TIGGER MOVIE",
"directed_by",
"JUN FALKENSTEIN"
],
[
"THE TIGGER MOVIE",
"release_year",
"2000"
],
[
"THE TIGGER MOVIE",
"written_by",
"JUN FALKENSTEIN"
],
[
"TRIAGE",
"has_genre",
"DRAMA"
],
[
"TRIAGE",
"has_genre",
"WAR"
],
[
"TRIAGE",
"in_language",
"KURDISH"
],
[
"TURTLES CAN FLY",
"has_genre",
"DRAMA"
],
[
"TURTLES CAN FLY",
"has_genre",
"WAR"
],
[
"TURTLES CAN FLY",
"in_language",
"KURDISH"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
4981, 1965
11832, A CHARLIE BROWN CHRISTMAS
6718, A FAREWELL TO ARMS
12649, A LITTLE ROMANCE
8221, A MAN ESCAPED
24319, A PASSAGE TO INDIA
4763, ADVENTURE
16054, ADVENTURES IN BABYSITTING
10341, ADVENTURES OF DON JUAN
28463, AFTER THE FOX
26641, ALBERT CAMUS
29638, ALICE IN WONDERLAND
13573, ANNA CHRISTIE
17157, ARABIAN NIGHTS
34734, BATTLE OF THE BULGE
10045, BD-R
38657, BEAT THE DEVIL
4592, BEAU TRAVAIL
15771, BENGAZI
27938, BRIGITTE BARDOT
21584, BUNNY LAKE IS MISSING
1040, CAPTAIN BLOOD
5840, CERTIFIED COPY
6903, CHARIOTS OF FIRE
25344, CONFIDENTIALLY YOURS
34792, CONTEMPT
16536, CYRANO DE BERGERAC
23205, DARLING
21286, DAVID COPPERFIELD
23396, DIAL M FOR MURDER
11249, DIARY OF A COUNTRY PRIEST
16041, DJANGO UNCHAINED
5881, ELEPHANT BOY
31783, ENGLISH
24540, EYES WITHOUT A FACE
819, FIST OF THE NORTH STAR
26308, FLIPPER
6012, FRENCH
9003, FUNNY GAMES
5527, GIGI
17384, GUNGA DIN
20941, HAMLET
15896, HOW TO STUFF A WILD BIKINI
12087, HOWL'S MOVING CASTLE
26383, I CONFESS
27285, I WAS A MALE WAR BRIDE
7539, IVANHOE
847, JACK THE GIANT KILLER
21922, JANE EYRE
2527, JEANNE MOREAU
803, JERRY LEWIS
20567, JOHN CARTER
35705, JOURNEY TO THE CENTER OF THE EARTH
38986, JUNGLE BOOK
19098, KING KONG
14209, KING OF HEARTS
14156, KING SOLOMON'S MINES
26649, KISMET
37100, KNIGHTS OF THE ROUND TABLE
33519, LA HAINE
36940, LABYRINTH
30029, LAWRENCE OF ARABIA
35149, LE BEAU SERGE
39572, LES COUSINS
30157, LOLA
32275, LORD OF THE FLIES
14433, LOUIS MALLE
27050, MAN OF LA MANCHA
20579, MARAT/SADE
16925, MAYERLING
6543, MODEL SHOP
31657, MON ONCLE
31661, MY FAIR LADY
12358, MY FAVORITE SEASON
14797, O BROTHER, WHERE ART THOU?
27496, ONE MILLION YEARS B.C.
36988, OPERATION CROSSBOW
29693, PICKPOCKET
33032, PORT OF SHADOWS
15651, PREHISTORIC WOMEN
24745, PURPLE NOON
5897, REPULSION
15938, RIFIFI
15873, ROBIN AND MARIAN
2738, ROMEO AND JULIET
35586, SAHARA
6603, SEX IS COMEDY
27626, SHEENA
31316, SHERLOCK HOLMES AND THE SECRET WEAPON
8436, SPIRITS OF THE DEAD
15194, STORY OF WOMEN
11699, TARZAN THE APE MAN
18715, TARZAN'S NEW YORK ADVENTURE
21608, THE ADVENTURES OF HUCKLEBERRY FINN
24625, THE APARTMENT
15003, THE BATTLE OF ALGIERS
37980, THE BEDFORD INCIDENT
34737, THE BRIDE WORE BLACK
3354, THE BROTHERS GRIMM
18855, THE CADDY
14222, THE CANTERVILLE GHOST
7639, THE CHARGE OF THE LIGHT BRIGADE
18651, THE CORSICAN BROTHERS
21330, THE CRIMSON PIRATE
24990, THE CURSE OF FRANKENSTEIN
16800, THE DECEIVERS
39794, THE DISORDERLY ORDERLY
15154, THE FAMILY JEWELS
38631, THE FLAME AND THE ARROW
11635, THE FOUR FEATHERS
9166, THE GUNS OF NAVARONE
15600, THE HALLELUJAH TRAIL
38257, THE HAPPY TIME
15198, THE HUNCHBACK OF NOTRE DAME
25529, THE ILLUSIONIST
6836, THE IMMORTAL STORY
4091, THE LADY VANISHES
32231, THE LAND THAT TIME FORGOT
31569, THE LOVE PARADE
34018, THE LOVED ONE
4182, THE MAN IN THE IRON MASK
33513, THE MAN WHO LOVED WOMEN
13295, THE MARK OF ZORRO
4029, THE MASK OF FU MANCHU
2432, THE MASTER OF BALLANTRAE
32297, THE MERRY WIDOW
26820, THE MUMMY
1295, THE NUTTY PROFESSOR
5575, THE PEOPLE THAT TIME FORGOT
24512, THE PHANTOM TOLLBOOTH
22486, THE PRINCE AND THE PAUPER
31851, THE PRISONER OF ZENDA
18274, THE ROSE TATTOO
8477, THE SCARLET PIMPERNEL
11265, THE SEA HAWK
30746, THE SECRET LIFE OF WALTER MITTY
25495, THE SHOP ON MAIN STREET
8304, THE SILVER CHALICE
31647, THE SON OF THE SHEIK
34579, THE SPY WHO CAME IN FROM THE COLD
17143, THE STRANGER
7816, THE THREE MUSKETEERS
38808, THE TRAIN
983, THE TREASURE OF THE SIERRA MADRE
30491, THE TRIAL
13722, THE TRIAL OF JOAN OF ARC
29678, THE UMBRELLAS OF CHERBOURG
19255, THE VALACHI PAPERS
17568, THE VANISHING
12308, THE VIKINGS
27609, THE WIND AND THE LION
14471, THIS HAPPY BREED
24789, TO HAVE AND HAVE NOT
25443, TOM JONES
6724, TOM SAWYER
3029, TRIPLE CROSS
4378, VICTIM
30965, VILLAGE OF THE GIANTS
11659, VIVA MARIA!
22844, WENT THE DAY WELL?
35212, WHO'S AFRAID OF VIRGINIA WOOLF?
6037, WITCHFINDER GENERAL
38760, Z
23675, ZERO FOR CONDUCT
src, edge_attr, dst
11832, has_tags, 10045
11832, release_year, 4981
6718, has_tags, 10045
6718, in_language, 31783
12649, has_tags, 10045
12649, in_language, 6012
8221, has_tags, 10045
8221, has_tags, 6012
8221, in_language, 6012
24319, has_tags, 10045
24319, in_language, 31783
16054, has_genre, 4763
16054, has_tags, 4763
16054, has_tags, 10045
10341, has_genre, 4763
10341, has_tags, 10045
28463, has_tags, 10045
28463, in_language, 31783
29638, has_genre, 4763
29638, has_tags, 10045
29638, in_language, 31783
13573, has_tags, 10045
13573, in_language, 31783
17157, has_genre, 4763
17157, has_tags, 10045
34734, has_tags, 10045
34734, release_year, 4981
38657, has_genre, 4763
38657, has_tags, 10045
4592, has_tags, 10045
4592, in_language, 6012
15771, has_genre, 4763
15771, has_tags, 10045
21584, has_tags, 10045
21584, release_year, 4981
1040, has_genre, 4763
1040, has_tags, 4763
1040, has_tags, 10045
5840, in_language, 31783
5840, in_language, 6012
6903, has_tags, 10045
6903, in_language, 31783
25344, has_tags, 10045
25344, in_language, 6012
34792, has_tags, 10045
34792, starred_actors, 27938
16536, has_tags, 10045
16536, has_tags, 6012
16536, in_language, 31783
16536, in_language, 6012
23205, has_tags, 10045
23205, release_year, 4981
21286, has_genre, 4763
21286, has_tags, 10045
23396, has_tags, 10045
23396, in_language, 31783
11249, has_tags, 10045
11249, in_language, 6012
16041, has_tags, 10045
16041, in_language, 31783
5881, has_genre, 4763
5881, has_tags, 10045
24540, has_tags, 10045
24540, in_language, 6012
819, has_tags, 10045
819, in_language, 31783
26308, has_genre, 4763
26308, has_tags, 10045
9003, has_tags, 10045
9003, in_language, 31783
5527, has_tags, 10045
5527, in_language, 31783
5527, in_language, 6012
17384, has_genre, 4763
17384, has_tags, 10045
20941, has_tags, 10045
20941, in_language, 31783
15896, has_tags, 10045
15896, release_year, 4981
12087, has_genre, 4763
12087, has_tags, 4763
12087, has_tags, 10045
26383, has_tags, 10045
26383, in_language, 6012
27285, has_tags, 10045
27285, in_language, 6012
7539, has_genre, 4763
7539, has_tags, 10045
847, has_genre, 4763
847, has_tags, 10045
847, in_language, 31783
21922, has_tags, 10045
21922, in_language, 31783
21922, in_language, 6012
20567, has_genre, 4763
20567, has_tags, 10045
35705, has_genre, 4763
35705, has_tags, 4763
35705, has_tags, 10045
38986, has_genre, 4763
38986, has_tags, 10045
19098, has_genre, 4763
19098, has_tags, 4763
19098, has_tags, 10045
14209, has_tags, 10045
14209, in_language, 6012
14156, has_genre, 4763
14156, has_tags, 4763
14156, has_tags, 10045
26649, has_tags, 10045
26649, in_language, 31783
37100, has_genre, 4763
37100, has_tags, 10045
33519, has_tags, 10045
33519, has_tags, 6012
33519, in_language, 6012
36940, has_genre, 4763
36940, has_tags, 4763
36940, has_tags, 10045
30029, has_genre, 4763
30029, has_tags, 10045
35149, has_tags, 10045
35149, in_language, 6012
39572, has_tags, 10045
39572, in_language, 6012
30157, has_tags, 10045
30157, in_language, 6012
32275, has_tags, 10045
32275, in_language, 31783
27050, has_tags, 10045
27050, in_language, 31783
20579, has_tags, 10045
20579, in_language, 31783
16925, has_tags, 10045
16925, in_language, 31783
16925, in_language, 6012
6543, has_tags, 10045
6543, in_language, 31783
31657, has_tags, 10045
31657, in_language, 6012
31661, has_tags, 10045
31661, in_language, 31783
12358, has_tags, 10045
12358, in_language, 6012
14797, has_genre, 4763
14797, has_tags, 4763
14797, has_tags, 10045
27496, has_genre, 4763
27496, has_tags, 10045
36988, has_tags, 10045
36988, release_year, 4981
29693, has_tags, 10045
29693, in_language, 6012
33032, has_tags, 10045
33032, in_language, 6012
15651, has_genre, 4763
15651, has_tags, 10045
24745, has_tags, 10045
24745, in_language, 6012
5897, has_tags, 10045
5897, in_language, 31783
5897, release_year, 4981
15938, has_tags, 10045
15938, in_language, 6012
15873, has_genre, 4763
15873, has_tags, 10045
2738, has_tags, 10045
2738, in_language, 31783
35586, has_genre, 4763
35586, has_tags, 10045
6603, has_tags, 10045
6603, in_language, 6012
27626, has_genre, 4763
27626, has_tags, 10045
31316, has_genre, 4763
31316, has_tags, 10045
8436, directed_by, 14433
8436, has_tags, 10045
8436, in_language, 31783
8436, in_language, 6012
8436, starred_actors, 27938
8436, written_by, 14433
15194, has_tags, 10045
15194, in_language, 6012
11699, has_genre, 4763
11699, has_tags, 10045
18715, has_genre, 4763
18715, has_tags, 10045
21608, has_genre, 4763
21608, has_tags, 10045
24625, has_tags, 10045
24625, in_language, 6012
15003, has_tags, 10045
15003, has_tags, 6012
15003, in_language, 6012
37980, has_tags, 10045
37980, release_year, 4981
34737, has_tags, 10045
34737, in_language, 6012
34737, starred_actors, 2527
3354, has_genre, 4763
3354, has_tags, 4763
3354, has_tags, 10045
3354, in_language, 6012
18855, has_tags, 10045
18855, starred_actors, 803
14222, has_tags, 10045
14222, in_language, 31783
7639, has_genre, 4763
7639, has_tags, 10045
18651, has_tags, 10045
18651, in_language, 31783
21330, has_genre, 4763
21330, has_tags, 10045
24990, has_tags, 10045
24990, in_language, 31783
16800, has_genre, 4763
16800, has_tags, 10045
39794, starred_actors, 803
15154, directed_by, 803
15154, release_year, 4981
15154, starred_actors, 803
15154, written_by, 803
38631, has_genre, 4763
38631, has_tags, 10045
11635, has_genre, 4763
11635, has_tags, 10045
9166, has_genre, 4763
9166, has_tags, 10045
15600, has_tags, 10045
15600, release_year, 4981
38257, has_tags, 10045
38257, in_language, 6012
15198, has_tags, 10045
15198, in_language, 31783
15198, in_language, 6012
25529, has_tags, 10045
25529, in_language, 6012
6836, has_tags, 10045
6836, in_language, 6012
6836, starred_actors, 2527
4091, has_tags, 10045
4091, in_language, 31783
32231, has_genre, 4763
32231, has_tags, 4763
32231, has_tags, 10045
31569, has_tags, 10045
31569, in_language, 6012
34018, has_tags, 10045
34018, release_year, 4981
4182, has_genre, 4763
4182, has_tags, 4763
4182, has_tags, 10045
33513, has_tags, 10045
33513, in_language, 6012
13295, has_genre, 4763
13295, has_tags, 10045
4029, has_genre, 4763
4029, has_tags, 10045
2432, has_genre, 4763
2432, has_tags, 10045
32297, has_tags, 10045
32297, in_language, 6012
26820, has_genre, 4763
26820, has_tags, 4763
26820, has_tags, 10045
1295, directed_by, 803
1295, has_tags, 10045
1295, has_tags, 803
1295, starred_actors, 803
1295, written_by, 803
5575, has_genre, 4763
5575, has_tags, 10045
24512, has_genre, 4763
24512, has_tags, 10045
22486, has_genre, 4763
22486, has_tags, 10045
31851, has_genre, 4763
31851, has_tags, 10045
18274, has_tags, 10045
18274, in_language, 31783
8477, has_genre, 4763
8477, has_tags, 10045
8477, in_language, 31783
8477, in_language, 6012
11265, has_tags, 10045
11265, in_language, 31783
30746, has_genre, 4763
30746, has_tags, 10045
30746, in_language, 31783
25495, has_tags, 10045
25495, release_year, 4981
8304, has_tags, 10045
8304, in_language, 31783
31647, has_genre, 4763
31647, has_tags, 10045
34579, has_tags, 10045
34579, in_language, 31783
34579, release_year, 4981
17143, has_tags, 10045
17143, written_by, 26641
7816, has_genre, 4763
7816, has_tags, 10045
38808, has_tags, 10045
38808, starred_actors, 2527
983, has_genre, 4763
983, has_tags, 10045
983, in_language, 31783
30491, has_tags, 10045
30491, starred_actors, 2527
13722, has_tags, 10045
13722, in_language, 6012
29678, has_tags, 10045
29678, has_tags, 6012
29678, in_language, 6012
19255, has_tags, 10045
19255, in_language, 31783
17568, has_tags, 10045
17568, in_language, 31783
17568, in_language, 6012
12308, has_genre, 4763
12308, has_tags, 10045
27609, has_genre, 4763
27609, has_tags, 10045
14471, has_tags, 10045
14471, in_language, 31783
24789, has_genre, 4763
24789, has_tags, 10045
25443, has_genre, 4763
25443, has_tags, 10045
6724, has_genre, 4763
6724, has_tags, 10045
3029, has_tags, 10045
3029, in_language, 6012
4378, has_tags, 10045
4378, in_language, 31783
30965, has_tags, 10045
30965, release_year, 4981
11659, directed_by, 14433
11659, has_genre, 4763
11659, has_tags, 10045
11659, has_tags, 27938
11659, has_tags, 6012
11659, has_tags, 2527
11659, has_tags, 14433
11659, in_language, 31783
11659, in_language, 6012
11659, release_year, 4981
11659, starred_actors, 27938
11659, starred_actors, 2527
11659, written_by, 14433
22844, has_tags, 10045
22844, in_language, 31783
35212, has_tags, 10045
35212, in_language, 31783
6037, has_tags, 10045
6037, in_language, 31783
38760, has_tags, 10045
38760, in_language, 6012
23675, has_tags, 10045
23675, has_tags, 6012
23675, in_language, 6012
Question: In what context are ALBERT CAMUS, THE DISORDERLY ORDERLY, and VIVA MARIA! connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ALBERT CAMUS",
"THE DISORDERLY ORDERLY",
"VIVA MARIA!"
],
"valid_edges": [
[
"A CHARLIE BROWN CHRISTMAS",
"has_tags",
"BD-R"
],
[
"A CHARLIE BROWN CHRISTMAS",
"release_year",
"1965"
],
[
"A FAREWELL TO ARMS",
"has_tags",
"BD-R"
],
[
"A FAREWELL TO ARMS",
"in_language",
"ENGLISH"
],
[
"A LITTLE ROMANCE",
"has_tags",
"BD-R"
],
[
"A LITTLE ROMANCE",
"in_language",
"FRENCH"
],
[
"A MAN ESCAPED",
"has_tags",
"BD-R"
],
[
"A MAN ESCAPED",
"has_tags",
"FRENCH"
],
[
"A MAN ESCAPED",
"in_language",
"FRENCH"
],
[
"A PASSAGE TO INDIA",
"has_tags",
"BD-R"
],
[
"A PASSAGE TO INDIA",
"in_language",
"ENGLISH"
],
[
"ADVENTURES IN BABYSITTING",
"has_genre",
"ADVENTURE"
],
[
"ADVENTURES IN BABYSITTING",
"has_tags",
"ADVENTURE"
],
[
"ADVENTURES IN BABYSITTING",
"has_tags",
"BD-R"
],
[
"ADVENTURES OF DON JUAN",
"has_genre",
"ADVENTURE"
],
[
"ADVENTURES OF DON JUAN",
"has_tags",
"BD-R"
],
[
"AFTER THE FOX",
"has_tags",
"BD-R"
],
[
"AFTER THE FOX",
"in_language",
"ENGLISH"
],
[
"ALICE IN WONDERLAND",
"has_genre",
"ADVENTURE"
],
[
"ALICE IN WONDERLAND",
"has_tags",
"BD-R"
],
[
"ALICE IN WONDERLAND",
"in_language",
"ENGLISH"
],
[
"ANNA CHRISTIE",
"has_tags",
"BD-R"
],
[
"ANNA CHRISTIE",
"in_language",
"ENGLISH"
],
[
"ARABIAN NIGHTS",
"has_genre",
"ADVENTURE"
],
[
"ARABIAN NIGHTS",
"has_tags",
"BD-R"
],
[
"BATTLE OF THE BULGE",
"has_tags",
"BD-R"
],
[
"BATTLE OF THE BULGE",
"release_year",
"1965"
],
[
"BEAT THE DEVIL",
"has_genre",
"ADVENTURE"
],
[
"BEAT THE DEVIL",
"has_tags",
"BD-R"
],
[
"BEAU TRAVAIL",
"has_tags",
"BD-R"
],
[
"BEAU TRAVAIL",
"in_language",
"FRENCH"
],
[
"BENGAZI",
"has_genre",
"ADVENTURE"
],
[
"BENGAZI",
"has_tags",
"BD-R"
],
[
"BUNNY LAKE IS MISSING",
"has_tags",
"BD-R"
],
[
"BUNNY LAKE IS MISSING",
"release_year",
"1965"
],
[
"CAPTAIN BLOOD",
"has_genre",
"ADVENTURE"
],
[
"CAPTAIN BLOOD",
"has_tags",
"ADVENTURE"
],
[
"CAPTAIN BLOOD",
"has_tags",
"BD-R"
],
[
"CERTIFIED COPY",
"in_language",
"ENGLISH"
],
[
"CERTIFIED COPY",
"in_language",
"FRENCH"
],
[
"CHARIOTS OF FIRE",
"has_tags",
"BD-R"
],
[
"CHARIOTS OF FIRE",
"in_language",
"ENGLISH"
],
[
"CONFIDENTIALLY YOURS",
"has_tags",
"BD-R"
],
[
"CONFIDENTIALLY YOURS",
"in_language",
"FRENCH"
],
[
"CONTEMPT",
"has_tags",
"BD-R"
],
[
"CONTEMPT",
"starred_actors",
"BRIGITTE BARDOT"
],
[
"CYRANO DE BERGERAC",
"has_tags",
"BD-R"
],
[
"CYRANO DE BERGERAC",
"has_tags",
"FRENCH"
],
[
"CYRANO DE BERGERAC",
"in_language",
"ENGLISH"
],
[
"CYRANO DE BERGERAC",
"in_language",
"FRENCH"
],
[
"DARLING",
"has_tags",
"BD-R"
],
[
"DARLING",
"release_year",
"1965"
],
[
"DAVID COPPERFIELD",
"has_genre",
"ADVENTURE"
],
[
"DAVID COPPERFIELD",
"has_tags",
"BD-R"
],
[
"DIAL M FOR MURDER",
"has_tags",
"BD-R"
],
[
"DIAL M FOR MURDER",
"in_language",
"ENGLISH"
],
[
"DIARY OF A COUNTRY PRIEST",
"has_tags",
"BD-R"
],
[
"DIARY OF A COUNTRY PRIEST",
"in_language",
"FRENCH"
],
[
"DJANGO UNCHAINED",
"has_tags",
"BD-R"
],
[
"DJANGO UNCHAINED",
"in_language",
"ENGLISH"
],
[
"ELEPHANT BOY",
"has_genre",
"ADVENTURE"
],
[
"ELEPHANT BOY",
"has_tags",
"BD-R"
],
[
"EYES WITHOUT A FACE",
"has_tags",
"BD-R"
],
[
"EYES WITHOUT A FACE",
"in_language",
"FRENCH"
],
[
"FIST OF THE NORTH STAR",
"has_tags",
"BD-R"
],
[
"FIST OF THE NORTH STAR",
"in_language",
"ENGLISH"
],
[
"FLIPPER",
"has_genre",
"ADVENTURE"
],
[
"FLIPPER",
"has_tags",
"BD-R"
],
[
"FUNNY GAMES",
"has_tags",
"BD-R"
],
[
"FUNNY GAMES",
"in_language",
"ENGLISH"
],
[
"GIGI",
"has_tags",
"BD-R"
],
[
"GIGI",
"in_language",
"ENGLISH"
],
[
"GIGI",
"in_language",
"FRENCH"
],
[
"GUNGA DIN",
"has_genre",
"ADVENTURE"
],
[
"GUNGA DIN",
"has_tags",
"BD-R"
],
[
"HAMLET",
"has_tags",
"BD-R"
],
[
"HAMLET",
"in_language",
"ENGLISH"
],
[
"HOW TO STUFF A WILD BIKINI",
"has_tags",
"BD-R"
],
[
"HOW TO STUFF A WILD BIKINI",
"release_year",
"1965"
],
[
"HOWL'S MOVING CASTLE",
"has_genre",
"ADVENTURE"
],
[
"HOWL'S MOVING CASTLE",
"has_tags",
"ADVENTURE"
],
[
"HOWL'S MOVING CASTLE",
"has_tags",
"BD-R"
],
[
"I CONFESS",
"has_tags",
"BD-R"
],
[
"I CONFESS",
"in_language",
"FRENCH"
],
[
"I WAS A MALE WAR BRIDE",
"has_tags",
"BD-R"
],
[
"I WAS A MALE WAR BRIDE",
"in_language",
"FRENCH"
],
[
"IVANHOE",
"has_genre",
"ADVENTURE"
],
[
"IVANHOE",
"has_tags",
"BD-R"
],
[
"JACK THE GIANT KILLER",
"has_genre",
"ADVENTURE"
],
[
"JACK THE GIANT KILLER",
"has_tags",
"BD-R"
],
[
"JACK THE GIANT KILLER",
"in_language",
"ENGLISH"
],
[
"JANE EYRE",
"has_tags",
"BD-R"
],
[
"JANE EYRE",
"in_language",
"ENGLISH"
],
[
"JANE EYRE",
"in_language",
"FRENCH"
],
[
"JOHN CARTER",
"has_genre",
"ADVENTURE"
],
[
"JOHN CARTER",
"has_tags",
"BD-R"
],
[
"JOURNEY TO THE CENTER OF THE EARTH",
"has_genre",
"ADVENTURE"
],
[
"JOURNEY TO THE CENTER OF THE EARTH",
"has_tags",
"ADVENTURE"
],
[
"JOURNEY TO THE CENTER OF THE EARTH",
"has_tags",
"BD-R"
],
[
"JUNGLE BOOK",
"has_genre",
"ADVENTURE"
],
[
"JUNGLE BOOK",
"has_tags",
"BD-R"
],
[
"KING KONG",
"has_genre",
"ADVENTURE"
],
[
"KING KONG",
"has_tags",
"ADVENTURE"
],
[
"KING KONG",
"has_tags",
"BD-R"
],
[
"KING OF HEARTS",
"has_tags",
"BD-R"
],
[
"KING OF HEARTS",
"in_language",
"FRENCH"
],
[
"KING SOLOMON'S MINES",
"has_genre",
"ADVENTURE"
],
[
"KING SOLOMON'S MINES",
"has_tags",
"ADVENTURE"
],
[
"KING SOLOMON'S MINES",
"has_tags",
"BD-R"
],
[
"KISMET",
"has_tags",
"BD-R"
],
[
"KISMET",
"in_language",
"ENGLISH"
],
[
"KNIGHTS OF THE ROUND TABLE",
"has_genre",
"ADVENTURE"
],
[
"KNIGHTS OF THE ROUND TABLE",
"has_tags",
"BD-R"
],
[
"LA HAINE",
"has_tags",
"BD-R"
],
[
"LA HAINE",
"has_tags",
"FRENCH"
],
[
"LA HAINE",
"in_language",
"FRENCH"
],
[
"LABYRINTH",
"has_genre",
"ADVENTURE"
],
[
"LABYRINTH",
"has_tags",
"ADVENTURE"
],
[
"LABYRINTH",
"has_tags",
"BD-R"
],
[
"LAWRENCE OF ARABIA",
"has_genre",
"ADVENTURE"
],
[
"LAWRENCE OF ARABIA",
"has_tags",
"BD-R"
],
[
"LE BEAU SERGE",
"has_tags",
"BD-R"
],
[
"LE BEAU SERGE",
"in_language",
"FRENCH"
],
[
"LES COUSINS",
"has_tags",
"BD-R"
],
[
"LES COUSINS",
"in_language",
"FRENCH"
],
[
"LOLA",
"has_tags",
"BD-R"
],
[
"LOLA",
"in_language",
"FRENCH"
],
[
"LORD OF THE FLIES",
"has_tags",
"BD-R"
],
[
"LORD OF THE FLIES",
"in_language",
"ENGLISH"
],
[
"MAN OF LA MANCHA",
"has_tags",
"BD-R"
],
[
"MAN OF LA MANCHA",
"in_language",
"ENGLISH"
],
[
"MARAT/SADE",
"has_tags",
"BD-R"
],
[
"MARAT/SADE",
"in_language",
"ENGLISH"
],
[
"MAYERLING",
"has_tags",
"BD-R"
],
[
"MAYERLING",
"in_language",
"ENGLISH"
],
[
"MAYERLING",
"in_language",
"FRENCH"
],
[
"MODEL SHOP",
"has_tags",
"BD-R"
],
[
"MODEL SHOP",
"in_language",
"ENGLISH"
],
[
"MON ONCLE",
"has_tags",
"BD-R"
],
[
"MON ONCLE",
"in_language",
"FRENCH"
],
[
"MY FAIR LADY",
"has_tags",
"BD-R"
],
[
"MY FAIR LADY",
"in_language",
"ENGLISH"
],
[
"MY FAVORITE SEASON",
"has_tags",
"BD-R"
],
[
"MY FAVORITE SEASON",
"in_language",
"FRENCH"
],
[
"O BROTHER, WHERE ART THOU?",
"has_genre",
"ADVENTURE"
],
[
"O BROTHER, WHERE ART THOU?",
"has_tags",
"ADVENTURE"
],
[
"O BROTHER, WHERE ART THOU?",
"has_tags",
"BD-R"
],
[
"ONE MILLION YEARS B.C.",
"has_genre",
"ADVENTURE"
],
[
"ONE MILLION YEARS B.C.",
"has_tags",
"BD-R"
],
[
"OPERATION CROSSBOW",
"has_tags",
"BD-R"
],
[
"OPERATION CROSSBOW",
"release_year",
"1965"
],
[
"PICKPOCKET",
"has_tags",
"BD-R"
],
[
"PICKPOCKET",
"in_language",
"FRENCH"
],
[
"PORT OF SHADOWS",
"has_tags",
"BD-R"
],
[
"PORT OF SHADOWS",
"in_language",
"FRENCH"
],
[
"PREHISTORIC WOMEN",
"has_genre",
"ADVENTURE"
],
[
"PREHISTORIC WOMEN",
"has_tags",
"BD-R"
],
[
"PURPLE NOON",
"has_tags",
"BD-R"
],
[
"PURPLE NOON",
"in_language",
"FRENCH"
],
[
"REPULSION",
"has_tags",
"BD-R"
],
[
"REPULSION",
"in_language",
"ENGLISH"
],
[
"REPULSION",
"release_year",
"1965"
],
[
"RIFIFI",
"has_tags",
"BD-R"
],
[
"RIFIFI",
"in_language",
"FRENCH"
],
[
"ROBIN AND MARIAN",
"has_genre",
"ADVENTURE"
],
[
"ROBIN AND MARIAN",
"has_tags",
"BD-R"
],
[
"ROMEO AND JULIET",
"has_tags",
"BD-R"
],
[
"ROMEO AND JULIET",
"in_language",
"ENGLISH"
],
[
"SAHARA",
"has_genre",
"ADVENTURE"
],
[
"SAHARA",
"has_tags",
"BD-R"
],
[
"SEX IS COMEDY",
"has_tags",
"BD-R"
],
[
"SEX IS COMEDY",
"in_language",
"FRENCH"
],
[
"SHEENA",
"has_genre",
"ADVENTURE"
],
[
"SHEENA",
"has_tags",
"BD-R"
],
[
"SHERLOCK HOLMES AND THE SECRET WEAPON",
"has_genre",
"ADVENTURE"
],
[
"SHERLOCK HOLMES AND THE SECRET WEAPON",
"has_tags",
"BD-R"
],
[
"SPIRITS OF THE DEAD",
"directed_by",
"LOUIS MALLE"
],
[
"SPIRITS OF THE DEAD",
"has_tags",
"BD-R"
],
[
"SPIRITS OF THE DEAD",
"in_language",
"ENGLISH"
],
[
"SPIRITS OF THE DEAD",
"in_language",
"FRENCH"
],
[
"SPIRITS OF THE DEAD",
"starred_actors",
"BRIGITTE BARDOT"
],
[
"SPIRITS OF THE DEAD",
"written_by",
"LOUIS MALLE"
],
[
"STORY OF WOMEN",
"has_tags",
"BD-R"
],
[
"STORY OF WOMEN",
"in_language",
"FRENCH"
],
[
"TARZAN THE APE MAN",
"has_genre",
"ADVENTURE"
],
[
"TARZAN THE APE MAN",
"has_tags",
"BD-R"
],
[
"TARZAN'S NEW YORK ADVENTURE",
"has_genre",
"ADVENTURE"
],
[
"TARZAN'S NEW YORK ADVENTURE",
"has_tags",
"BD-R"
],
[
"THE ADVENTURES OF HUCKLEBERRY FINN",
"has_genre",
"ADVENTURE"
],
[
"THE ADVENTURES OF HUCKLEBERRY FINN",
"has_tags",
"BD-R"
],
[
"THE APARTMENT",
"has_tags",
"BD-R"
],
[
"THE APARTMENT",
"in_language",
"FRENCH"
],
[
"THE BATTLE OF ALGIERS",
"has_tags",
"BD-R"
],
[
"THE BATTLE OF ALGIERS",
"has_tags",
"FRENCH"
],
[
"THE BATTLE OF ALGIERS",
"in_language",
"FRENCH"
],
[
"THE BEDFORD INCIDENT",
"has_tags",
"BD-R"
],
[
"THE BEDFORD INCIDENT",
"release_year",
"1965"
],
[
"THE BRIDE WORE BLACK",
"has_tags",
"BD-R"
],
[
"THE BRIDE WORE BLACK",
"in_language",
"FRENCH"
],
[
"THE BRIDE WORE BLACK",
"starred_actors",
"JEANNE MOREAU"
],
[
"THE BROTHERS GRIMM",
"has_genre",
"ADVENTURE"
],
[
"THE BROTHERS GRIMM",
"has_tags",
"ADVENTURE"
],
[
"THE BROTHERS GRIMM",
"has_tags",
"BD-R"
],
[
"THE BROTHERS GRIMM",
"in_language",
"FRENCH"
],
[
"THE CADDY",
"has_tags",
"BD-R"
],
[
"THE CADDY",
"starred_actors",
"JERRY LEWIS"
],
[
"THE CANTERVILLE GHOST",
"has_tags",
"BD-R"
],
[
"THE CANTERVILLE GHOST",
"in_language",
"ENGLISH"
],
[
"THE CHARGE OF THE LIGHT BRIGADE",
"has_genre",
"ADVENTURE"
],
[
"THE CHARGE OF THE LIGHT BRIGADE",
"has_tags",
"BD-R"
],
[
"THE CORSICAN BROTHERS",
"has_tags",
"BD-R"
],
[
"THE CORSICAN BROTHERS",
"in_language",
"ENGLISH"
],
[
"THE CRIMSON PIRATE",
"has_genre",
"ADVENTURE"
],
[
"THE CRIMSON PIRATE",
"has_tags",
"BD-R"
],
[
"THE CURSE OF FRANKENSTEIN",
"has_tags",
"BD-R"
],
[
"THE CURSE OF FRANKENSTEIN",
"in_language",
"ENGLISH"
],
[
"THE DECEIVERS",
"has_genre",
"ADVENTURE"
],
[
"THE DECEIVERS",
"has_tags",
"BD-R"
],
[
"THE DISORDERLY ORDERLY",
"starred_actors",
"JERRY LEWIS"
],
[
"THE FAMILY JEWELS",
"directed_by",
"JERRY LEWIS"
],
[
"THE FAMILY JEWELS",
"release_year",
"1965"
],
[
"THE FAMILY JEWELS",
"starred_actors",
"JERRY LEWIS"
],
[
"THE FAMILY JEWELS",
"written_by",
"JERRY LEWIS"
],
[
"THE FLAME AND THE ARROW",
"has_genre",
"ADVENTURE"
],
[
"THE FLAME AND THE ARROW",
"has_tags",
"BD-R"
],
[
"THE FOUR FEATHERS",
"has_genre",
"ADVENTURE"
],
[
"THE FOUR FEATHERS",
"has_tags",
"BD-R"
],
[
"THE GUNS OF NAVARONE",
"has_genre",
"ADVENTURE"
],
[
"THE GUNS OF NAVARONE",
"has_tags",
"BD-R"
],
[
"THE HALLELUJAH TRAIL",
"has_tags",
"BD-R"
],
[
"THE HALLELUJAH TRAIL",
"release_year",
"1965"
],
[
"THE HAPPY TIME",
"has_tags",
"BD-R"
],
[
"THE HAPPY TIME",
"in_language",
"FRENCH"
],
[
"THE HUNCHBACK OF NOTRE DAME",
"has_tags",
"BD-R"
],
[
"THE HUNCHBACK OF NOTRE DAME",
"in_language",
"ENGLISH"
],
[
"THE HUNCHBACK OF NOTRE DAME",
"in_language",
"FRENCH"
],
[
"THE ILLUSIONIST",
"has_tags",
"BD-R"
],
[
"THE ILLUSIONIST",
"in_language",
"FRENCH"
],
[
"THE IMMORTAL STORY",
"has_tags",
"BD-R"
],
[
"THE IMMORTAL STORY",
"in_language",
"FRENCH"
],
[
"THE IMMORTAL STORY",
"starred_actors",
"JEANNE MOREAU"
],
[
"THE LADY VANISHES",
"has_tags",
"BD-R"
],
[
"THE LADY VANISHES",
"in_language",
"ENGLISH"
],
[
"THE LAND THAT TIME FORGOT",
"has_genre",
"ADVENTURE"
],
[
"THE LAND THAT TIME FORGOT",
"has_tags",
"ADVENTURE"
],
[
"THE LAND THAT TIME FORGOT",
"has_tags",
"BD-R"
],
[
"THE LOVE PARADE",
"has_tags",
"BD-R"
],
[
"THE LOVE PARADE",
"in_language",
"FRENCH"
],
[
"THE LOVED ONE",
"has_tags",
"BD-R"
],
[
"THE LOVED ONE",
"release_year",
"1965"
],
[
"THE MAN IN THE IRON MASK",
"has_genre",
"ADVENTURE"
],
[
"THE MAN IN THE IRON MASK",
"has_tags",
"ADVENTURE"
],
[
"THE MAN IN THE IRON MASK",
"has_tags",
"BD-R"
],
[
"THE MAN WHO LOVED WOMEN",
"has_tags",
"BD-R"
],
[
"THE MAN WHO LOVED WOMEN",
"in_language",
"FRENCH"
],
[
"THE MARK OF ZORRO",
"has_genre",
"ADVENTURE"
],
[
"THE MARK OF ZORRO",
"has_tags",
"BD-R"
],
[
"THE MASK OF FU MANCHU",
"has_genre",
"ADVENTURE"
],
[
"THE MASK OF FU MANCHU",
"has_tags",
"BD-R"
],
[
"THE MASTER OF BALLANTRAE",
"has_genre",
"ADVENTURE"
],
[
"THE MASTER OF BALLANTRAE",
"has_tags",
"BD-R"
],
[
"THE MERRY WIDOW",
"has_tags",
"BD-R"
],
[
"THE MERRY WIDOW",
"in_language",
"FRENCH"
],
[
"THE MUMMY",
"has_genre",
"ADVENTURE"
],
[
"THE MUMMY",
"has_tags",
"ADVENTURE"
],
[
"THE MUMMY",
"has_tags",
"BD-R"
],
[
"THE NUTTY PROFESSOR",
"directed_by",
"JERRY LEWIS"
],
[
"THE NUTTY PROFESSOR",
"has_tags",
"BD-R"
],
[
"THE NUTTY PROFESSOR",
"has_tags",
"JERRY LEWIS"
],
[
"THE NUTTY PROFESSOR",
"starred_actors",
"JERRY LEWIS"
],
[
"THE NUTTY PROFESSOR",
"written_by",
"JERRY LEWIS"
],
[
"THE PEOPLE THAT TIME FORGOT",
"has_genre",
"ADVENTURE"
],
[
"THE PEOPLE THAT TIME FORGOT",
"has_tags",
"BD-R"
],
[
"THE PHANTOM TOLLBOOTH",
"has_genre",
"ADVENTURE"
],
[
"THE PHANTOM TOLLBOOTH",
"has_tags",
"BD-R"
],
[
"THE PRINCE AND THE PAUPER",
"has_genre",
"ADVENTURE"
],
[
"THE PRINCE AND THE PAUPER",
"has_tags",
"BD-R"
],
[
"THE PRISONER OF ZENDA",
"has_genre",
"ADVENTURE"
],
[
"THE PRISONER OF ZENDA",
"has_tags",
"BD-R"
],
[
"THE ROSE TATTOO",
"has_tags",
"BD-R"
],
[
"THE ROSE TATTOO",
"in_language",
"ENGLISH"
],
[
"THE SCARLET PIMPERNEL",
"has_genre",
"ADVENTURE"
],
[
"THE SCARLET PIMPERNEL",
"has_tags",
"BD-R"
],
[
"THE SCARLET PIMPERNEL",
"in_language",
"ENGLISH"
],
[
"THE SCARLET PIMPERNEL",
"in_language",
"FRENCH"
],
[
"THE SEA HAWK",
"has_tags",
"BD-R"
],
[
"THE SEA HAWK",
"in_language",
"ENGLISH"
],
[
"THE SECRET LIFE OF WALTER MITTY",
"has_genre",
"ADVENTURE"
],
[
"THE SECRET LIFE OF WALTER MITTY",
"has_tags",
"BD-R"
],
[
"THE SECRET LIFE OF WALTER MITTY",
"in_language",
"ENGLISH"
],
[
"THE SHOP ON MAIN STREET",
"has_tags",
"BD-R"
],
[
"THE SHOP ON MAIN STREET",
"release_year",
"1965"
],
[
"THE SILVER CHALICE",
"has_tags",
"BD-R"
],
[
"THE SILVER CHALICE",
"in_language",
"ENGLISH"
],
[
"THE SON OF THE SHEIK",
"has_genre",
"ADVENTURE"
],
[
"THE SON OF THE SHEIK",
"has_tags",
"BD-R"
],
[
"THE SPY WHO CAME IN FROM THE COLD",
"has_tags",
"BD-R"
],
[
"THE SPY WHO CAME IN FROM THE COLD",
"in_language",
"ENGLISH"
],
[
"THE SPY WHO CAME IN FROM THE COLD",
"release_year",
"1965"
],
[
"THE STRANGER",
"has_tags",
"BD-R"
],
[
"THE STRANGER",
"written_by",
"ALBERT CAMUS"
],
[
"THE THREE MUSKETEERS",
"has_genre",
"ADVENTURE"
],
[
"THE THREE MUSKETEERS",
"has_tags",
"BD-R"
],
[
"THE TRAIN",
"has_tags",
"BD-R"
],
[
"THE TRAIN",
"starred_actors",
"JEANNE MOREAU"
],
[
"THE TREASURE OF THE SIERRA MADRE",
"has_genre",
"ADVENTURE"
],
[
"THE TREASURE OF THE SIERRA MADRE",
"has_tags",
"BD-R"
],
[
"THE TREASURE OF THE SIERRA MADRE",
"in_language",
"ENGLISH"
],
[
"THE TRIAL",
"has_tags",
"BD-R"
],
[
"THE TRIAL",
"starred_actors",
"JEANNE MOREAU"
],
[
"THE TRIAL OF JOAN OF ARC",
"has_tags",
"BD-R"
],
[
"THE TRIAL OF JOAN OF ARC",
"in_language",
"FRENCH"
],
[
"THE UMBRELLAS OF CHERBOURG",
"has_tags",
"BD-R"
],
[
"THE UMBRELLAS OF CHERBOURG",
"has_tags",
"FRENCH"
],
[
"THE UMBRELLAS OF CHERBOURG",
"in_language",
"FRENCH"
],
[
"THE VALACHI PAPERS",
"has_tags",
"BD-R"
],
[
"THE VALACHI PAPERS",
"in_language",
"ENGLISH"
],
[
"THE VANISHING",
"has_tags",
"BD-R"
],
[
"THE VANISHING",
"in_language",
"ENGLISH"
],
[
"THE VANISHING",
"in_language",
"FRENCH"
],
[
"THE VIKINGS",
"has_genre",
"ADVENTURE"
],
[
"THE VIKINGS",
"has_tags",
"BD-R"
],
[
"THE WIND AND THE LION",
"has_genre",
"ADVENTURE"
],
[
"THE WIND AND THE LION",
"has_tags",
"BD-R"
],
[
"THIS HAPPY BREED",
"has_tags",
"BD-R"
],
[
"THIS HAPPY BREED",
"in_language",
"ENGLISH"
],
[
"TO HAVE AND HAVE NOT",
"has_genre",
"ADVENTURE"
],
[
"TO HAVE AND HAVE NOT",
"has_tags",
"BD-R"
],
[
"TOM JONES",
"has_genre",
"ADVENTURE"
],
[
"TOM JONES",
"has_tags",
"BD-R"
],
[
"TOM SAWYER",
"has_genre",
"ADVENTURE"
],
[
"TOM SAWYER",
"has_tags",
"BD-R"
],
[
"TRIPLE CROSS",
"has_tags",
"BD-R"
],
[
"TRIPLE CROSS",
"in_language",
"FRENCH"
],
[
"VICTIM",
"has_tags",
"BD-R"
],
[
"VICTIM",
"in_language",
"ENGLISH"
],
[
"VILLAGE OF THE GIANTS",
"has_tags",
"BD-R"
],
[
"VILLAGE OF THE GIANTS",
"release_year",
"1965"
],
[
"VIVA MARIA!",
"directed_by",
"LOUIS MALLE"
],
[
"VIVA MARIA!",
"has_genre",
"ADVENTURE"
],
[
"VIVA MARIA!",
"has_tags",
"BD-R"
],
[
"VIVA MARIA!",
"has_tags",
"BRIGITTE BARDOT"
],
[
"VIVA MARIA!",
"has_tags",
"FRENCH"
],
[
"VIVA MARIA!",
"has_tags",
"JEANNE MOREAU"
],
[
"VIVA MARIA!",
"has_tags",
"LOUIS MALLE"
],
[
"VIVA MARIA!",
"in_language",
"ENGLISH"
],
[
"VIVA MARIA!",
"in_language",
"FRENCH"
],
[
"VIVA MARIA!",
"release_year",
"1965"
],
[
"VIVA MARIA!",
"starred_actors",
"BRIGITTE BARDOT"
],
[
"VIVA MARIA!",
"starred_actors",
"JEANNE MOREAU"
],
[
"VIVA MARIA!",
"written_by",
"LOUIS MALLE"
],
[
"WENT THE DAY WELL?",
"has_tags",
"BD-R"
],
[
"WENT THE DAY WELL?",
"in_language",
"ENGLISH"
],
[
"WHO'S AFRAID OF VIRGINIA WOOLF?",
"has_tags",
"BD-R"
],
[
"WHO'S AFRAID OF VIRGINIA WOOLF?",
"in_language",
"ENGLISH"
],
[
"WITCHFINDER GENERAL",
"has_tags",
"BD-R"
],
[
"WITCHFINDER GENERAL",
"in_language",
"ENGLISH"
],
[
"Z",
"has_tags",
"BD-R"
],
[
"Z",
"in_language",
"FRENCH"
],
[
"ZERO FOR CONDUCT",
"has_tags",
"BD-R"
],
[
"ZERO FOR CONDUCT",
"has_tags",
"FRENCH"
],
[
"ZERO FOR CONDUCT",
"in_language",
"FRENCH"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
5438, 1931
18132, 1938
35063, 1976
1092, ARROWSMITH
3706, BEULAH BONDI
32354, FOUR MEN AND A PRAYER
7736, JAMES STEWART
13255, JOHN FORD
15311, OF HUMAN HEARTS
31805, SEAS BENEATH
28357, ST. IVES
7352, STREET SCENE
19417, THE CRIMINAL CODE
36235, THE MAN WHO SHOT LIBERTY VALANCE
31357, THE SHOOTIST
32860, THE SHOPWORN ANGEL
30453, THE STAR WITNESS
37207, TWO RODE TOGETHER
13631, VIVACIOUS LADY
27356, WALTER HUSTON
8184, YOU CAN'T TAKE IT WITH YOU
src, edge_attr, dst
1092, directed_by, 13255
1092, release_year, 5438
32354, directed_by, 13255
32354, release_year, 18132
15311, release_year, 18132
15311, starred_actors, 3706
15311, starred_actors, 7736
15311, starred_actors, 27356
31805, directed_by, 13255
31805, release_year, 5438
28357, release_year, 35063
7352, release_year, 5438
7352, starred_actors, 3706
19417, release_year, 5438
19417, starred_actors, 27356
36235, directed_by, 13255
36235, has_tags, 7736
36235, has_tags, 13255
36235, starred_actors, 7736
31357, release_year, 35063
31357, starred_actors, 7736
32860, release_year, 18132
32860, starred_actors, 7736
30453, release_year, 5438
30453, starred_actors, 27356
37207, directed_by, 13255
37207, starred_actors, 7736
13631, release_year, 18132
13631, starred_actors, 3706
13631, starred_actors, 7736
8184, has_tags, 7736
8184, release_year, 18132
8184, starred_actors, 7736
Question: For what reason are ARROWSMITH, OF HUMAN HEARTS, and ST. IVES associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ARROWSMITH",
"OF HUMAN HEARTS",
"ST. IVES"
],
"valid_edges": [
[
"ARROWSMITH",
"directed_by",
"JOHN FORD"
],
[
"ARROWSMITH",
"release_year",
"1931"
],
[
"FOUR MEN AND A PRAYER",
"directed_by",
"JOHN FORD"
],
[
"FOUR MEN AND A PRAYER",
"release_year",
"1938"
],
[
"OF HUMAN HEARTS",
"release_year",
"1938"
],
[
"OF HUMAN HEARTS",
"starred_actors",
"BEULAH BONDI"
],
[
"OF HUMAN HEARTS",
"starred_actors",
"JAMES STEWART"
],
[
"OF HUMAN HEARTS",
"starred_actors",
"WALTER HUSTON"
],
[
"SEAS BENEATH",
"directed_by",
"JOHN FORD"
],
[
"SEAS BENEATH",
"release_year",
"1931"
],
[
"ST. IVES",
"release_year",
"1976"
],
[
"STREET SCENE",
"release_year",
"1931"
],
[
"STREET SCENE",
"starred_actors",
"BEULAH BONDI"
],
[
"THE CRIMINAL CODE",
"release_year",
"1931"
],
[
"THE CRIMINAL CODE",
"starred_actors",
"WALTER HUSTON"
],
[
"THE MAN WHO SHOT LIBERTY VALANCE",
"directed_by",
"JOHN FORD"
],
[
"THE MAN WHO SHOT LIBERTY VALANCE",
"has_tags",
"JAMES STEWART"
],
[
"THE MAN WHO SHOT LIBERTY VALANCE",
"has_tags",
"JOHN FORD"
],
[
"THE MAN WHO SHOT LIBERTY VALANCE",
"starred_actors",
"JAMES STEWART"
],
[
"THE SHOOTIST",
"release_year",
"1976"
],
[
"THE SHOOTIST",
"starred_actors",
"JAMES STEWART"
],
[
"THE SHOPWORN ANGEL",
"release_year",
"1938"
],
[
"THE SHOPWORN ANGEL",
"starred_actors",
"JAMES STEWART"
],
[
"THE STAR WITNESS",
"release_year",
"1931"
],
[
"THE STAR WITNESS",
"starred_actors",
"WALTER HUSTON"
],
[
"TWO RODE TOGETHER",
"directed_by",
"JOHN FORD"
],
[
"TWO RODE TOGETHER",
"starred_actors",
"JAMES STEWART"
],
[
"VIVACIOUS LADY",
"release_year",
"1938"
],
[
"VIVACIOUS LADY",
"starred_actors",
"BEULAH BONDI"
],
[
"VIVACIOUS LADY",
"starred_actors",
"JAMES STEWART"
],
[
"YOU CAN'T TAKE IT WITH YOU",
"has_tags",
"JAMES STEWART"
],
[
"YOU CAN'T TAKE IT WITH YOU",
"release_year",
"1938"
],
[
"YOU CAN'T TAKE IT WITH YOU",
"starred_actors",
"JAMES STEWART"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
36173, 1946
30146, A CHRISTMAS CAROL
16150, A CHRISTMAS STORY
19697, ALAIN RESNAIS
9677, ANATOMY OF A MURDER
25570, BEAUTY AND THE BEAST
2313, BEN-HUR
17280, CHRISTMAS
14728, CLASSIC
22958, FAMOUS
1331, IT'S A WONDERFUL LIFE
7736, JAMES STEWART
30057, LAST YEAR AT MARIENBAD
39471, LETTERS TO JULIET
25534, LONG
13672, LOVE ACTUALLY
1994, NOTORIOUS
15644, OLIVER TWIST
37135, REAR WINDOW
38875, ROMANTIC
40066, THE JUNGLE BOOK
28776, THE WIZARD OF OZ
7957, VERTIGO
33318, YOU AIN'T SEEN NOTHIN' YET
src, edge_attr, dst
30146, has_imdb_votes, 22958
30146, has_tags, 17280
30146, has_tags, 14728
16150, has_tags, 17280
16150, has_tags, 14728
9677, has_imdb_votes, 22958
9677, has_tags, 7736
9677, starred_actors, 7736
25570, has_imdb_votes, 22958
25570, has_tags, 14728
25570, release_year, 36173
2313, has_imdb_votes, 22958
2313, has_tags, 25534
1331, has_tags, 17280
1331, has_tags, 14728
1331, has_tags, 7736
1331, has_tags, 25534
1331, release_year, 36173
1331, starred_actors, 7736
30057, directed_by, 19697
30057, has_imdb_votes, 22958
30057, has_tags, 19697
39471, has_imdb_votes, 22958
39471, has_tags, 38875
13672, has_tags, 17280
13672, has_tags, 38875
1994, has_imdb_votes, 22958
1994, release_year, 36173
15644, has_imdb_votes, 22958
15644, has_tags, 14728
37135, has_tags, 14728
37135, has_tags, 7736
37135, starred_actors, 7736
40066, has_imdb_votes, 22958
40066, has_tags, 14728
28776, has_imdb_votes, 22958
28776, has_tags, 14728
7957, has_tags, 14728
7957, has_tags, 7736
7957, starred_actors, 7736
33318, directed_by, 19697
33318, has_tags, 19697
33318, written_by, 19697
Question: How are IT'S A WONDERFUL LIFE, LETTERS TO JULIET, and YOU AIN'T SEEN NOTHIN' YET related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"IT'S A WONDERFUL LIFE",
"LETTERS TO JULIET",
"YOU AIN'T SEEN NOTHIN' YET"
],
"valid_edges": [
[
"A CHRISTMAS CAROL",
"has_imdb_votes",
"FAMOUS"
],
[
"A CHRISTMAS CAROL",
"has_tags",
"CHRISTMAS"
],
[
"A CHRISTMAS CAROL",
"has_tags",
"CLASSIC"
],
[
"A CHRISTMAS STORY",
"has_tags",
"CHRISTMAS"
],
[
"A CHRISTMAS STORY",
"has_tags",
"CLASSIC"
],
[
"ANATOMY OF A MURDER",
"has_imdb_votes",
"FAMOUS"
],
[
"ANATOMY OF A MURDER",
"has_tags",
"JAMES STEWART"
],
[
"ANATOMY OF A MURDER",
"starred_actors",
"JAMES STEWART"
],
[
"BEAUTY AND THE BEAST",
"has_imdb_votes",
"FAMOUS"
],
[
"BEAUTY AND THE BEAST",
"has_tags",
"CLASSIC"
],
[
"BEAUTY AND THE BEAST",
"release_year",
"1946"
],
[
"BEN-HUR",
"has_imdb_votes",
"FAMOUS"
],
[
"BEN-HUR",
"has_tags",
"LONG"
],
[
"IT'S A WONDERFUL LIFE",
"has_tags",
"CHRISTMAS"
],
[
"IT'S A WONDERFUL LIFE",
"has_tags",
"CLASSIC"
],
[
"IT'S A WONDERFUL LIFE",
"has_tags",
"JAMES STEWART"
],
[
"IT'S A WONDERFUL LIFE",
"has_tags",
"LONG"
],
[
"IT'S A WONDERFUL LIFE",
"release_year",
"1946"
],
[
"IT'S A WONDERFUL LIFE",
"starred_actors",
"JAMES STEWART"
],
[
"LAST YEAR AT MARIENBAD",
"directed_by",
"ALAIN RESNAIS"
],
[
"LAST YEAR AT MARIENBAD",
"has_imdb_votes",
"FAMOUS"
],
[
"LAST YEAR AT MARIENBAD",
"has_tags",
"ALAIN RESNAIS"
],
[
"LETTERS TO JULIET",
"has_imdb_votes",
"FAMOUS"
],
[
"LETTERS TO JULIET",
"has_tags",
"ROMANTIC"
],
[
"LOVE ACTUALLY",
"has_tags",
"CHRISTMAS"
],
[
"LOVE ACTUALLY",
"has_tags",
"ROMANTIC"
],
[
"NOTORIOUS",
"has_imdb_votes",
"FAMOUS"
],
[
"NOTORIOUS",
"release_year",
"1946"
],
[
"OLIVER TWIST",
"has_imdb_votes",
"FAMOUS"
],
[
"OLIVER TWIST",
"has_tags",
"CLASSIC"
],
[
"REAR WINDOW",
"has_tags",
"CLASSIC"
],
[
"REAR WINDOW",
"has_tags",
"JAMES STEWART"
],
[
"REAR WINDOW",
"starred_actors",
"JAMES STEWART"
],
[
"THE JUNGLE BOOK",
"has_imdb_votes",
"FAMOUS"
],
[
"THE JUNGLE BOOK",
"has_tags",
"CLASSIC"
],
[
"THE WIZARD OF OZ",
"has_imdb_votes",
"FAMOUS"
],
[
"THE WIZARD OF OZ",
"has_tags",
"CLASSIC"
],
[
"VERTIGO",
"has_tags",
"CLASSIC"
],
[
"VERTIGO",
"has_tags",
"JAMES STEWART"
],
[
"VERTIGO",
"starred_actors",
"JAMES STEWART"
],
[
"YOU AIN'T SEEN NOTHIN' YET",
"directed_by",
"ALAIN RESNAIS"
],
[
"YOU AIN'T SEEN NOTHIN' YET",
"has_tags",
"ALAIN RESNAIS"
],
[
"YOU AIN'T SEEN NOTHIN' YET",
"written_by",
"ALAIN RESNAIS"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
1421, 2013
3560, A FIELD IN ENGLAND
20723, ALAN PARTRIDGE
30870, BEAUTIFUL CREATURES
8381, DETOUR
31783, ENGLISH
37158, ERIC HEISSERER
21573, GIRL ON A BICYCLE
12776, GRAND PIANO
33776, HOURS
847, JACK THE GIANT KILLER
37407, JACK THE GIANT SLAYER
29418, JEREMY IRONS
24015, LORD OF TEARS
31324, NIGHT TRAIN TO LISBON
16883, NORWEGIAN
25824, PARADISE
8352, PARANOIA
39135, REACHING FOR THE MOON
38271, SNOWPIERCER
18443, SONDRE KROGTOFT LARSEN
30357, STOKER
6949, SUNSHINE ON LEITH
38107, THE EAST
24306, THE ENGLISH TEACHER
38918, THE FAMILY
2872, THE GREAT GATSBY
30746, THE SECRET LIFE OF WALTER MITTY
19624, THE THING
30209, YEH JAWAANI HAI DEEWANI
17777, ZULU
src, edge_attr, dst
3560, in_language, 31783
3560, release_year, 1421
20723, in_language, 31783
20723, release_year, 1421
30870, release_year, 1421
30870, starred_actors, 29418
8381, in_language, 16883
8381, starred_actors, 18443
21573, in_language, 31783
21573, release_year, 1421
12776, in_language, 31783
12776, release_year, 1421
33776, directed_by, 37158
33776, release_year, 1421
33776, written_by, 37158
847, in_language, 31783
847, release_year, 1421
37407, in_language, 31783
37407, release_year, 1421
24015, in_language, 31783
24015, release_year, 1421
31324, has_tags, 29418
31324, in_language, 31783
31324, release_year, 1421
31324, starred_actors, 29418
25824, in_language, 31783
25824, release_year, 1421
8352, release_year, 1421
39135, in_language, 31783
39135, release_year, 1421
38271, in_language, 31783
38271, release_year, 1421
30357, in_language, 31783
30357, release_year, 1421
6949, in_language, 31783
6949, release_year, 1421
38107, in_language, 31783
38107, release_year, 1421
24306, has_tags, 31783
24306, in_language, 31783
24306, release_year, 1421
38918, in_language, 31783
38918, release_year, 1421
2872, in_language, 31783
2872, release_year, 1421
30746, in_language, 31783
30746, release_year, 1421
19624, has_tags, 16883
19624, has_tags, 8352
19624, in_language, 16883
19624, written_by, 37158
30209, in_language, 31783
30209, release_year, 1421
17777, in_language, 31783
17777, release_year, 1421
Question: In what context are ERIC HEISSERER, NIGHT TRAIN TO LISBON, and SONDRE KROGTOFT LARSEN connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ERIC HEISSERER",
"NIGHT TRAIN TO LISBON",
"SONDRE KROGTOFT LARSEN"
],
"valid_edges": [
[
"A FIELD IN ENGLAND",
"in_language",
"ENGLISH"
],
[
"A FIELD IN ENGLAND",
"release_year",
"2013"
],
[
"ALAN PARTRIDGE",
"in_language",
"ENGLISH"
],
[
"ALAN PARTRIDGE",
"release_year",
"2013"
],
[
"BEAUTIFUL CREATURES",
"release_year",
"2013"
],
[
"BEAUTIFUL CREATURES",
"starred_actors",
"JEREMY IRONS"
],
[
"DETOUR",
"in_language",
"NORWEGIAN"
],
[
"DETOUR",
"starred_actors",
"SONDRE KROGTOFT LARSEN"
],
[
"GIRL ON A BICYCLE",
"in_language",
"ENGLISH"
],
[
"GIRL ON A BICYCLE",
"release_year",
"2013"
],
[
"GRAND PIANO",
"in_language",
"ENGLISH"
],
[
"GRAND PIANO",
"release_year",
"2013"
],
[
"HOURS",
"directed_by",
"ERIC HEISSERER"
],
[
"HOURS",
"release_year",
"2013"
],
[
"HOURS",
"written_by",
"ERIC HEISSERER"
],
[
"JACK THE GIANT KILLER",
"in_language",
"ENGLISH"
],
[
"JACK THE GIANT KILLER",
"release_year",
"2013"
],
[
"JACK THE GIANT SLAYER",
"in_language",
"ENGLISH"
],
[
"JACK THE GIANT SLAYER",
"release_year",
"2013"
],
[
"LORD OF TEARS",
"in_language",
"ENGLISH"
],
[
"LORD OF TEARS",
"release_year",
"2013"
],
[
"NIGHT TRAIN TO LISBON",
"has_tags",
"JEREMY IRONS"
],
[
"NIGHT TRAIN TO LISBON",
"in_language",
"ENGLISH"
],
[
"NIGHT TRAIN TO LISBON",
"release_year",
"2013"
],
[
"NIGHT TRAIN TO LISBON",
"starred_actors",
"JEREMY IRONS"
],
[
"PARADISE",
"in_language",
"ENGLISH"
],
[
"PARADISE",
"release_year",
"2013"
],
[
"PARANOIA",
"release_year",
"2013"
],
[
"REACHING FOR THE MOON",
"in_language",
"ENGLISH"
],
[
"REACHING FOR THE MOON",
"release_year",
"2013"
],
[
"SNOWPIERCER",
"in_language",
"ENGLISH"
],
[
"SNOWPIERCER",
"release_year",
"2013"
],
[
"STOKER",
"in_language",
"ENGLISH"
],
[
"STOKER",
"release_year",
"2013"
],
[
"SUNSHINE ON LEITH",
"in_language",
"ENGLISH"
],
[
"SUNSHINE ON LEITH",
"release_year",
"2013"
],
[
"THE EAST",
"in_language",
"ENGLISH"
],
[
"THE EAST",
"release_year",
"2013"
],
[
"THE ENGLISH TEACHER",
"has_tags",
"ENGLISH"
],
[
"THE ENGLISH TEACHER",
"in_language",
"ENGLISH"
],
[
"THE ENGLISH TEACHER",
"release_year",
"2013"
],
[
"THE FAMILY",
"in_language",
"ENGLISH"
],
[
"THE FAMILY",
"release_year",
"2013"
],
[
"THE GREAT GATSBY",
"in_language",
"ENGLISH"
],
[
"THE GREAT GATSBY",
"release_year",
"2013"
],
[
"THE SECRET LIFE OF WALTER MITTY",
"in_language",
"ENGLISH"
],
[
"THE SECRET LIFE OF WALTER MITTY",
"release_year",
"2013"
],
[
"THE THING",
"has_tags",
"NORWEGIAN"
],
[
"THE THING",
"has_tags",
"PARANOIA"
],
[
"THE THING",
"in_language",
"NORWEGIAN"
],
[
"THE THING",
"written_by",
"ERIC HEISSERER"
],
[
"YEH JAWAANI HAI DEEWANI",
"in_language",
"ENGLISH"
],
[
"YEH JAWAANI HAI DEEWANI",
"release_year",
"2013"
],
[
"ZULU",
"in_language",
"ENGLISH"
],
[
"ZULU",
"release_year",
"2013"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
36279, 10 YEARS
29424, 2011
23250, 50/50
5158, A BAG OF HAMMERS
10158, A PRINCESS FOR CHRISTMAS
37154, ALAN JACOBS
26599, AMERICAN GUN
29881, AMERICANO
188, ANOTHER HAPPY DAY
23286, CARNAGE
28503, CLOUDBURST
23452, DARK HORSE
6375, DELICACY
14132, DESI BOYZ
36212, DRAMA
17854, GOING DOWN IN LA-LA LAND
13198, HOLY FLYING CIRCUS
21922, JANE EYRE
37830, JEFF, WHO LIVES AT HOME
15175, LE HAVRE
3800, LOSERS' CLUB
19802, LOVE
4234, MADEA'S BIG HAPPY FAMILY
35399, MICHAEL BRANDT
33300, NATURAL SELECTION
20537, NEWLYWEDS
10021, OUR IDIOT BROTHER
35664, RESTLESS
12301, SALMON FISHING IN THE YEMEN
23708, SUICIDE ROOM
18005, TAKE THIS WALTZ
26586, THAT'S WHAT I AM
39795, THE ARTIST
5838, THE CLOWN
11393, THE DESCENDANTS
32295, THE DILEMMA
3680, THE DOUBLE
6289, THE INTOUCHABLES
7816, THE THREE MUSKETEERS
13003, THE WELL-DIGGER'S DAUGHTER
5529, THIN ICE
8957, WE BOUGHT A ZOO
35511, WE HAVE A POPE
33483, WEEKEND
36565, WIN WIN
11924, YOUNG ADULT
16822, YOUR SISTER'S SISTER
28489, ZINDAGI NA MILEGI DOBARA
src, edge_attr, dst
36279, has_genre, 36212
36279, release_year, 29424
23250, has_genre, 36212
23250, release_year, 29424
5158, has_genre, 36212
5158, release_year, 29424
10158, has_genre, 36212
10158, release_year, 29424
26599, directed_by, 37154
26599, has_genre, 36212
26599, written_by, 37154
29881, has_genre, 36212
29881, release_year, 29424
188, has_genre, 36212
188, release_year, 29424
23286, has_genre, 36212
23286, release_year, 29424
28503, has_genre, 36212
28503, release_year, 29424
23452, has_genre, 36212
23452, release_year, 29424
6375, has_genre, 36212
6375, release_year, 29424
14132, has_genre, 36212
14132, release_year, 29424
17854, has_genre, 36212
17854, release_year, 29424
13198, has_genre, 36212
13198, release_year, 29424
21922, has_genre, 36212
21922, release_year, 29424
37830, has_genre, 36212
37830, release_year, 29424
15175, has_genre, 36212
15175, release_year, 29424
3800, has_genre, 36212
3800, release_year, 29424
19802, has_genre, 36212
19802, release_year, 29424
4234, has_genre, 36212
4234, release_year, 29424
33300, has_genre, 36212
33300, release_year, 29424
20537, has_genre, 36212
20537, release_year, 29424
10021, has_genre, 36212
10021, release_year, 29424
35664, has_genre, 36212
35664, release_year, 29424
12301, has_genre, 36212
12301, release_year, 29424
23708, has_genre, 36212
23708, release_year, 29424
18005, has_genre, 36212
18005, release_year, 29424
26586, has_genre, 36212
26586, release_year, 29424
39795, has_genre, 36212
39795, has_tags, 36212
39795, release_year, 29424
5838, has_genre, 36212
5838, release_year, 29424
11393, has_genre, 36212
11393, has_tags, 36212
11393, release_year, 29424
32295, has_genre, 36212
32295, release_year, 29424
3680, directed_by, 35399
3680, release_year, 29424
3680, written_by, 35399
6289, has_genre, 36212
6289, release_year, 29424
7816, has_genre, 36212
7816, release_year, 29424
13003, has_genre, 36212
13003, release_year, 29424
5529, has_genre, 36212
5529, release_year, 29424
8957, has_genre, 36212
8957, release_year, 29424
35511, has_genre, 36212
35511, release_year, 29424
33483, has_genre, 36212
33483, release_year, 29424
36565, has_genre, 36212
36565, release_year, 29424
11924, has_genre, 36212
11924, has_tags, 36212
11924, release_year, 29424
16822, has_genre, 36212
16822, release_year, 29424
28489, has_genre, 36212
28489, release_year, 29424
Question: How are ALAN JACOBS, MICHAEL BRANDT, and SUICIDE ROOM related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ALAN JACOBS",
"MICHAEL BRANDT",
"SUICIDE ROOM"
],
"valid_edges": [
[
"10 YEARS",
"has_genre",
"DRAMA"
],
[
"10 YEARS",
"release_year",
"2011"
],
[
"50/50",
"has_genre",
"DRAMA"
],
[
"50/50",
"release_year",
"2011"
],
[
"A BAG OF HAMMERS",
"has_genre",
"DRAMA"
],
[
"A BAG OF HAMMERS",
"release_year",
"2011"
],
[
"A PRINCESS FOR CHRISTMAS",
"has_genre",
"DRAMA"
],
[
"A PRINCESS FOR CHRISTMAS",
"release_year",
"2011"
],
[
"AMERICAN GUN",
"directed_by",
"ALAN JACOBS"
],
[
"AMERICAN GUN",
"has_genre",
"DRAMA"
],
[
"AMERICAN GUN",
"written_by",
"ALAN JACOBS"
],
[
"AMERICANO",
"has_genre",
"DRAMA"
],
[
"AMERICANO",
"release_year",
"2011"
],
[
"ANOTHER HAPPY DAY",
"has_genre",
"DRAMA"
],
[
"ANOTHER HAPPY DAY",
"release_year",
"2011"
],
[
"CARNAGE",
"has_genre",
"DRAMA"
],
[
"CARNAGE",
"release_year",
"2011"
],
[
"CLOUDBURST",
"has_genre",
"DRAMA"
],
[
"CLOUDBURST",
"release_year",
"2011"
],
[
"DARK HORSE",
"has_genre",
"DRAMA"
],
[
"DARK HORSE",
"release_year",
"2011"
],
[
"DELICACY",
"has_genre",
"DRAMA"
],
[
"DELICACY",
"release_year",
"2011"
],
[
"DESI BOYZ",
"has_genre",
"DRAMA"
],
[
"DESI BOYZ",
"release_year",
"2011"
],
[
"GOING DOWN IN LA-LA LAND",
"has_genre",
"DRAMA"
],
[
"GOING DOWN IN LA-LA LAND",
"release_year",
"2011"
],
[
"HOLY FLYING CIRCUS",
"has_genre",
"DRAMA"
],
[
"HOLY FLYING CIRCUS",
"release_year",
"2011"
],
[
"JANE EYRE",
"has_genre",
"DRAMA"
],
[
"JANE EYRE",
"release_year",
"2011"
],
[
"JEFF, WHO LIVES AT HOME",
"has_genre",
"DRAMA"
],
[
"JEFF, WHO LIVES AT HOME",
"release_year",
"2011"
],
[
"LE HAVRE",
"has_genre",
"DRAMA"
],
[
"LE HAVRE",
"release_year",
"2011"
],
[
"LOSERS' CLUB",
"has_genre",
"DRAMA"
],
[
"LOSERS' CLUB",
"release_year",
"2011"
],
[
"LOVE",
"has_genre",
"DRAMA"
],
[
"LOVE",
"release_year",
"2011"
],
[
"MADEA'S BIG HAPPY FAMILY",
"has_genre",
"DRAMA"
],
[
"MADEA'S BIG HAPPY FAMILY",
"release_year",
"2011"
],
[
"NATURAL SELECTION",
"has_genre",
"DRAMA"
],
[
"NATURAL SELECTION",
"release_year",
"2011"
],
[
"NEWLYWEDS",
"has_genre",
"DRAMA"
],
[
"NEWLYWEDS",
"release_year",
"2011"
],
[
"OUR IDIOT BROTHER",
"has_genre",
"DRAMA"
],
[
"OUR IDIOT BROTHER",
"release_year",
"2011"
],
[
"RESTLESS",
"has_genre",
"DRAMA"
],
[
"RESTLESS",
"release_year",
"2011"
],
[
"SALMON FISHING IN THE YEMEN",
"has_genre",
"DRAMA"
],
[
"SALMON FISHING IN THE YEMEN",
"release_year",
"2011"
],
[
"SUICIDE ROOM",
"has_genre",
"DRAMA"
],
[
"SUICIDE ROOM",
"release_year",
"2011"
],
[
"TAKE THIS WALTZ",
"has_genre",
"DRAMA"
],
[
"TAKE THIS WALTZ",
"release_year",
"2011"
],
[
"THAT'S WHAT I AM",
"has_genre",
"DRAMA"
],
[
"THAT'S WHAT I AM",
"release_year",
"2011"
],
[
"THE ARTIST",
"has_genre",
"DRAMA"
],
[
"THE ARTIST",
"has_tags",
"DRAMA"
],
[
"THE ARTIST",
"release_year",
"2011"
],
[
"THE CLOWN",
"has_genre",
"DRAMA"
],
[
"THE CLOWN",
"release_year",
"2011"
],
[
"THE DESCENDANTS",
"has_genre",
"DRAMA"
],
[
"THE DESCENDANTS",
"has_tags",
"DRAMA"
],
[
"THE DESCENDANTS",
"release_year",
"2011"
],
[
"THE DILEMMA",
"has_genre",
"DRAMA"
],
[
"THE DILEMMA",
"release_year",
"2011"
],
[
"THE DOUBLE",
"directed_by",
"MICHAEL BRANDT"
],
[
"THE DOUBLE",
"release_year",
"2011"
],
[
"THE DOUBLE",
"written_by",
"MICHAEL BRANDT"
],
[
"THE INTOUCHABLES",
"has_genre",
"DRAMA"
],
[
"THE INTOUCHABLES",
"release_year",
"2011"
],
[
"THE THREE MUSKETEERS",
"has_genre",
"DRAMA"
],
[
"THE THREE MUSKETEERS",
"release_year",
"2011"
],
[
"THE WELL-DIGGER'S DAUGHTER",
"has_genre",
"DRAMA"
],
[
"THE WELL-DIGGER'S DAUGHTER",
"release_year",
"2011"
],
[
"THIN ICE",
"has_genre",
"DRAMA"
],
[
"THIN ICE",
"release_year",
"2011"
],
[
"WE BOUGHT A ZOO",
"has_genre",
"DRAMA"
],
[
"WE BOUGHT A ZOO",
"release_year",
"2011"
],
[
"WE HAVE A POPE",
"has_genre",
"DRAMA"
],
[
"WE HAVE A POPE",
"release_year",
"2011"
],
[
"WEEKEND",
"has_genre",
"DRAMA"
],
[
"WEEKEND",
"release_year",
"2011"
],
[
"WIN WIN",
"has_genre",
"DRAMA"
],
[
"WIN WIN",
"release_year",
"2011"
],
[
"YOUNG ADULT",
"has_genre",
"DRAMA"
],
[
"YOUNG ADULT",
"has_tags",
"DRAMA"
],
[
"YOUNG ADULT",
"release_year",
"2011"
],
[
"YOUR SISTER'S SISTER",
"has_genre",
"DRAMA"
],
[
"YOUR SISTER'S SISTER",
"release_year",
"2011"
],
[
"ZINDAGI NA MILEGI DOBARA",
"has_genre",
"DRAMA"
],
[
"ZINDAGI NA MILEGI DOBARA",
"release_year",
"2011"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
24525, 1984
4763, ADVENTURE
524, CHARLIE'S ANGELS
36066, FANTASY
36940, LABYRINTH
18795, MARY CROSBY
21057, QUEST
19740, RYAN ROWE
25296, THE ICE PIRATES
24404, THE NEVERENDING STORY
src, edge_attr, dst
524, has_genre, 4763
524, written_by, 19740
36940, has_genre, 4763
36940, has_genre, 36066
36940, has_tags, 4763
36940, has_tags, 36066
36940, has_tags, 21057
25296, release_year, 24525
25296, starred_actors, 18795
24404, has_tags, 36066
24404, has_tags, 21057
24404, release_year, 24525
Question: In what context are MARY CROSBY, QUEST, and RYAN ROWE connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"MARY CROSBY",
"QUEST",
"RYAN ROWE"
],
"valid_edges": [
[
"CHARLIE'S ANGELS",
"has_genre",
"ADVENTURE"
],
[
"CHARLIE'S ANGELS",
"written_by",
"RYAN ROWE"
],
[
"LABYRINTH",
"has_genre",
"ADVENTURE"
],
[
"LABYRINTH",
"has_genre",
"FANTASY"
],
[
"LABYRINTH",
"has_tags",
"ADVENTURE"
],
[
"LABYRINTH",
"has_tags",
"FANTASY"
],
[
"LABYRINTH",
"has_tags",
"QUEST"
],
[
"THE ICE PIRATES",
"release_year",
"1984"
],
[
"THE ICE PIRATES",
"starred_actors",
"MARY CROSBY"
],
[
"THE NEVERENDING STORY",
"has_tags",
"FANTASY"
],
[
"THE NEVERENDING STORY",
"has_tags",
"QUEST"
],
[
"THE NEVERENDING STORY",
"release_year",
"1984"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
2493, 13
35798, 2010
24480, A NIGHTMARE ON ELM STREET
2201, ANTICHRIST
26267, CINEMATOGRAPHY
27843, CLASH OF THE TITANS
37059, DEATH AT A FUNERAL
13272, DON'T BE AFRAID OF THE DARK
15439, I SPIT ON YOUR GRAVE
29987, LET ME IN
37521, OWEN DAVIS
23228, PUTTY HILL
28729, REMAKE
25463, THE CRAZIES
2599, THE EXPERIMENT
2872, THE GREAT GATSBY
13329, THE KARATE KID
1208, THE NEXT THREE DAYS
17910, THE OMEN
src, edge_attr, dst
2493, has_tags, 28729
2493, release_year, 35798
24480, has_tags, 28729
24480, release_year, 35798
2201, has_tags, 26267
27843, has_tags, 28729
27843, release_year, 35798
37059, has_tags, 28729
37059, release_year, 35798
13272, has_tags, 28729
13272, release_year, 35798
15439, has_tags, 28729
15439, release_year, 35798
29987, has_tags, 28729
29987, release_year, 35798
23228, release_year, 35798
25463, has_tags, 28729
25463, release_year, 35798
2599, has_tags, 28729
2599, release_year, 35798
2872, has_tags, 26267
2872, written_by, 37521
13329, has_tags, 28729
13329, release_year, 35798
1208, has_tags, 28729
1208, release_year, 35798
17910, has_tags, 2201
17910, has_tags, 28729
Question: In what context are OWEN DAVIS, PUTTY HILL, and THE OMEN connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"OWEN DAVIS",
"PUTTY HILL",
"THE OMEN"
],
"valid_edges": [
[
"13",
"has_tags",
"REMAKE"
],
[
"13",
"release_year",
"2010"
],
[
"A NIGHTMARE ON ELM STREET",
"has_tags",
"REMAKE"
],
[
"A NIGHTMARE ON ELM STREET",
"release_year",
"2010"
],
[
"ANTICHRIST",
"has_tags",
"CINEMATOGRAPHY"
],
[
"CLASH OF THE TITANS",
"has_tags",
"REMAKE"
],
[
"CLASH OF THE TITANS",
"release_year",
"2010"
],
[
"DEATH AT A FUNERAL",
"has_tags",
"REMAKE"
],
[
"DEATH AT A FUNERAL",
"release_year",
"2010"
],
[
"DON'T BE AFRAID OF THE DARK",
"has_tags",
"REMAKE"
],
[
"DON'T BE AFRAID OF THE DARK",
"release_year",
"2010"
],
[
"I SPIT ON YOUR GRAVE",
"has_tags",
"REMAKE"
],
[
"I SPIT ON YOUR GRAVE",
"release_year",
"2010"
],
[
"LET ME IN",
"has_tags",
"REMAKE"
],
[
"LET ME IN",
"release_year",
"2010"
],
[
"PUTTY HILL",
"release_year",
"2010"
],
[
"THE CRAZIES",
"has_tags",
"REMAKE"
],
[
"THE CRAZIES",
"release_year",
"2010"
],
[
"THE EXPERIMENT",
"has_tags",
"REMAKE"
],
[
"THE EXPERIMENT",
"release_year",
"2010"
],
[
"THE GREAT GATSBY",
"has_tags",
"CINEMATOGRAPHY"
],
[
"THE GREAT GATSBY",
"written_by",
"OWEN DAVIS"
],
[
"THE KARATE KID",
"has_tags",
"REMAKE"
],
[
"THE KARATE KID",
"release_year",
"2010"
],
[
"THE NEXT THREE DAYS",
"has_tags",
"REMAKE"
],
[
"THE NEXT THREE DAYS",
"release_year",
"2010"
],
[
"THE OMEN",
"has_tags",
"ANTICHRIST"
],
[
"THE OMEN",
"has_tags",
"REMAKE"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
658, 2012
30665, 7 DAYS IN HAVANA
21289, ENTITY
6221, FRIENDS WITH BENEFITS
11565, GOOD
5722, HUMAN RESOURCES
2722, INSIDE LLEWYN DAVIS
17585, JOHN GOODMAN
14768, JUSTIN TIMBERLAKE
8795, LAURENT CANTET
17451, TROUBLE WITH THE CURVE
16982, WOODY HARRELSON
src, edge_attr, dst
658, has_tags, 16982
30665, directed_by, 8795
30665, release_year, 658
30665, written_by, 8795
21289, release_year, 658
6221, has_tags, 14768
6221, has_tags, 16982
6221, starred_actors, 14768
5722, directed_by, 8795
5722, has_tags, 8795
5722, written_by, 8795
2722, has_imdb_rating, 11565
2722, has_tags, 17585
2722, has_tags, 14768
2722, starred_actors, 14768
17451, has_imdb_rating, 11565
17451, has_tags, 17585
17451, has_tags, 14768
17451, release_year, 658
Question: How are ENTITY, HUMAN RESOURCES, and JUSTIN TIMBERLAKE related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ENTITY",
"HUMAN RESOURCES",
"JUSTIN TIMBERLAKE"
],
"valid_edges": [
[
"2012",
"has_tags",
"WOODY HARRELSON"
],
[
"7 DAYS IN HAVANA",
"directed_by",
"LAURENT CANTET"
],
[
"7 DAYS IN HAVANA",
"release_year",
"2012"
],
[
"7 DAYS IN HAVANA",
"written_by",
"LAURENT CANTET"
],
[
"ENTITY",
"release_year",
"2012"
],
[
"FRIENDS WITH BENEFITS",
"has_tags",
"JUSTIN TIMBERLAKE"
],
[
"FRIENDS WITH BENEFITS",
"has_tags",
"WOODY HARRELSON"
],
[
"FRIENDS WITH BENEFITS",
"starred_actors",
"JUSTIN TIMBERLAKE"
],
[
"HUMAN RESOURCES",
"directed_by",
"LAURENT CANTET"
],
[
"HUMAN RESOURCES",
"has_tags",
"LAURENT CANTET"
],
[
"HUMAN RESOURCES",
"written_by",
"LAURENT CANTET"
],
[
"INSIDE LLEWYN DAVIS",
"has_imdb_rating",
"GOOD"
],
[
"INSIDE LLEWYN DAVIS",
"has_tags",
"JOHN GOODMAN"
],
[
"INSIDE LLEWYN DAVIS",
"has_tags",
"JUSTIN TIMBERLAKE"
],
[
"INSIDE LLEWYN DAVIS",
"starred_actors",
"JUSTIN TIMBERLAKE"
],
[
"TROUBLE WITH THE CURVE",
"has_imdb_rating",
"GOOD"
],
[
"TROUBLE WITH THE CURVE",
"has_tags",
"JOHN GOODMAN"
],
[
"TROUBLE WITH THE CURVE",
"has_tags",
"JUSTIN TIMBERLAKE"
],
[
"TROUBLE WITH THE CURVE",
"release_year",
"2012"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
8779, 1945
35798, 2010
29638, ALICE IN WONDERLAND
32479, BEWITCHED
13225, BLITHE SPIRIT
39570, BUNRAKU
27843, CLASH OF THE TITANS
13272, DON'T BE AFRAID OF THE DARK
36066, FANTASY
12817, FRANK BORZAGE
5387, HEREAFTER
13549, HOW TO TRAIN YOUR DRAGON
26991, JONAH HEX
32481, MANNEQUIN
36999, MAUREEN O'HARA
32823, MIRACLE ON 34TH STREET
6952, MY JOY
10344, THE EXTRAORDINARY ADVENTURES OF ADÈLE BLANC-SEC
38073, THE LAST AIRBENDER
8168, THE SPANISH MAIN
15218, THE SWORD AND THE SORCERER
26036, THE TEMPEST
37516, THE WARRIOR'S WAY
14716, TROLLHUNTER
15472, YOLANDA AND THE THIEF
src, edge_attr, dst
29638, has_genre, 36066
29638, has_tags, 36066
29638, release_year, 35798
32479, has_genre, 36066
32479, release_year, 8779
13225, has_genre, 36066
13225, release_year, 8779
39570, has_tags, 36066
39570, release_year, 35798
27843, has_genre, 36066
27843, has_tags, 36066
27843, release_year, 35798
13272, has_genre, 36066
13272, release_year, 35798
5387, has_genre, 36066
5387, release_year, 35798
13549, has_tags, 36066
13549, release_year, 35798
26991, has_genre, 36066
26991, release_year, 35798
32481, directed_by, 12817
32481, has_genre, 36066
32823, has_genre, 36066
32823, has_tags, 36999
32823, starred_actors, 36999
6952, release_year, 35798
10344, has_genre, 36066
10344, release_year, 35798
38073, has_tags, 36066
38073, release_year, 35798
8168, directed_by, 12817
8168, release_year, 8779
8168, starred_actors, 36999
15218, has_genre, 36066
26036, has_genre, 36066
26036, release_year, 35798
37516, has_genre, 36066
37516, release_year, 35798
14716, has_genre, 36066
14716, has_tags, 36066
14716, release_year, 35798
15472, has_genre, 36066
15472, release_year, 8779
Question: For what reason are MY JOY, THE SPANISH MAIN, and THE SWORD AND THE SORCERER associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"MY JOY",
"THE SPANISH MAIN",
"THE SWORD AND THE SORCERER"
],
"valid_edges": [
[
"ALICE IN WONDERLAND",
"has_genre",
"FANTASY"
],
[
"ALICE IN WONDERLAND",
"has_tags",
"FANTASY"
],
[
"ALICE IN WONDERLAND",
"release_year",
"2010"
],
[
"BEWITCHED",
"has_genre",
"FANTASY"
],
[
"BEWITCHED",
"release_year",
"1945"
],
[
"BLITHE SPIRIT",
"has_genre",
"FANTASY"
],
[
"BLITHE SPIRIT",
"release_year",
"1945"
],
[
"BUNRAKU",
"has_tags",
"FANTASY"
],
[
"BUNRAKU",
"release_year",
"2010"
],
[
"CLASH OF THE TITANS",
"has_genre",
"FANTASY"
],
[
"CLASH OF THE TITANS",
"has_tags",
"FANTASY"
],
[
"CLASH OF THE TITANS",
"release_year",
"2010"
],
[
"DON'T BE AFRAID OF THE DARK",
"has_genre",
"FANTASY"
],
[
"DON'T BE AFRAID OF THE DARK",
"release_year",
"2010"
],
[
"HEREAFTER",
"has_genre",
"FANTASY"
],
[
"HEREAFTER",
"release_year",
"2010"
],
[
"HOW TO TRAIN YOUR DRAGON",
"has_tags",
"FANTASY"
],
[
"HOW TO TRAIN YOUR DRAGON",
"release_year",
"2010"
],
[
"JONAH HEX",
"has_genre",
"FANTASY"
],
[
"JONAH HEX",
"release_year",
"2010"
],
[
"MANNEQUIN",
"directed_by",
"FRANK BORZAGE"
],
[
"MANNEQUIN",
"has_genre",
"FANTASY"
],
[
"MIRACLE ON 34TH STREET",
"has_genre",
"FANTASY"
],
[
"MIRACLE ON 34TH STREET",
"has_tags",
"MAUREEN O'HARA"
],
[
"MIRACLE ON 34TH STREET",
"starred_actors",
"MAUREEN O'HARA"
],
[
"MY JOY",
"release_year",
"2010"
],
[
"THE EXTRAORDINARY ADVENTURES OF ADÈLE BLANC-SEC",
"has_genre",
"FANTASY"
],
[
"THE EXTRAORDINARY ADVENTURES OF ADÈLE BLANC-SEC",
"release_year",
"2010"
],
[
"THE LAST AIRBENDER",
"has_tags",
"FANTASY"
],
[
"THE LAST AIRBENDER",
"release_year",
"2010"
],
[
"THE SPANISH MAIN",
"directed_by",
"FRANK BORZAGE"
],
[
"THE SPANISH MAIN",
"release_year",
"1945"
],
[
"THE SPANISH MAIN",
"starred_actors",
"MAUREEN O'HARA"
],
[
"THE SWORD AND THE SORCERER",
"has_genre",
"FANTASY"
],
[
"THE TEMPEST",
"has_genre",
"FANTASY"
],
[
"THE TEMPEST",
"release_year",
"2010"
],
[
"THE WARRIOR'S WAY",
"has_genre",
"FANTASY"
],
[
"THE WARRIOR'S WAY",
"release_year",
"2010"
],
[
"TROLLHUNTER",
"has_genre",
"FANTASY"
],
[
"TROLLHUNTER",
"has_tags",
"FANTASY"
],
[
"TROLLHUNTER",
"release_year",
"2010"
],
[
"YOLANDA AND THE THIEF",
"has_genre",
"FANTASY"
],
[
"YOLANDA AND THE THIEF",
"release_year",
"1945"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
9177, 1956
29424, 2011
37908, AFRICAN CATS
39613, BEAUTY DAY
26510, BORN TO BE WILD
29342, BULLY
17035, DEBTOCRACY
12841, DOCUMENTARY
1519, DREAMS OF A LIFE
39366, HAPPY
28468, MAGIC TRIP
7839, MISS REPRESENTATION
23408, OF TIME AND THE CITY
29488, ONE DAY
35524, ONE LIFE
2108, PEARL JAM TWENTY
29086, PINA
10984, REVENGE OF THE ELECTRIC CAR
12599, SURVIVING PROGRESS
2588, THE AMBASSADOR
11259, THE BLACK POWER MIXTAPE 1967-1975
20837, THE CAPTAINS
20969, THE FLAT
30700, THE INTERRUPTERS
38461, THE LAST LIONS
27444, THE LAST MOUNTAIN
39587, THE OTHER F WORD
30593, THE VIOLENT YEARS
29052, THESE AMAZING SHADOWS
36765, THIS IS NOT A FILM
8476, TOUTE LA MÉMOIRE DU MONDE
16214, UNLAWFUL KILLING
4896, WHORES' GLORY
9056, YOU'VE BEEN TRUMPED
src, edge_attr, dst
37908, has_genre, 12841
37908, release_year, 29424
39613, has_genre, 12841
39613, release_year, 29424
26510, has_genre, 12841
26510, release_year, 29424
29342, has_genre, 12841
29342, release_year, 29424
17035, has_genre, 12841
17035, release_year, 29424
1519, has_genre, 12841
1519, release_year, 29424
39366, has_genre, 12841
39366, has_tags, 12841
39366, release_year, 29424
28468, has_genre, 12841
28468, release_year, 29424
7839, has_genre, 12841
7839, release_year, 29424
23408, has_genre, 12841
29488, release_year, 29424
35524, has_genre, 12841
35524, release_year, 29424
2108, has_genre, 12841
2108, release_year, 29424
29086, has_genre, 12841
29086, has_tags, 12841
29086, release_year, 29424
10984, has_genre, 12841
10984, release_year, 29424
12599, has_genre, 12841
12599, has_tags, 12841
12599, release_year, 29424
2588, has_genre, 12841
2588, release_year, 29424
11259, has_genre, 12841
11259, release_year, 29424
20837, has_genre, 12841
20837, release_year, 29424
20969, has_genre, 12841
20969, release_year, 29424
30700, has_genre, 12841
30700, release_year, 29424
38461, has_genre, 12841
38461, release_year, 29424
27444, has_genre, 12841
27444, release_year, 29424
39587, has_genre, 12841
39587, release_year, 29424
30593, release_year, 9177
29052, has_genre, 12841
29052, release_year, 29424
36765, has_genre, 12841
36765, release_year, 29424
8476, has_genre, 12841
8476, release_year, 9177
16214, has_genre, 12841
16214, release_year, 29424
4896, has_genre, 12841
4896, has_tags, 12841
4896, release_year, 29424
9056, has_genre, 12841
9056, release_year, 29424
Question: For what reason are OF TIME AND THE CITY, ONE DAY, and THE VIOLENT YEARS associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"OF TIME AND THE CITY",
"ONE DAY",
"THE VIOLENT YEARS"
],
"valid_edges": [
[
"AFRICAN CATS",
"has_genre",
"DOCUMENTARY"
],
[
"AFRICAN CATS",
"release_year",
"2011"
],
[
"BEAUTY DAY",
"has_genre",
"DOCUMENTARY"
],
[
"BEAUTY DAY",
"release_year",
"2011"
],
[
"BORN TO BE WILD",
"has_genre",
"DOCUMENTARY"
],
[
"BORN TO BE WILD",
"release_year",
"2011"
],
[
"BULLY",
"has_genre",
"DOCUMENTARY"
],
[
"BULLY",
"release_year",
"2011"
],
[
"DEBTOCRACY",
"has_genre",
"DOCUMENTARY"
],
[
"DEBTOCRACY",
"release_year",
"2011"
],
[
"DREAMS OF A LIFE",
"has_genre",
"DOCUMENTARY"
],
[
"DREAMS OF A LIFE",
"release_year",
"2011"
],
[
"HAPPY",
"has_genre",
"DOCUMENTARY"
],
[
"HAPPY",
"has_tags",
"DOCUMENTARY"
],
[
"HAPPY",
"release_year",
"2011"
],
[
"MAGIC TRIP",
"has_genre",
"DOCUMENTARY"
],
[
"MAGIC TRIP",
"release_year",
"2011"
],
[
"MISS REPRESENTATION",
"has_genre",
"DOCUMENTARY"
],
[
"MISS REPRESENTATION",
"release_year",
"2011"
],
[
"OF TIME AND THE CITY",
"has_genre",
"DOCUMENTARY"
],
[
"ONE DAY",
"release_year",
"2011"
],
[
"ONE LIFE",
"has_genre",
"DOCUMENTARY"
],
[
"ONE LIFE",
"release_year",
"2011"
],
[
"PEARL JAM TWENTY",
"has_genre",
"DOCUMENTARY"
],
[
"PEARL JAM TWENTY",
"release_year",
"2011"
],
[
"PINA",
"has_genre",
"DOCUMENTARY"
],
[
"PINA",
"has_tags",
"DOCUMENTARY"
],
[
"PINA",
"release_year",
"2011"
],
[
"REVENGE OF THE ELECTRIC CAR",
"has_genre",
"DOCUMENTARY"
],
[
"REVENGE OF THE ELECTRIC CAR",
"release_year",
"2011"
],
[
"SURVIVING PROGRESS",
"has_genre",
"DOCUMENTARY"
],
[
"SURVIVING PROGRESS",
"has_tags",
"DOCUMENTARY"
],
[
"SURVIVING PROGRESS",
"release_year",
"2011"
],
[
"THE AMBASSADOR",
"has_genre",
"DOCUMENTARY"
],
[
"THE AMBASSADOR",
"release_year",
"2011"
],
[
"THE BLACK POWER MIXTAPE 1967-1975",
"has_genre",
"DOCUMENTARY"
],
[
"THE BLACK POWER MIXTAPE 1967-1975",
"release_year",
"2011"
],
[
"THE CAPTAINS",
"has_genre",
"DOCUMENTARY"
],
[
"THE CAPTAINS",
"release_year",
"2011"
],
[
"THE FLAT",
"has_genre",
"DOCUMENTARY"
],
[
"THE FLAT",
"release_year",
"2011"
],
[
"THE INTERRUPTERS",
"has_genre",
"DOCUMENTARY"
],
[
"THE INTERRUPTERS",
"release_year",
"2011"
],
[
"THE LAST LIONS",
"has_genre",
"DOCUMENTARY"
],
[
"THE LAST LIONS",
"release_year",
"2011"
],
[
"THE LAST MOUNTAIN",
"has_genre",
"DOCUMENTARY"
],
[
"THE LAST MOUNTAIN",
"release_year",
"2011"
],
[
"THE OTHER F WORD",
"has_genre",
"DOCUMENTARY"
],
[
"THE OTHER F WORD",
"release_year",
"2011"
],
[
"THE VIOLENT YEARS",
"release_year",
"1956"
],
[
"THESE AMAZING SHADOWS",
"has_genre",
"DOCUMENTARY"
],
[
"THESE AMAZING SHADOWS",
"release_year",
"2011"
],
[
"THIS IS NOT A FILM",
"has_genre",
"DOCUMENTARY"
],
[
"THIS IS NOT A FILM",
"release_year",
"2011"
],
[
"TOUTE LA MÉMOIRE DU MONDE",
"has_genre",
"DOCUMENTARY"
],
[
"TOUTE LA MÉMOIRE DU MONDE",
"release_year",
"1956"
],
[
"UNLAWFUL KILLING",
"has_genre",
"DOCUMENTARY"
],
[
"UNLAWFUL KILLING",
"release_year",
"2011"
],
[
"WHORES' GLORY",
"has_genre",
"DOCUMENTARY"
],
[
"WHORES' GLORY",
"has_tags",
"DOCUMENTARY"
],
[
"WHORES' GLORY",
"release_year",
"2011"
],
[
"YOU'VE BEEN TRUMPED",
"has_genre",
"DOCUMENTARY"
],
[
"YOU'VE BEEN TRUMPED",
"release_year",
"2011"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35935, 2002
4310, 24 HOUR PARTY PEOPLE
9408, 40 DAYS AND 40 NIGHTS
36647, 8 WOMEN
11957, 9 DEAD GAY GUYS
6008, ABOUT A BOY
37599, ABOUT SCHMIDT
17111, ALI G INDAHOUSE
22569, ALL ABOUT THE BENJAMINS
16113, ANALYZE THAT
35314, AUSTIN POWERS IN GOLDMEMBER
29535, AVENGING ANGELO
23899, BAD COMPANY
36819, BARBERSHOP
19159, BEER FOR MY HORSES
15433, BEND IT LIKE BECKHAM
39619, BIG FAT LIAR
8732, BIG TROUBLE
27128, BOAT TRIP
9565, BOYS AND GIRLS
32620, BUBBA HO-TEP
14572, BUYING THE COW
27929, CABIN FEVER
23286, CARNAGE
20073, CHERISH
10349, CHICAGO
32644, CHINESE ODYSSEY 2002
30463, COMEDY
21391, CRACKERJACK
30019, CROSSROADS
21730, DAY OF THE WACKO
14292, DEAD IN THE WATER
19179, DEATH TO SMOOCHY
21079, DIRTY DEEDS
25651, DUMMY
26815, EIGHT CRAZY NIGHTS
38543, EIGHT LEGGED FREAKS
27539, FRANK MCKLUSKY, C.I.
29241, FRIDAY AFTER NEXT
10990, HEARTLANDS
3829, HERO
15629, HOME ALONE 4
22069, I SPY
27919, I'M WITH LUCY
16371, ICE AGE
17197, IGBY GOES DOWN
33001, JUST A KISS
2204, JUWANNA MANN
32010, KISS THE BRIDE
12137, LIFE OR SOMETHING LIKE IT
28832, LIFE WITHOUT DICK
16155, LOVE LIZA
9812, MAID IN MANHATTAN
4270, MEN WITH BROOMS
39368, MICHAEL SALOMON
36083, MIRANDA
20803, MR. DEEDS
22064, MY BIG FAT GREEK WEDDING
4887, MY LEFT EYE SEES GHOSTS
35262, MY MOTHER LIKES WOMEN
35794, NOVO
1493, NOW YOU KNOW
2721, OCCIDENT
4582, ONCE UPON A TIME IN THE MIDLANDS
37178, ORANGE COUNTY
27117, PASSIONADA
9976, PIPE DREAM
3688, PUMPKIN
34602, PUNCH-DRUNK LOVE
21890, R.S.V.P.
25769, ROGER DODGER
12987, SCOOBY-DOO
19244, SERVING SARA
6603, SEX IS COMEDY
26261, SHOWTIME
15043, SLACKERS
25151, SNOW DOGS
24961, SORORITY BOYS
35843, SPUN
5170, STEALING HARVARD
15100, SUPER SUCKER
9276, SWEET HOME ALABAMA
26790, SWEPT AWAY
36316, THE ADVENTURES OF PLUTO NASH
2316, THE ANARCHIST COOKBOOK
304, THE BANGER SISTERS
11696, THE CUCKOO
3324, THE DANGEROUS LIVES OF ALTAR BOYS
914, THE GOOD GIRL
26531, THE GURU
24302, THE HOT CHICK
13534, THE IMPORTANCE OF BEING EARNEST
2147, THE MAN WITHOUT A PAST
6908, THE MASTER OF DISGUISE
295, THE NEW GUY
1192, THE ONE AND ONLY
31401, THE RULES OF ATTRACTION
7052, THE SWEETEST THING
34172, THE TUXEDO
10720, TRIGGERMEN
9612, TWO WEEKS NOTICE
13214, UNCONDITIONAL LOVE
16991, UNDERCOVER BROTHER
21576, WAKING UP IN RENO
37568, WELCOME TO COLLINWOOD
39802, WHEN IN ROME
src, edge_attr, dst
4310, has_genre, 30463
4310, release_year, 35935
9408, has_genre, 30463
9408, has_tags, 30463
9408, release_year, 35935
36647, has_genre, 30463
36647, release_year, 35935
11957, has_genre, 30463
11957, release_year, 35935
6008, has_genre, 30463
6008, has_tags, 30463
6008, release_year, 35935
37599, has_genre, 30463
37599, has_tags, 30463
37599, release_year, 35935
17111, has_genre, 30463
17111, release_year, 35935
22569, has_genre, 30463
22569, has_tags, 30463
22569, release_year, 35935
16113, has_genre, 30463
16113, has_tags, 30463
16113, release_year, 35935
35314, has_genre, 30463
35314, has_tags, 30463
35314, release_year, 35935
29535, has_genre, 30463
29535, release_year, 35935
23899, has_genre, 30463
23899, release_year, 35935
36819, has_genre, 30463
36819, release_year, 35935
19159, directed_by, 39368
19159, has_genre, 30463
15433, has_genre, 30463
15433, release_year, 35935
39619, has_genre, 30463
39619, release_year, 35935
8732, has_genre, 30463
8732, release_year, 35935
27128, has_genre, 30463
27128, release_year, 35935
9565, has_genre, 30463
32620, has_genre, 30463
32620, has_tags, 30463
32620, release_year, 35935
14572, has_genre, 30463
14572, release_year, 35935
27929, has_genre, 30463
27929, release_year, 35935
23286, has_genre, 30463
23286, release_year, 35935
20073, has_genre, 30463
20073, release_year, 35935
10349, has_genre, 30463
10349, release_year, 35935
32644, has_genre, 30463
32644, release_year, 35935
21391, has_genre, 30463
21391, release_year, 35935
30019, has_genre, 30463
30019, release_year, 35935
21730, has_genre, 30463
21730, release_year, 35935
14292, release_year, 35935
19179, has_genre, 30463
19179, release_year, 35935
21079, has_genre, 30463
21079, has_tags, 30463
21079, release_year, 35935
25651, has_genre, 30463
25651, release_year, 35935
26815, has_genre, 30463
26815, release_year, 35935
38543, has_genre, 30463
38543, release_year, 35935
27539, has_genre, 30463
27539, release_year, 35935
29241, has_genre, 30463
29241, release_year, 35935
10990, has_genre, 30463
10990, release_year, 35935
3829, has_genre, 30463
3829, release_year, 35935
15629, has_genre, 30463
15629, release_year, 35935
22069, has_genre, 30463
22069, has_tags, 30463
22069, release_year, 35935
27919, has_genre, 30463
27919, release_year, 35935
16371, has_genre, 30463
16371, has_tags, 30463
16371, release_year, 35935
17197, has_genre, 30463
17197, release_year, 35935
33001, has_genre, 30463
33001, release_year, 35935
2204, has_genre, 30463
2204, release_year, 35935
32010, has_genre, 30463
32010, release_year, 35935
12137, has_genre, 30463
12137, release_year, 35935
28832, has_genre, 30463
28832, release_year, 35935
16155, has_genre, 30463
16155, release_year, 35935
9812, has_genre, 30463
9812, release_year, 35935
4270, has_genre, 30463
4270, release_year, 35935
36083, has_genre, 30463
36083, release_year, 35935
20803, has_genre, 30463
20803, release_year, 35935
22064, has_genre, 30463
22064, has_tags, 30463
22064, release_year, 35935
4887, has_genre, 30463
4887, release_year, 35935
35262, has_genre, 30463
35262, release_year, 35935
35794, has_genre, 30463
35794, release_year, 35935
1493, has_genre, 30463
1493, release_year, 35935
2721, has_genre, 30463
2721, release_year, 35935
4582, has_genre, 30463
4582, release_year, 35935
37178, has_genre, 30463
37178, release_year, 35935
27117, has_genre, 30463
27117, release_year, 35935
9976, has_genre, 30463
9976, release_year, 35935
3688, has_genre, 30463
3688, release_year, 35935
34602, has_genre, 30463
34602, has_tags, 30463
34602, release_year, 35935
21890, has_genre, 30463
21890, release_year, 35935
25769, has_genre, 30463
25769, release_year, 35935
12987, has_genre, 30463
12987, release_year, 35935
19244, has_genre, 30463
19244, release_year, 35935
6603, has_genre, 30463
6603, release_year, 35935
26261, has_genre, 30463
26261, release_year, 35935
15043, has_genre, 30463
15043, release_year, 35935
25151, has_genre, 30463
25151, release_year, 35935
24961, has_genre, 30463
24961, release_year, 35935
35843, has_genre, 30463
35843, release_year, 35935
5170, has_genre, 30463
5170, release_year, 35935
15100, has_genre, 30463
15100, release_year, 35935
9276, has_genre, 30463
9276, release_year, 35935
26790, has_genre, 30463
26790, release_year, 35935
36316, has_genre, 30463
36316, release_year, 35935
2316, has_genre, 30463
2316, release_year, 35935
304, has_genre, 30463
304, release_year, 35935
11696, has_genre, 30463
11696, release_year, 35935
3324, has_genre, 30463
3324, release_year, 35935
914, has_genre, 30463
914, release_year, 35935
26531, has_genre, 30463
26531, release_year, 35935
24302, has_genre, 30463
24302, has_tags, 30463
24302, release_year, 35935
13534, has_genre, 30463
13534, release_year, 35935
2147, has_genre, 30463
2147, release_year, 35935
6908, has_genre, 30463
6908, release_year, 35935
295, has_genre, 30463
295, release_year, 35935
1192, has_genre, 30463
1192, release_year, 35935
31401, has_genre, 30463
31401, release_year, 35935
7052, has_genre, 30463
7052, has_tags, 30463
7052, release_year, 35935
34172, has_genre, 30463
34172, has_tags, 30463
34172, release_year, 35935
10720, has_genre, 30463
10720, release_year, 35935
9612, has_genre, 30463
9612, release_year, 35935
13214, has_genre, 30463
13214, release_year, 35935
16991, has_genre, 30463
16991, release_year, 35935
21576, has_genre, 30463
21576, release_year, 35935
37568, has_genre, 30463
37568, has_tags, 30463
37568, release_year, 35935
39802, has_genre, 30463
39802, release_year, 35935
Question: How are BOYS AND GIRLS, DEAD IN THE WATER, and MICHAEL SALOMON related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BOYS AND GIRLS",
"DEAD IN THE WATER",
"MICHAEL SALOMON"
],
"valid_edges": [
[
"24 HOUR PARTY PEOPLE",
"has_genre",
"COMEDY"
],
[
"24 HOUR PARTY PEOPLE",
"release_year",
"2002"
],
[
"40 DAYS AND 40 NIGHTS",
"has_genre",
"COMEDY"
],
[
"40 DAYS AND 40 NIGHTS",
"has_tags",
"COMEDY"
],
[
"40 DAYS AND 40 NIGHTS",
"release_year",
"2002"
],
[
"8 WOMEN",
"has_genre",
"COMEDY"
],
[
"8 WOMEN",
"release_year",
"2002"
],
[
"9 DEAD GAY GUYS",
"has_genre",
"COMEDY"
],
[
"9 DEAD GAY GUYS",
"release_year",
"2002"
],
[
"ABOUT A BOY",
"has_genre",
"COMEDY"
],
[
"ABOUT A BOY",
"has_tags",
"COMEDY"
],
[
"ABOUT A BOY",
"release_year",
"2002"
],
[
"ABOUT SCHMIDT",
"has_genre",
"COMEDY"
],
[
"ABOUT SCHMIDT",
"has_tags",
"COMEDY"
],
[
"ABOUT SCHMIDT",
"release_year",
"2002"
],
[
"ALI G INDAHOUSE",
"has_genre",
"COMEDY"
],
[
"ALI G INDAHOUSE",
"release_year",
"2002"
],
[
"ALL ABOUT THE BENJAMINS",
"has_genre",
"COMEDY"
],
[
"ALL ABOUT THE BENJAMINS",
"has_tags",
"COMEDY"
],
[
"ALL ABOUT THE BENJAMINS",
"release_year",
"2002"
],
[
"ANALYZE THAT",
"has_genre",
"COMEDY"
],
[
"ANALYZE THAT",
"has_tags",
"COMEDY"
],
[
"ANALYZE THAT",
"release_year",
"2002"
],
[
"AUSTIN POWERS IN GOLDMEMBER",
"has_genre",
"COMEDY"
],
[
"AUSTIN POWERS IN GOLDMEMBER",
"has_tags",
"COMEDY"
],
[
"AUSTIN POWERS IN GOLDMEMBER",
"release_year",
"2002"
],
[
"AVENGING ANGELO",
"has_genre",
"COMEDY"
],
[
"AVENGING ANGELO",
"release_year",
"2002"
],
[
"BAD COMPANY",
"has_genre",
"COMEDY"
],
[
"BAD COMPANY",
"release_year",
"2002"
],
[
"BARBERSHOP",
"has_genre",
"COMEDY"
],
[
"BARBERSHOP",
"release_year",
"2002"
],
[
"BEER FOR MY HORSES",
"directed_by",
"MICHAEL SALOMON"
],
[
"BEER FOR MY HORSES",
"has_genre",
"COMEDY"
],
[
"BEND IT LIKE BECKHAM",
"has_genre",
"COMEDY"
],
[
"BEND IT LIKE BECKHAM",
"release_year",
"2002"
],
[
"BIG FAT LIAR",
"has_genre",
"COMEDY"
],
[
"BIG FAT LIAR",
"release_year",
"2002"
],
[
"BIG TROUBLE",
"has_genre",
"COMEDY"
],
[
"BIG TROUBLE",
"release_year",
"2002"
],
[
"BOAT TRIP",
"has_genre",
"COMEDY"
],
[
"BOAT TRIP",
"release_year",
"2002"
],
[
"BOYS AND GIRLS",
"has_genre",
"COMEDY"
],
[
"BUBBA HO-TEP",
"has_genre",
"COMEDY"
],
[
"BUBBA HO-TEP",
"has_tags",
"COMEDY"
],
[
"BUBBA HO-TEP",
"release_year",
"2002"
],
[
"BUYING THE COW",
"has_genre",
"COMEDY"
],
[
"BUYING THE COW",
"release_year",
"2002"
],
[
"CABIN FEVER",
"has_genre",
"COMEDY"
],
[
"CABIN FEVER",
"release_year",
"2002"
],
[
"CARNAGE",
"has_genre",
"COMEDY"
],
[
"CARNAGE",
"release_year",
"2002"
],
[
"CHERISH",
"has_genre",
"COMEDY"
],
[
"CHERISH",
"release_year",
"2002"
],
[
"CHICAGO",
"has_genre",
"COMEDY"
],
[
"CHICAGO",
"release_year",
"2002"
],
[
"CHINESE ODYSSEY 2002",
"has_genre",
"COMEDY"
],
[
"CHINESE ODYSSEY 2002",
"release_year",
"2002"
],
[
"CRACKERJACK",
"has_genre",
"COMEDY"
],
[
"CRACKERJACK",
"release_year",
"2002"
],
[
"CROSSROADS",
"has_genre",
"COMEDY"
],
[
"CROSSROADS",
"release_year",
"2002"
],
[
"DAY OF THE WACKO",
"has_genre",
"COMEDY"
],
[
"DAY OF THE WACKO",
"release_year",
"2002"
],
[
"DEAD IN THE WATER",
"release_year",
"2002"
],
[
"DEATH TO SMOOCHY",
"has_genre",
"COMEDY"
],
[
"DEATH TO SMOOCHY",
"release_year",
"2002"
],
[
"DIRTY DEEDS",
"has_genre",
"COMEDY"
],
[
"DIRTY DEEDS",
"has_tags",
"COMEDY"
],
[
"DIRTY DEEDS",
"release_year",
"2002"
],
[
"DUMMY",
"has_genre",
"COMEDY"
],
[
"DUMMY",
"release_year",
"2002"
],
[
"EIGHT CRAZY NIGHTS",
"has_genre",
"COMEDY"
],
[
"EIGHT CRAZY NIGHTS",
"release_year",
"2002"
],
[
"EIGHT LEGGED FREAKS",
"has_genre",
"COMEDY"
],
[
"EIGHT LEGGED FREAKS",
"release_year",
"2002"
],
[
"FRANK MCKLUSKY, C.I.",
"has_genre",
"COMEDY"
],
[
"FRANK MCKLUSKY, C.I.",
"release_year",
"2002"
],
[
"FRIDAY AFTER NEXT",
"has_genre",
"COMEDY"
],
[
"FRIDAY AFTER NEXT",
"release_year",
"2002"
],
[
"HEARTLANDS",
"has_genre",
"COMEDY"
],
[
"HEARTLANDS",
"release_year",
"2002"
],
[
"HERO",
"has_genre",
"COMEDY"
],
[
"HERO",
"release_year",
"2002"
],
[
"HOME ALONE 4",
"has_genre",
"COMEDY"
],
[
"HOME ALONE 4",
"release_year",
"2002"
],
[
"I SPY",
"has_genre",
"COMEDY"
],
[
"I SPY",
"has_tags",
"COMEDY"
],
[
"I SPY",
"release_year",
"2002"
],
[
"I'M WITH LUCY",
"has_genre",
"COMEDY"
],
[
"I'M WITH LUCY",
"release_year",
"2002"
],
[
"ICE AGE",
"has_genre",
"COMEDY"
],
[
"ICE AGE",
"has_tags",
"COMEDY"
],
[
"ICE AGE",
"release_year",
"2002"
],
[
"IGBY GOES DOWN",
"has_genre",
"COMEDY"
],
[
"IGBY GOES DOWN",
"release_year",
"2002"
],
[
"JUST A KISS",
"has_genre",
"COMEDY"
],
[
"JUST A KISS",
"release_year",
"2002"
],
[
"JUWANNA MANN",
"has_genre",
"COMEDY"
],
[
"JUWANNA MANN",
"release_year",
"2002"
],
[
"KISS THE BRIDE",
"has_genre",
"COMEDY"
],
[
"KISS THE BRIDE",
"release_year",
"2002"
],
[
"LIFE OR SOMETHING LIKE IT",
"has_genre",
"COMEDY"
],
[
"LIFE OR SOMETHING LIKE IT",
"release_year",
"2002"
],
[
"LIFE WITHOUT DICK",
"has_genre",
"COMEDY"
],
[
"LIFE WITHOUT DICK",
"release_year",
"2002"
],
[
"LOVE LIZA",
"has_genre",
"COMEDY"
],
[
"LOVE LIZA",
"release_year",
"2002"
],
[
"MAID IN MANHATTAN",
"has_genre",
"COMEDY"
],
[
"MAID IN MANHATTAN",
"release_year",
"2002"
],
[
"MEN WITH BROOMS",
"has_genre",
"COMEDY"
],
[
"MEN WITH BROOMS",
"release_year",
"2002"
],
[
"MIRANDA",
"has_genre",
"COMEDY"
],
[
"MIRANDA",
"release_year",
"2002"
],
[
"MR. DEEDS",
"has_genre",
"COMEDY"
],
[
"MR. DEEDS",
"release_year",
"2002"
],
[
"MY BIG FAT GREEK WEDDING",
"has_genre",
"COMEDY"
],
[
"MY BIG FAT GREEK WEDDING",
"has_tags",
"COMEDY"
],
[
"MY BIG FAT GREEK WEDDING",
"release_year",
"2002"
],
[
"MY LEFT EYE SEES GHOSTS",
"has_genre",
"COMEDY"
],
[
"MY LEFT EYE SEES GHOSTS",
"release_year",
"2002"
],
[
"MY MOTHER LIKES WOMEN",
"has_genre",
"COMEDY"
],
[
"MY MOTHER LIKES WOMEN",
"release_year",
"2002"
],
[
"NOVO",
"has_genre",
"COMEDY"
],
[
"NOVO",
"release_year",
"2002"
],
[
"NOW YOU KNOW",
"has_genre",
"COMEDY"
],
[
"NOW YOU KNOW",
"release_year",
"2002"
],
[
"OCCIDENT",
"has_genre",
"COMEDY"
],
[
"OCCIDENT",
"release_year",
"2002"
],
[
"ONCE UPON A TIME IN THE MIDLANDS",
"has_genre",
"COMEDY"
],
[
"ONCE UPON A TIME IN THE MIDLANDS",
"release_year",
"2002"
],
[
"ORANGE COUNTY",
"has_genre",
"COMEDY"
],
[
"ORANGE COUNTY",
"release_year",
"2002"
],
[
"PASSIONADA",
"has_genre",
"COMEDY"
],
[
"PASSIONADA",
"release_year",
"2002"
],
[
"PIPE DREAM",
"has_genre",
"COMEDY"
],
[
"PIPE DREAM",
"release_year",
"2002"
],
[
"PUMPKIN",
"has_genre",
"COMEDY"
],
[
"PUMPKIN",
"release_year",
"2002"
],
[
"PUNCH-DRUNK LOVE",
"has_genre",
"COMEDY"
],
[
"PUNCH-DRUNK LOVE",
"has_tags",
"COMEDY"
],
[
"PUNCH-DRUNK LOVE",
"release_year",
"2002"
],
[
"R.S.V.P.",
"has_genre",
"COMEDY"
],
[
"R.S.V.P.",
"release_year",
"2002"
],
[
"ROGER DODGER",
"has_genre",
"COMEDY"
],
[
"ROGER DODGER",
"release_year",
"2002"
],
[
"SCOOBY-DOO",
"has_genre",
"COMEDY"
],
[
"SCOOBY-DOO",
"release_year",
"2002"
],
[
"SERVING SARA",
"has_genre",
"COMEDY"
],
[
"SERVING SARA",
"release_year",
"2002"
],
[
"SEX IS COMEDY",
"has_genre",
"COMEDY"
],
[
"SEX IS COMEDY",
"release_year",
"2002"
],
[
"SHOWTIME",
"has_genre",
"COMEDY"
],
[
"SHOWTIME",
"release_year",
"2002"
],
[
"SLACKERS",
"has_genre",
"COMEDY"
],
[
"SLACKERS",
"release_year",
"2002"
],
[
"SNOW DOGS",
"has_genre",
"COMEDY"
],
[
"SNOW DOGS",
"release_year",
"2002"
],
[
"SORORITY BOYS",
"has_genre",
"COMEDY"
],
[
"SORORITY BOYS",
"release_year",
"2002"
],
[
"SPUN",
"has_genre",
"COMEDY"
],
[
"SPUN",
"release_year",
"2002"
],
[
"STEALING HARVARD",
"has_genre",
"COMEDY"
],
[
"STEALING HARVARD",
"release_year",
"2002"
],
[
"SUPER SUCKER",
"has_genre",
"COMEDY"
],
[
"SUPER SUCKER",
"release_year",
"2002"
],
[
"SWEET HOME ALABAMA",
"has_genre",
"COMEDY"
],
[
"SWEET HOME ALABAMA",
"release_year",
"2002"
],
[
"SWEPT AWAY",
"has_genre",
"COMEDY"
],
[
"SWEPT AWAY",
"release_year",
"2002"
],
[
"THE ADVENTURES OF PLUTO NASH",
"has_genre",
"COMEDY"
],
[
"THE ADVENTURES OF PLUTO NASH",
"release_year",
"2002"
],
[
"THE ANARCHIST COOKBOOK",
"has_genre",
"COMEDY"
],
[
"THE ANARCHIST COOKBOOK",
"release_year",
"2002"
],
[
"THE BANGER SISTERS",
"has_genre",
"COMEDY"
],
[
"THE BANGER SISTERS",
"release_year",
"2002"
],
[
"THE CUCKOO",
"has_genre",
"COMEDY"
],
[
"THE CUCKOO",
"release_year",
"2002"
],
[
"THE DANGEROUS LIVES OF ALTAR BOYS",
"has_genre",
"COMEDY"
],
[
"THE DANGEROUS LIVES OF ALTAR BOYS",
"release_year",
"2002"
],
[
"THE GOOD GIRL",
"has_genre",
"COMEDY"
],
[
"THE GOOD GIRL",
"release_year",
"2002"
],
[
"THE GURU",
"has_genre",
"COMEDY"
],
[
"THE GURU",
"release_year",
"2002"
],
[
"THE HOT CHICK",
"has_genre",
"COMEDY"
],
[
"THE HOT CHICK",
"has_tags",
"COMEDY"
],
[
"THE HOT CHICK",
"release_year",
"2002"
],
[
"THE IMPORTANCE OF BEING EARNEST",
"has_genre",
"COMEDY"
],
[
"THE IMPORTANCE OF BEING EARNEST",
"release_year",
"2002"
],
[
"THE MAN WITHOUT A PAST",
"has_genre",
"COMEDY"
],
[
"THE MAN WITHOUT A PAST",
"release_year",
"2002"
],
[
"THE MASTER OF DISGUISE",
"has_genre",
"COMEDY"
],
[
"THE MASTER OF DISGUISE",
"release_year",
"2002"
],
[
"THE NEW GUY",
"has_genre",
"COMEDY"
],
[
"THE NEW GUY",
"release_year",
"2002"
],
[
"THE ONE AND ONLY",
"has_genre",
"COMEDY"
],
[
"THE ONE AND ONLY",
"release_year",
"2002"
],
[
"THE RULES OF ATTRACTION",
"has_genre",
"COMEDY"
],
[
"THE RULES OF ATTRACTION",
"release_year",
"2002"
],
[
"THE SWEETEST THING",
"has_genre",
"COMEDY"
],
[
"THE SWEETEST THING",
"has_tags",
"COMEDY"
],
[
"THE SWEETEST THING",
"release_year",
"2002"
],
[
"THE TUXEDO",
"has_genre",
"COMEDY"
],
[
"THE TUXEDO",
"has_tags",
"COMEDY"
],
[
"THE TUXEDO",
"release_year",
"2002"
],
[
"TRIGGERMEN",
"has_genre",
"COMEDY"
],
[
"TRIGGERMEN",
"release_year",
"2002"
],
[
"TWO WEEKS NOTICE",
"has_genre",
"COMEDY"
],
[
"TWO WEEKS NOTICE",
"release_year",
"2002"
],
[
"UNCONDITIONAL LOVE",
"has_genre",
"COMEDY"
],
[
"UNCONDITIONAL LOVE",
"release_year",
"2002"
],
[
"UNDERCOVER BROTHER",
"has_genre",
"COMEDY"
],
[
"UNDERCOVER BROTHER",
"release_year",
"2002"
],
[
"WAKING UP IN RENO",
"has_genre",
"COMEDY"
],
[
"WAKING UP IN RENO",
"release_year",
"2002"
],
[
"WELCOME TO COLLINWOOD",
"has_genre",
"COMEDY"
],
[
"WELCOME TO COLLINWOOD",
"has_tags",
"COMEDY"
],
[
"WELCOME TO COLLINWOOD",
"release_year",
"2002"
],
[
"WHEN IN ROME",
"has_genre",
"COMEDY"
],
[
"WHEN IN ROME",
"release_year",
"2002"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
15374, 2005
4763, ADVENTURE
5155, DANNY DYER
7498, FLIGHTPLAN
37073, MRS. PALFREY AT THE CLAREMONT
24949, NICK LOVE
24746, NOAH RINGER
13539, OUTLAW
21756, RUPERT FRIEND
11043, SEAN BEAN
29129, THE ADVENTURES OF ROBIN HOOD
35282, THE BUSINESS
32465, THE FOOTBALL FACTORY
38073, THE LAST AIRBENDER
4786, THE WILLOW TREE
src, edge_attr, dst
7498, release_year, 15374
7498, starred_actors, 11043
37073, release_year, 15374
37073, starred_actors, 21756
13539, directed_by, 24949
13539, starred_actors, 5155
13539, starred_actors, 21756
13539, starred_actors, 11043
13539, written_by, 24949
29129, has_genre, 4763
29129, has_tags, 13539
35282, directed_by, 24949
35282, release_year, 15374
35282, starred_actors, 5155
35282, written_by, 24949
32465, directed_by, 24949
32465, starred_actors, 5155
32465, written_by, 24949
38073, has_genre, 4763
38073, starred_actors, 24746
4786, release_year, 15374
Question: In what context are NOAH RINGER, OUTLAW, and THE WILLOW TREE connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"NOAH RINGER",
"OUTLAW",
"THE WILLOW TREE"
],
"valid_edges": [
[
"FLIGHTPLAN",
"release_year",
"2005"
],
[
"FLIGHTPLAN",
"starred_actors",
"SEAN BEAN"
],
[
"MRS. PALFREY AT THE CLAREMONT",
"release_year",
"2005"
],
[
"MRS. PALFREY AT THE CLAREMONT",
"starred_actors",
"RUPERT FRIEND"
],
[
"OUTLAW",
"directed_by",
"NICK LOVE"
],
[
"OUTLAW",
"starred_actors",
"DANNY DYER"
],
[
"OUTLAW",
"starred_actors",
"RUPERT FRIEND"
],
[
"OUTLAW",
"starred_actors",
"SEAN BEAN"
],
[
"OUTLAW",
"written_by",
"NICK LOVE"
],
[
"THE ADVENTURES OF ROBIN HOOD",
"has_genre",
"ADVENTURE"
],
[
"THE ADVENTURES OF ROBIN HOOD",
"has_tags",
"OUTLAW"
],
[
"THE BUSINESS",
"directed_by",
"NICK LOVE"
],
[
"THE BUSINESS",
"release_year",
"2005"
],
[
"THE BUSINESS",
"starred_actors",
"DANNY DYER"
],
[
"THE BUSINESS",
"written_by",
"NICK LOVE"
],
[
"THE FOOTBALL FACTORY",
"directed_by",
"NICK LOVE"
],
[
"THE FOOTBALL FACTORY",
"starred_actors",
"DANNY DYER"
],
[
"THE FOOTBALL FACTORY",
"written_by",
"NICK LOVE"
],
[
"THE LAST AIRBENDER",
"has_genre",
"ADVENTURE"
],
[
"THE LAST AIRBENDER",
"starred_actors",
"NOAH RINGER"
],
[
"THE WILLOW TREE",
"release_year",
"2005"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
29424, 2011
9377, 2014
5906, ANDREW WIGHT
31095, BRIDESMAIDS
33773, BÉBÉ'S KIDS
13812, CALVARY
33403, CHRIS O'DOWD
30463, COMEDY
36212, DRAMA
26412, FRIENDS WITH KIDS
17037, HOUSE PARTY
22972, MAYA RUDOLPH
29527, MELISSA MCCARTHY
22173, REGINALD HUDLIN
29173, ROBIN HARRIS
7209, SANCTUM
19715, ST. VINCENT
src, edge_attr, dst
31095, has_genre, 30463
31095, has_tags, 33403
31095, has_tags, 30463
31095, has_tags, 22972
31095, has_tags, 29527
31095, release_year, 29424
31095, starred_actors, 22972
33773, has_genre, 30463
33773, starred_actors, 29173
33773, written_by, 22173
33773, written_by, 29173
13812, has_genre, 36212
13812, has_tags, 33403
13812, release_year, 9377
13812, starred_actors, 33403
26412, has_genre, 30463
26412, has_tags, 33403
26412, has_tags, 22972
26412, release_year, 29424
26412, starred_actors, 33403
26412, starred_actors, 22972
17037, directed_by, 22173
17037, has_genre, 30463
17037, has_tags, 22173
17037, starred_actors, 29173
17037, written_by, 22173
7209, has_genre, 36212
7209, release_year, 29424
7209, written_by, 5906
19715, has_genre, 30463
19715, has_genre, 36212
19715, has_tags, 33403
19715, has_tags, 29527
19715, release_year, 9377
19715, starred_actors, 33403
19715, starred_actors, 29527
Question: In what context are ANDREW WIGHT, CHRIS O'DOWD, and ROBIN HARRIS connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANDREW WIGHT",
"CHRIS O'DOWD",
"ROBIN HARRIS"
],
"valid_edges": [
[
"BRIDESMAIDS",
"has_genre",
"COMEDY"
],
[
"BRIDESMAIDS",
"has_tags",
"CHRIS O'DOWD"
],
[
"BRIDESMAIDS",
"has_tags",
"COMEDY"
],
[
"BRIDESMAIDS",
"has_tags",
"MAYA RUDOLPH"
],
[
"BRIDESMAIDS",
"has_tags",
"MELISSA MCCARTHY"
],
[
"BRIDESMAIDS",
"release_year",
"2011"
],
[
"BRIDESMAIDS",
"starred_actors",
"MAYA RUDOLPH"
],
[
"BÉBÉ'S KIDS",
"has_genre",
"COMEDY"
],
[
"BÉBÉ'S KIDS",
"starred_actors",
"ROBIN HARRIS"
],
[
"BÉBÉ'S KIDS",
"written_by",
"REGINALD HUDLIN"
],
[
"BÉBÉ'S KIDS",
"written_by",
"ROBIN HARRIS"
],
[
"CALVARY",
"has_genre",
"DRAMA"
],
[
"CALVARY",
"has_tags",
"CHRIS O'DOWD"
],
[
"CALVARY",
"release_year",
"2014"
],
[
"CALVARY",
"starred_actors",
"CHRIS O'DOWD"
],
[
"FRIENDS WITH KIDS",
"has_genre",
"COMEDY"
],
[
"FRIENDS WITH KIDS",
"has_tags",
"CHRIS O'DOWD"
],
[
"FRIENDS WITH KIDS",
"has_tags",
"MAYA RUDOLPH"
],
[
"FRIENDS WITH KIDS",
"release_year",
"2011"
],
[
"FRIENDS WITH KIDS",
"starred_actors",
"CHRIS O'DOWD"
],
[
"FRIENDS WITH KIDS",
"starred_actors",
"MAYA RUDOLPH"
],
[
"HOUSE PARTY",
"directed_by",
"REGINALD HUDLIN"
],
[
"HOUSE PARTY",
"has_genre",
"COMEDY"
],
[
"HOUSE PARTY",
"has_tags",
"REGINALD HUDLIN"
],
[
"HOUSE PARTY",
"starred_actors",
"ROBIN HARRIS"
],
[
"HOUSE PARTY",
"written_by",
"REGINALD HUDLIN"
],
[
"SANCTUM",
"has_genre",
"DRAMA"
],
[
"SANCTUM",
"release_year",
"2011"
],
[
"SANCTUM",
"written_by",
"ANDREW WIGHT"
],
[
"ST. VINCENT",
"has_genre",
"COMEDY"
],
[
"ST. VINCENT",
"has_genre",
"DRAMA"
],
[
"ST. VINCENT",
"has_tags",
"CHRIS O'DOWD"
],
[
"ST. VINCENT",
"has_tags",
"MELISSA MCCARTHY"
],
[
"ST. VINCENT",
"release_year",
"2014"
],
[
"ST. VINCENT",
"starred_actors",
"CHRIS O'DOWD"
],
[
"ST. VINCENT",
"starred_actors",
"MELISSA MCCARTHY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
26002, 10 TO MIDNIGHT
25221, 1981
15206, ANTHOLOGY
35575, CHARLES BRONSON
2979, DEATH HUNT
32864, GHOST STORY
27238, HAPPY BIRTHDAY TO ME
25412, HOOD OF HORROR
19805, J. LEE THOMPSON
4418, KWAIDAN
30157, LOLA
10823, MESSENGER OF DEATH
156, MURPHY'S LAW
28357, ST. IVES
2878, THE EVIL THAT MEN DO
src, edge_attr, dst
26002, directed_by, 19805
26002, starred_actors, 35575
2979, release_year, 25221
2979, starred_actors, 35575
32864, release_year, 25221
27238, directed_by, 19805
27238, release_year, 25221
25412, has_tags, 15206
4418, has_tags, 15206
4418, has_tags, 32864
30157, release_year, 25221
30157, starred_actors, 35575
10823, directed_by, 19805
10823, starred_actors, 35575
156, directed_by, 19805
156, starred_actors, 35575
28357, directed_by, 19805
28357, starred_actors, 35575
2878, directed_by, 19805
2878, starred_actors, 35575
Question: In what context are GHOST STORY, HOOD OF HORROR, and MURPHY'S LAW connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"GHOST STORY",
"HOOD OF HORROR",
"MURPHY'S LAW"
],
"valid_edges": [
[
"10 TO MIDNIGHT",
"directed_by",
"J. LEE THOMPSON"
],
[
"10 TO MIDNIGHT",
"starred_actors",
"CHARLES BRONSON"
],
[
"DEATH HUNT",
"release_year",
"1981"
],
[
"DEATH HUNT",
"starred_actors",
"CHARLES BRONSON"
],
[
"GHOST STORY",
"release_year",
"1981"
],
[
"HAPPY BIRTHDAY TO ME",
"directed_by",
"J. LEE THOMPSON"
],
[
"HAPPY BIRTHDAY TO ME",
"release_year",
"1981"
],
[
"HOOD OF HORROR",
"has_tags",
"ANTHOLOGY"
],
[
"KWAIDAN",
"has_tags",
"ANTHOLOGY"
],
[
"KWAIDAN",
"has_tags",
"GHOST STORY"
],
[
"LOLA",
"release_year",
"1981"
],
[
"LOLA",
"starred_actors",
"CHARLES BRONSON"
],
[
"MESSENGER OF DEATH",
"directed_by",
"J. LEE THOMPSON"
],
[
"MESSENGER OF DEATH",
"starred_actors",
"CHARLES BRONSON"
],
[
"MURPHY'S LAW",
"directed_by",
"J. LEE THOMPSON"
],
[
"MURPHY'S LAW",
"starred_actors",
"CHARLES BRONSON"
],
[
"ST. IVES",
"directed_by",
"J. LEE THOMPSON"
],
[
"ST. IVES",
"starred_actors",
"CHARLES BRONSON"
],
[
"THE EVIL THAT MEN DO",
"directed_by",
"J. LEE THOMPSON"
],
[
"THE EVIL THAT MEN DO",
"starred_actors",
"CHARLES BRONSON"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
26513, EDMOND O'BRIEN
31783, ENGLISH
819, FIST OF THE NORTH STAR
15667, HUMPHREY BOGART
8239, KID GALAHAD
13889, MICHAEL CURTIZ
32167, SETON I. MILLER
7554, THE BAREFOOT CONTESSA
11265, THE SEA HAWK
11351, TONY RANDEL
src, edge_attr, dst
819, directed_by, 11351
819, in_language, 31783
819, written_by, 11351
8239, directed_by, 13889
8239, has_tags, 13889
8239, starred_actors, 15667
8239, written_by, 32167
7554, starred_actors, 26513
7554, starred_actors, 15667
11265, directed_by, 13889
11265, has_tags, 13889
11265, in_language, 31783
11265, written_by, 32167
Question: In what context are EDMOND O'BRIEN, SETON I. MILLER, and TONY RANDEL connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"EDMOND O'BRIEN",
"SETON I. MILLER",
"TONY RANDEL"
],
"valid_edges": [
[
"FIST OF THE NORTH STAR",
"directed_by",
"TONY RANDEL"
],
[
"FIST OF THE NORTH STAR",
"in_language",
"ENGLISH"
],
[
"FIST OF THE NORTH STAR",
"written_by",
"TONY RANDEL"
],
[
"KID GALAHAD",
"directed_by",
"MICHAEL CURTIZ"
],
[
"KID GALAHAD",
"has_tags",
"MICHAEL CURTIZ"
],
[
"KID GALAHAD",
"starred_actors",
"HUMPHREY BOGART"
],
[
"KID GALAHAD",
"written_by",
"SETON I. MILLER"
],
[
"THE BAREFOOT CONTESSA",
"starred_actors",
"EDMOND O'BRIEN"
],
[
"THE BAREFOOT CONTESSA",
"starred_actors",
"HUMPHREY BOGART"
],
[
"THE SEA HAWK",
"directed_by",
"MICHAEL CURTIZ"
],
[
"THE SEA HAWK",
"has_tags",
"MICHAEL CURTIZ"
],
[
"THE SEA HAWK",
"in_language",
"ENGLISH"
],
[
"THE SEA HAWK",
"written_by",
"SETON I. MILLER"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
32082, 11-11-11
18132, 1938
658, 2012
30146, A CHRISTMAS CAROL
25735, ALAN MOWBRAY
6793, AND THEN THERE WERE NONE
10045, BD-R
38850, BILLIE BURKE
235, BRINGING UP BABY
38693, CHILD BRIDE
32610, CONSTANCE BENNETT
12161, DARREN LYNN BOUSMAN
24481, FRANCHISE
7289, HOLIDAY
5870, HORROR
14156, KING SOLOMON'S MINES
628, LEIGH WHANNELL
10284, LOVE FINDS ANDY HARDY
21045, MAX SCHRECK
3092, MERRILY WE LIVE
24593, MUSICAL
32891, NOSFERATU
33032, PORT OF SHADOWS
30416, REPO! THE GENETIC OPERA
27857, ROLAND YOUNG
6201, ROOM SERVICE
2561, SAW II
5812, SAW III
22536, SAW IV
13197, SHAWNEE SMITH
22336, TERRANCE ZDUNICH
8220, THAT HAMILTON WOMAN
3223, THE BARKLEYS OF BROADWAY
25250, THE BARRENS
7153, THE DEVIL'S CARNIVAL
4091, THE LADY VANISHES
5128, THERE GOES MY HEART
12105, TOBIN BELL
9800, TOPPER TAKES A TRIP
9050, WHAT PRICE HOLLYWOOD?
src, edge_attr, dst
32082, directed_by, 12161
32082, has_genre, 5870
32082, written_by, 12161
30146, has_tags, 10045
30146, release_year, 18132
6793, has_tags, 10045
6793, starred_actors, 27857
235, has_tags, 10045
235, release_year, 18132
38693, has_tags, 10045
38693, release_year, 18132
7289, has_tags, 10045
7289, release_year, 18132
14156, has_tags, 10045
14156, starred_actors, 27857
10284, has_tags, 10045
10284, release_year, 18132
3092, has_tags, 10045
3092, release_year, 18132
3092, starred_actors, 25735
3092, starred_actors, 38850
3092, starred_actors, 32610
32891, has_genre, 5870
32891, has_tags, 10045
32891, starred_actors, 21045
33032, has_tags, 10045
33032, release_year, 18132
30416, directed_by, 12161
30416, has_genre, 5870
30416, has_genre, 24593
30416, has_tags, 24593
30416, written_by, 22336
6201, has_tags, 10045
6201, release_year, 18132
2561, directed_by, 12161
2561, has_genre, 5870
2561, has_tags, 12161
2561, has_tags, 24481
2561, has_tags, 5870
2561, starred_actors, 13197
2561, starred_actors, 12105
2561, written_by, 12161
2561, written_by, 628
5812, directed_by, 12161
5812, has_genre, 5870
5812, has_tags, 12161
5812, has_tags, 24481
5812, starred_actors, 13197
5812, starred_actors, 12105
5812, written_by, 628
22536, directed_by, 12161
22536, has_genre, 5870
22536, has_tags, 12161
22536, has_tags, 24481
22536, starred_actors, 12105
8220, has_tags, 10045
8220, starred_actors, 25735
3223, has_tags, 10045
3223, starred_actors, 38850
25250, directed_by, 12161
25250, has_genre, 5870
25250, release_year, 658
25250, written_by, 12161
7153, directed_by, 12161
7153, has_genre, 5870
7153, has_genre, 24593
7153, release_year, 658
7153, starred_actors, 22336
7153, written_by, 22336
4091, has_tags, 10045
4091, release_year, 18132
5128, has_tags, 10045
5128, release_year, 18132
9800, has_tags, 10045
9800, release_year, 18132
9800, starred_actors, 25735
9800, starred_actors, 38850
9800, starred_actors, 32610
9800, starred_actors, 27857
9050, has_tags, 10045
9050, starred_actors, 32610
Question: For what reason are DARREN LYNN BOUSMAN, MAX SCHRECK, and TOPPER TAKES A TRIP associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DARREN LYNN BOUSMAN",
"MAX SCHRECK",
"TOPPER TAKES A TRIP"
],
"valid_edges": [
[
"11-11-11",
"directed_by",
"DARREN LYNN BOUSMAN"
],
[
"11-11-11",
"has_genre",
"HORROR"
],
[
"11-11-11",
"written_by",
"DARREN LYNN BOUSMAN"
],
[
"A CHRISTMAS CAROL",
"has_tags",
"BD-R"
],
[
"A CHRISTMAS CAROL",
"release_year",
"1938"
],
[
"AND THEN THERE WERE NONE",
"has_tags",
"BD-R"
],
[
"AND THEN THERE WERE NONE",
"starred_actors",
"ROLAND YOUNG"
],
[
"BRINGING UP BABY",
"has_tags",
"BD-R"
],
[
"BRINGING UP BABY",
"release_year",
"1938"
],
[
"CHILD BRIDE",
"has_tags",
"BD-R"
],
[
"CHILD BRIDE",
"release_year",
"1938"
],
[
"HOLIDAY",
"has_tags",
"BD-R"
],
[
"HOLIDAY",
"release_year",
"1938"
],
[
"KING SOLOMON'S MINES",
"has_tags",
"BD-R"
],
[
"KING SOLOMON'S MINES",
"starred_actors",
"ROLAND YOUNG"
],
[
"LOVE FINDS ANDY HARDY",
"has_tags",
"BD-R"
],
[
"LOVE FINDS ANDY HARDY",
"release_year",
"1938"
],
[
"MERRILY WE LIVE",
"has_tags",
"BD-R"
],
[
"MERRILY WE LIVE",
"release_year",
"1938"
],
[
"MERRILY WE LIVE",
"starred_actors",
"ALAN MOWBRAY"
],
[
"MERRILY WE LIVE",
"starred_actors",
"BILLIE BURKE"
],
[
"MERRILY WE LIVE",
"starred_actors",
"CONSTANCE BENNETT"
],
[
"NOSFERATU",
"has_genre",
"HORROR"
],
[
"NOSFERATU",
"has_tags",
"BD-R"
],
[
"NOSFERATU",
"starred_actors",
"MAX SCHRECK"
],
[
"PORT OF SHADOWS",
"has_tags",
"BD-R"
],
[
"PORT OF SHADOWS",
"release_year",
"1938"
],
[
"REPO! THE GENETIC OPERA",
"directed_by",
"DARREN LYNN BOUSMAN"
],
[
"REPO! THE GENETIC OPERA",
"has_genre",
"HORROR"
],
[
"REPO! THE GENETIC OPERA",
"has_genre",
"MUSICAL"
],
[
"REPO! THE GENETIC OPERA",
"has_tags",
"MUSICAL"
],
[
"REPO! THE GENETIC OPERA",
"written_by",
"TERRANCE ZDUNICH"
],
[
"ROOM SERVICE",
"has_tags",
"BD-R"
],
[
"ROOM SERVICE",
"release_year",
"1938"
],
[
"SAW II",
"directed_by",
"DARREN LYNN BOUSMAN"
],
[
"SAW II",
"has_genre",
"HORROR"
],
[
"SAW II",
"has_tags",
"DARREN LYNN BOUSMAN"
],
[
"SAW II",
"has_tags",
"FRANCHISE"
],
[
"SAW II",
"has_tags",
"HORROR"
],
[
"SAW II",
"starred_actors",
"SHAWNEE SMITH"
],
[
"SAW II",
"starred_actors",
"TOBIN BELL"
],
[
"SAW II",
"written_by",
"DARREN LYNN BOUSMAN"
],
[
"SAW II",
"written_by",
"LEIGH WHANNELL"
],
[
"SAW III",
"directed_by",
"DARREN LYNN BOUSMAN"
],
[
"SAW III",
"has_genre",
"HORROR"
],
[
"SAW III",
"has_tags",
"DARREN LYNN BOUSMAN"
],
[
"SAW III",
"has_tags",
"FRANCHISE"
],
[
"SAW III",
"starred_actors",
"SHAWNEE SMITH"
],
[
"SAW III",
"starred_actors",
"TOBIN BELL"
],
[
"SAW III",
"written_by",
"LEIGH WHANNELL"
],
[
"SAW IV",
"directed_by",
"DARREN LYNN BOUSMAN"
],
[
"SAW IV",
"has_genre",
"HORROR"
],
[
"SAW IV",
"has_tags",
"DARREN LYNN BOUSMAN"
],
[
"SAW IV",
"has_tags",
"FRANCHISE"
],
[
"SAW IV",
"starred_actors",
"TOBIN BELL"
],
[
"THAT HAMILTON WOMAN",
"has_tags",
"BD-R"
],
[
"THAT HAMILTON WOMAN",
"starred_actors",
"ALAN MOWBRAY"
],
[
"THE BARKLEYS OF BROADWAY",
"has_tags",
"BD-R"
],
[
"THE BARKLEYS OF BROADWAY",
"starred_actors",
"BILLIE BURKE"
],
[
"THE BARRENS",
"directed_by",
"DARREN LYNN BOUSMAN"
],
[
"THE BARRENS",
"has_genre",
"HORROR"
],
[
"THE BARRENS",
"release_year",
"2012"
],
[
"THE BARRENS",
"written_by",
"DARREN LYNN BOUSMAN"
],
[
"THE DEVIL'S CARNIVAL",
"directed_by",
"DARREN LYNN BOUSMAN"
],
[
"THE DEVIL'S CARNIVAL",
"has_genre",
"HORROR"
],
[
"THE DEVIL'S CARNIVAL",
"has_genre",
"MUSICAL"
],
[
"THE DEVIL'S CARNIVAL",
"release_year",
"2012"
],
[
"THE DEVIL'S CARNIVAL",
"starred_actors",
"TERRANCE ZDUNICH"
],
[
"THE DEVIL'S CARNIVAL",
"written_by",
"TERRANCE ZDUNICH"
],
[
"THE LADY VANISHES",
"has_tags",
"BD-R"
],
[
"THE LADY VANISHES",
"release_year",
"1938"
],
[
"THERE GOES MY HEART",
"has_tags",
"BD-R"
],
[
"THERE GOES MY HEART",
"release_year",
"1938"
],
[
"TOPPER TAKES A TRIP",
"has_tags",
"BD-R"
],
[
"TOPPER TAKES A TRIP",
"release_year",
"1938"
],
[
"TOPPER TAKES A TRIP",
"starred_actors",
"ALAN MOWBRAY"
],
[
"TOPPER TAKES A TRIP",
"starred_actors",
"BILLIE BURKE"
],
[
"TOPPER TAKES A TRIP",
"starred_actors",
"CONSTANCE BENNETT"
],
[
"TOPPER TAKES A TRIP",
"starred_actors",
"ROLAND YOUNG"
],
[
"WHAT PRICE HOLLYWOOD?",
"has_tags",
"BD-R"
],
[
"WHAT PRICE HOLLYWOOD?",
"starred_actors",
"CONSTANCE BENNETT"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
38707, ASYLUM
36212, DRAMA
12367, HASSINA BURGAN
5870, HORROR
10128, JACOB'S LADDER
37353, NOEL
3100, PSYCHOLOGICAL HORROR
6696, SESSION 9
1195, THE PATIENCE STONE
22214, WAR
src, edge_attr, dst
38707, has_genre, 36212
10128, has_genre, 5870
10128, has_tags, 3100
10128, has_tags, 22214
37353, has_genre, 36212
37353, has_tags, 36212
6696, has_genre, 5870
6696, has_tags, 38707
6696, has_tags, 5870
6696, has_tags, 3100
1195, has_genre, 36212
1195, has_genre, 22214
1195, starred_actors, 12367
Question: In what context are HASSINA BURGAN, NOEL, and PSYCHOLOGICAL HORROR connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"HASSINA BURGAN",
"NOEL",
"PSYCHOLOGICAL HORROR"
],
"valid_edges": [
[
"ASYLUM",
"has_genre",
"DRAMA"
],
[
"JACOB'S LADDER",
"has_genre",
"HORROR"
],
[
"JACOB'S LADDER",
"has_tags",
"PSYCHOLOGICAL HORROR"
],
[
"JACOB'S LADDER",
"has_tags",
"WAR"
],
[
"NOEL",
"has_genre",
"DRAMA"
],
[
"NOEL",
"has_tags",
"DRAMA"
],
[
"SESSION 9",
"has_genre",
"HORROR"
],
[
"SESSION 9",
"has_tags",
"ASYLUM"
],
[
"SESSION 9",
"has_tags",
"HORROR"
],
[
"SESSION 9",
"has_tags",
"PSYCHOLOGICAL HORROR"
],
[
"THE PATIENCE STONE",
"has_genre",
"DRAMA"
],
[
"THE PATIENCE STONE",
"has_genre",
"WAR"
],
[
"THE PATIENCE STONE",
"starred_actors",
"HASSINA BURGAN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
26762, 2008
39137, AS GOOD AS IT GETS
9340, BABY MAMA
10445, COLD PREY 2
24116, COLLEGE
2159, GHOST TOWN
31060, GIGANTIC
11565, GOOD
6608, GOOD DICK
28501, GOODBYE SOLO
18734, GREG KINNEAR
33476, PAUL LYNCH
24736, PROM NIGHT
19341, RACE
24467, SPEED RACER
13613, THE LAZARUS PROJECT
26588, THE SECRETS OF JONATHAN SPERRY
5465, WHAT DOESN'T KILL YOU
src, edge_attr, dst
39137, has_imdb_rating, 11565
39137, has_tags, 18734
39137, starred_actors, 18734
9340, has_tags, 18734
9340, release_year, 26762
9340, starred_actors, 18734
10445, has_imdb_rating, 11565
10445, release_year, 26762
24116, has_imdb_rating, 11565
24116, release_year, 26762
2159, has_tags, 18734
2159, release_year, 26762
2159, starred_actors, 18734
31060, has_imdb_rating, 11565
31060, release_year, 26762
11565, has_imdb_rating, 11565
11565, release_year, 26762
6608, has_imdb_rating, 11565
6608, release_year, 26762
28501, has_imdb_rating, 11565
28501, release_year, 26762
24736, directed_by, 33476
24736, release_year, 26762
19341, has_imdb_rating, 11565
19341, release_year, 26762
24467, has_imdb_rating, 11565
24467, release_year, 26762
13613, has_imdb_rating, 11565
13613, release_year, 26762
26588, release_year, 26762
5465, has_imdb_rating, 11565
5465, release_year, 26762
Question: For what reason are AS GOOD AS IT GETS, PAUL LYNCH, and THE SECRETS OF JONATHAN SPERRY associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"AS GOOD AS IT GETS",
"PAUL LYNCH",
"THE SECRETS OF JONATHAN SPERRY"
],
"valid_edges": [
[
"AS GOOD AS IT GETS",
"has_imdb_rating",
"GOOD"
],
[
"AS GOOD AS IT GETS",
"has_tags",
"GREG KINNEAR"
],
[
"AS GOOD AS IT GETS",
"starred_actors",
"GREG KINNEAR"
],
[
"BABY MAMA",
"has_tags",
"GREG KINNEAR"
],
[
"BABY MAMA",
"release_year",
"2008"
],
[
"BABY MAMA",
"starred_actors",
"GREG KINNEAR"
],
[
"COLD PREY 2",
"has_imdb_rating",
"GOOD"
],
[
"COLD PREY 2",
"release_year",
"2008"
],
[
"COLLEGE",
"has_imdb_rating",
"GOOD"
],
[
"COLLEGE",
"release_year",
"2008"
],
[
"GHOST TOWN",
"has_tags",
"GREG KINNEAR"
],
[
"GHOST TOWN",
"release_year",
"2008"
],
[
"GHOST TOWN",
"starred_actors",
"GREG KINNEAR"
],
[
"GIGANTIC",
"has_imdb_rating",
"GOOD"
],
[
"GIGANTIC",
"release_year",
"2008"
],
[
"GOOD",
"has_imdb_rating",
"GOOD"
],
[
"GOOD",
"release_year",
"2008"
],
[
"GOOD DICK",
"has_imdb_rating",
"GOOD"
],
[
"GOOD DICK",
"release_year",
"2008"
],
[
"GOODBYE SOLO",
"has_imdb_rating",
"GOOD"
],
[
"GOODBYE SOLO",
"release_year",
"2008"
],
[
"PROM NIGHT",
"directed_by",
"PAUL LYNCH"
],
[
"PROM NIGHT",
"release_year",
"2008"
],
[
"RACE",
"has_imdb_rating",
"GOOD"
],
[
"RACE",
"release_year",
"2008"
],
[
"SPEED RACER",
"has_imdb_rating",
"GOOD"
],
[
"SPEED RACER",
"release_year",
"2008"
],
[
"THE LAZARUS PROJECT",
"has_imdb_rating",
"GOOD"
],
[
"THE LAZARUS PROJECT",
"release_year",
"2008"
],
[
"THE SECRETS OF JONATHAN SPERRY",
"release_year",
"2008"
],
[
"WHAT DOESN'T KILL YOU",
"has_imdb_rating",
"GOOD"
],
[
"WHAT DOESN'T KILL YOU",
"release_year",
"2008"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
2133, 1998
25005, A MURDER OF CROWS
9719, AFTER LIFE
6395, BLUES HARP
36016, COUSIN BETTE
6943, FALLEN
21204, GEORGE CLOONEY
3553, GODZILLA
11565, GOOD
36874, JAPANESE
14797, O BROTHER, WHERE ART THOU?
31950, OCEAN WAVES
4235, OUT OF SIGHT
3297, PATCH ADAMS
27361, RIDING ALONE FOR THOUSANDS OF MILES
28, RING
32418, THE AMERICAN
38882, THE BIRD PEOPLE IN CHINA
4662, THE GOOD GERMAN
29181, THE MONUMENTS MEN
16029, THE TATTOOED WIDOW
30136, THE THIN RED LINE
9811, VEXILLE
38318, WHAT DREAMS MAY COME
19845, WITHOUT LIMITS
15808, YOU'VE GOT MAIL
src, edge_attr, dst
25005, has_imdb_rating, 11565
25005, release_year, 2133
9719, in_language, 36874
9719, release_year, 2133
6395, in_language, 36874
6395, release_year, 2133
36016, has_imdb_rating, 11565
36016, release_year, 2133
6943, has_imdb_rating, 11565
6943, release_year, 2133
3553, in_language, 36874
3553, release_year, 2133
11565, has_imdb_rating, 11565
14797, has_imdb_rating, 11565
14797, has_tags, 21204
14797, starred_actors, 21204
31950, has_imdb_rating, 11565
31950, in_language, 36874
4235, has_tags, 21204
4235, release_year, 2133
4235, starred_actors, 21204
3297, has_imdb_rating, 11565
3297, release_year, 2133
27361, has_imdb_rating, 11565
27361, in_language, 36874
28, in_language, 36874
28, release_year, 2133
32418, has_tags, 21204
32418, starred_actors, 21204
38882, in_language, 36874
38882, release_year, 2133
4662, has_imdb_rating, 11565
4662, has_tags, 21204
4662, starred_actors, 21204
29181, directed_by, 21204
29181, has_imdb_rating, 11565
29181, has_tags, 21204
29181, starred_actors, 21204
29181, written_by, 21204
16029, has_imdb_rating, 11565
16029, release_year, 2133
30136, has_tags, 21204
30136, release_year, 2133
9811, in_language, 36874
38318, has_imdb_rating, 11565
38318, release_year, 2133
19845, has_imdb_rating, 11565
19845, release_year, 2133
15808, has_imdb_rating, 11565
15808, release_year, 2133
Question: For what reason are A MURDER OF CROWS, THE AMERICAN, and VEXILLE associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"A MURDER OF CROWS",
"THE AMERICAN",
"VEXILLE"
],
"valid_edges": [
[
"A MURDER OF CROWS",
"has_imdb_rating",
"GOOD"
],
[
"A MURDER OF CROWS",
"release_year",
"1998"
],
[
"AFTER LIFE",
"in_language",
"JAPANESE"
],
[
"AFTER LIFE",
"release_year",
"1998"
],
[
"BLUES HARP",
"in_language",
"JAPANESE"
],
[
"BLUES HARP",
"release_year",
"1998"
],
[
"COUSIN BETTE",
"has_imdb_rating",
"GOOD"
],
[
"COUSIN BETTE",
"release_year",
"1998"
],
[
"FALLEN",
"has_imdb_rating",
"GOOD"
],
[
"FALLEN",
"release_year",
"1998"
],
[
"GODZILLA",
"in_language",
"JAPANESE"
],
[
"GODZILLA",
"release_year",
"1998"
],
[
"GOOD",
"has_imdb_rating",
"GOOD"
],
[
"O BROTHER, WHERE ART THOU?",
"has_imdb_rating",
"GOOD"
],
[
"O BROTHER, WHERE ART THOU?",
"has_tags",
"GEORGE CLOONEY"
],
[
"O BROTHER, WHERE ART THOU?",
"starred_actors",
"GEORGE CLOONEY"
],
[
"OCEAN WAVES",
"has_imdb_rating",
"GOOD"
],
[
"OCEAN WAVES",
"in_language",
"JAPANESE"
],
[
"OUT OF SIGHT",
"has_tags",
"GEORGE CLOONEY"
],
[
"OUT OF SIGHT",
"release_year",
"1998"
],
[
"OUT OF SIGHT",
"starred_actors",
"GEORGE CLOONEY"
],
[
"PATCH ADAMS",
"has_imdb_rating",
"GOOD"
],
[
"PATCH ADAMS",
"release_year",
"1998"
],
[
"RIDING ALONE FOR THOUSANDS OF MILES",
"has_imdb_rating",
"GOOD"
],
[
"RIDING ALONE FOR THOUSANDS OF MILES",
"in_language",
"JAPANESE"
],
[
"RING",
"in_language",
"JAPANESE"
],
[
"RING",
"release_year",
"1998"
],
[
"THE AMERICAN",
"has_tags",
"GEORGE CLOONEY"
],
[
"THE AMERICAN",
"starred_actors",
"GEORGE CLOONEY"
],
[
"THE BIRD PEOPLE IN CHINA",
"in_language",
"JAPANESE"
],
[
"THE BIRD PEOPLE IN CHINA",
"release_year",
"1998"
],
[
"THE GOOD GERMAN",
"has_imdb_rating",
"GOOD"
],
[
"THE GOOD GERMAN",
"has_tags",
"GEORGE CLOONEY"
],
[
"THE GOOD GERMAN",
"starred_actors",
"GEORGE CLOONEY"
],
[
"THE MONUMENTS MEN",
"directed_by",
"GEORGE CLOONEY"
],
[
"THE MONUMENTS MEN",
"has_imdb_rating",
"GOOD"
],
[
"THE MONUMENTS MEN",
"has_tags",
"GEORGE CLOONEY"
],
[
"THE MONUMENTS MEN",
"starred_actors",
"GEORGE CLOONEY"
],
[
"THE MONUMENTS MEN",
"written_by",
"GEORGE CLOONEY"
],
[
"THE TATTOOED WIDOW",
"has_imdb_rating",
"GOOD"
],
[
"THE TATTOOED WIDOW",
"release_year",
"1998"
],
[
"THE THIN RED LINE",
"has_tags",
"GEORGE CLOONEY"
],
[
"THE THIN RED LINE",
"release_year",
"1998"
],
[
"VEXILLE",
"in_language",
"JAPANESE"
],
[
"WHAT DREAMS MAY COME",
"has_imdb_rating",
"GOOD"
],
[
"WHAT DREAMS MAY COME",
"release_year",
"1998"
],
[
"WITHOUT LIMITS",
"has_imdb_rating",
"GOOD"
],
[
"WITHOUT LIMITS",
"release_year",
"1998"
],
[
"YOU'VE GOT MAIL",
"has_imdb_rating",
"GOOD"
],
[
"YOU'VE GOT MAIL",
"release_year",
"1998"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
15416, BOYFRIENDS AND GIRLFRIENDS
30463, COMEDY
20990, HOLY MATRIMONY
39920, OFFICE SPACE
5947, SOPHIE RENOIR
src, edge_attr, dst
15416, has_genre, 30463
15416, starred_actors, 5947
20990, has_genre, 30463
39920, has_genre, 30463
39920, has_tags, 30463
Question: For what reason are HOLY MATRIMONY, OFFICE SPACE, and SOPHIE RENOIR associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"HOLY MATRIMONY",
"OFFICE SPACE",
"SOPHIE RENOIR"
],
"valid_edges": [
[
"BOYFRIENDS AND GIRLFRIENDS",
"has_genre",
"COMEDY"
],
[
"BOYFRIENDS AND GIRLFRIENDS",
"starred_actors",
"SOPHIE RENOIR"
],
[
"HOLY MATRIMONY",
"has_genre",
"COMEDY"
],
[
"OFFICE SPACE",
"has_genre",
"COMEDY"
],
[
"OFFICE SPACE",
"has_tags",
"COMEDY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
36268, 1980
28210, ALAN ORMSBY
36853, ALTERED STATES
36593, BLACK CHRISTMAS
27791, BOB CLARK
37912, CAT PEOPLE
15226, CHILDREN SHOULDN'T PLAY WITH DEAD THINGS
25738, CHRISTMAS EVIL
13888, CITY OF THE LIVING DEAD
16813, CONTAMINATION
14128, D.J. COTRONA
9248, DEATH SHIP
22215, FRIDAY THE 13TH
1408, HE KNOWS YOU'RE ALONE
2600, HELL OF THE LIVING DEAD
5870, HORROR
24167, INFERNO
24437, MANIAC
30047, MOTEL HELL
19825, MOTHER'S DAY
8138, POPCORN
4604, PRIVATE BENJAMIN
24736, PROM NIGHT
5864, THE AWAKENING
34039, THE CHANGELING
27423, THE FOG
5592, THE HEARSE
19018, THE SHINING
14962, THE WATCHER IN THE WOODS
27274, VENOM
21887, WITHOUT WARNING
src, edge_attr, dst
36853, has_genre, 5870
36853, release_year, 36268
36593, directed_by, 27791
36593, has_genre, 5870
36593, has_tags, 27791
36593, has_tags, 5870
37912, has_genre, 5870
37912, written_by, 28210
15226, directed_by, 27791
15226, has_genre, 5870
15226, starred_actors, 28210
15226, written_by, 28210
15226, written_by, 27791
25738, has_genre, 5870
25738, release_year, 36268
13888, has_genre, 5870
13888, has_tags, 5870
13888, release_year, 36268
16813, has_genre, 5870
16813, release_year, 36268
9248, has_genre, 5870
9248, release_year, 36268
22215, has_genre, 5870
22215, release_year, 36268
1408, has_genre, 5870
1408, release_year, 36268
2600, has_genre, 5870
2600, release_year, 36268
24167, has_genre, 5870
24167, release_year, 36268
24437, has_genre, 5870
24437, release_year, 36268
30047, has_genre, 5870
30047, release_year, 36268
19825, has_genre, 5870
19825, release_year, 36268
8138, directed_by, 28210
8138, has_genre, 5870
8138, written_by, 28210
4604, release_year, 36268
24736, has_genre, 5870
24736, release_year, 36268
5864, has_genre, 5870
5864, has_tags, 5870
5864, release_year, 36268
34039, has_genre, 5870
34039, release_year, 36268
27423, has_genre, 5870
27423, has_tags, 5870
27423, release_year, 36268
5592, has_genre, 5870
5592, release_year, 36268
19018, has_genre, 5870
19018, has_tags, 5870
19018, release_year, 36268
14962, has_genre, 5870
14962, release_year, 36268
27274, has_genre, 5870
27274, starred_actors, 14128
21887, has_genre, 5870
21887, release_year, 36268
Question: How are CHILDREN SHOULDN'T PLAY WITH DEAD THINGS, D.J. COTRONA, and PRIVATE BENJAMIN related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"CHILDREN SHOULDN'T PLAY WITH DEAD THINGS",
"D.J. COTRONA",
"PRIVATE BENJAMIN"
],
"valid_edges": [
[
"ALTERED STATES",
"has_genre",
"HORROR"
],
[
"ALTERED STATES",
"release_year",
"1980"
],
[
"BLACK CHRISTMAS",
"directed_by",
"BOB CLARK"
],
[
"BLACK CHRISTMAS",
"has_genre",
"HORROR"
],
[
"BLACK CHRISTMAS",
"has_tags",
"BOB CLARK"
],
[
"BLACK CHRISTMAS",
"has_tags",
"HORROR"
],
[
"CAT PEOPLE",
"has_genre",
"HORROR"
],
[
"CAT PEOPLE",
"written_by",
"ALAN ORMSBY"
],
[
"CHILDREN SHOULDN'T PLAY WITH DEAD THINGS",
"directed_by",
"BOB CLARK"
],
[
"CHILDREN SHOULDN'T PLAY WITH DEAD THINGS",
"has_genre",
"HORROR"
],
[
"CHILDREN SHOULDN'T PLAY WITH DEAD THINGS",
"starred_actors",
"ALAN ORMSBY"
],
[
"CHILDREN SHOULDN'T PLAY WITH DEAD THINGS",
"written_by",
"ALAN ORMSBY"
],
[
"CHILDREN SHOULDN'T PLAY WITH DEAD THINGS",
"written_by",
"BOB CLARK"
],
[
"CHRISTMAS EVIL",
"has_genre",
"HORROR"
],
[
"CHRISTMAS EVIL",
"release_year",
"1980"
],
[
"CITY OF THE LIVING DEAD",
"has_genre",
"HORROR"
],
[
"CITY OF THE LIVING DEAD",
"has_tags",
"HORROR"
],
[
"CITY OF THE LIVING DEAD",
"release_year",
"1980"
],
[
"CONTAMINATION",
"has_genre",
"HORROR"
],
[
"CONTAMINATION",
"release_year",
"1980"
],
[
"DEATH SHIP",
"has_genre",
"HORROR"
],
[
"DEATH SHIP",
"release_year",
"1980"
],
[
"FRIDAY THE 13TH",
"has_genre",
"HORROR"
],
[
"FRIDAY THE 13TH",
"release_year",
"1980"
],
[
"HE KNOWS YOU'RE ALONE",
"has_genre",
"HORROR"
],
[
"HE KNOWS YOU'RE ALONE",
"release_year",
"1980"
],
[
"HELL OF THE LIVING DEAD",
"has_genre",
"HORROR"
],
[
"HELL OF THE LIVING DEAD",
"release_year",
"1980"
],
[
"INFERNO",
"has_genre",
"HORROR"
],
[
"INFERNO",
"release_year",
"1980"
],
[
"MANIAC",
"has_genre",
"HORROR"
],
[
"MANIAC",
"release_year",
"1980"
],
[
"MOTEL HELL",
"has_genre",
"HORROR"
],
[
"MOTEL HELL",
"release_year",
"1980"
],
[
"MOTHER'S DAY",
"has_genre",
"HORROR"
],
[
"MOTHER'S DAY",
"release_year",
"1980"
],
[
"POPCORN",
"directed_by",
"ALAN ORMSBY"
],
[
"POPCORN",
"has_genre",
"HORROR"
],
[
"POPCORN",
"written_by",
"ALAN ORMSBY"
],
[
"PRIVATE BENJAMIN",
"release_year",
"1980"
],
[
"PROM NIGHT",
"has_genre",
"HORROR"
],
[
"PROM NIGHT",
"release_year",
"1980"
],
[
"THE AWAKENING",
"has_genre",
"HORROR"
],
[
"THE AWAKENING",
"has_tags",
"HORROR"
],
[
"THE AWAKENING",
"release_year",
"1980"
],
[
"THE CHANGELING",
"has_genre",
"HORROR"
],
[
"THE CHANGELING",
"release_year",
"1980"
],
[
"THE FOG",
"has_genre",
"HORROR"
],
[
"THE FOG",
"has_tags",
"HORROR"
],
[
"THE FOG",
"release_year",
"1980"
],
[
"THE HEARSE",
"has_genre",
"HORROR"
],
[
"THE HEARSE",
"release_year",
"1980"
],
[
"THE SHINING",
"has_genre",
"HORROR"
],
[
"THE SHINING",
"has_tags",
"HORROR"
],
[
"THE SHINING",
"release_year",
"1980"
],
[
"THE WATCHER IN THE WOODS",
"has_genre",
"HORROR"
],
[
"THE WATCHER IN THE WOODS",
"release_year",
"1980"
],
[
"VENOM",
"has_genre",
"HORROR"
],
[
"VENOM",
"starred_actors",
"D.J. COTRONA"
],
[
"WITHOUT WARNING",
"has_genre",
"HORROR"
],
[
"WITHOUT WARNING",
"release_year",
"1980"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
6721, 1972
17315, 2007
37655, AL PACINO
2973, ALL THE COLORS OF THE DARK
9942, ANTHONY SHAFFER
15278, AVANTI!
13211, CALIBER 9
26346, DADDY'S LITTLE GIRLS
24214, DON'T TORTURE A DUCKLING
2848, FRENZY
31307, GODZILLA VS. GIGAN
33673, HEAT
11233, HIDEO YAMAMOTO
4215, ICHI THE KILLER
16200, ITALIAN
36874, JAPANESE
23374, LAST OF THE RED HOT LOVERS
31211, LUDWIG
1153, MICHAEL CAINE
15145, MYSTERY
37159, NEIL SIMON
37810, PULP
13081, R
28729, REMAKE
6119, SLEUTH
15568, THE CANTERBURY TALES
6524, THE GETAWAY
35551, THE GODFATHER
19595, THE HEARTBREAK KID
15202, THE LAST HOUSE ON THE LEFT
36168, THE MATTEI AFFAIR
8839, THE MECHANIC
34254, THEY ONLY KILL THEIR MASTERS
34730, TYLER PERRY
4117, UNDER THE FLAG OF THE RISING SUN
28211, WHAT HAVE YOU DONE TO SOLANGE?
6287, WHY DID I GET MARRIED?
src, edge_attr, dst
2973, in_language, 16200
2973, release_year, 6721
15278, in_language, 16200
15278, release_year, 6721
13211, in_language, 16200
13211, release_year, 6721
26346, directed_by, 34730
26346, release_year, 17315
26346, written_by, 34730
24214, in_language, 16200
24214, release_year, 6721
2848, release_year, 6721
2848, written_by, 9942
31307, in_language, 36874
31307, release_year, 6721
33673, has_tags, 37655
33673, has_tags, 13081
33673, release_year, 6721
33673, starred_actors, 37655
4215, in_language, 36874
4215, written_by, 11233
23374, release_year, 6721
23374, written_by, 37159
31211, in_language, 16200
31211, release_year, 6721
37810, release_year, 6721
37810, starred_actors, 1153
6119, has_genre, 15145
6119, has_tags, 1153
6119, has_tags, 15145
6119, has_tags, 13081
6119, in_language, 16200
6119, release_year, 6721
6119, release_year, 17315
6119, starred_actors, 1153
6119, written_by, 9942
15568, in_language, 16200
15568, release_year, 6721
6524, has_tags, 28729
6524, release_year, 6721
35551, has_tags, 37655
35551, has_tags, 16200
35551, has_tags, 13081
35551, in_language, 16200
35551, release_year, 6721
35551, starred_actors, 37655
19595, has_tags, 37159
19595, has_tags, 13081
19595, has_tags, 28729
19595, release_year, 6721
19595, release_year, 17315
19595, written_by, 37159
15202, has_tags, 28729
15202, release_year, 6721
36168, in_language, 16200
36168, release_year, 6721
8839, has_tags, 28729
8839, release_year, 6721
34254, has_genre, 15145
34254, release_year, 6721
4117, in_language, 36874
4117, release_year, 6721
28211, has_genre, 15145
28211, in_language, 16200
28211, release_year, 6721
6287, directed_by, 34730
6287, has_tags, 34730
6287, release_year, 17315
6287, starred_actors, 34730
6287, written_by, 34730
Question: How are 1972, HIDEO YAMAMOTO, and WHY DID I GET MARRIED? related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"1972",
"HIDEO YAMAMOTO",
"WHY DID I GET MARRIED?"
],
"valid_edges": [
[
"ALL THE COLORS OF THE DARK",
"in_language",
"ITALIAN"
],
[
"ALL THE COLORS OF THE DARK",
"release_year",
"1972"
],
[
"AVANTI!",
"in_language",
"ITALIAN"
],
[
"AVANTI!",
"release_year",
"1972"
],
[
"CALIBER 9",
"in_language",
"ITALIAN"
],
[
"CALIBER 9",
"release_year",
"1972"
],
[
"DADDY'S LITTLE GIRLS",
"directed_by",
"TYLER PERRY"
],
[
"DADDY'S LITTLE GIRLS",
"release_year",
"2007"
],
[
"DADDY'S LITTLE GIRLS",
"written_by",
"TYLER PERRY"
],
[
"DON'T TORTURE A DUCKLING",
"in_language",
"ITALIAN"
],
[
"DON'T TORTURE A DUCKLING",
"release_year",
"1972"
],
[
"FRENZY",
"release_year",
"1972"
],
[
"FRENZY",
"written_by",
"ANTHONY SHAFFER"
],
[
"GODZILLA VS. GIGAN",
"in_language",
"JAPANESE"
],
[
"GODZILLA VS. GIGAN",
"release_year",
"1972"
],
[
"HEAT",
"has_tags",
"AL PACINO"
],
[
"HEAT",
"has_tags",
"R"
],
[
"HEAT",
"release_year",
"1972"
],
[
"HEAT",
"starred_actors",
"AL PACINO"
],
[
"ICHI THE KILLER",
"in_language",
"JAPANESE"
],
[
"ICHI THE KILLER",
"written_by",
"HIDEO YAMAMOTO"
],
[
"LAST OF THE RED HOT LOVERS",
"release_year",
"1972"
],
[
"LAST OF THE RED HOT LOVERS",
"written_by",
"NEIL SIMON"
],
[
"LUDWIG",
"in_language",
"ITALIAN"
],
[
"LUDWIG",
"release_year",
"1972"
],
[
"PULP",
"release_year",
"1972"
],
[
"PULP",
"starred_actors",
"MICHAEL CAINE"
],
[
"SLEUTH",
"has_genre",
"MYSTERY"
],
[
"SLEUTH",
"has_tags",
"MICHAEL CAINE"
],
[
"SLEUTH",
"has_tags",
"MYSTERY"
],
[
"SLEUTH",
"has_tags",
"R"
],
[
"SLEUTH",
"in_language",
"ITALIAN"
],
[
"SLEUTH",
"release_year",
"1972"
],
[
"SLEUTH",
"release_year",
"2007"
],
[
"SLEUTH",
"starred_actors",
"MICHAEL CAINE"
],
[
"SLEUTH",
"written_by",
"ANTHONY SHAFFER"
],
[
"THE CANTERBURY TALES",
"in_language",
"ITALIAN"
],
[
"THE CANTERBURY TALES",
"release_year",
"1972"
],
[
"THE GETAWAY",
"has_tags",
"REMAKE"
],
[
"THE GETAWAY",
"release_year",
"1972"
],
[
"THE GODFATHER",
"has_tags",
"AL PACINO"
],
[
"THE GODFATHER",
"has_tags",
"ITALIAN"
],
[
"THE GODFATHER",
"has_tags",
"R"
],
[
"THE GODFATHER",
"in_language",
"ITALIAN"
],
[
"THE GODFATHER",
"release_year",
"1972"
],
[
"THE GODFATHER",
"starred_actors",
"AL PACINO"
],
[
"THE HEARTBREAK KID",
"has_tags",
"NEIL SIMON"
],
[
"THE HEARTBREAK KID",
"has_tags",
"R"
],
[
"THE HEARTBREAK KID",
"has_tags",
"REMAKE"
],
[
"THE HEARTBREAK KID",
"release_year",
"1972"
],
[
"THE HEARTBREAK KID",
"release_year",
"2007"
],
[
"THE HEARTBREAK KID",
"written_by",
"NEIL SIMON"
],
[
"THE LAST HOUSE ON THE LEFT",
"has_tags",
"REMAKE"
],
[
"THE LAST HOUSE ON THE LEFT",
"release_year",
"1972"
],
[
"THE MATTEI AFFAIR",
"in_language",
"ITALIAN"
],
[
"THE MATTEI AFFAIR",
"release_year",
"1972"
],
[
"THE MECHANIC",
"has_tags",
"REMAKE"
],
[
"THE MECHANIC",
"release_year",
"1972"
],
[
"THEY ONLY KILL THEIR MASTERS",
"has_genre",
"MYSTERY"
],
[
"THEY ONLY KILL THEIR MASTERS",
"release_year",
"1972"
],
[
"UNDER THE FLAG OF THE RISING SUN",
"in_language",
"JAPANESE"
],
[
"UNDER THE FLAG OF THE RISING SUN",
"release_year",
"1972"
],
[
"WHAT HAVE YOU DONE TO SOLANGE?",
"has_genre",
"MYSTERY"
],
[
"WHAT HAVE YOU DONE TO SOLANGE?",
"in_language",
"ITALIAN"
],
[
"WHAT HAVE YOU DONE TO SOLANGE?",
"release_year",
"1972"
],
[
"WHY DID I GET MARRIED?",
"directed_by",
"TYLER PERRY"
],
[
"WHY DID I GET MARRIED?",
"has_tags",
"TYLER PERRY"
],
[
"WHY DID I GET MARRIED?",
"release_year",
"2007"
],
[
"WHY DID I GET MARRIED?",
"starred_actors",
"TYLER PERRY"
],
[
"WHY DID I GET MARRIED?",
"written_by",
"TYLER PERRY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
29561, 1943
29424, 2011
37908, AFRICAN CATS
37994, ANGEL DOG
39613, BEAUTY DAY
21372, BEVERLY HILLS CHIHUAHUA 2
26510, BORN TO BE WILD
29342, BULLY
17035, DEBTOCRACY
12841, DOCUMENTARY
3032, DOLPHIN TALE
1519, DREAMS OF A LIFE
10509, FAMILY
39366, HAPPY
20013, HAPPY FEET TWO
17345, HERE WITHOUT ME
23442, HOODWINKED TOO! HOOD VS. EVIL
21922, JANE EYRE
24247, LEONOR WATLING
19802, LOVE
28468, MAGIC TRIP
7839, MISS REPRESENTATION
12706, MR. POPPER'S PENGUINS
35524, ONE LIFE
2108, PEARL JAM TWENTY
29086, PINA
38002, RED DOG
10984, REVENGE OF THE ELECTRIC CAR
12599, SURVIVING PROGRESS
9972, TALK TO HER
2588, THE AMBASSADOR
24264, THE BATTLE OF RUSSIA
11259, THE BLACK POWER MIXTAPE 1967-1975
20837, THE CAPTAINS
20969, THE FLAT
39978, THE HUMAN COMEDY
30700, THE INTERRUPTERS
38461, THE LAST LIONS
27444, THE LAST MOUNTAIN
39587, THE OTHER F WORD
29052, THESE AMAZING SHADOWS
36765, THIS IS NOT A FILM
16214, UNLAWFUL KILLING
8957, WE BOUGHT A ZOO
4896, WHORES' GLORY
9056, YOU'VE BEEN TRUMPED
src, edge_attr, dst
37908, has_genre, 12841
37908, release_year, 29424
37994, has_genre, 10509
37994, release_year, 29424
39613, has_genre, 12841
39613, release_year, 29424
21372, has_genre, 10509
21372, release_year, 29424
26510, has_genre, 12841
26510, release_year, 29424
29342, has_genre, 12841
29342, release_year, 29424
17035, has_genre, 12841
17035, release_year, 29424
3032, has_genre, 10509
3032, has_tags, 10509
3032, release_year, 29424
1519, has_genre, 12841
1519, release_year, 29424
39366, has_genre, 12841
39366, has_genre, 10509
39366, has_tags, 12841
39366, release_year, 29424
20013, has_genre, 10509
20013, release_year, 29424
17345, has_genre, 10509
17345, release_year, 29424
23442, has_genre, 10509
23442, release_year, 29424
21922, release_year, 29561
21922, release_year, 29424
19802, release_year, 29424
28468, has_genre, 12841
28468, release_year, 29424
7839, has_genre, 12841
7839, release_year, 29424
12706, has_genre, 10509
12706, release_year, 29424
35524, has_genre, 12841
35524, release_year, 29424
2108, has_genre, 12841
2108, release_year, 29424
29086, has_genre, 12841
29086, has_tags, 12841
29086, release_year, 29424
38002, has_genre, 10509
38002, release_year, 29424
10984, has_genre, 12841
10984, release_year, 29424
12599, has_genre, 12841
12599, has_tags, 12841
12599, release_year, 29424
9972, has_tags, 24247
9972, has_tags, 19802
9972, starred_actors, 24247
2588, has_genre, 12841
2588, release_year, 29424
24264, has_genre, 12841
24264, release_year, 29561
11259, has_genre, 12841
11259, release_year, 29424
20837, has_genre, 12841
20837, release_year, 29424
20969, has_genre, 12841
20969, release_year, 29424
39978, has_genre, 10509
39978, release_year, 29561
30700, has_genre, 12841
30700, release_year, 29424
38461, has_genre, 12841
38461, release_year, 29424
27444, has_genre, 12841
27444, release_year, 29424
39587, has_genre, 12841
39587, release_year, 29424
29052, has_genre, 12841
29052, release_year, 29424
36765, has_genre, 12841
36765, release_year, 29424
16214, has_genre, 12841
16214, release_year, 29424
8957, has_genre, 10509
8957, has_tags, 10509
8957, release_year, 29424
4896, has_genre, 12841
4896, has_tags, 12841
4896, release_year, 29424
9056, has_genre, 12841
9056, release_year, 29424
Question: How are DREAMS OF A LIFE, LEONOR WATLING, and THE HUMAN COMEDY related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DREAMS OF A LIFE",
"LEONOR WATLING",
"THE HUMAN COMEDY"
],
"valid_edges": [
[
"AFRICAN CATS",
"has_genre",
"DOCUMENTARY"
],
[
"AFRICAN CATS",
"release_year",
"2011"
],
[
"ANGEL DOG",
"has_genre",
"FAMILY"
],
[
"ANGEL DOG",
"release_year",
"2011"
],
[
"BEAUTY DAY",
"has_genre",
"DOCUMENTARY"
],
[
"BEAUTY DAY",
"release_year",
"2011"
],
[
"BEVERLY HILLS CHIHUAHUA 2",
"has_genre",
"FAMILY"
],
[
"BEVERLY HILLS CHIHUAHUA 2",
"release_year",
"2011"
],
[
"BORN TO BE WILD",
"has_genre",
"DOCUMENTARY"
],
[
"BORN TO BE WILD",
"release_year",
"2011"
],
[
"BULLY",
"has_genre",
"DOCUMENTARY"
],
[
"BULLY",
"release_year",
"2011"
],
[
"DEBTOCRACY",
"has_genre",
"DOCUMENTARY"
],
[
"DEBTOCRACY",
"release_year",
"2011"
],
[
"DOLPHIN TALE",
"has_genre",
"FAMILY"
],
[
"DOLPHIN TALE",
"has_tags",
"FAMILY"
],
[
"DOLPHIN TALE",
"release_year",
"2011"
],
[
"DREAMS OF A LIFE",
"has_genre",
"DOCUMENTARY"
],
[
"DREAMS OF A LIFE",
"release_year",
"2011"
],
[
"HAPPY",
"has_genre",
"DOCUMENTARY"
],
[
"HAPPY",
"has_genre",
"FAMILY"
],
[
"HAPPY",
"has_tags",
"DOCUMENTARY"
],
[
"HAPPY",
"release_year",
"2011"
],
[
"HAPPY FEET TWO",
"has_genre",
"FAMILY"
],
[
"HAPPY FEET TWO",
"release_year",
"2011"
],
[
"HERE WITHOUT ME",
"has_genre",
"FAMILY"
],
[
"HERE WITHOUT ME",
"release_year",
"2011"
],
[
"HOODWINKED TOO! HOOD VS. EVIL",
"has_genre",
"FAMILY"
],
[
"HOODWINKED TOO! HOOD VS. EVIL",
"release_year",
"2011"
],
[
"JANE EYRE",
"release_year",
"1943"
],
[
"JANE EYRE",
"release_year",
"2011"
],
[
"LOVE",
"release_year",
"2011"
],
[
"MAGIC TRIP",
"has_genre",
"DOCUMENTARY"
],
[
"MAGIC TRIP",
"release_year",
"2011"
],
[
"MISS REPRESENTATION",
"has_genre",
"DOCUMENTARY"
],
[
"MISS REPRESENTATION",
"release_year",
"2011"
],
[
"MR. POPPER'S PENGUINS",
"has_genre",
"FAMILY"
],
[
"MR. POPPER'S PENGUINS",
"release_year",
"2011"
],
[
"ONE LIFE",
"has_genre",
"DOCUMENTARY"
],
[
"ONE LIFE",
"release_year",
"2011"
],
[
"PEARL JAM TWENTY",
"has_genre",
"DOCUMENTARY"
],
[
"PEARL JAM TWENTY",
"release_year",
"2011"
],
[
"PINA",
"has_genre",
"DOCUMENTARY"
],
[
"PINA",
"has_tags",
"DOCUMENTARY"
],
[
"PINA",
"release_year",
"2011"
],
[
"RED DOG",
"has_genre",
"FAMILY"
],
[
"RED DOG",
"release_year",
"2011"
],
[
"REVENGE OF THE ELECTRIC CAR",
"has_genre",
"DOCUMENTARY"
],
[
"REVENGE OF THE ELECTRIC CAR",
"release_year",
"2011"
],
[
"SURVIVING PROGRESS",
"has_genre",
"DOCUMENTARY"
],
[
"SURVIVING PROGRESS",
"has_tags",
"DOCUMENTARY"
],
[
"SURVIVING PROGRESS",
"release_year",
"2011"
],
[
"TALK TO HER",
"has_tags",
"LEONOR WATLING"
],
[
"TALK TO HER",
"has_tags",
"LOVE"
],
[
"TALK TO HER",
"starred_actors",
"LEONOR WATLING"
],
[
"THE AMBASSADOR",
"has_genre",
"DOCUMENTARY"
],
[
"THE AMBASSADOR",
"release_year",
"2011"
],
[
"THE BATTLE OF RUSSIA",
"has_genre",
"DOCUMENTARY"
],
[
"THE BATTLE OF RUSSIA",
"release_year",
"1943"
],
[
"THE BLACK POWER MIXTAPE 1967-1975",
"has_genre",
"DOCUMENTARY"
],
[
"THE BLACK POWER MIXTAPE 1967-1975",
"release_year",
"2011"
],
[
"THE CAPTAINS",
"has_genre",
"DOCUMENTARY"
],
[
"THE CAPTAINS",
"release_year",
"2011"
],
[
"THE FLAT",
"has_genre",
"DOCUMENTARY"
],
[
"THE FLAT",
"release_year",
"2011"
],
[
"THE HUMAN COMEDY",
"has_genre",
"FAMILY"
],
[
"THE HUMAN COMEDY",
"release_year",
"1943"
],
[
"THE INTERRUPTERS",
"has_genre",
"DOCUMENTARY"
],
[
"THE INTERRUPTERS",
"release_year",
"2011"
],
[
"THE LAST LIONS",
"has_genre",
"DOCUMENTARY"
],
[
"THE LAST LIONS",
"release_year",
"2011"
],
[
"THE LAST MOUNTAIN",
"has_genre",
"DOCUMENTARY"
],
[
"THE LAST MOUNTAIN",
"release_year",
"2011"
],
[
"THE OTHER F WORD",
"has_genre",
"DOCUMENTARY"
],
[
"THE OTHER F WORD",
"release_year",
"2011"
],
[
"THESE AMAZING SHADOWS",
"has_genre",
"DOCUMENTARY"
],
[
"THESE AMAZING SHADOWS",
"release_year",
"2011"
],
[
"THIS IS NOT A FILM",
"has_genre",
"DOCUMENTARY"
],
[
"THIS IS NOT A FILM",
"release_year",
"2011"
],
[
"UNLAWFUL KILLING",
"has_genre",
"DOCUMENTARY"
],
[
"UNLAWFUL KILLING",
"release_year",
"2011"
],
[
"WE BOUGHT A ZOO",
"has_genre",
"FAMILY"
],
[
"WE BOUGHT A ZOO",
"has_tags",
"FAMILY"
],
[
"WE BOUGHT A ZOO",
"release_year",
"2011"
],
[
"WHORES' GLORY",
"has_genre",
"DOCUMENTARY"
],
[
"WHORES' GLORY",
"has_tags",
"DOCUMENTARY"
],
[
"WHORES' GLORY",
"release_year",
"2011"
],
[
"YOU'VE BEEN TRUMPED",
"has_genre",
"DOCUMENTARY"
],
[
"YOU'VE BEEN TRUMPED",
"release_year",
"2011"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35749, BRECKIN MEYER
1148, CONFESSIONS
8872, DANCER, TEXAS POP. 81
36212, DRAMA
4108, KANAE MINATO
12106, MATTHEW RHYS
27064, THE SCAPEGOAT
src, edge_attr, dst
1148, has_genre, 36212
1148, written_by, 4108
8872, has_genre, 36212
8872, starred_actors, 35749
27064, has_genre, 36212
27064, starred_actors, 12106
Question: In what context are BRECKIN MEYER, KANAE MINATO, and MATTHEW RHYS connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BRECKIN MEYER",
"KANAE MINATO",
"MATTHEW RHYS"
],
"valid_edges": [
[
"CONFESSIONS",
"has_genre",
"DRAMA"
],
[
"CONFESSIONS",
"written_by",
"KANAE MINATO"
],
[
"DANCER, TEXAS POP. 81",
"has_genre",
"DRAMA"
],
[
"DANCER, TEXAS POP. 81",
"starred_actors",
"BRECKIN MEYER"
],
[
"THE SCAPEGOAT",
"has_genre",
"DRAMA"
],
[
"THE SCAPEGOAT",
"starred_actors",
"MATTHEW RHYS"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
13805, BRET ROBERTS
30463, COMEDY
5870, HORROR
13963, JOHNNY VEGAS
35018, KING COBRA
19020, NATIONAL LAMPOON PRESENTS DORM DAZE
34937, PATRICK CASEY
2327, SCOTT HILLENBRAND
39218, SEX LIVES OF THE POTATO MEN
8494, THE VIOLENT KIND
14057, TRANSYLMANIA
src, edge_attr, dst
35018, directed_by, 2327
35018, has_genre, 5870
35018, starred_actors, 2327
35018, written_by, 2327
19020, directed_by, 2327
19020, has_genre, 30463
19020, written_by, 34937
39218, has_genre, 30463
39218, starred_actors, 13963
8494, has_genre, 5870
8494, starred_actors, 13805
14057, directed_by, 2327
14057, has_genre, 30463
14057, has_genre, 5870
14057, starred_actors, 34937
14057, written_by, 34937
Question: In what context are BRET ROBERTS, JOHNNY VEGAS, and SCOTT HILLENBRAND connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BRET ROBERTS",
"JOHNNY VEGAS",
"SCOTT HILLENBRAND"
],
"valid_edges": [
[
"KING COBRA",
"directed_by",
"SCOTT HILLENBRAND"
],
[
"KING COBRA",
"has_genre",
"HORROR"
],
[
"KING COBRA",
"starred_actors",
"SCOTT HILLENBRAND"
],
[
"KING COBRA",
"written_by",
"SCOTT HILLENBRAND"
],
[
"NATIONAL LAMPOON PRESENTS DORM DAZE",
"directed_by",
"SCOTT HILLENBRAND"
],
[
"NATIONAL LAMPOON PRESENTS DORM DAZE",
"has_genre",
"COMEDY"
],
[
"NATIONAL LAMPOON PRESENTS DORM DAZE",
"written_by",
"PATRICK CASEY"
],
[
"SEX LIVES OF THE POTATO MEN",
"has_genre",
"COMEDY"
],
[
"SEX LIVES OF THE POTATO MEN",
"starred_actors",
"JOHNNY VEGAS"
],
[
"THE VIOLENT KIND",
"has_genre",
"HORROR"
],
[
"THE VIOLENT KIND",
"starred_actors",
"BRET ROBERTS"
],
[
"TRANSYLMANIA",
"directed_by",
"SCOTT HILLENBRAND"
],
[
"TRANSYLMANIA",
"has_genre",
"COMEDY"
],
[
"TRANSYLMANIA",
"has_genre",
"HORROR"
],
[
"TRANSYLMANIA",
"starred_actors",
"PATRICK CASEY"
],
[
"TRANSYLMANIA",
"written_by",
"PATRICK CASEY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
27261, 2009
20981, A WOMAN OF AFFAIRS
10340, ADRIFT
37608, AUSTRALIA
24556, DOWNSTAIRS
36212, DRAMA
29560, HE WHO GETS SLAPPED
5667, JOHN GILBERT
16469, LINH DAN PHAM
9235, MR. NOBODY
23155, WALKABOUT
src, edge_attr, dst
20981, has_genre, 36212
20981, starred_actors, 5667
10340, has_genre, 36212
10340, release_year, 27261
10340, starred_actors, 16469
37608, has_genre, 36212
37608, has_tags, 37608
24556, has_genre, 36212
24556, starred_actors, 5667
24556, written_by, 5667
29560, has_genre, 36212
29560, starred_actors, 5667
9235, has_genre, 36212
9235, release_year, 27261
9235, starred_actors, 16469
23155, has_tags, 37608
Question: For what reason are JOHN GILBERT, LINH DAN PHAM, and WALKABOUT associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JOHN GILBERT",
"LINH DAN PHAM",
"WALKABOUT"
],
"valid_edges": [
[
"A WOMAN OF AFFAIRS",
"has_genre",
"DRAMA"
],
[
"A WOMAN OF AFFAIRS",
"starred_actors",
"JOHN GILBERT"
],
[
"ADRIFT",
"has_genre",
"DRAMA"
],
[
"ADRIFT",
"release_year",
"2009"
],
[
"ADRIFT",
"starred_actors",
"LINH DAN PHAM"
],
[
"AUSTRALIA",
"has_genre",
"DRAMA"
],
[
"AUSTRALIA",
"has_tags",
"AUSTRALIA"
],
[
"DOWNSTAIRS",
"has_genre",
"DRAMA"
],
[
"DOWNSTAIRS",
"starred_actors",
"JOHN GILBERT"
],
[
"DOWNSTAIRS",
"written_by",
"JOHN GILBERT"
],
[
"HE WHO GETS SLAPPED",
"has_genre",
"DRAMA"
],
[
"HE WHO GETS SLAPPED",
"starred_actors",
"JOHN GILBERT"
],
[
"MR. NOBODY",
"has_genre",
"DRAMA"
],
[
"MR. NOBODY",
"release_year",
"2009"
],
[
"MR. NOBODY",
"starred_actors",
"LINH DAN PHAM"
],
[
"WALKABOUT",
"has_tags",
"AUSTRALIA"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
13408, 2001
12569, ACTS OF WORSHIP
29180, CHU CHIN CHOW
30463, COMEDY
14627, GEORGE ROBEY
30384, JUMP TOMORROW
28958, MICHAEL HYATT
19692, TUNDE ADEBIMPE
src, edge_attr, dst
12569, release_year, 13408
12569, starred_actors, 28958
29180, has_genre, 30463
29180, starred_actors, 14627
30384, has_genre, 30463
30384, release_year, 13408
30384, starred_actors, 19692
Question: In what context are GEORGE ROBEY, MICHAEL HYATT, and TUNDE ADEBIMPE connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"GEORGE ROBEY",
"MICHAEL HYATT",
"TUNDE ADEBIMPE"
],
"valid_edges": [
[
"ACTS OF WORSHIP",
"release_year",
"2001"
],
[
"ACTS OF WORSHIP",
"starred_actors",
"MICHAEL HYATT"
],
[
"CHU CHIN CHOW",
"has_genre",
"COMEDY"
],
[
"CHU CHIN CHOW",
"starred_actors",
"GEORGE ROBEY"
],
[
"JUMP TOMORROW",
"has_genre",
"COMEDY"
],
[
"JUMP TOMORROW",
"release_year",
"2001"
],
[
"JUMP TOMORROW",
"starred_actors",
"TUNDE ADEBIMPE"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
24438, 1993
27261, 2009
39750, ALIENS
4652, ANGELA SHELTON
23390, ARCADE
34587, BAD TASTE
23100, BODY BAGS
25126, BODY SNATCHERS
2747, CARNOSAUR
30463, COMEDY
29377, CRONOS
6692, DISTRICT 9
36212, DRAMA
5372, FORGOTTEN SILVER
28939, FRAN WALSH
17870, GHOST IN THE MACHINE
20214, HEAVENLY CREATURES
5870, HORROR
19098, KING KONG
32278, LEPRECHAUN
39670, MAN'S BEST FRIEND
9131, MEET THE FEEBLES
21188, MR. JONES
8519, MY BOYFRIEND'S BACK
25168, NEW ZEALAND
15793, NIGHT TERRORS
14075, PETER JACKSON
29013, PUPPET MASTER 4
23898, SUPERNATURAL
25979, THE DARK HALF
21684, THE FRIGHTENERS
26894, THE LOVELY BONES
13101, TUMBLEWEEDS
src, edge_attr, dst
39750, has_tags, 5870
23390, has_genre, 5870
23390, release_year, 24438
34587, directed_by, 14075
34587, has_genre, 30463
34587, has_genre, 5870
34587, has_tags, 39750
34587, has_tags, 25168
34587, has_tags, 14075
34587, written_by, 14075
23100, has_genre, 5870
23100, release_year, 24438
25126, has_genre, 5870
25126, release_year, 24438
2747, has_genre, 5870
2747, release_year, 24438
29377, has_genre, 5870
29377, release_year, 24438
6692, has_tags, 14075
6692, release_year, 27261
5372, directed_by, 14075
5372, has_tags, 25168
5372, has_tags, 14075
5372, starred_actors, 14075
5372, written_by, 14075
17870, has_genre, 5870
17870, release_year, 24438
20214, directed_by, 14075
20214, has_genre, 36212
20214, has_tags, 25168
20214, has_tags, 14075
20214, written_by, 28939
20214, written_by, 14075
19098, directed_by, 14075
19098, has_tags, 19098
19098, has_tags, 14075
19098, written_by, 14075
32278, has_genre, 5870
32278, has_tags, 5870
32278, release_year, 24438
39670, has_genre, 5870
39670, release_year, 24438
9131, directed_by, 14075
9131, has_genre, 30463
9131, has_tags, 25168
9131, has_tags, 14075
9131, written_by, 28939
9131, written_by, 14075
21188, has_genre, 5870
21188, release_year, 24438
8519, has_genre, 5870
8519, release_year, 24438
15793, has_genre, 5870
15793, release_year, 24438
29013, has_genre, 5870
29013, release_year, 24438
25979, has_genre, 5870
25979, release_year, 24438
21684, directed_by, 14075
21684, has_genre, 30463
21684, has_genre, 5870
21684, has_tags, 14075
21684, has_tags, 23898
21684, written_by, 28939
21684, written_by, 14075
26894, directed_by, 14075
26894, has_genre, 36212
26894, has_tags, 14075
26894, has_tags, 23898
26894, release_year, 27261
26894, written_by, 14075
13101, has_genre, 30463
13101, has_genre, 36212
13101, written_by, 4652
Question: For what reason are ANGELA SHELTON, PETER JACKSON, and PUPPET MASTER 4 associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANGELA SHELTON",
"PETER JACKSON",
"PUPPET MASTER 4"
],
"valid_edges": [
[
"ALIENS",
"has_tags",
"HORROR"
],
[
"ARCADE",
"has_genre",
"HORROR"
],
[
"ARCADE",
"release_year",
"1993"
],
[
"BAD TASTE",
"directed_by",
"PETER JACKSON"
],
[
"BAD TASTE",
"has_genre",
"COMEDY"
],
[
"BAD TASTE",
"has_genre",
"HORROR"
],
[
"BAD TASTE",
"has_tags",
"ALIENS"
],
[
"BAD TASTE",
"has_tags",
"NEW ZEALAND"
],
[
"BAD TASTE",
"has_tags",
"PETER JACKSON"
],
[
"BAD TASTE",
"written_by",
"PETER JACKSON"
],
[
"BODY BAGS",
"has_genre",
"HORROR"
],
[
"BODY BAGS",
"release_year",
"1993"
],
[
"BODY SNATCHERS",
"has_genre",
"HORROR"
],
[
"BODY SNATCHERS",
"release_year",
"1993"
],
[
"CARNOSAUR",
"has_genre",
"HORROR"
],
[
"CARNOSAUR",
"release_year",
"1993"
],
[
"CRONOS",
"has_genre",
"HORROR"
],
[
"CRONOS",
"release_year",
"1993"
],
[
"DISTRICT 9",
"has_tags",
"PETER JACKSON"
],
[
"DISTRICT 9",
"release_year",
"2009"
],
[
"FORGOTTEN SILVER",
"directed_by",
"PETER JACKSON"
],
[
"FORGOTTEN SILVER",
"has_tags",
"NEW ZEALAND"
],
[
"FORGOTTEN SILVER",
"has_tags",
"PETER JACKSON"
],
[
"FORGOTTEN SILVER",
"starred_actors",
"PETER JACKSON"
],
[
"FORGOTTEN SILVER",
"written_by",
"PETER JACKSON"
],
[
"GHOST IN THE MACHINE",
"has_genre",
"HORROR"
],
[
"GHOST IN THE MACHINE",
"release_year",
"1993"
],
[
"HEAVENLY CREATURES",
"directed_by",
"PETER JACKSON"
],
[
"HEAVENLY CREATURES",
"has_genre",
"DRAMA"
],
[
"HEAVENLY CREATURES",
"has_tags",
"NEW ZEALAND"
],
[
"HEAVENLY CREATURES",
"has_tags",
"PETER JACKSON"
],
[
"HEAVENLY CREATURES",
"written_by",
"FRAN WALSH"
],
[
"HEAVENLY CREATURES",
"written_by",
"PETER JACKSON"
],
[
"KING KONG",
"directed_by",
"PETER JACKSON"
],
[
"KING KONG",
"has_tags",
"KING KONG"
],
[
"KING KONG",
"has_tags",
"PETER JACKSON"
],
[
"KING KONG",
"written_by",
"PETER JACKSON"
],
[
"LEPRECHAUN",
"has_genre",
"HORROR"
],
[
"LEPRECHAUN",
"has_tags",
"HORROR"
],
[
"LEPRECHAUN",
"release_year",
"1993"
],
[
"MAN'S BEST FRIEND",
"has_genre",
"HORROR"
],
[
"MAN'S BEST FRIEND",
"release_year",
"1993"
],
[
"MEET THE FEEBLES",
"directed_by",
"PETER JACKSON"
],
[
"MEET THE FEEBLES",
"has_genre",
"COMEDY"
],
[
"MEET THE FEEBLES",
"has_tags",
"NEW ZEALAND"
],
[
"MEET THE FEEBLES",
"has_tags",
"PETER JACKSON"
],
[
"MEET THE FEEBLES",
"written_by",
"FRAN WALSH"
],
[
"MEET THE FEEBLES",
"written_by",
"PETER JACKSON"
],
[
"MR. JONES",
"has_genre",
"HORROR"
],
[
"MR. JONES",
"release_year",
"1993"
],
[
"MY BOYFRIEND'S BACK",
"has_genre",
"HORROR"
],
[
"MY BOYFRIEND'S BACK",
"release_year",
"1993"
],
[
"NIGHT TERRORS",
"has_genre",
"HORROR"
],
[
"NIGHT TERRORS",
"release_year",
"1993"
],
[
"PUPPET MASTER 4",
"has_genre",
"HORROR"
],
[
"PUPPET MASTER 4",
"release_year",
"1993"
],
[
"THE DARK HALF",
"has_genre",
"HORROR"
],
[
"THE DARK HALF",
"release_year",
"1993"
],
[
"THE FRIGHTENERS",
"directed_by",
"PETER JACKSON"
],
[
"THE FRIGHTENERS",
"has_genre",
"COMEDY"
],
[
"THE FRIGHTENERS",
"has_genre",
"HORROR"
],
[
"THE FRIGHTENERS",
"has_tags",
"PETER JACKSON"
],
[
"THE FRIGHTENERS",
"has_tags",
"SUPERNATURAL"
],
[
"THE FRIGHTENERS",
"written_by",
"FRAN WALSH"
],
[
"THE FRIGHTENERS",
"written_by",
"PETER JACKSON"
],
[
"THE LOVELY BONES",
"directed_by",
"PETER JACKSON"
],
[
"THE LOVELY BONES",
"has_genre",
"DRAMA"
],
[
"THE LOVELY BONES",
"has_tags",
"PETER JACKSON"
],
[
"THE LOVELY BONES",
"has_tags",
"SUPERNATURAL"
],
[
"THE LOVELY BONES",
"release_year",
"2009"
],
[
"THE LOVELY BONES",
"written_by",
"PETER JACKSON"
],
[
"TUMBLEWEEDS",
"has_genre",
"COMEDY"
],
[
"TUMBLEWEEDS",
"has_genre",
"DRAMA"
],
[
"TUMBLEWEEDS",
"written_by",
"ANGELA SHELTON"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
29145, 10 ITEMS OR LESS
35845, 2006
18243, A SCANNER DARKLY
23754, AFTER THE WEDDING
6938, ALPHA DOG
8229, APOCALYPTO
24301, ART SCHOOL CONFIDENTIAL
18820, ASK THE DUST
24366, BABEL
36593, BLACK CHRISTMAS
16664, BLOOD DIAMOND
10531, BOBBY
867, BREAKING AND ENTERING
12724, BROKEN SKY
17899, BUG
33360, CANDY
22435, CHILDREN OF MEN
21625, CLERKS II
37750, CRANK
15115, CURSE OF THE GOLDEN FLOWER
3567, DAYS OF GLORY
24699, ELEGY
8262, FAMILY LAW
13766, FAST FOOD NATION
13893, FIDO
18217, FIND ME GUILTY
10315, FLAGS OF OUR FATHERS
39988, FRIENDS WITH MONEY
7879, HALF NELSON
26170, HOLLYWOODLAND
17120, INFAMOUS
19637, INLAND EMPIRE
7264, INSIDE MAN
18934, LETTERS FROM IWO JIMA
11277, LITTLE CHILDREN
24376, LITTLE MISS SUNSHINE
39673, LOS OLVIDADOS
33950, LUCKY NUMBER SLEVIN
38677, MIAMI VICE
3519, MY NAME IS JUANI
39852, PAN'S LABYRINTH
3451, PAPRIKA
24369, QUINCEAÑERA
13081, R
18480, RENAISSANCE
5766, RUNNING WITH SCISSORS
17383, SHERRYBABY
26930, SLITHER
12333, SMOKIN' ACES
7556, SPANISH
37498, TENACIOUS D IN THE PICK OF DESTINY
24057, THE BACKWOODS
11948, THE BLACK DAHLIA
31353, THE CONTRACT
1059, THE DA VINCI CODE
18997, THE DEPARTED
1723, THE FALL
4662, THE GOOD GERMAN
15862, THE GOOD SHEPHERD
32459, THE HAMMER
31309, THE HOAX
2467, THE LAST KING OF SCOTLAND
14315, THE LIVES OF OTHERS
22880, THE MACHINIST
17393, THE NIGHT LISTENER
1846, THE ONE PERCENT
956, THE ORPHANAGE
11383, THE SCIENCE OF SLEEP
37148, THE SECRET IN THEIR EYES
8334, TRANSSIBERIAN
25806, UNITED 93
23568, VANILLA SKY
36753, VENUS
35728, VOLVER
src, edge_attr, dst
29145, has_tags, 13081
29145, release_year, 35845
18243, has_tags, 13081
18243, release_year, 35845
23754, has_tags, 13081
23754, release_year, 35845
6938, has_tags, 13081
6938, release_year, 35845
8229, has_tags, 13081
8229, release_year, 35845
24301, has_tags, 13081
24301, release_year, 35845
18820, has_tags, 13081
18820, release_year, 35845
24366, has_tags, 13081
24366, release_year, 35845
36593, has_tags, 13081
36593, release_year, 35845
16664, has_tags, 13081
16664, release_year, 35845
10531, has_tags, 13081
10531, release_year, 35845
867, has_tags, 13081
867, release_year, 35845
12724, in_language, 7556
12724, release_year, 35845
17899, has_tags, 13081
17899, release_year, 35845
33360, has_tags, 13081
33360, release_year, 35845
22435, has_tags, 13081
22435, release_year, 35845
21625, has_tags, 13081
21625, release_year, 35845
37750, has_tags, 13081
37750, release_year, 35845
15115, has_tags, 13081
15115, release_year, 35845
3567, has_tags, 13081
3567, release_year, 35845
24699, has_tags, 13081
24699, in_language, 7556
8262, in_language, 7556
8262, release_year, 35845
13766, has_tags, 13081
13766, release_year, 35845
13893, has_tags, 13081
13893, release_year, 35845
18217, has_tags, 13081
18217, release_year, 35845
10315, has_tags, 13081
10315, release_year, 35845
39988, has_tags, 13081
39988, release_year, 35845
7879, has_tags, 13081
7879, release_year, 35845
26170, has_tags, 13081
26170, release_year, 35845
17120, has_tags, 13081
17120, release_year, 35845
19637, has_tags, 13081
19637, release_year, 35845
7264, has_tags, 13081
7264, release_year, 35845
18934, has_tags, 13081
18934, release_year, 35845
11277, has_tags, 13081
11277, release_year, 35845
24376, has_tags, 13081
24376, release_year, 35845
39673, in_language, 7556
33950, has_tags, 13081
33950, release_year, 35845
38677, has_tags, 13081
38677, release_year, 35845
3519, in_language, 7556
3519, release_year, 35845
39852, has_tags, 13081
39852, has_tags, 7556
39852, in_language, 7556
39852, release_year, 35845
3451, has_tags, 13081
3451, release_year, 35845
24369, in_language, 7556
24369, release_year, 35845
18480, has_tags, 13081
18480, release_year, 35845
5766, has_tags, 13081
5766, release_year, 35845
17383, has_tags, 13081
17383, release_year, 35845
26930, has_tags, 13081
26930, release_year, 35845
12333, has_tags, 13081
12333, release_year, 35845
37498, has_tags, 13081
37498, release_year, 35845
24057, in_language, 7556
24057, release_year, 35845
11948, has_tags, 13081
11948, release_year, 35845
31353, has_tags, 13081
31353, release_year, 35845
1059, has_tags, 13081
1059, release_year, 35845
18997, has_tags, 13081
18997, release_year, 35845
1723, has_tags, 13081
1723, release_year, 35845
4662, has_tags, 13081
4662, release_year, 35845
15862, has_tags, 13081
15862, release_year, 35845
32459, has_tags, 13081
31309, has_tags, 13081
31309, release_year, 35845
2467, has_tags, 13081
2467, release_year, 35845
14315, has_tags, 13081
14315, release_year, 35845
22880, has_tags, 13081
22880, in_language, 7556
17393, has_tags, 13081
17393, release_year, 35845
1846, release_year, 35845
956, has_tags, 13081
956, has_tags, 7556
956, in_language, 7556
11383, has_tags, 13081
11383, release_year, 35845
37148, has_tags, 13081
37148, has_tags, 7556
37148, in_language, 7556
8334, has_tags, 13081
8334, in_language, 7556
25806, has_tags, 13081
25806, release_year, 35845
23568, has_tags, 13081
23568, in_language, 7556
36753, has_tags, 13081
36753, release_year, 35845
35728, has_tags, 13081
35728, has_tags, 7556
35728, in_language, 7556
35728, release_year, 35845
Question: How are LOS OLVIDADOS, THE HAMMER, and THE ONE PERCENT related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"LOS OLVIDADOS",
"THE HAMMER",
"THE ONE PERCENT"
],
"valid_edges": [
[
"10 ITEMS OR LESS",
"has_tags",
"R"
],
[
"10 ITEMS OR LESS",
"release_year",
"2006"
],
[
"A SCANNER DARKLY",
"has_tags",
"R"
],
[
"A SCANNER DARKLY",
"release_year",
"2006"
],
[
"AFTER THE WEDDING",
"has_tags",
"R"
],
[
"AFTER THE WEDDING",
"release_year",
"2006"
],
[
"ALPHA DOG",
"has_tags",
"R"
],
[
"ALPHA DOG",
"release_year",
"2006"
],
[
"APOCALYPTO",
"has_tags",
"R"
],
[
"APOCALYPTO",
"release_year",
"2006"
],
[
"ART SCHOOL CONFIDENTIAL",
"has_tags",
"R"
],
[
"ART SCHOOL CONFIDENTIAL",
"release_year",
"2006"
],
[
"ASK THE DUST",
"has_tags",
"R"
],
[
"ASK THE DUST",
"release_year",
"2006"
],
[
"BABEL",
"has_tags",
"R"
],
[
"BABEL",
"release_year",
"2006"
],
[
"BLACK CHRISTMAS",
"has_tags",
"R"
],
[
"BLACK CHRISTMAS",
"release_year",
"2006"
],
[
"BLOOD DIAMOND",
"has_tags",
"R"
],
[
"BLOOD DIAMOND",
"release_year",
"2006"
],
[
"BOBBY",
"has_tags",
"R"
],
[
"BOBBY",
"release_year",
"2006"
],
[
"BREAKING AND ENTERING",
"has_tags",
"R"
],
[
"BREAKING AND ENTERING",
"release_year",
"2006"
],
[
"BROKEN SKY",
"in_language",
"SPANISH"
],
[
"BROKEN SKY",
"release_year",
"2006"
],
[
"BUG",
"has_tags",
"R"
],
[
"BUG",
"release_year",
"2006"
],
[
"CANDY",
"has_tags",
"R"
],
[
"CANDY",
"release_year",
"2006"
],
[
"CHILDREN OF MEN",
"has_tags",
"R"
],
[
"CHILDREN OF MEN",
"release_year",
"2006"
],
[
"CLERKS II",
"has_tags",
"R"
],
[
"CLERKS II",
"release_year",
"2006"
],
[
"CRANK",
"has_tags",
"R"
],
[
"CRANK",
"release_year",
"2006"
],
[
"CURSE OF THE GOLDEN FLOWER",
"has_tags",
"R"
],
[
"CURSE OF THE GOLDEN FLOWER",
"release_year",
"2006"
],
[
"DAYS OF GLORY",
"has_tags",
"R"
],
[
"DAYS OF GLORY",
"release_year",
"2006"
],
[
"ELEGY",
"has_tags",
"R"
],
[
"ELEGY",
"in_language",
"SPANISH"
],
[
"FAMILY LAW",
"in_language",
"SPANISH"
],
[
"FAMILY LAW",
"release_year",
"2006"
],
[
"FAST FOOD NATION",
"has_tags",
"R"
],
[
"FAST FOOD NATION",
"release_year",
"2006"
],
[
"FIDO",
"has_tags",
"R"
],
[
"FIDO",
"release_year",
"2006"
],
[
"FIND ME GUILTY",
"has_tags",
"R"
],
[
"FIND ME GUILTY",
"release_year",
"2006"
],
[
"FLAGS OF OUR FATHERS",
"has_tags",
"R"
],
[
"FLAGS OF OUR FATHERS",
"release_year",
"2006"
],
[
"FRIENDS WITH MONEY",
"has_tags",
"R"
],
[
"FRIENDS WITH MONEY",
"release_year",
"2006"
],
[
"HALF NELSON",
"has_tags",
"R"
],
[
"HALF NELSON",
"release_year",
"2006"
],
[
"HOLLYWOODLAND",
"has_tags",
"R"
],
[
"HOLLYWOODLAND",
"release_year",
"2006"
],
[
"INFAMOUS",
"has_tags",
"R"
],
[
"INFAMOUS",
"release_year",
"2006"
],
[
"INLAND EMPIRE",
"has_tags",
"R"
],
[
"INLAND EMPIRE",
"release_year",
"2006"
],
[
"INSIDE MAN",
"has_tags",
"R"
],
[
"INSIDE MAN",
"release_year",
"2006"
],
[
"LETTERS FROM IWO JIMA",
"has_tags",
"R"
],
[
"LETTERS FROM IWO JIMA",
"release_year",
"2006"
],
[
"LITTLE CHILDREN",
"has_tags",
"R"
],
[
"LITTLE CHILDREN",
"release_year",
"2006"
],
[
"LITTLE MISS SUNSHINE",
"has_tags",
"R"
],
[
"LITTLE MISS SUNSHINE",
"release_year",
"2006"
],
[
"LOS OLVIDADOS",
"in_language",
"SPANISH"
],
[
"LUCKY NUMBER SLEVIN",
"has_tags",
"R"
],
[
"LUCKY NUMBER SLEVIN",
"release_year",
"2006"
],
[
"MIAMI VICE",
"has_tags",
"R"
],
[
"MIAMI VICE",
"release_year",
"2006"
],
[
"MY NAME IS JUANI",
"in_language",
"SPANISH"
],
[
"MY NAME IS JUANI",
"release_year",
"2006"
],
[
"PAN'S LABYRINTH",
"has_tags",
"R"
],
[
"PAN'S LABYRINTH",
"has_tags",
"SPANISH"
],
[
"PAN'S LABYRINTH",
"in_language",
"SPANISH"
],
[
"PAN'S LABYRINTH",
"release_year",
"2006"
],
[
"PAPRIKA",
"has_tags",
"R"
],
[
"PAPRIKA",
"release_year",
"2006"
],
[
"QUINCEAÑERA",
"in_language",
"SPANISH"
],
[
"QUINCEAÑERA",
"release_year",
"2006"
],
[
"RENAISSANCE",
"has_tags",
"R"
],
[
"RENAISSANCE",
"release_year",
"2006"
],
[
"RUNNING WITH SCISSORS",
"has_tags",
"R"
],
[
"RUNNING WITH SCISSORS",
"release_year",
"2006"
],
[
"SHERRYBABY",
"has_tags",
"R"
],
[
"SHERRYBABY",
"release_year",
"2006"
],
[
"SLITHER",
"has_tags",
"R"
],
[
"SLITHER",
"release_year",
"2006"
],
[
"SMOKIN' ACES",
"has_tags",
"R"
],
[
"SMOKIN' ACES",
"release_year",
"2006"
],
[
"TENACIOUS D IN THE PICK OF DESTINY",
"has_tags",
"R"
],
[
"TENACIOUS D IN THE PICK OF DESTINY",
"release_year",
"2006"
],
[
"THE BACKWOODS",
"in_language",
"SPANISH"
],
[
"THE BACKWOODS",
"release_year",
"2006"
],
[
"THE BLACK DAHLIA",
"has_tags",
"R"
],
[
"THE BLACK DAHLIA",
"release_year",
"2006"
],
[
"THE CONTRACT",
"has_tags",
"R"
],
[
"THE CONTRACT",
"release_year",
"2006"
],
[
"THE DA VINCI CODE",
"has_tags",
"R"
],
[
"THE DA VINCI CODE",
"release_year",
"2006"
],
[
"THE DEPARTED",
"has_tags",
"R"
],
[
"THE DEPARTED",
"release_year",
"2006"
],
[
"THE FALL",
"has_tags",
"R"
],
[
"THE FALL",
"release_year",
"2006"
],
[
"THE GOOD GERMAN",
"has_tags",
"R"
],
[
"THE GOOD GERMAN",
"release_year",
"2006"
],
[
"THE GOOD SHEPHERD",
"has_tags",
"R"
],
[
"THE GOOD SHEPHERD",
"release_year",
"2006"
],
[
"THE HAMMER",
"has_tags",
"R"
],
[
"THE HOAX",
"has_tags",
"R"
],
[
"THE HOAX",
"release_year",
"2006"
],
[
"THE LAST KING OF SCOTLAND",
"has_tags",
"R"
],
[
"THE LAST KING OF SCOTLAND",
"release_year",
"2006"
],
[
"THE LIVES OF OTHERS",
"has_tags",
"R"
],
[
"THE LIVES OF OTHERS",
"release_year",
"2006"
],
[
"THE MACHINIST",
"has_tags",
"R"
],
[
"THE MACHINIST",
"in_language",
"SPANISH"
],
[
"THE NIGHT LISTENER",
"has_tags",
"R"
],
[
"THE NIGHT LISTENER",
"release_year",
"2006"
],
[
"THE ONE PERCENT",
"release_year",
"2006"
],
[
"THE ORPHANAGE",
"has_tags",
"R"
],
[
"THE ORPHANAGE",
"has_tags",
"SPANISH"
],
[
"THE ORPHANAGE",
"in_language",
"SPANISH"
],
[
"THE SCIENCE OF SLEEP",
"has_tags",
"R"
],
[
"THE SCIENCE OF SLEEP",
"release_year",
"2006"
],
[
"THE SECRET IN THEIR EYES",
"has_tags",
"R"
],
[
"THE SECRET IN THEIR EYES",
"has_tags",
"SPANISH"
],
[
"THE SECRET IN THEIR EYES",
"in_language",
"SPANISH"
],
[
"TRANSSIBERIAN",
"has_tags",
"R"
],
[
"TRANSSIBERIAN",
"in_language",
"SPANISH"
],
[
"UNITED 93",
"has_tags",
"R"
],
[
"UNITED 93",
"release_year",
"2006"
],
[
"VANILLA SKY",
"has_tags",
"R"
],
[
"VANILLA SKY",
"in_language",
"SPANISH"
],
[
"VENUS",
"has_tags",
"R"
],
[
"VENUS",
"release_year",
"2006"
],
[
"VOLVER",
"has_tags",
"R"
],
[
"VOLVER",
"has_tags",
"SPANISH"
],
[
"VOLVER",
"in_language",
"SPANISH"
],
[
"VOLVER",
"release_year",
"2006"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
37224, 1990
19905, A TALE OF SPRINGTIME
28725, ANNE TEYSSÈDRE
1856, EUROPA EUROPA
22011, NIGHTBREED
10981, SERIAL KILLER
src, edge_attr, dst
19905, release_year, 37224
19905, starred_actors, 28725
1856, release_year, 37224
22011, has_tags, 10981
22011, release_year, 37224
Question: For what reason are ANNE TEYSSÈDRE, EUROPA EUROPA, and SERIAL KILLER associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANNE TEYSSÈDRE",
"EUROPA EUROPA",
"SERIAL KILLER"
],
"valid_edges": [
[
"A TALE OF SPRINGTIME",
"release_year",
"1990"
],
[
"A TALE OF SPRINGTIME",
"starred_actors",
"ANNE TEYSSÈDRE"
],
[
"EUROPA EUROPA",
"release_year",
"1990"
],
[
"NIGHTBREED",
"has_tags",
"SERIAL KILLER"
],
[
"NIGHTBREED",
"release_year",
"1990"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
658, 2012
33645, BILL OBERST JR.
31778, BLACK SHEEP
29691, CHRIS FARLEY
5870, HORROR
9520, JODY LAMBERT
31312, PEOPLE LIKE US
24992, SCARY OR DIE
src, edge_attr, dst
31778, has_genre, 5870
31778, has_tags, 29691
31778, starred_actors, 29691
31312, release_year, 658
31312, written_by, 9520
24992, has_genre, 5870
24992, release_year, 658
24992, starred_actors, 33645
Question: For what reason are BILL OBERST JR., CHRIS FARLEY, and JODY LAMBERT associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BILL OBERST JR.",
"CHRIS FARLEY",
"JODY LAMBERT"
],
"valid_edges": [
[
"BLACK SHEEP",
"has_genre",
"HORROR"
],
[
"BLACK SHEEP",
"has_tags",
"CHRIS FARLEY"
],
[
"BLACK SHEEP",
"starred_actors",
"CHRIS FARLEY"
],
[
"PEOPLE LIKE US",
"release_year",
"2012"
],
[
"PEOPLE LIKE US",
"written_by",
"JODY LAMBERT"
],
[
"SCARY OR DIE",
"has_genre",
"HORROR"
],
[
"SCARY OR DIE",
"release_year",
"2012"
],
[
"SCARY OR DIE",
"starred_actors",
"BILL OBERST JR."
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
39641, ALONG CAME JONES
24276, CASANOVA BROWN
30463, COMEDY
29757, GARY COOPER
12557, HOW TO MARRY A MILLIONAIRE
34414, KARYN BOSNAK
35230, MICHAEL DUDIKOFF
11190, NUNNALLY JOHNSON
32766, RADIOACTIVE DREAMS
11290, TAKE HER, SHE'S MINE
29742, WHAT'S YOUR NUMBER?
src, edge_attr, dst
39641, has_genre, 30463
39641, starred_actors, 29757
39641, written_by, 11190
24276, has_genre, 30463
24276, starred_actors, 29757
24276, written_by, 11190
12557, has_genre, 30463
12557, written_by, 11190
32766, has_genre, 30463
32766, starred_actors, 35230
11290, has_genre, 30463
11290, written_by, 11190
29742, has_genre, 30463
29742, written_by, 34414
Question: In what context are KARYN BOSNAK, MICHAEL DUDIKOFF, and NUNNALLY JOHNSON connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"KARYN BOSNAK",
"MICHAEL DUDIKOFF",
"NUNNALLY JOHNSON"
],
"valid_edges": [
[
"ALONG CAME JONES",
"has_genre",
"COMEDY"
],
[
"ALONG CAME JONES",
"starred_actors",
"GARY COOPER"
],
[
"ALONG CAME JONES",
"written_by",
"NUNNALLY JOHNSON"
],
[
"CASANOVA BROWN",
"has_genre",
"COMEDY"
],
[
"CASANOVA BROWN",
"starred_actors",
"GARY COOPER"
],
[
"CASANOVA BROWN",
"written_by",
"NUNNALLY JOHNSON"
],
[
"HOW TO MARRY A MILLIONAIRE",
"has_genre",
"COMEDY"
],
[
"HOW TO MARRY A MILLIONAIRE",
"written_by",
"NUNNALLY JOHNSON"
],
[
"RADIOACTIVE DREAMS",
"has_genre",
"COMEDY"
],
[
"RADIOACTIVE DREAMS",
"starred_actors",
"MICHAEL DUDIKOFF"
],
[
"TAKE HER, SHE'S MINE",
"has_genre",
"COMEDY"
],
[
"TAKE HER, SHE'S MINE",
"written_by",
"NUNNALLY JOHNSON"
],
[
"WHAT'S YOUR NUMBER?",
"has_genre",
"COMEDY"
],
[
"WHAT'S YOUR NUMBER?",
"written_by",
"KARYN BOSNAK"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
658, 2012
22088, A BRIDGE TOO FAR
25987, A GUY NAMED JOE
23445, A MIDNIGHT CLEAR
27553, ACT OF VALOR
7663, ACTION IN THE NORTH ATLANTIC
22726, ANNE FRANK REMEMBERED
36876, ATTACK
32014, BALLAD OF A SOLDIER
34734, BATTLE OF THE BULGE
12185, BATTLEGROUND
6817, BENNO VIGNY
1912, BEYOND ALL BOUNDARIES
40074, BLACK BOOK
25285, COME AND SEE
10293, CONSPIRACY
4615, DARK BLUE WORLD
18972, DAS BOOT
11363, DEFIANCE
16353, EDGES OF THE LORD
26918, EMPEROR
22028, EMPIRE OF THE SUN
16930, ENEMY AT THE GATES
21289, ENTITY
27958, FIRES ON THE PLAIN
10315, FLAGS OF OUR FATHERS
13834, FLYING TIGERS
39145, FURY
30162, GUADALCANAL DIARY
15765, HAMSUN
33545, HART'S WAR
15343, IN DARKNESS
35518, IN HARM'S WAY
28700, INTO THE WHITE
38574, IT HAPPENED HERE
22012, IVAN'S CHILDHOOD
22167, KING RAT
9595, MEMPHIS BELLE
1422, MOROCCO
5127, MOTHER NIGHT
38294, MRS. MINIVER
20581, OPERATION PACIFIC
16806, PATTON
27373, RED DAWN
17742, RED TAILS
7978, RUROUNI KENSHIN
35586, SAHARA
23006, SANDS OF IWO JIMA
24365, SAVING PRIVATE RYAN
21196, STALAG 17
11124, STALINGRAD
37855, TEA WITH MUSSOLINI
38627, TEN TALL MEN
16103, THE AVENGERS
27210, THE BEST YEARS OF OUR LIVES
7710, THE BIG RED ONE
29788, THE BRIDGE AT REMAGEN
14436, THE BURMESE HARP
36692, THE CAINE MUTINY
828, THE ENEMY BELOW
30507, THE FIGHTING SEABEES
6424, THE GREAT ESCAPE
31393, THE GREAT RAID
405, THE HIDING PLACE
20299, THE HILL
27237, THE LONGEST DAY
30294, THE NIGHT OF THE GENERALS
1195, THE PATIENCE STONE
12614, THE PIANIST
32618, THE RAPE OF EUROPA
2739, THE SAPPHIRES
4962, THE SORROW AND THE PITY
21548, THE SUN
30136, THE THIN RED LINE
35911, THE TUSKEGEE AIRMEN
3123, THEY WERE EXPENDABLE
38352, TWELVE O'CLOCK HIGH
38730, TWO MEN WENT TO WAR
37253, U-571
39558, UNDERGROUND
33011, VALKYRIE
2175, VON RYAN'S EXPRESS
22214, WAR
9159, WAR COMES TO AMERICA
30056, WAR WITCH
5949, WHEN TRUMPETS FADE
23537, WHERE EAGLES DARE
24155, WORLD WAR II
15904, YANKS
16849, ZERO DARK THIRTY
src, edge_attr, dst
22088, has_genre, 22214
22088, has_tags, 22214
22088, has_tags, 24155
25987, has_genre, 22214
25987, has_tags, 24155
23445, has_genre, 22214
23445, has_tags, 22214
23445, has_tags, 24155
27553, has_genre, 22214
27553, release_year, 658
7663, has_genre, 22214
7663, has_tags, 24155
22726, has_genre, 22214
22726, has_tags, 24155
36876, has_genre, 22214
36876, has_tags, 24155
32014, has_genre, 22214
32014, has_tags, 24155
34734, has_genre, 22214
34734, has_tags, 24155
12185, has_genre, 22214
12185, has_tags, 22214
12185, has_tags, 24155
1912, has_genre, 22214
1912, has_tags, 24155
40074, has_genre, 22214
40074, has_tags, 24155
25285, has_genre, 22214
25285, has_tags, 24155
10293, has_genre, 22214
10293, has_tags, 24155
4615, has_genre, 22214
4615, has_tags, 24155
18972, has_genre, 22214
18972, has_tags, 22214
18972, has_tags, 24155
11363, has_tags, 22214
11363, has_tags, 24155
16353, has_genre, 22214
16353, has_tags, 24155
26918, has_tags, 22214
26918, release_year, 658
22028, has_genre, 22214
22028, has_tags, 22214
22028, has_tags, 24155
16930, has_tags, 22214
16930, has_tags, 24155
21289, release_year, 658
27958, has_genre, 22214
27958, has_tags, 24155
10315, has_genre, 22214
10315, has_tags, 22214
10315, has_tags, 24155
13834, has_genre, 22214
13834, has_tags, 24155
39145, has_genre, 22214
39145, has_tags, 22214
39145, has_tags, 24155
30162, has_genre, 22214
30162, has_tags, 24155
15765, has_genre, 22214
15765, has_tags, 24155
33545, has_genre, 22214
33545, has_tags, 24155
15343, has_genre, 22214
15343, has_tags, 22214
15343, has_tags, 24155
35518, has_genre, 22214
35518, has_tags, 24155
28700, has_genre, 22214
28700, release_year, 658
38574, has_genre, 22214
38574, has_tags, 24155
22012, has_genre, 22214
22012, has_tags, 22214
22012, has_tags, 24155
22167, has_genre, 22214
22167, has_tags, 24155
9595, has_genre, 22214
9595, has_tags, 24155
1422, written_by, 6817
5127, has_genre, 22214
5127, has_tags, 24155
38294, has_genre, 22214
38294, has_tags, 24155
20581, has_genre, 22214
20581, has_tags, 24155
16806, has_genre, 22214
16806, has_tags, 22214
16806, has_tags, 24155
27373, has_genre, 22214
27373, has_tags, 22214
27373, release_year, 658
17742, has_tags, 24155
17742, release_year, 658
7978, has_tags, 22214
7978, release_year, 658
35586, has_genre, 22214
35586, has_tags, 24155
23006, has_genre, 22214
23006, has_tags, 24155
24365, has_genre, 22214
24365, has_tags, 22214
24365, has_tags, 24155
21196, has_genre, 22214
21196, has_tags, 24155
11124, has_genre, 22214
11124, has_tags, 24155
37855, has_genre, 22214
37855, has_tags, 24155
38627, has_genre, 22214
38627, has_tags, 1422
16103, has_tags, 22214
16103, release_year, 658
27210, has_genre, 22214
27210, has_tags, 24155
7710, has_genre, 22214
7710, has_tags, 24155
29788, has_genre, 22214
29788, has_tags, 24155
14436, has_genre, 22214
14436, has_tags, 24155
36692, has_genre, 22214
36692, has_tags, 24155
828, has_tags, 22214
828, has_tags, 24155
30507, has_genre, 22214
30507, has_tags, 24155
6424, has_tags, 22214
6424, has_tags, 24155
31393, has_genre, 22214
31393, has_tags, 24155
405, has_genre, 22214
405, has_tags, 24155
20299, has_genre, 22214
20299, has_tags, 24155
27237, has_tags, 22214
27237, has_tags, 24155
30294, has_tags, 22214
30294, has_tags, 24155
1195, has_genre, 22214
1195, release_year, 658
12614, has_genre, 22214
12614, has_tags, 22214
12614, has_tags, 24155
32618, has_genre, 22214
32618, has_tags, 24155
2739, has_tags, 22214
2739, release_year, 658
4962, has_genre, 22214
4962, has_tags, 24155
21548, has_tags, 22214
21548, has_tags, 24155
30136, has_genre, 22214
30136, has_tags, 22214
30136, has_tags, 24155
35911, has_genre, 22214
35911, has_tags, 24155
3123, has_genre, 22214
3123, has_tags, 24155
38352, has_genre, 22214
38352, has_tags, 24155
38730, has_genre, 22214
38730, has_tags, 24155
37253, has_genre, 22214
37253, has_tags, 22214
37253, has_tags, 24155
39558, has_genre, 22214
39558, has_tags, 24155
33011, has_genre, 22214
33011, has_tags, 24155
2175, has_genre, 22214
2175, has_tags, 24155
9159, has_genre, 22214
9159, has_tags, 24155
30056, has_genre, 22214
30056, release_year, 658
5949, has_genre, 22214
5949, has_tags, 24155
23537, has_genre, 22214
23537, has_tags, 24155
15904, has_genre, 22214
15904, has_tags, 24155
16849, has_tags, 22214
16849, release_year, 658
Question: In what context are BENNO VIGNY, ENTITY, and KING RAT connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BENNO VIGNY",
"ENTITY",
"KING RAT"
],
"valid_edges": [
[
"A BRIDGE TOO FAR",
"has_genre",
"WAR"
],
[
"A BRIDGE TOO FAR",
"has_tags",
"WAR"
],
[
"A BRIDGE TOO FAR",
"has_tags",
"WORLD WAR II"
],
[
"A GUY NAMED JOE",
"has_genre",
"WAR"
],
[
"A GUY NAMED JOE",
"has_tags",
"WORLD WAR II"
],
[
"A MIDNIGHT CLEAR",
"has_genre",
"WAR"
],
[
"A MIDNIGHT CLEAR",
"has_tags",
"WAR"
],
[
"A MIDNIGHT CLEAR",
"has_tags",
"WORLD WAR II"
],
[
"ACT OF VALOR",
"has_genre",
"WAR"
],
[
"ACT OF VALOR",
"release_year",
"2012"
],
[
"ACTION IN THE NORTH ATLANTIC",
"has_genre",
"WAR"
],
[
"ACTION IN THE NORTH ATLANTIC",
"has_tags",
"WORLD WAR II"
],
[
"ANNE FRANK REMEMBERED",
"has_genre",
"WAR"
],
[
"ANNE FRANK REMEMBERED",
"has_tags",
"WORLD WAR II"
],
[
"ATTACK",
"has_genre",
"WAR"
],
[
"ATTACK",
"has_tags",
"WORLD WAR II"
],
[
"BALLAD OF A SOLDIER",
"has_genre",
"WAR"
],
[
"BALLAD OF A SOLDIER",
"has_tags",
"WORLD WAR II"
],
[
"BATTLE OF THE BULGE",
"has_genre",
"WAR"
],
[
"BATTLE OF THE BULGE",
"has_tags",
"WORLD WAR II"
],
[
"BATTLEGROUND",
"has_genre",
"WAR"
],
[
"BATTLEGROUND",
"has_tags",
"WAR"
],
[
"BATTLEGROUND",
"has_tags",
"WORLD WAR II"
],
[
"BEYOND ALL BOUNDARIES",
"has_genre",
"WAR"
],
[
"BEYOND ALL BOUNDARIES",
"has_tags",
"WORLD WAR II"
],
[
"BLACK BOOK",
"has_genre",
"WAR"
],
[
"BLACK BOOK",
"has_tags",
"WORLD WAR II"
],
[
"COME AND SEE",
"has_genre",
"WAR"
],
[
"COME AND SEE",
"has_tags",
"WORLD WAR II"
],
[
"CONSPIRACY",
"has_genre",
"WAR"
],
[
"CONSPIRACY",
"has_tags",
"WORLD WAR II"
],
[
"DARK BLUE WORLD",
"has_genre",
"WAR"
],
[
"DARK BLUE WORLD",
"has_tags",
"WORLD WAR II"
],
[
"DAS BOOT",
"has_genre",
"WAR"
],
[
"DAS BOOT",
"has_tags",
"WAR"
],
[
"DAS BOOT",
"has_tags",
"WORLD WAR II"
],
[
"DEFIANCE",
"has_tags",
"WAR"
],
[
"DEFIANCE",
"has_tags",
"WORLD WAR II"
],
[
"EDGES OF THE LORD",
"has_genre",
"WAR"
],
[
"EDGES OF THE LORD",
"has_tags",
"WORLD WAR II"
],
[
"EMPEROR",
"has_tags",
"WAR"
],
[
"EMPEROR",
"release_year",
"2012"
],
[
"EMPIRE OF THE SUN",
"has_genre",
"WAR"
],
[
"EMPIRE OF THE SUN",
"has_tags",
"WAR"
],
[
"EMPIRE OF THE SUN",
"has_tags",
"WORLD WAR II"
],
[
"ENEMY AT THE GATES",
"has_tags",
"WAR"
],
[
"ENEMY AT THE GATES",
"has_tags",
"WORLD WAR II"
],
[
"ENTITY",
"release_year",
"2012"
],
[
"FIRES ON THE PLAIN",
"has_genre",
"WAR"
],
[
"FIRES ON THE PLAIN",
"has_tags",
"WORLD WAR II"
],
[
"FLAGS OF OUR FATHERS",
"has_genre",
"WAR"
],
[
"FLAGS OF OUR FATHERS",
"has_tags",
"WAR"
],
[
"FLAGS OF OUR FATHERS",
"has_tags",
"WORLD WAR II"
],
[
"FLYING TIGERS",
"has_genre",
"WAR"
],
[
"FLYING TIGERS",
"has_tags",
"WORLD WAR II"
],
[
"FURY",
"has_genre",
"WAR"
],
[
"FURY",
"has_tags",
"WAR"
],
[
"FURY",
"has_tags",
"WORLD WAR II"
],
[
"GUADALCANAL DIARY",
"has_genre",
"WAR"
],
[
"GUADALCANAL DIARY",
"has_tags",
"WORLD WAR II"
],
[
"HAMSUN",
"has_genre",
"WAR"
],
[
"HAMSUN",
"has_tags",
"WORLD WAR II"
],
[
"HART'S WAR",
"has_genre",
"WAR"
],
[
"HART'S WAR",
"has_tags",
"WORLD WAR II"
],
[
"IN DARKNESS",
"has_genre",
"WAR"
],
[
"IN DARKNESS",
"has_tags",
"WAR"
],
[
"IN DARKNESS",
"has_tags",
"WORLD WAR II"
],
[
"IN HARM'S WAY",
"has_genre",
"WAR"
],
[
"IN HARM'S WAY",
"has_tags",
"WORLD WAR II"
],
[
"INTO THE WHITE",
"has_genre",
"WAR"
],
[
"INTO THE WHITE",
"release_year",
"2012"
],
[
"IT HAPPENED HERE",
"has_genre",
"WAR"
],
[
"IT HAPPENED HERE",
"has_tags",
"WORLD WAR II"
],
[
"IVAN'S CHILDHOOD",
"has_genre",
"WAR"
],
[
"IVAN'S CHILDHOOD",
"has_tags",
"WAR"
],
[
"IVAN'S CHILDHOOD",
"has_tags",
"WORLD WAR II"
],
[
"KING RAT",
"has_genre",
"WAR"
],
[
"KING RAT",
"has_tags",
"WORLD WAR II"
],
[
"MEMPHIS BELLE",
"has_genre",
"WAR"
],
[
"MEMPHIS BELLE",
"has_tags",
"WORLD WAR II"
],
[
"MOROCCO",
"written_by",
"BENNO VIGNY"
],
[
"MOTHER NIGHT",
"has_genre",
"WAR"
],
[
"MOTHER NIGHT",
"has_tags",
"WORLD WAR II"
],
[
"MRS. MINIVER",
"has_genre",
"WAR"
],
[
"MRS. MINIVER",
"has_tags",
"WORLD WAR II"
],
[
"OPERATION PACIFIC",
"has_genre",
"WAR"
],
[
"OPERATION PACIFIC",
"has_tags",
"WORLD WAR II"
],
[
"PATTON",
"has_genre",
"WAR"
],
[
"PATTON",
"has_tags",
"WAR"
],
[
"PATTON",
"has_tags",
"WORLD WAR II"
],
[
"RED DAWN",
"has_genre",
"WAR"
],
[
"RED DAWN",
"has_tags",
"WAR"
],
[
"RED DAWN",
"release_year",
"2012"
],
[
"RED TAILS",
"has_tags",
"WORLD WAR II"
],
[
"RED TAILS",
"release_year",
"2012"
],
[
"RUROUNI KENSHIN",
"has_tags",
"WAR"
],
[
"RUROUNI KENSHIN",
"release_year",
"2012"
],
[
"SAHARA",
"has_genre",
"WAR"
],
[
"SAHARA",
"has_tags",
"WORLD WAR II"
],
[
"SANDS OF IWO JIMA",
"has_genre",
"WAR"
],
[
"SANDS OF IWO JIMA",
"has_tags",
"WORLD WAR II"
],
[
"SAVING PRIVATE RYAN",
"has_genre",
"WAR"
],
[
"SAVING PRIVATE RYAN",
"has_tags",
"WAR"
],
[
"SAVING PRIVATE RYAN",
"has_tags",
"WORLD WAR II"
],
[
"STALAG 17",
"has_genre",
"WAR"
],
[
"STALAG 17",
"has_tags",
"WORLD WAR II"
],
[
"STALINGRAD",
"has_genre",
"WAR"
],
[
"STALINGRAD",
"has_tags",
"WORLD WAR II"
],
[
"TEA WITH MUSSOLINI",
"has_genre",
"WAR"
],
[
"TEA WITH MUSSOLINI",
"has_tags",
"WORLD WAR II"
],
[
"TEN TALL MEN",
"has_genre",
"WAR"
],
[
"TEN TALL MEN",
"has_tags",
"MOROCCO"
],
[
"THE AVENGERS",
"has_tags",
"WAR"
],
[
"THE AVENGERS",
"release_year",
"2012"
],
[
"THE BEST YEARS OF OUR LIVES",
"has_genre",
"WAR"
],
[
"THE BEST YEARS OF OUR LIVES",
"has_tags",
"WORLD WAR II"
],
[
"THE BIG RED ONE",
"has_genre",
"WAR"
],
[
"THE BIG RED ONE",
"has_tags",
"WORLD WAR II"
],
[
"THE BRIDGE AT REMAGEN",
"has_genre",
"WAR"
],
[
"THE BRIDGE AT REMAGEN",
"has_tags",
"WORLD WAR II"
],
[
"THE BURMESE HARP",
"has_genre",
"WAR"
],
[
"THE BURMESE HARP",
"has_tags",
"WORLD WAR II"
],
[
"THE CAINE MUTINY",
"has_genre",
"WAR"
],
[
"THE CAINE MUTINY",
"has_tags",
"WORLD WAR II"
],
[
"THE ENEMY BELOW",
"has_tags",
"WAR"
],
[
"THE ENEMY BELOW",
"has_tags",
"WORLD WAR II"
],
[
"THE FIGHTING SEABEES",
"has_genre",
"WAR"
],
[
"THE FIGHTING SEABEES",
"has_tags",
"WORLD WAR II"
],
[
"THE GREAT ESCAPE",
"has_tags",
"WAR"
],
[
"THE GREAT ESCAPE",
"has_tags",
"WORLD WAR II"
],
[
"THE GREAT RAID",
"has_genre",
"WAR"
],
[
"THE GREAT RAID",
"has_tags",
"WORLD WAR II"
],
[
"THE HIDING PLACE",
"has_genre",
"WAR"
],
[
"THE HIDING PLACE",
"has_tags",
"WORLD WAR II"
],
[
"THE HILL",
"has_genre",
"WAR"
],
[
"THE HILL",
"has_tags",
"WORLD WAR II"
],
[
"THE LONGEST DAY",
"has_tags",
"WAR"
],
[
"THE LONGEST DAY",
"has_tags",
"WORLD WAR II"
],
[
"THE NIGHT OF THE GENERALS",
"has_tags",
"WAR"
],
[
"THE NIGHT OF THE GENERALS",
"has_tags",
"WORLD WAR II"
],
[
"THE PATIENCE STONE",
"has_genre",
"WAR"
],
[
"THE PATIENCE STONE",
"release_year",
"2012"
],
[
"THE PIANIST",
"has_genre",
"WAR"
],
[
"THE PIANIST",
"has_tags",
"WAR"
],
[
"THE PIANIST",
"has_tags",
"WORLD WAR II"
],
[
"THE RAPE OF EUROPA",
"has_genre",
"WAR"
],
[
"THE RAPE OF EUROPA",
"has_tags",
"WORLD WAR II"
],
[
"THE SAPPHIRES",
"has_tags",
"WAR"
],
[
"THE SAPPHIRES",
"release_year",
"2012"
],
[
"THE SORROW AND THE PITY",
"has_genre",
"WAR"
],
[
"THE SORROW AND THE PITY",
"has_tags",
"WORLD WAR II"
],
[
"THE SUN",
"has_tags",
"WAR"
],
[
"THE SUN",
"has_tags",
"WORLD WAR II"
],
[
"THE THIN RED LINE",
"has_genre",
"WAR"
],
[
"THE THIN RED LINE",
"has_tags",
"WAR"
],
[
"THE THIN RED LINE",
"has_tags",
"WORLD WAR II"
],
[
"THE TUSKEGEE AIRMEN",
"has_genre",
"WAR"
],
[
"THE TUSKEGEE AIRMEN",
"has_tags",
"WORLD WAR II"
],
[
"THEY WERE EXPENDABLE",
"has_genre",
"WAR"
],
[
"THEY WERE EXPENDABLE",
"has_tags",
"WORLD WAR II"
],
[
"TWELVE O'CLOCK HIGH",
"has_genre",
"WAR"
],
[
"TWELVE O'CLOCK HIGH",
"has_tags",
"WORLD WAR II"
],
[
"TWO MEN WENT TO WAR",
"has_genre",
"WAR"
],
[
"TWO MEN WENT TO WAR",
"has_tags",
"WORLD WAR II"
],
[
"U-571",
"has_genre",
"WAR"
],
[
"U-571",
"has_tags",
"WAR"
],
[
"U-571",
"has_tags",
"WORLD WAR II"
],
[
"UNDERGROUND",
"has_genre",
"WAR"
],
[
"UNDERGROUND",
"has_tags",
"WORLD WAR II"
],
[
"VALKYRIE",
"has_genre",
"WAR"
],
[
"VALKYRIE",
"has_tags",
"WORLD WAR II"
],
[
"VON RYAN'S EXPRESS",
"has_genre",
"WAR"
],
[
"VON RYAN'S EXPRESS",
"has_tags",
"WORLD WAR II"
],
[
"WAR COMES TO AMERICA",
"has_genre",
"WAR"
],
[
"WAR COMES TO AMERICA",
"has_tags",
"WORLD WAR II"
],
[
"WAR WITCH",
"has_genre",
"WAR"
],
[
"WAR WITCH",
"release_year",
"2012"
],
[
"WHEN TRUMPETS FADE",
"has_genre",
"WAR"
],
[
"WHEN TRUMPETS FADE",
"has_tags",
"WORLD WAR II"
],
[
"WHERE EAGLES DARE",
"has_genre",
"WAR"
],
[
"WHERE EAGLES DARE",
"has_tags",
"WORLD WAR II"
],
[
"YANKS",
"has_genre",
"WAR"
],
[
"YANKS",
"has_tags",
"WORLD WAR II"
],
[
"ZERO DARK THIRTY",
"has_tags",
"WAR"
],
[
"ZERO DARK THIRTY",
"release_year",
"2012"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
9377, 2014
33511, DRACULA UNTOLD
26691, FREEZER
4336, GARY SHORE
11593, JUSTIN LADER
11121, MIKAEL SALOMON
22108, THE ONE I LOVE
src, edge_attr, dst
33511, directed_by, 4336
33511, release_year, 9377
26691, directed_by, 11121
26691, release_year, 9377
22108, release_year, 9377
22108, written_by, 11593
Question: In what context are GARY SHORE, JUSTIN LADER, and MIKAEL SALOMON connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"GARY SHORE",
"JUSTIN LADER",
"MIKAEL SALOMON"
],
"valid_edges": [
[
"DRACULA UNTOLD",
"directed_by",
"GARY SHORE"
],
[
"DRACULA UNTOLD",
"release_year",
"2014"
],
[
"FREEZER",
"directed_by",
"MIKAEL SALOMON"
],
[
"FREEZER",
"release_year",
"2014"
],
[
"THE ONE I LOVE",
"release_year",
"2014"
],
[
"THE ONE I LOVE",
"written_by",
"JUSTIN LADER"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
3702, 1995
16785, HENRY KING
21518, HONEY, I SHRUNK THE KIDS
34716, JOAN CHEN
21580, KIDS
33783, KRISTINE SUTHERLAND
30583, THE GUNFIGHTER
3579, THE HUNTED
37284, THE SUN ALSO RISES
src, edge_attr, dst
21518, has_tags, 21580
21518, starred_actors, 33783
21580, release_year, 3702
30583, directed_by, 16785
30583, has_tags, 16785
3579, release_year, 3702
3579, starred_actors, 34716
37284, directed_by, 16785
37284, starred_actors, 34716
Question: How are KRISTINE SUTHERLAND, THE GUNFIGHTER, and THE HUNTED related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"KRISTINE SUTHERLAND",
"THE GUNFIGHTER",
"THE HUNTED"
],
"valid_edges": [
[
"HONEY, I SHRUNK THE KIDS",
"has_tags",
"KIDS"
],
[
"HONEY, I SHRUNK THE KIDS",
"starred_actors",
"KRISTINE SUTHERLAND"
],
[
"KIDS",
"release_year",
"1995"
],
[
"THE GUNFIGHTER",
"directed_by",
"HENRY KING"
],
[
"THE GUNFIGHTER",
"has_tags",
"HENRY KING"
],
[
"THE HUNTED",
"release_year",
"1995"
],
[
"THE HUNTED",
"starred_actors",
"JOAN CHEN"
],
[
"THE SUN ALSO RISES",
"directed_by",
"HENRY KING"
],
[
"THE SUN ALSO RISES",
"starred_actors",
"JOAN CHEN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
135, 1926
25395, AMERICAN GRAFFITI
10768, BACK TO THE FUTURE
9097, BLADE RUNNER
16240, HARRISON FORD
26458, LON CHANEY
12574, LONDON AFTER MIDNIGHT
36980, MARCELINE DAY
37497, NATIONAL FILM REGISTRY
29299, RAIDERS OF THE LOST ARK
32090, ROBERT ZEMECKIS
4689, SABRINA
34215, TELL IT TO THE MARINES
21989, THE BLACKBIRD
31204, THE CAMERAMAN
28677, THE CONVERSATION
31647, THE SON OF THE SHEIK
28744, THE UNHOLY THREE
19823, THE UNKNOWN
28747, TOD BROWNING
24209, WEST OF ZANZIBAR
1524, WHAT LIES BENEATH
9246, WHERE EAST IS EAST
src, edge_attr, dst
25395, has_tags, 16240
25395, has_tags, 37497
10768, directed_by, 32090
10768, has_tags, 37497
10768, has_tags, 32090
10768, written_by, 32090
9097, has_tags, 16240
9097, has_tags, 37497
9097, starred_actors, 16240
12574, starred_actors, 26458
12574, starred_actors, 36980
12574, written_by, 28747
29299, has_tags, 16240
29299, has_tags, 37497
29299, starred_actors, 16240
4689, has_tags, 16240
4689, has_tags, 37497
4689, starred_actors, 16240
34215, release_year, 135
34215, starred_actors, 26458
21989, directed_by, 28747
21989, release_year, 135
21989, starred_actors, 26458
21989, written_by, 28747
31204, has_tags, 37497
31204, starred_actors, 36980
28677, has_tags, 16240
28677, has_tags, 37497
31647, has_tags, 37497
31647, release_year, 135
28744, directed_by, 28747
28744, starred_actors, 26458
19823, directed_by, 28747
19823, has_tags, 26458
19823, has_tags, 28747
19823, starred_actors, 26458
19823, written_by, 28747
24209, directed_by, 28747
24209, starred_actors, 26458
1524, directed_by, 32090
1524, has_tags, 16240
1524, has_tags, 32090
9246, directed_by, 28747
9246, starred_actors, 26458
9246, written_by, 28747
Question: How are LONDON AFTER MIDNIGHT, THE SON OF THE SHEIK, and WHAT LIES BENEATH related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"LONDON AFTER MIDNIGHT",
"THE SON OF THE SHEIK",
"WHAT LIES BENEATH"
],
"valid_edges": [
[
"AMERICAN GRAFFITI",
"has_tags",
"HARRISON FORD"
],
[
"AMERICAN GRAFFITI",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"BACK TO THE FUTURE",
"directed_by",
"ROBERT ZEMECKIS"
],
[
"BACK TO THE FUTURE",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"BACK TO THE FUTURE",
"has_tags",
"ROBERT ZEMECKIS"
],
[
"BACK TO THE FUTURE",
"written_by",
"ROBERT ZEMECKIS"
],
[
"BLADE RUNNER",
"has_tags",
"HARRISON FORD"
],
[
"BLADE RUNNER",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"BLADE RUNNER",
"starred_actors",
"HARRISON FORD"
],
[
"LONDON AFTER MIDNIGHT",
"starred_actors",
"LON CHANEY"
],
[
"LONDON AFTER MIDNIGHT",
"starred_actors",
"MARCELINE DAY"
],
[
"LONDON AFTER MIDNIGHT",
"written_by",
"TOD BROWNING"
],
[
"RAIDERS OF THE LOST ARK",
"has_tags",
"HARRISON FORD"
],
[
"RAIDERS OF THE LOST ARK",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"RAIDERS OF THE LOST ARK",
"starred_actors",
"HARRISON FORD"
],
[
"SABRINA",
"has_tags",
"HARRISON FORD"
],
[
"SABRINA",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"SABRINA",
"starred_actors",
"HARRISON FORD"
],
[
"TELL IT TO THE MARINES",
"release_year",
"1926"
],
[
"TELL IT TO THE MARINES",
"starred_actors",
"LON CHANEY"
],
[
"THE BLACKBIRD",
"directed_by",
"TOD BROWNING"
],
[
"THE BLACKBIRD",
"release_year",
"1926"
],
[
"THE BLACKBIRD",
"starred_actors",
"LON CHANEY"
],
[
"THE BLACKBIRD",
"written_by",
"TOD BROWNING"
],
[
"THE CAMERAMAN",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"THE CAMERAMAN",
"starred_actors",
"MARCELINE DAY"
],
[
"THE CONVERSATION",
"has_tags",
"HARRISON FORD"
],
[
"THE CONVERSATION",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"THE SON OF THE SHEIK",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"THE SON OF THE SHEIK",
"release_year",
"1926"
],
[
"THE UNHOLY THREE",
"directed_by",
"TOD BROWNING"
],
[
"THE UNHOLY THREE",
"starred_actors",
"LON CHANEY"
],
[
"THE UNKNOWN",
"directed_by",
"TOD BROWNING"
],
[
"THE UNKNOWN",
"has_tags",
"LON CHANEY"
],
[
"THE UNKNOWN",
"has_tags",
"TOD BROWNING"
],
[
"THE UNKNOWN",
"starred_actors",
"LON CHANEY"
],
[
"THE UNKNOWN",
"written_by",
"TOD BROWNING"
],
[
"WEST OF ZANZIBAR",
"directed_by",
"TOD BROWNING"
],
[
"WEST OF ZANZIBAR",
"starred_actors",
"LON CHANEY"
],
[
"WHAT LIES BENEATH",
"directed_by",
"ROBERT ZEMECKIS"
],
[
"WHAT LIES BENEATH",
"has_tags",
"HARRISON FORD"
],
[
"WHAT LIES BENEATH",
"has_tags",
"ROBERT ZEMECKIS"
],
[
"WHERE EAST IS EAST",
"directed_by",
"TOD BROWNING"
],
[
"WHERE EAST IS EAST",
"starred_actors",
"LON CHANEY"
],
[
"WHERE EAST IS EAST",
"written_by",
"TOD BROWNING"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
4058, 16 YEARS OF ALCOHOL
1097, 2003
31345, 21 GRAMS
30643, ACROSS THE UNIVERSE
26501, ALILA
39500, ALL THE REAL GIRLS
16391, AMERICAN SPLENDOR
30281, ANA AND THE OTHERS
12144, BAD BOYS
33140, BAGHBAN
2419, BEYOND BORDERS
18822, BIG FISH
39878, BRIGHT FUTURE
22639, BRIGHT YOUNG THINGS
29448, CARANDIRU
19510, CLEOPATRA
4890, COLD MOUNTAIN
35932, DANA FUCHS
28659, DEAD END
28862, DOGVILLE
23182, DOPAMINE
36212, DRAMA
34486, EILA
14257, ELEPHANT
9048, EVIL
7866, FLYWHEEL
39946, GACY
3674, GAMES OF LOVE AND CHANCE
7599, GIRL WITH A PEARL EARRING
39494, HOLES
35319, HOPE SPRINGS
20309, HOUSE OF SAND AND FOG
19839, I ACCUSE
6684, I'LL SLEEP WHEN I'M DEAD
21437, IN THE CITY
31900, INCANTATO
39987, IT RUNS IN THE FAMILY
6425, IT'S ALL ABOUT LOVE
21614, JAPANESE STORY
8844, JONNY VANG
31245, KAL HO NAA HO
26853, LATTER DAYS
13296, LEVITY
15814, LOST IN TRANSLATION
35948, LOVE COMES SOFTLY
2088, MAIN PREM KI DIWANI HOON
11334, MASKED AND ANONYMOUS
18198, MATCHSTICK MEN
25936, MONA LISA SMILE
27827, MONSTER
12944, MY LIFE WITHOUT ME
9343, MYSTIC RIVER
37329, NATHALIE...
34705, NORMAL
21446, OFF THE MAP
10789, OPEN WATER
34120, OSAMA
23553, OUR TOWN
24769, OUT OF THE ASHES
23801, PARTY MONSTER
26350, PIECES OF APRIL
29357, RECONSTRUCTION
16708, ROADS TO KOKTEBEL
16356, ROBOT STORIES
5145, SAINTS AND SOLDIERS
3416, SARABAND
39821, SECONDHAND LIONS
4027, SHARA
38114, SHATTERED GLASS
5710, SOLDIER'S GIRL
19971, SPIN
6323, STRAYED
16954, SYLVIA
7985, SYMMETRY
11605, TAKE MY EYES
38965, THE BARBARIAN INVASIONS
38410, THE BATTLE OF SHAKER HEIGHTS
5144, THE BIG EMPTY
25461, THE COOLER
9758, THE CRAIGSLIST KILLER
21345, THE DREAMERS
12047, THE EVENT
20929, THE FIGHTING TEMPTATIONS
12447, THE HUMAN STAIN
32030, THE LOST PRINCE
24434, THE MUDGE BOY
28919, THE RETURN
30906, THE ROOM
38858, THE SHAPE OF THINGS
12883, THE SLEEPING DICTIONARY
2259, THE STATEMENT
38108, THE STATION AGENT
39036, THE STORY OF MARIE AND JULIEN
39883, THE STORY OF THE WEEPING CAMEL
22820, THE UNITED STATES OF LELAND
1411, THIRTEEN
10628, TIME OF THE WOLF
35264, TWO DAYS
11544, UNDER THE TUSCAN SUN
14956, VOICES OF A DISTANT STAR
39171, WHO KILLED BAMBI?
31862, WONDERLAND
27708, WUTHERING HEIGHTS
39834, YOUNG ADAM
src, edge_attr, dst
4058, has_genre, 36212
4058, release_year, 1097
31345, has_genre, 36212
31345, has_tags, 36212
31345, release_year, 1097
30643, has_genre, 36212
30643, starred_actors, 35932
26501, has_genre, 36212
26501, release_year, 1097
39500, has_genre, 36212
39500, release_year, 1097
16391, has_genre, 36212
16391, release_year, 1097
30281, has_genre, 36212
30281, release_year, 1097
12144, has_genre, 36212
12144, release_year, 1097
33140, has_genre, 36212
33140, release_year, 1097
2419, has_genre, 36212
2419, release_year, 1097
18822, has_genre, 36212
18822, release_year, 1097
39878, has_genre, 36212
39878, release_year, 1097
22639, has_genre, 36212
22639, release_year, 1097
29448, has_genre, 36212
29448, release_year, 1097
19510, has_genre, 36212
19510, release_year, 1097
4890, has_genre, 36212
4890, has_tags, 36212
4890, release_year, 1097
28659, has_genre, 36212
28659, release_year, 1097
28862, has_genre, 36212
28862, has_tags, 36212
28862, release_year, 1097
23182, has_genre, 36212
23182, release_year, 1097
34486, has_genre, 36212
34486, release_year, 1097
14257, has_genre, 36212
14257, release_year, 1097
9048, has_genre, 36212
9048, release_year, 1097
7866, has_genre, 36212
7866, release_year, 1097
39946, has_genre, 36212
39946, release_year, 1097
3674, has_genre, 36212
3674, release_year, 1097
7599, has_genre, 36212
7599, has_tags, 36212
7599, release_year, 1097
39494, has_genre, 36212
39494, release_year, 1097
35319, has_genre, 36212
35319, release_year, 1097
20309, has_genre, 36212
20309, release_year, 1097
19839, has_genre, 36212
19839, release_year, 1097
6684, has_genre, 36212
6684, release_year, 1097
21437, has_genre, 36212
21437, release_year, 1097
31900, has_genre, 36212
31900, release_year, 1097
39987, has_genre, 36212
39987, release_year, 1097
6425, has_genre, 36212
6425, release_year, 1097
21614, has_genre, 36212
21614, release_year, 1097
8844, has_genre, 36212
8844, release_year, 1097
31245, has_genre, 36212
31245, release_year, 1097
26853, has_genre, 36212
26853, release_year, 1097
13296, has_genre, 36212
13296, release_year, 1097
15814, has_genre, 36212
15814, release_year, 1097
35948, has_genre, 36212
35948, release_year, 1097
2088, has_genre, 36212
2088, release_year, 1097
11334, has_genre, 36212
11334, release_year, 1097
18198, has_genre, 36212
18198, has_tags, 36212
18198, release_year, 1097
25936, has_genre, 36212
25936, release_year, 1097
27827, has_genre, 36212
27827, has_tags, 36212
27827, release_year, 1097
12944, has_genre, 36212
12944, release_year, 1097
9343, has_genre, 36212
9343, has_tags, 36212
9343, release_year, 1097
37329, has_genre, 36212
37329, release_year, 1097
34705, has_genre, 36212
34705, release_year, 1097
21446, has_genre, 36212
21446, has_tags, 36212
21446, release_year, 1097
10789, has_genre, 36212
10789, release_year, 1097
34120, has_genre, 36212
34120, release_year, 1097
23553, has_genre, 36212
23553, release_year, 1097
24769, has_genre, 36212
24769, release_year, 1097
23801, has_genre, 36212
23801, release_year, 1097
26350, has_genre, 36212
26350, release_year, 1097
29357, has_genre, 36212
29357, release_year, 1097
16708, has_genre, 36212
16708, release_year, 1097
16356, has_genre, 36212
16356, release_year, 1097
5145, has_genre, 36212
5145, release_year, 1097
3416, has_genre, 36212
3416, has_tags, 36212
3416, release_year, 1097
39821, has_genre, 36212
39821, release_year, 1097
4027, has_genre, 36212
4027, release_year, 1097
38114, has_genre, 36212
38114, release_year, 1097
5710, has_genre, 36212
5710, release_year, 1097
19971, has_genre, 36212
19971, release_year, 1097
6323, has_genre, 36212
6323, release_year, 1097
16954, has_genre, 36212
16954, release_year, 1097
7985, has_genre, 36212
7985, release_year, 1097
11605, has_genre, 36212
11605, release_year, 1097
38965, has_genre, 36212
38965, release_year, 1097
38410, has_genre, 36212
38410, release_year, 1097
5144, has_genre, 36212
5144, release_year, 1097
25461, has_genre, 36212
25461, release_year, 1097
9758, has_genre, 36212
21345, has_genre, 36212
21345, release_year, 1097
12047, has_genre, 36212
12047, release_year, 1097
20929, has_genre, 36212
20929, release_year, 1097
12447, has_genre, 36212
12447, release_year, 1097
32030, has_genre, 36212
32030, release_year, 1097
24434, has_genre, 36212
24434, release_year, 1097
28919, has_genre, 36212
28919, release_year, 1097
30906, has_genre, 36212
30906, release_year, 1097
38858, has_genre, 36212
38858, release_year, 1097
12883, has_genre, 36212
12883, release_year, 1097
2259, has_genre, 36212
2259, release_year, 1097
38108, has_genre, 36212
38108, release_year, 1097
39036, has_genre, 36212
39036, release_year, 1097
39883, has_genre, 36212
39883, release_year, 1097
22820, has_genre, 36212
22820, release_year, 1097
1411, has_genre, 36212
1411, has_tags, 36212
1411, release_year, 1097
10628, has_genre, 36212
10628, release_year, 1097
35264, has_genre, 36212
35264, release_year, 1097
11544, has_genre, 36212
11544, release_year, 1097
14956, has_genre, 36212
14956, release_year, 1097
39171, release_year, 1097
31862, has_genre, 36212
31862, release_year, 1097
27708, has_genre, 36212
27708, release_year, 1097
39834, has_genre, 36212
39834, release_year, 1097
Question: In what context are DANA FUCHS, THE CRAIGSLIST KILLER, and WHO KILLED BAMBI? connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DANA FUCHS",
"THE CRAIGSLIST KILLER",
"WHO KILLED BAMBI?"
],
"valid_edges": [
[
"16 YEARS OF ALCOHOL",
"has_genre",
"DRAMA"
],
[
"16 YEARS OF ALCOHOL",
"release_year",
"2003"
],
[
"21 GRAMS",
"has_genre",
"DRAMA"
],
[
"21 GRAMS",
"has_tags",
"DRAMA"
],
[
"21 GRAMS",
"release_year",
"2003"
],
[
"ACROSS THE UNIVERSE",
"has_genre",
"DRAMA"
],
[
"ACROSS THE UNIVERSE",
"starred_actors",
"DANA FUCHS"
],
[
"ALILA",
"has_genre",
"DRAMA"
],
[
"ALILA",
"release_year",
"2003"
],
[
"ALL THE REAL GIRLS",
"has_genre",
"DRAMA"
],
[
"ALL THE REAL GIRLS",
"release_year",
"2003"
],
[
"AMERICAN SPLENDOR",
"has_genre",
"DRAMA"
],
[
"AMERICAN SPLENDOR",
"release_year",
"2003"
],
[
"ANA AND THE OTHERS",
"has_genre",
"DRAMA"
],
[
"ANA AND THE OTHERS",
"release_year",
"2003"
],
[
"BAD BOYS",
"has_genre",
"DRAMA"
],
[
"BAD BOYS",
"release_year",
"2003"
],
[
"BAGHBAN",
"has_genre",
"DRAMA"
],
[
"BAGHBAN",
"release_year",
"2003"
],
[
"BEYOND BORDERS",
"has_genre",
"DRAMA"
],
[
"BEYOND BORDERS",
"release_year",
"2003"
],
[
"BIG FISH",
"has_genre",
"DRAMA"
],
[
"BIG FISH",
"release_year",
"2003"
],
[
"BRIGHT FUTURE",
"has_genre",
"DRAMA"
],
[
"BRIGHT FUTURE",
"release_year",
"2003"
],
[
"BRIGHT YOUNG THINGS",
"has_genre",
"DRAMA"
],
[
"BRIGHT YOUNG THINGS",
"release_year",
"2003"
],
[
"CARANDIRU",
"has_genre",
"DRAMA"
],
[
"CARANDIRU",
"release_year",
"2003"
],
[
"CLEOPATRA",
"has_genre",
"DRAMA"
],
[
"CLEOPATRA",
"release_year",
"2003"
],
[
"COLD MOUNTAIN",
"has_genre",
"DRAMA"
],
[
"COLD MOUNTAIN",
"has_tags",
"DRAMA"
],
[
"COLD MOUNTAIN",
"release_year",
"2003"
],
[
"DEAD END",
"has_genre",
"DRAMA"
],
[
"DEAD END",
"release_year",
"2003"
],
[
"DOGVILLE",
"has_genre",
"DRAMA"
],
[
"DOGVILLE",
"has_tags",
"DRAMA"
],
[
"DOGVILLE",
"release_year",
"2003"
],
[
"DOPAMINE",
"has_genre",
"DRAMA"
],
[
"DOPAMINE",
"release_year",
"2003"
],
[
"EILA",
"has_genre",
"DRAMA"
],
[
"EILA",
"release_year",
"2003"
],
[
"ELEPHANT",
"has_genre",
"DRAMA"
],
[
"ELEPHANT",
"release_year",
"2003"
],
[
"EVIL",
"has_genre",
"DRAMA"
],
[
"EVIL",
"release_year",
"2003"
],
[
"FLYWHEEL",
"has_genre",
"DRAMA"
],
[
"FLYWHEEL",
"release_year",
"2003"
],
[
"GACY",
"has_genre",
"DRAMA"
],
[
"GACY",
"release_year",
"2003"
],
[
"GAMES OF LOVE AND CHANCE",
"has_genre",
"DRAMA"
],
[
"GAMES OF LOVE AND CHANCE",
"release_year",
"2003"
],
[
"GIRL WITH A PEARL EARRING",
"has_genre",
"DRAMA"
],
[
"GIRL WITH A PEARL EARRING",
"has_tags",
"DRAMA"
],
[
"GIRL WITH A PEARL EARRING",
"release_year",
"2003"
],
[
"HOLES",
"has_genre",
"DRAMA"
],
[
"HOLES",
"release_year",
"2003"
],
[
"HOPE SPRINGS",
"has_genre",
"DRAMA"
],
[
"HOPE SPRINGS",
"release_year",
"2003"
],
[
"HOUSE OF SAND AND FOG",
"has_genre",
"DRAMA"
],
[
"HOUSE OF SAND AND FOG",
"release_year",
"2003"
],
[
"I ACCUSE",
"has_genre",
"DRAMA"
],
[
"I ACCUSE",
"release_year",
"2003"
],
[
"I'LL SLEEP WHEN I'M DEAD",
"has_genre",
"DRAMA"
],
[
"I'LL SLEEP WHEN I'M DEAD",
"release_year",
"2003"
],
[
"IN THE CITY",
"has_genre",
"DRAMA"
],
[
"IN THE CITY",
"release_year",
"2003"
],
[
"INCANTATO",
"has_genre",
"DRAMA"
],
[
"INCANTATO",
"release_year",
"2003"
],
[
"IT RUNS IN THE FAMILY",
"has_genre",
"DRAMA"
],
[
"IT RUNS IN THE FAMILY",
"release_year",
"2003"
],
[
"IT'S ALL ABOUT LOVE",
"has_genre",
"DRAMA"
],
[
"IT'S ALL ABOUT LOVE",
"release_year",
"2003"
],
[
"JAPANESE STORY",
"has_genre",
"DRAMA"
],
[
"JAPANESE STORY",
"release_year",
"2003"
],
[
"JONNY VANG",
"has_genre",
"DRAMA"
],
[
"JONNY VANG",
"release_year",
"2003"
],
[
"KAL HO NAA HO",
"has_genre",
"DRAMA"
],
[
"KAL HO NAA HO",
"release_year",
"2003"
],
[
"LATTER DAYS",
"has_genre",
"DRAMA"
],
[
"LATTER DAYS",
"release_year",
"2003"
],
[
"LEVITY",
"has_genre",
"DRAMA"
],
[
"LEVITY",
"release_year",
"2003"
],
[
"LOST IN TRANSLATION",
"has_genre",
"DRAMA"
],
[
"LOST IN TRANSLATION",
"release_year",
"2003"
],
[
"LOVE COMES SOFTLY",
"has_genre",
"DRAMA"
],
[
"LOVE COMES SOFTLY",
"release_year",
"2003"
],
[
"MAIN PREM KI DIWANI HOON",
"has_genre",
"DRAMA"
],
[
"MAIN PREM KI DIWANI HOON",
"release_year",
"2003"
],
[
"MASKED AND ANONYMOUS",
"has_genre",
"DRAMA"
],
[
"MASKED AND ANONYMOUS",
"release_year",
"2003"
],
[
"MATCHSTICK MEN",
"has_genre",
"DRAMA"
],
[
"MATCHSTICK MEN",
"has_tags",
"DRAMA"
],
[
"MATCHSTICK MEN",
"release_year",
"2003"
],
[
"MONA LISA SMILE",
"has_genre",
"DRAMA"
],
[
"MONA LISA SMILE",
"release_year",
"2003"
],
[
"MONSTER",
"has_genre",
"DRAMA"
],
[
"MONSTER",
"has_tags",
"DRAMA"
],
[
"MONSTER",
"release_year",
"2003"
],
[
"MY LIFE WITHOUT ME",
"has_genre",
"DRAMA"
],
[
"MY LIFE WITHOUT ME",
"release_year",
"2003"
],
[
"MYSTIC RIVER",
"has_genre",
"DRAMA"
],
[
"MYSTIC RIVER",
"has_tags",
"DRAMA"
],
[
"MYSTIC RIVER",
"release_year",
"2003"
],
[
"NATHALIE...",
"has_genre",
"DRAMA"
],
[
"NATHALIE...",
"release_year",
"2003"
],
[
"NORMAL",
"has_genre",
"DRAMA"
],
[
"NORMAL",
"release_year",
"2003"
],
[
"OFF THE MAP",
"has_genre",
"DRAMA"
],
[
"OFF THE MAP",
"has_tags",
"DRAMA"
],
[
"OFF THE MAP",
"release_year",
"2003"
],
[
"OPEN WATER",
"has_genre",
"DRAMA"
],
[
"OPEN WATER",
"release_year",
"2003"
],
[
"OSAMA",
"has_genre",
"DRAMA"
],
[
"OSAMA",
"release_year",
"2003"
],
[
"OUR TOWN",
"has_genre",
"DRAMA"
],
[
"OUR TOWN",
"release_year",
"2003"
],
[
"OUT OF THE ASHES",
"has_genre",
"DRAMA"
],
[
"OUT OF THE ASHES",
"release_year",
"2003"
],
[
"PARTY MONSTER",
"has_genre",
"DRAMA"
],
[
"PARTY MONSTER",
"release_year",
"2003"
],
[
"PIECES OF APRIL",
"has_genre",
"DRAMA"
],
[
"PIECES OF APRIL",
"release_year",
"2003"
],
[
"RECONSTRUCTION",
"has_genre",
"DRAMA"
],
[
"RECONSTRUCTION",
"release_year",
"2003"
],
[
"ROADS TO KOKTEBEL",
"has_genre",
"DRAMA"
],
[
"ROADS TO KOKTEBEL",
"release_year",
"2003"
],
[
"ROBOT STORIES",
"has_genre",
"DRAMA"
],
[
"ROBOT STORIES",
"release_year",
"2003"
],
[
"SAINTS AND SOLDIERS",
"has_genre",
"DRAMA"
],
[
"SAINTS AND SOLDIERS",
"release_year",
"2003"
],
[
"SARABAND",
"has_genre",
"DRAMA"
],
[
"SARABAND",
"has_tags",
"DRAMA"
],
[
"SARABAND",
"release_year",
"2003"
],
[
"SECONDHAND LIONS",
"has_genre",
"DRAMA"
],
[
"SECONDHAND LIONS",
"release_year",
"2003"
],
[
"SHARA",
"has_genre",
"DRAMA"
],
[
"SHARA",
"release_year",
"2003"
],
[
"SHATTERED GLASS",
"has_genre",
"DRAMA"
],
[
"SHATTERED GLASS",
"release_year",
"2003"
],
[
"SOLDIER'S GIRL",
"has_genre",
"DRAMA"
],
[
"SOLDIER'S GIRL",
"release_year",
"2003"
],
[
"SPIN",
"has_genre",
"DRAMA"
],
[
"SPIN",
"release_year",
"2003"
],
[
"STRAYED",
"has_genre",
"DRAMA"
],
[
"STRAYED",
"release_year",
"2003"
],
[
"SYLVIA",
"has_genre",
"DRAMA"
],
[
"SYLVIA",
"release_year",
"2003"
],
[
"SYMMETRY",
"has_genre",
"DRAMA"
],
[
"SYMMETRY",
"release_year",
"2003"
],
[
"TAKE MY EYES",
"has_genre",
"DRAMA"
],
[
"TAKE MY EYES",
"release_year",
"2003"
],
[
"THE BARBARIAN INVASIONS",
"has_genre",
"DRAMA"
],
[
"THE BARBARIAN INVASIONS",
"release_year",
"2003"
],
[
"THE BATTLE OF SHAKER HEIGHTS",
"has_genre",
"DRAMA"
],
[
"THE BATTLE OF SHAKER HEIGHTS",
"release_year",
"2003"
],
[
"THE BIG EMPTY",
"has_genre",
"DRAMA"
],
[
"THE BIG EMPTY",
"release_year",
"2003"
],
[
"THE COOLER",
"has_genre",
"DRAMA"
],
[
"THE COOLER",
"release_year",
"2003"
],
[
"THE CRAIGSLIST KILLER",
"has_genre",
"DRAMA"
],
[
"THE DREAMERS",
"has_genre",
"DRAMA"
],
[
"THE DREAMERS",
"release_year",
"2003"
],
[
"THE EVENT",
"has_genre",
"DRAMA"
],
[
"THE EVENT",
"release_year",
"2003"
],
[
"THE FIGHTING TEMPTATIONS",
"has_genre",
"DRAMA"
],
[
"THE FIGHTING TEMPTATIONS",
"release_year",
"2003"
],
[
"THE HUMAN STAIN",
"has_genre",
"DRAMA"
],
[
"THE HUMAN STAIN",
"release_year",
"2003"
],
[
"THE LOST PRINCE",
"has_genre",
"DRAMA"
],
[
"THE LOST PRINCE",
"release_year",
"2003"
],
[
"THE MUDGE BOY",
"has_genre",
"DRAMA"
],
[
"THE MUDGE BOY",
"release_year",
"2003"
],
[
"THE RETURN",
"has_genre",
"DRAMA"
],
[
"THE RETURN",
"release_year",
"2003"
],
[
"THE ROOM",
"has_genre",
"DRAMA"
],
[
"THE ROOM",
"release_year",
"2003"
],
[
"THE SHAPE OF THINGS",
"has_genre",
"DRAMA"
],
[
"THE SHAPE OF THINGS",
"release_year",
"2003"
],
[
"THE SLEEPING DICTIONARY",
"has_genre",
"DRAMA"
],
[
"THE SLEEPING DICTIONARY",
"release_year",
"2003"
],
[
"THE STATEMENT",
"has_genre",
"DRAMA"
],
[
"THE STATEMENT",
"release_year",
"2003"
],
[
"THE STATION AGENT",
"has_genre",
"DRAMA"
],
[
"THE STATION AGENT",
"release_year",
"2003"
],
[
"THE STORY OF MARIE AND JULIEN",
"has_genre",
"DRAMA"
],
[
"THE STORY OF MARIE AND JULIEN",
"release_year",
"2003"
],
[
"THE STORY OF THE WEEPING CAMEL",
"has_genre",
"DRAMA"
],
[
"THE STORY OF THE WEEPING CAMEL",
"release_year",
"2003"
],
[
"THE UNITED STATES OF LELAND",
"has_genre",
"DRAMA"
],
[
"THE UNITED STATES OF LELAND",
"release_year",
"2003"
],
[
"THIRTEEN",
"has_genre",
"DRAMA"
],
[
"THIRTEEN",
"has_tags",
"DRAMA"
],
[
"THIRTEEN",
"release_year",
"2003"
],
[
"TIME OF THE WOLF",
"has_genre",
"DRAMA"
],
[
"TIME OF THE WOLF",
"release_year",
"2003"
],
[
"TWO DAYS",
"has_genre",
"DRAMA"
],
[
"TWO DAYS",
"release_year",
"2003"
],
[
"UNDER THE TUSCAN SUN",
"has_genre",
"DRAMA"
],
[
"UNDER THE TUSCAN SUN",
"release_year",
"2003"
],
[
"VOICES OF A DISTANT STAR",
"has_genre",
"DRAMA"
],
[
"VOICES OF A DISTANT STAR",
"release_year",
"2003"
],
[
"WHO KILLED BAMBI?",
"release_year",
"2003"
],
[
"WONDERLAND",
"has_genre",
"DRAMA"
],
[
"WONDERLAND",
"release_year",
"2003"
],
[
"WUTHERING HEIGHTS",
"has_genre",
"DRAMA"
],
[
"WUTHERING HEIGHTS",
"release_year",
"2003"
],
[
"YOUNG ADAM",
"has_genre",
"DRAMA"
],
[
"YOUNG ADAM",
"release_year",
"2003"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
27810, 1968
35046, FRANKLIN J. SCHAFFNER
28620, HIPPIES
13825, INSOMNIA
27037, NIKOLAJ FROBENIUS
27643, PLANET OF THE APES
26868, PSYCH-OUT
28729, REMAKE
src, edge_attr, dst
13825, has_tags, 13825
13825, has_tags, 28729
13825, written_by, 27037
27643, directed_by, 35046
27643, has_tags, 35046
27643, has_tags, 28729
27643, release_year, 27810
26868, has_tags, 28620
26868, release_year, 27810
Question: For what reason are FRANKLIN J. SCHAFFNER, HIPPIES, and NIKOLAJ FROBENIUS associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"FRANKLIN J. SCHAFFNER",
"HIPPIES",
"NIKOLAJ FROBENIUS"
],
"valid_edges": [
[
"INSOMNIA",
"has_tags",
"INSOMNIA"
],
[
"INSOMNIA",
"has_tags",
"REMAKE"
],
[
"INSOMNIA",
"written_by",
"NIKOLAJ FROBENIUS"
],
[
"PLANET OF THE APES",
"directed_by",
"FRANKLIN J. SCHAFFNER"
],
[
"PLANET OF THE APES",
"has_tags",
"FRANKLIN J. SCHAFFNER"
],
[
"PLANET OF THE APES",
"has_tags",
"REMAKE"
],
[
"PLANET OF THE APES",
"release_year",
"1968"
],
[
"PSYCH-OUT",
"has_tags",
"HIPPIES"
],
[
"PSYCH-OUT",
"release_year",
"1968"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
29424, 2011
39964, 247°F
38344, A STREETCAR NAMED DESIRE
12981, ALL-STAR SUPERMAN
15253, COMIC BOOK
39571, DC COMICS
20538, DIANE LANE
24481, FRANCHISE
22361, JERRY SIEGEL
26324, JOHN ERMAN
9033, MAN OF STEEL
21474, MARLON BRANDO
2980, SUPERHERO
20948, SUPERMAN
src, edge_attr, dst
39964, release_year, 29424
38344, directed_by, 26324
38344, has_tags, 21474
38344, starred_actors, 20538
38344, starred_actors, 21474
12981, has_tags, 20948
12981, release_year, 29424
9033, has_tags, 15253
9033, has_tags, 39571
9033, has_tags, 24481
9033, has_tags, 2980
9033, has_tags, 20948
9033, starred_actors, 20538
9033, written_by, 22361
20948, has_tags, 15253
20948, has_tags, 39571
20948, has_tags, 24481
20948, has_tags, 21474
20948, has_tags, 2980
20948, has_tags, 20948
20948, starred_actors, 21474
20948, written_by, 22361
Question: In what context are 247°F, JERRY SIEGEL, and JOHN ERMAN connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"247°F",
"JERRY SIEGEL",
"JOHN ERMAN"
],
"valid_edges": [
[
"247°F",
"release_year",
"2011"
],
[
"A STREETCAR NAMED DESIRE",
"directed_by",
"JOHN ERMAN"
],
[
"A STREETCAR NAMED DESIRE",
"has_tags",
"MARLON BRANDO"
],
[
"A STREETCAR NAMED DESIRE",
"starred_actors",
"DIANE LANE"
],
[
"A STREETCAR NAMED DESIRE",
"starred_actors",
"MARLON BRANDO"
],
[
"ALL-STAR SUPERMAN",
"has_tags",
"SUPERMAN"
],
[
"ALL-STAR SUPERMAN",
"release_year",
"2011"
],
[
"MAN OF STEEL",
"has_tags",
"COMIC BOOK"
],
[
"MAN OF STEEL",
"has_tags",
"DC COMICS"
],
[
"MAN OF STEEL",
"has_tags",
"FRANCHISE"
],
[
"MAN OF STEEL",
"has_tags",
"SUPERHERO"
],
[
"MAN OF STEEL",
"has_tags",
"SUPERMAN"
],
[
"MAN OF STEEL",
"starred_actors",
"DIANE LANE"
],
[
"MAN OF STEEL",
"written_by",
"JERRY SIEGEL"
],
[
"SUPERMAN",
"has_tags",
"COMIC BOOK"
],
[
"SUPERMAN",
"has_tags",
"DC COMICS"
],
[
"SUPERMAN",
"has_tags",
"FRANCHISE"
],
[
"SUPERMAN",
"has_tags",
"MARLON BRANDO"
],
[
"SUPERMAN",
"has_tags",
"SUPERHERO"
],
[
"SUPERMAN",
"has_tags",
"SUPERMAN"
],
[
"SUPERMAN",
"starred_actors",
"MARLON BRANDO"
],
[
"SUPERMAN",
"written_by",
"JERRY SIEGEL"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
1006, 1996
13408, 2001
39289, ACTION
32427, ALL THE QUEEN'S MEN
32015, BEHIND ENEMY LINES
28544, BLACK HAWK DOWN
23820, CARLA'S SONG
25285, COME AND SEE
10293, CONSPIRACY
4615, DARK BLUE WORLD
11363, DEFIANCE
16353, EDGES OF THE LORD
26690, ELLING
16930, ENEMY AT THE GATES
19194, ENIGMA
10315, FLAGS OF OUR FATHERS
15765, HAMSUN
33545, HART'S WAR
8842, INDEPENDENCE DAY
625, K-9
32792, LIBERTARIAS
5127, MOTHER NIGHT
16883, NORWEGIAN
17600, OFF LIMITS
234, PEARL HARBOR
34732, PLATOON
33042, PRISONER OF THE MOUNTAINS
17691, ROD DANIEL
35586, SAHARA
11124, STALINGRAD
10522, TAKING SIDES
13491, THE DEVIL'S BACKBONE
36390, THE ENGLISH PATIENT
27237, THE LONGEST DAY
23300, THE LOST BATTALION
16845, THE MAN WHO CAPTURED EICHMANN
3651, THE OTHER SIDE OF SUNDAY
12614, THE PIANIST
34479, TO END ALL WARS
3432, TRUE BLUE
6655, UPRISING
22214, WAR
23537, WHERE EAGLES DARE
11850, WILLEM DAFOE
24155, WORLD WAR II
src, edge_attr, dst
32427, has_genre, 22214
32427, release_year, 13408
32015, has_genre, 22214
32015, has_tags, 22214
32015, release_year, 13408
28544, has_tags, 22214
28544, release_year, 13408
23820, has_genre, 22214
23820, release_year, 1006
25285, has_genre, 22214
25285, has_tags, 24155
10293, has_genre, 22214
10293, has_tags, 24155
10293, release_year, 13408
4615, has_genre, 22214
4615, has_tags, 24155
4615, release_year, 13408
11363, has_tags, 22214
11363, has_tags, 24155
16353, has_genre, 22214
16353, has_tags, 24155
16353, release_year, 13408
16353, starred_actors, 11850
26690, in_language, 16883
26690, release_year, 13408
16930, has_tags, 22214
16930, has_tags, 24155
16930, release_year, 13408
19194, has_tags, 24155
19194, release_year, 13408
10315, has_genre, 22214
10315, has_tags, 22214
10315, has_tags, 24155
15765, has_genre, 22214
15765, has_tags, 24155
15765, in_language, 16883
15765, release_year, 1006
33545, has_genre, 22214
33545, has_tags, 24155
8842, has_tags, 22214
8842, release_year, 1006
625, directed_by, 17691
625, has_genre, 39289
625, has_tags, 17691
32792, has_genre, 22214
32792, release_year, 1006
5127, has_genre, 22214
5127, has_tags, 24155
5127, release_year, 1006
17600, has_genre, 22214
17600, starred_actors, 11850
234, has_tags, 22214
234, release_year, 13408
34732, has_genre, 22214
34732, has_tags, 22214
34732, has_tags, 11850
34732, starred_actors, 11850
33042, has_genre, 22214
33042, release_year, 1006
35586, has_genre, 22214
35586, has_tags, 24155
11124, has_genre, 22214
11124, has_tags, 24155
10522, has_genre, 22214
10522, release_year, 13408
13491, has_tags, 22214
13491, release_year, 13408
36390, has_genre, 22214
36390, has_tags, 22214
36390, release_year, 1006
27237, has_tags, 22214
27237, has_tags, 24155
23300, has_genre, 22214
23300, release_year, 13408
16845, has_genre, 22214
16845, release_year, 1006
3651, in_language, 16883
3651, release_year, 1006
12614, has_genre, 22214
12614, has_tags, 22214
12614, has_tags, 24155
34479, has_genre, 22214
34479, has_tags, 22214
34479, release_year, 13408
3432, release_year, 1006
3432, release_year, 13408
6655, has_genre, 22214
6655, release_year, 13408
22214, has_genre, 39289
23537, has_genre, 22214
23537, has_tags, 24155
Question: For what reason are EDGES OF THE LORD, ROD DANIEL, and THE OTHER SIDE OF SUNDAY associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"EDGES OF THE LORD",
"ROD DANIEL",
"THE OTHER SIDE OF SUNDAY"
],
"valid_edges": [
[
"ALL THE QUEEN'S MEN",
"has_genre",
"WAR"
],
[
"ALL THE QUEEN'S MEN",
"release_year",
"2001"
],
[
"BEHIND ENEMY LINES",
"has_genre",
"WAR"
],
[
"BEHIND ENEMY LINES",
"has_tags",
"WAR"
],
[
"BEHIND ENEMY LINES",
"release_year",
"2001"
],
[
"BLACK HAWK DOWN",
"has_tags",
"WAR"
],
[
"BLACK HAWK DOWN",
"release_year",
"2001"
],
[
"CARLA'S SONG",
"has_genre",
"WAR"
],
[
"CARLA'S SONG",
"release_year",
"1996"
],
[
"COME AND SEE",
"has_genre",
"WAR"
],
[
"COME AND SEE",
"has_tags",
"WORLD WAR II"
],
[
"CONSPIRACY",
"has_genre",
"WAR"
],
[
"CONSPIRACY",
"has_tags",
"WORLD WAR II"
],
[
"CONSPIRACY",
"release_year",
"2001"
],
[
"DARK BLUE WORLD",
"has_genre",
"WAR"
],
[
"DARK BLUE WORLD",
"has_tags",
"WORLD WAR II"
],
[
"DARK BLUE WORLD",
"release_year",
"2001"
],
[
"DEFIANCE",
"has_tags",
"WAR"
],
[
"DEFIANCE",
"has_tags",
"WORLD WAR II"
],
[
"EDGES OF THE LORD",
"has_genre",
"WAR"
],
[
"EDGES OF THE LORD",
"has_tags",
"WORLD WAR II"
],
[
"EDGES OF THE LORD",
"release_year",
"2001"
],
[
"EDGES OF THE LORD",
"starred_actors",
"WILLEM DAFOE"
],
[
"ELLING",
"in_language",
"NORWEGIAN"
],
[
"ELLING",
"release_year",
"2001"
],
[
"ENEMY AT THE GATES",
"has_tags",
"WAR"
],
[
"ENEMY AT THE GATES",
"has_tags",
"WORLD WAR II"
],
[
"ENEMY AT THE GATES",
"release_year",
"2001"
],
[
"ENIGMA",
"has_tags",
"WORLD WAR II"
],
[
"ENIGMA",
"release_year",
"2001"
],
[
"FLAGS OF OUR FATHERS",
"has_genre",
"WAR"
],
[
"FLAGS OF OUR FATHERS",
"has_tags",
"WAR"
],
[
"FLAGS OF OUR FATHERS",
"has_tags",
"WORLD WAR II"
],
[
"HAMSUN",
"has_genre",
"WAR"
],
[
"HAMSUN",
"has_tags",
"WORLD WAR II"
],
[
"HAMSUN",
"in_language",
"NORWEGIAN"
],
[
"HAMSUN",
"release_year",
"1996"
],
[
"HART'S WAR",
"has_genre",
"WAR"
],
[
"HART'S WAR",
"has_tags",
"WORLD WAR II"
],
[
"INDEPENDENCE DAY",
"has_tags",
"WAR"
],
[
"INDEPENDENCE DAY",
"release_year",
"1996"
],
[
"K-9",
"directed_by",
"ROD DANIEL"
],
[
"K-9",
"has_genre",
"ACTION"
],
[
"K-9",
"has_tags",
"ROD DANIEL"
],
[
"LIBERTARIAS",
"has_genre",
"WAR"
],
[
"LIBERTARIAS",
"release_year",
"1996"
],
[
"MOTHER NIGHT",
"has_genre",
"WAR"
],
[
"MOTHER NIGHT",
"has_tags",
"WORLD WAR II"
],
[
"MOTHER NIGHT",
"release_year",
"1996"
],
[
"OFF LIMITS",
"has_genre",
"WAR"
],
[
"OFF LIMITS",
"starred_actors",
"WILLEM DAFOE"
],
[
"PEARL HARBOR",
"has_tags",
"WAR"
],
[
"PEARL HARBOR",
"release_year",
"2001"
],
[
"PLATOON",
"has_genre",
"WAR"
],
[
"PLATOON",
"has_tags",
"WAR"
],
[
"PLATOON",
"has_tags",
"WILLEM DAFOE"
],
[
"PLATOON",
"starred_actors",
"WILLEM DAFOE"
],
[
"PRISONER OF THE MOUNTAINS",
"has_genre",
"WAR"
],
[
"PRISONER OF THE MOUNTAINS",
"release_year",
"1996"
],
[
"SAHARA",
"has_genre",
"WAR"
],
[
"SAHARA",
"has_tags",
"WORLD WAR II"
],
[
"STALINGRAD",
"has_genre",
"WAR"
],
[
"STALINGRAD",
"has_tags",
"WORLD WAR II"
],
[
"TAKING SIDES",
"has_genre",
"WAR"
],
[
"TAKING SIDES",
"release_year",
"2001"
],
[
"THE DEVIL'S BACKBONE",
"has_tags",
"WAR"
],
[
"THE DEVIL'S BACKBONE",
"release_year",
"2001"
],
[
"THE ENGLISH PATIENT",
"has_genre",
"WAR"
],
[
"THE ENGLISH PATIENT",
"has_tags",
"WAR"
],
[
"THE ENGLISH PATIENT",
"release_year",
"1996"
],
[
"THE LONGEST DAY",
"has_tags",
"WAR"
],
[
"THE LONGEST DAY",
"has_tags",
"WORLD WAR II"
],
[
"THE LOST BATTALION",
"has_genre",
"WAR"
],
[
"THE LOST BATTALION",
"release_year",
"2001"
],
[
"THE MAN WHO CAPTURED EICHMANN",
"has_genre",
"WAR"
],
[
"THE MAN WHO CAPTURED EICHMANN",
"release_year",
"1996"
],
[
"THE OTHER SIDE OF SUNDAY",
"in_language",
"NORWEGIAN"
],
[
"THE OTHER SIDE OF SUNDAY",
"release_year",
"1996"
],
[
"THE PIANIST",
"has_genre",
"WAR"
],
[
"THE PIANIST",
"has_tags",
"WAR"
],
[
"THE PIANIST",
"has_tags",
"WORLD WAR II"
],
[
"TO END ALL WARS",
"has_genre",
"WAR"
],
[
"TO END ALL WARS",
"has_tags",
"WAR"
],
[
"TO END ALL WARS",
"release_year",
"2001"
],
[
"TRUE BLUE",
"release_year",
"1996"
],
[
"TRUE BLUE",
"release_year",
"2001"
],
[
"UPRISING",
"has_genre",
"WAR"
],
[
"UPRISING",
"release_year",
"2001"
],
[
"WAR",
"has_genre",
"ACTION"
],
[
"WHERE EAGLES DARE",
"has_genre",
"WAR"
],
[
"WHERE EAGLES DARE",
"has_tags",
"WORLD WAR II"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
3863, 1962
32287, CARNIVAL OF SOULS
34298, CHARLES GEORGE HILDEBRANDT
28333, DAVID PROWSE
19365, FRANKENSTEIN AND THE MONSTER FROM HELL
5870, HORROR
9515, RING OF TERROR
26202, TALES OF TERROR
17361, THE BRAIN THAT WOULDN'T DIE
5773, THE DEADLY SPAWN
17058, THE HORRIBLE DR. HICHCOCK
src, edge_attr, dst
32287, has_genre, 5870
32287, release_year, 3863
19365, has_genre, 5870
19365, starred_actors, 28333
9515, has_genre, 5870
9515, release_year, 3863
26202, has_genre, 5870
26202, release_year, 3863
17361, has_genre, 5870
17361, release_year, 3863
5773, has_genre, 5870
5773, starred_actors, 34298
17058, has_genre, 5870
17058, release_year, 3863
Question: How are 1962, CHARLES GEORGE HILDEBRANDT, and DAVID PROWSE related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"1962",
"CHARLES GEORGE HILDEBRANDT",
"DAVID PROWSE"
],
"valid_edges": [
[
"CARNIVAL OF SOULS",
"has_genre",
"HORROR"
],
[
"CARNIVAL OF SOULS",
"release_year",
"1962"
],
[
"FRANKENSTEIN AND THE MONSTER FROM HELL",
"has_genre",
"HORROR"
],
[
"FRANKENSTEIN AND THE MONSTER FROM HELL",
"starred_actors",
"DAVID PROWSE"
],
[
"RING OF TERROR",
"has_genre",
"HORROR"
],
[
"RING OF TERROR",
"release_year",
"1962"
],
[
"TALES OF TERROR",
"has_genre",
"HORROR"
],
[
"TALES OF TERROR",
"release_year",
"1962"
],
[
"THE BRAIN THAT WOULDN'T DIE",
"has_genre",
"HORROR"
],
[
"THE BRAIN THAT WOULDN'T DIE",
"release_year",
"1962"
],
[
"THE DEADLY SPAWN",
"has_genre",
"HORROR"
],
[
"THE DEADLY SPAWN",
"starred_actors",
"CHARLES GEORGE HILDEBRANDT"
],
[
"THE HORRIBLE DR. HICHCOCK",
"has_genre",
"HORROR"
],
[
"THE HORRIBLE DR. HICHCOCK",
"release_year",
"1962"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
24818, 1992
26277, A FEW GOOD MEN
15184, AARON SORKIN
25843, ALEX ZAMM
37558, ALICE MUNRO
21372, BEVERLY HILLS CHIHUAHUA 2
30463, COMEDY
4725, COURT
9192, COURTROOM
36212, DRAMA
26714, EDGE OF MADNESS
11565, GOOD
30221, LAW
33307, LAWYER
23580, LAWYERS
17559, LEGALLY BLONDE
28476, MURDER
21919, MY COUSIN VINNY
15607, THE LITTLE RASCALS SAVE THE DAY
5106, THE SOCIAL NETWORK
src, edge_attr, dst
26277, has_genre, 36212
26277, has_imdb_rating, 11565
26277, has_tags, 15184
26277, has_tags, 4725
26277, has_tags, 9192
26277, has_tags, 36212
26277, has_tags, 30221
26277, has_tags, 33307
26277, has_tags, 23580
26277, has_tags, 28476
26277, release_year, 24818
26277, written_by, 15184
21372, directed_by, 25843
21372, has_genre, 30463
26714, has_genre, 36212
26714, written_by, 37558
17559, has_genre, 30463
17559, has_imdb_rating, 11565
17559, has_tags, 30463
17559, has_tags, 30221
17559, has_tags, 28476
21919, has_genre, 30463
21919, has_tags, 30463
21919, has_tags, 4725
21919, has_tags, 9192
21919, has_tags, 30221
21919, has_tags, 33307
21919, has_tags, 23580
21919, has_tags, 28476
21919, release_year, 24818
15607, directed_by, 25843
15607, has_genre, 30463
15607, written_by, 25843
5106, has_genre, 36212
5106, has_tags, 15184
5106, has_tags, 30221
5106, written_by, 15184
Question: In what context are ALEX ZAMM, ALICE MUNRO, and LAW connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ALEX ZAMM",
"ALICE MUNRO",
"LAW"
],
"valid_edges": [
[
"A FEW GOOD MEN",
"has_genre",
"DRAMA"
],
[
"A FEW GOOD MEN",
"has_imdb_rating",
"GOOD"
],
[
"A FEW GOOD MEN",
"has_tags",
"AARON SORKIN"
],
[
"A FEW GOOD MEN",
"has_tags",
"COURT"
],
[
"A FEW GOOD MEN",
"has_tags",
"COURTROOM"
],
[
"A FEW GOOD MEN",
"has_tags",
"DRAMA"
],
[
"A FEW GOOD MEN",
"has_tags",
"LAW"
],
[
"A FEW GOOD MEN",
"has_tags",
"LAWYER"
],
[
"A FEW GOOD MEN",
"has_tags",
"LAWYERS"
],
[
"A FEW GOOD MEN",
"has_tags",
"MURDER"
],
[
"A FEW GOOD MEN",
"release_year",
"1992"
],
[
"A FEW GOOD MEN",
"written_by",
"AARON SORKIN"
],
[
"BEVERLY HILLS CHIHUAHUA 2",
"directed_by",
"ALEX ZAMM"
],
[
"BEVERLY HILLS CHIHUAHUA 2",
"has_genre",
"COMEDY"
],
[
"EDGE OF MADNESS",
"has_genre",
"DRAMA"
],
[
"EDGE OF MADNESS",
"written_by",
"ALICE MUNRO"
],
[
"LEGALLY BLONDE",
"has_genre",
"COMEDY"
],
[
"LEGALLY BLONDE",
"has_imdb_rating",
"GOOD"
],
[
"LEGALLY BLONDE",
"has_tags",
"COMEDY"
],
[
"LEGALLY BLONDE",
"has_tags",
"LAW"
],
[
"LEGALLY BLONDE",
"has_tags",
"MURDER"
],
[
"MY COUSIN VINNY",
"has_genre",
"COMEDY"
],
[
"MY COUSIN VINNY",
"has_tags",
"COMEDY"
],
[
"MY COUSIN VINNY",
"has_tags",
"COURT"
],
[
"MY COUSIN VINNY",
"has_tags",
"COURTROOM"
],
[
"MY COUSIN VINNY",
"has_tags",
"LAW"
],
[
"MY COUSIN VINNY",
"has_tags",
"LAWYER"
],
[
"MY COUSIN VINNY",
"has_tags",
"LAWYERS"
],
[
"MY COUSIN VINNY",
"has_tags",
"MURDER"
],
[
"MY COUSIN VINNY",
"release_year",
"1992"
],
[
"THE LITTLE RASCALS SAVE THE DAY",
"directed_by",
"ALEX ZAMM"
],
[
"THE LITTLE RASCALS SAVE THE DAY",
"has_genre",
"COMEDY"
],
[
"THE LITTLE RASCALS SAVE THE DAY",
"written_by",
"ALEX ZAMM"
],
[
"THE SOCIAL NETWORK",
"has_genre",
"DRAMA"
],
[
"THE SOCIAL NETWORK",
"has_tags",
"AARON SORKIN"
],
[
"THE SOCIAL NETWORK",
"has_tags",
"LAW"
],
[
"THE SOCIAL NETWORK",
"written_by",
"AARON SORKIN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35845, 2006
11079, BORDERTOWN
8432, CONCUSSION
36212, DRAMA
18716, JULIA DEVILLERS
13401, READ IT AND WEEP
34632, STACIE PASSON
15289, WALLACE SMITH
src, edge_attr, dst
11079, has_genre, 36212
11079, release_year, 35845
11079, written_by, 15289
8432, directed_by, 34632
8432, has_genre, 36212
8432, written_by, 34632
13401, release_year, 35845
13401, written_by, 18716
Question: In what context are JULIA DEVILLERS, STACIE PASSON, and WALLACE SMITH connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JULIA DEVILLERS",
"STACIE PASSON",
"WALLACE SMITH"
],
"valid_edges": [
[
"BORDERTOWN",
"has_genre",
"DRAMA"
],
[
"BORDERTOWN",
"release_year",
"2006"
],
[
"BORDERTOWN",
"written_by",
"WALLACE SMITH"
],
[
"CONCUSSION",
"directed_by",
"STACIE PASSON"
],
[
"CONCUSSION",
"has_genre",
"DRAMA"
],
[
"CONCUSSION",
"written_by",
"STACIE PASSON"
],
[
"READ IT AND WEEP",
"release_year",
"2006"
],
[
"READ IT AND WEEP",
"written_by",
"JULIA DEVILLERS"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
3863, 1962
9538, DON SIEGEL
30217, HELL IS FOR HEROES
35995, MAXIMILIAN SCHELL
18454, MY GEISHA
33101, SHIRLEY MACLAINE
18670, THE CHOSEN
17058, THE HORRIBLE DR. HICHCOCK
13523, THE RELUCTANT SAINT
7843, TWO FOR THE SEESAW
37550, TWO MULES FOR SISTER SARA
src, edge_attr, dst
30217, directed_by, 9538
30217, has_tags, 9538
30217, release_year, 3863
18454, release_year, 3863
18454, starred_actors, 33101
18670, starred_actors, 35995
17058, release_year, 3863
13523, has_tags, 35995
13523, release_year, 3863
13523, starred_actors, 35995
7843, has_tags, 33101
7843, release_year, 3863
7843, starred_actors, 33101
37550, directed_by, 9538
37550, has_tags, 9538
37550, starred_actors, 33101
Question: For what reason are THE CHOSEN, THE HORRIBLE DR. HICHCOCK, and TWO MULES FOR SISTER SARA associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"THE CHOSEN",
"THE HORRIBLE DR. HICHCOCK",
"TWO MULES FOR SISTER SARA"
],
"valid_edges": [
[
"HELL IS FOR HEROES",
"directed_by",
"DON SIEGEL"
],
[
"HELL IS FOR HEROES",
"has_tags",
"DON SIEGEL"
],
[
"HELL IS FOR HEROES",
"release_year",
"1962"
],
[
"MY GEISHA",
"release_year",
"1962"
],
[
"MY GEISHA",
"starred_actors",
"SHIRLEY MACLAINE"
],
[
"THE CHOSEN",
"starred_actors",
"MAXIMILIAN SCHELL"
],
[
"THE HORRIBLE DR. HICHCOCK",
"release_year",
"1962"
],
[
"THE RELUCTANT SAINT",
"has_tags",
"MAXIMILIAN SCHELL"
],
[
"THE RELUCTANT SAINT",
"release_year",
"1962"
],
[
"THE RELUCTANT SAINT",
"starred_actors",
"MAXIMILIAN SCHELL"
],
[
"TWO FOR THE SEESAW",
"has_tags",
"SHIRLEY MACLAINE"
],
[
"TWO FOR THE SEESAW",
"release_year",
"1962"
],
[
"TWO FOR THE SEESAW",
"starred_actors",
"SHIRLEY MACLAINE"
],
[
"TWO MULES FOR SISTER SARA",
"directed_by",
"DON SIEGEL"
],
[
"TWO MULES FOR SISTER SARA",
"has_tags",
"DON SIEGEL"
],
[
"TWO MULES FOR SISTER SARA",
"starred_actors",
"SHIRLEY MACLAINE"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35798, 2010
30463, COMEDY
36212, DRAMA
4838, EAT PRAY LOVE
4090, LOUIS C.K
35134, MERCEDES MCNAB
5766, RUNNING WITH SCISSORS
31492, RYAN MURPHY
35470, THE NORMAL HEART
33138, THIRST
8012, TOMORROW NIGHT
src, edge_attr, dst
4838, directed_by, 31492
4838, has_genre, 36212
4838, release_year, 35798
4838, written_by, 31492
5766, directed_by, 31492
5766, has_genre, 30463
5766, has_genre, 36212
5766, written_by, 31492
35470, directed_by, 31492
35470, has_genre, 36212
33138, has_genre, 36212
33138, release_year, 35798
33138, starred_actors, 35134
8012, has_genre, 30463
8012, has_tags, 30463
8012, has_tags, 4090
Question: For what reason are LOUIS C.K, MERCEDES MCNAB, and RYAN MURPHY associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"LOUIS C.K",
"MERCEDES MCNAB",
"RYAN MURPHY"
],
"valid_edges": [
[
"EAT PRAY LOVE",
"directed_by",
"RYAN MURPHY"
],
[
"EAT PRAY LOVE",
"has_genre",
"DRAMA"
],
[
"EAT PRAY LOVE",
"release_year",
"2010"
],
[
"EAT PRAY LOVE",
"written_by",
"RYAN MURPHY"
],
[
"RUNNING WITH SCISSORS",
"directed_by",
"RYAN MURPHY"
],
[
"RUNNING WITH SCISSORS",
"has_genre",
"COMEDY"
],
[
"RUNNING WITH SCISSORS",
"has_genre",
"DRAMA"
],
[
"RUNNING WITH SCISSORS",
"written_by",
"RYAN MURPHY"
],
[
"THE NORMAL HEART",
"directed_by",
"RYAN MURPHY"
],
[
"THE NORMAL HEART",
"has_genre",
"DRAMA"
],
[
"THIRST",
"has_genre",
"DRAMA"
],
[
"THIRST",
"release_year",
"2010"
],
[
"THIRST",
"starred_actors",
"MERCEDES MCNAB"
],
[
"TOMORROW NIGHT",
"has_genre",
"COMEDY"
],
[
"TOMORROW NIGHT",
"has_tags",
"COMEDY"
],
[
"TOMORROW NIGHT",
"has_tags",
"LOUIS C.K"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
23439, +1
1421, 2013
35522, A COMMON MAN
18644, A RESURRECTION
20629, A SINGLE SHOT
36431, ASSAULT ON WALL STREET
21421, BIG BAD WOLVES
16664, BLOOD DIAMOND
7483, BLOOD TIES
11338, BLUE RUIN
39346, BORGMAN
38211, BROKEN CITY
39398, CAPTAIN PHILLIPS
25216, COHERENCE
25131, COLD COMES THE NIGHT
38680, COMPULSION
40079, CONTRACTED
22349, CRAWLSPACE
9647, D-DAY
33372, DARK SKIES
9641, DIRTY PRETTY THINGS
8823, DRISHYAM
3047, ENEMY
8491, ESCAPE PLAN
2577, EVIDENCE
40134, FELONY
5287, FROZEN
22832, GETAWAY
35657, GLORIA
12776, GRAND PIANO
31326, GRAVITY
14366, HAUNTER
33891, HORNS
33776, HOURS
13177, HOUSE HUNTING
571, IN SECRET
32370, JOY BRYANT
378, JOY RIDE
17358, LAST PASSENGER
17319, LONDON
26190, MAGIC MAGIC
33165, MISCHIEF NIGHT
11517, MISSIONARY
21188, MR. JONES
25264, NOTES ON A SCANDAL
26943, NOW YOU SEE ME
12443, ODD THOMAS
32954, OLDBOY
536, OUT OF THE FURNACE
8352, PARANOIA
32279, PARKER
38966, PAUL WALKER
29074, PENTHOUSE NORTH
4066, PIONEER
13471, PRISONERS
10085, R. LANCE HILL
22512, RUNNER RUNNER
6745, SCENIC ROUTE
38583, SHIFTY
2404, SIDE EFFECTS
27160, SOLO
33956, SOUTH AFRICA
2485, SPARKS
26621, STAY
30357, STOKER
16450, STRANGER BY THE LAKE
34509, SWEETWATER
28652, TABLE NO. 21
16900, THE CALL
29799, THE CANYONS
31128, THE COUNSELOR
38107, THE EAST
2878, THE EVIL THAT MEN DO
35937, THE FIFTH ESTATE
36893, THE GIRL ON THE TRAIN
13613, THE LAZARUS PROJECT
8137, THE MACHINE
31276, THE NUMBERS STATION
27098, THE PRESTIGE
6427, THE PURGE
13106, THE SACRAMENT
32390, THE SKULLS
24811, THRILLER
38582, TOM AT THE FARM
27476, TORMENT
15230, TRANCE
5603, VEHICLE 19
26489, WELCOME TO THE PUNCH
32403, WHITE HOUSE DOWN
src, edge_attr, dst
23439, has_genre, 24811
23439, release_year, 1421
35522, has_genre, 24811
35522, release_year, 1421
18644, has_genre, 24811
18644, release_year, 1421
20629, has_genre, 24811
20629, release_year, 1421
36431, has_genre, 24811
36431, release_year, 1421
21421, has_genre, 24811
21421, release_year, 1421
16664, has_genre, 24811
16664, has_tags, 33956
7483, has_genre, 24811
7483, release_year, 1421
11338, has_genre, 24811
11338, release_year, 1421
39346, has_genre, 24811
39346, release_year, 1421
38211, has_genre, 24811
38211, release_year, 1421
39398, has_genre, 24811
39398, release_year, 1421
25216, has_genre, 24811
25216, release_year, 1421
25131, has_genre, 24811
25131, release_year, 1421
38680, has_genre, 24811
38680, release_year, 1421
40079, has_genre, 24811
40079, release_year, 1421
22349, has_genre, 24811
22349, release_year, 1421
9647, has_genre, 24811
9647, release_year, 1421
33372, has_genre, 24811
33372, release_year, 1421
9641, has_genre, 24811
9641, has_tags, 17319
8823, has_genre, 24811
8823, release_year, 1421
3047, has_genre, 24811
3047, release_year, 1421
8491, has_genre, 24811
8491, release_year, 1421
2577, has_genre, 24811
2577, release_year, 1421
40134, has_genre, 24811
40134, release_year, 1421
5287, has_genre, 24811
5287, release_year, 1421
22832, has_genre, 24811
22832, release_year, 1421
35657, has_genre, 24811
35657, release_year, 1421
12776, has_genre, 24811
12776, release_year, 1421
31326, has_genre, 24811
31326, release_year, 1421
14366, has_genre, 24811
14366, release_year, 1421
33891, has_genre, 24811
33891, release_year, 1421
33776, has_genre, 24811
33776, release_year, 1421
33776, starred_actors, 38966
13177, has_genre, 24811
13177, release_year, 1421
571, has_genre, 24811
571, release_year, 1421
378, has_genre, 24811
378, has_tags, 38966
378, starred_actors, 38966
17358, has_genre, 24811
17358, release_year, 1421
17319, starred_actors, 32370
26190, has_genre, 24811
26190, release_year, 1421
33165, has_genre, 24811
33165, release_year, 1421
11517, has_genre, 24811
11517, release_year, 1421
21188, has_genre, 24811
21188, release_year, 1421
25264, has_genre, 24811
25264, has_tags, 17319
26943, has_genre, 24811
26943, release_year, 1421
12443, has_genre, 24811
12443, release_year, 1421
32954, has_genre, 24811
32954, release_year, 1421
536, has_genre, 24811
536, release_year, 1421
8352, has_genre, 24811
8352, release_year, 1421
32279, has_genre, 24811
32279, release_year, 1421
29074, has_genre, 24811
29074, release_year, 1421
4066, has_genre, 24811
4066, release_year, 1421
13471, has_tags, 24811
13471, release_year, 1421
22512, has_genre, 24811
22512, has_tags, 24811
22512, release_year, 1421
6745, has_genre, 24811
6745, release_year, 1421
38583, has_genre, 24811
38583, has_tags, 17319
2404, has_genre, 24811
2404, release_year, 1421
27160, has_genre, 24811
27160, release_year, 1421
2485, has_genre, 24811
2485, release_year, 1421
26621, has_genre, 24811
26621, release_year, 1421
30357, has_genre, 24811
30357, has_tags, 24811
30357, release_year, 1421
16450, has_genre, 24811
16450, release_year, 1421
34509, has_genre, 24811
34509, release_year, 1421
28652, has_genre, 24811
28652, release_year, 1421
16900, has_genre, 24811
16900, release_year, 1421
29799, has_genre, 24811
29799, release_year, 1421
31128, has_genre, 24811
31128, release_year, 1421
38107, has_genre, 24811
38107, release_year, 1421
2878, has_genre, 24811
2878, written_by, 10085
35937, has_genre, 24811
35937, release_year, 1421
36893, has_genre, 24811
36893, release_year, 1421
13613, has_genre, 24811
13613, starred_actors, 38966
8137, has_genre, 24811
8137, release_year, 1421
31276, has_genre, 24811
31276, release_year, 1421
27098, has_genre, 24811
27098, has_tags, 17319
27098, has_tags, 24811
6427, has_genre, 24811
6427, release_year, 1421
13106, has_genre, 24811
13106, release_year, 1421
32390, has_genre, 24811
32390, starred_actors, 38966
38582, has_genre, 24811
38582, release_year, 1421
27476, has_genre, 24811
27476, release_year, 1421
15230, has_tags, 24811
15230, release_year, 1421
5603, has_genre, 24811
5603, has_tags, 33956
5603, release_year, 1421
5603, starred_actors, 38966
26489, has_genre, 24811
26489, release_year, 1421
32403, has_genre, 24811
32403, has_tags, 24811
32403, release_year, 1421
Question: How are JOY BRYANT, R. LANCE HILL, and VEHICLE 19 related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JOY BRYANT",
"R. LANCE HILL",
"VEHICLE 19"
],
"valid_edges": [
[
"+1",
"has_genre",
"THRILLER"
],
[
"+1",
"release_year",
"2013"
],
[
"A COMMON MAN",
"has_genre",
"THRILLER"
],
[
"A COMMON MAN",
"release_year",
"2013"
],
[
"A RESURRECTION",
"has_genre",
"THRILLER"
],
[
"A RESURRECTION",
"release_year",
"2013"
],
[
"A SINGLE SHOT",
"has_genre",
"THRILLER"
],
[
"A SINGLE SHOT",
"release_year",
"2013"
],
[
"ASSAULT ON WALL STREET",
"has_genre",
"THRILLER"
],
[
"ASSAULT ON WALL STREET",
"release_year",
"2013"
],
[
"BIG BAD WOLVES",
"has_genre",
"THRILLER"
],
[
"BIG BAD WOLVES",
"release_year",
"2013"
],
[
"BLOOD DIAMOND",
"has_genre",
"THRILLER"
],
[
"BLOOD DIAMOND",
"has_tags",
"SOUTH AFRICA"
],
[
"BLOOD TIES",
"has_genre",
"THRILLER"
],
[
"BLOOD TIES",
"release_year",
"2013"
],
[
"BLUE RUIN",
"has_genre",
"THRILLER"
],
[
"BLUE RUIN",
"release_year",
"2013"
],
[
"BORGMAN",
"has_genre",
"THRILLER"
],
[
"BORGMAN",
"release_year",
"2013"
],
[
"BROKEN CITY",
"has_genre",
"THRILLER"
],
[
"BROKEN CITY",
"release_year",
"2013"
],
[
"CAPTAIN PHILLIPS",
"has_genre",
"THRILLER"
],
[
"CAPTAIN PHILLIPS",
"release_year",
"2013"
],
[
"COHERENCE",
"has_genre",
"THRILLER"
],
[
"COHERENCE",
"release_year",
"2013"
],
[
"COLD COMES THE NIGHT",
"has_genre",
"THRILLER"
],
[
"COLD COMES THE NIGHT",
"release_year",
"2013"
],
[
"COMPULSION",
"has_genre",
"THRILLER"
],
[
"COMPULSION",
"release_year",
"2013"
],
[
"CONTRACTED",
"has_genre",
"THRILLER"
],
[
"CONTRACTED",
"release_year",
"2013"
],
[
"CRAWLSPACE",
"has_genre",
"THRILLER"
],
[
"CRAWLSPACE",
"release_year",
"2013"
],
[
"D-DAY",
"has_genre",
"THRILLER"
],
[
"D-DAY",
"release_year",
"2013"
],
[
"DARK SKIES",
"has_genre",
"THRILLER"
],
[
"DARK SKIES",
"release_year",
"2013"
],
[
"DIRTY PRETTY THINGS",
"has_genre",
"THRILLER"
],
[
"DIRTY PRETTY THINGS",
"has_tags",
"LONDON"
],
[
"DRISHYAM",
"has_genre",
"THRILLER"
],
[
"DRISHYAM",
"release_year",
"2013"
],
[
"ENEMY",
"has_genre",
"THRILLER"
],
[
"ENEMY",
"release_year",
"2013"
],
[
"ESCAPE PLAN",
"has_genre",
"THRILLER"
],
[
"ESCAPE PLAN",
"release_year",
"2013"
],
[
"EVIDENCE",
"has_genre",
"THRILLER"
],
[
"EVIDENCE",
"release_year",
"2013"
],
[
"FELONY",
"has_genre",
"THRILLER"
],
[
"FELONY",
"release_year",
"2013"
],
[
"FROZEN",
"has_genre",
"THRILLER"
],
[
"FROZEN",
"release_year",
"2013"
],
[
"GETAWAY",
"has_genre",
"THRILLER"
],
[
"GETAWAY",
"release_year",
"2013"
],
[
"GLORIA",
"has_genre",
"THRILLER"
],
[
"GLORIA",
"release_year",
"2013"
],
[
"GRAND PIANO",
"has_genre",
"THRILLER"
],
[
"GRAND PIANO",
"release_year",
"2013"
],
[
"GRAVITY",
"has_genre",
"THRILLER"
],
[
"GRAVITY",
"release_year",
"2013"
],
[
"HAUNTER",
"has_genre",
"THRILLER"
],
[
"HAUNTER",
"release_year",
"2013"
],
[
"HORNS",
"has_genre",
"THRILLER"
],
[
"HORNS",
"release_year",
"2013"
],
[
"HOURS",
"has_genre",
"THRILLER"
],
[
"HOURS",
"release_year",
"2013"
],
[
"HOURS",
"starred_actors",
"PAUL WALKER"
],
[
"HOUSE HUNTING",
"has_genre",
"THRILLER"
],
[
"HOUSE HUNTING",
"release_year",
"2013"
],
[
"IN SECRET",
"has_genre",
"THRILLER"
],
[
"IN SECRET",
"release_year",
"2013"
],
[
"JOY RIDE",
"has_genre",
"THRILLER"
],
[
"JOY RIDE",
"has_tags",
"PAUL WALKER"
],
[
"JOY RIDE",
"starred_actors",
"PAUL WALKER"
],
[
"LAST PASSENGER",
"has_genre",
"THRILLER"
],
[
"LAST PASSENGER",
"release_year",
"2013"
],
[
"LONDON",
"starred_actors",
"JOY BRYANT"
],
[
"MAGIC MAGIC",
"has_genre",
"THRILLER"
],
[
"MAGIC MAGIC",
"release_year",
"2013"
],
[
"MISCHIEF NIGHT",
"has_genre",
"THRILLER"
],
[
"MISCHIEF NIGHT",
"release_year",
"2013"
],
[
"MISSIONARY",
"has_genre",
"THRILLER"
],
[
"MISSIONARY",
"release_year",
"2013"
],
[
"MR. JONES",
"has_genre",
"THRILLER"
],
[
"MR. JONES",
"release_year",
"2013"
],
[
"NOTES ON A SCANDAL",
"has_genre",
"THRILLER"
],
[
"NOTES ON A SCANDAL",
"has_tags",
"LONDON"
],
[
"NOW YOU SEE ME",
"has_genre",
"THRILLER"
],
[
"NOW YOU SEE ME",
"release_year",
"2013"
],
[
"ODD THOMAS",
"has_genre",
"THRILLER"
],
[
"ODD THOMAS",
"release_year",
"2013"
],
[
"OLDBOY",
"has_genre",
"THRILLER"
],
[
"OLDBOY",
"release_year",
"2013"
],
[
"OUT OF THE FURNACE",
"has_genre",
"THRILLER"
],
[
"OUT OF THE FURNACE",
"release_year",
"2013"
],
[
"PARANOIA",
"has_genre",
"THRILLER"
],
[
"PARANOIA",
"release_year",
"2013"
],
[
"PARKER",
"has_genre",
"THRILLER"
],
[
"PARKER",
"release_year",
"2013"
],
[
"PENTHOUSE NORTH",
"has_genre",
"THRILLER"
],
[
"PENTHOUSE NORTH",
"release_year",
"2013"
],
[
"PIONEER",
"has_genre",
"THRILLER"
],
[
"PIONEER",
"release_year",
"2013"
],
[
"PRISONERS",
"has_tags",
"THRILLER"
],
[
"PRISONERS",
"release_year",
"2013"
],
[
"RUNNER RUNNER",
"has_genre",
"THRILLER"
],
[
"RUNNER RUNNER",
"has_tags",
"THRILLER"
],
[
"RUNNER RUNNER",
"release_year",
"2013"
],
[
"SCENIC ROUTE",
"has_genre",
"THRILLER"
],
[
"SCENIC ROUTE",
"release_year",
"2013"
],
[
"SHIFTY",
"has_genre",
"THRILLER"
],
[
"SHIFTY",
"has_tags",
"LONDON"
],
[
"SIDE EFFECTS",
"has_genre",
"THRILLER"
],
[
"SIDE EFFECTS",
"release_year",
"2013"
],
[
"SOLO",
"has_genre",
"THRILLER"
],
[
"SOLO",
"release_year",
"2013"
],
[
"SPARKS",
"has_genre",
"THRILLER"
],
[
"SPARKS",
"release_year",
"2013"
],
[
"STAY",
"has_genre",
"THRILLER"
],
[
"STAY",
"release_year",
"2013"
],
[
"STOKER",
"has_genre",
"THRILLER"
],
[
"STOKER",
"has_tags",
"THRILLER"
],
[
"STOKER",
"release_year",
"2013"
],
[
"STRANGER BY THE LAKE",
"has_genre",
"THRILLER"
],
[
"STRANGER BY THE LAKE",
"release_year",
"2013"
],
[
"SWEETWATER",
"has_genre",
"THRILLER"
],
[
"SWEETWATER",
"release_year",
"2013"
],
[
"TABLE NO. 21",
"has_genre",
"THRILLER"
],
[
"TABLE NO. 21",
"release_year",
"2013"
],
[
"THE CALL",
"has_genre",
"THRILLER"
],
[
"THE CALL",
"release_year",
"2013"
],
[
"THE CANYONS",
"has_genre",
"THRILLER"
],
[
"THE CANYONS",
"release_year",
"2013"
],
[
"THE COUNSELOR",
"has_genre",
"THRILLER"
],
[
"THE COUNSELOR",
"release_year",
"2013"
],
[
"THE EAST",
"has_genre",
"THRILLER"
],
[
"THE EAST",
"release_year",
"2013"
],
[
"THE EVIL THAT MEN DO",
"has_genre",
"THRILLER"
],
[
"THE EVIL THAT MEN DO",
"written_by",
"R. LANCE HILL"
],
[
"THE FIFTH ESTATE",
"has_genre",
"THRILLER"
],
[
"THE FIFTH ESTATE",
"release_year",
"2013"
],
[
"THE GIRL ON THE TRAIN",
"has_genre",
"THRILLER"
],
[
"THE GIRL ON THE TRAIN",
"release_year",
"2013"
],
[
"THE LAZARUS PROJECT",
"has_genre",
"THRILLER"
],
[
"THE LAZARUS PROJECT",
"starred_actors",
"PAUL WALKER"
],
[
"THE MACHINE",
"has_genre",
"THRILLER"
],
[
"THE MACHINE",
"release_year",
"2013"
],
[
"THE NUMBERS STATION",
"has_genre",
"THRILLER"
],
[
"THE NUMBERS STATION",
"release_year",
"2013"
],
[
"THE PRESTIGE",
"has_genre",
"THRILLER"
],
[
"THE PRESTIGE",
"has_tags",
"LONDON"
],
[
"THE PRESTIGE",
"has_tags",
"THRILLER"
],
[
"THE PURGE",
"has_genre",
"THRILLER"
],
[
"THE PURGE",
"release_year",
"2013"
],
[
"THE SACRAMENT",
"has_genre",
"THRILLER"
],
[
"THE SACRAMENT",
"release_year",
"2013"
],
[
"THE SKULLS",
"has_genre",
"THRILLER"
],
[
"THE SKULLS",
"starred_actors",
"PAUL WALKER"
],
[
"TOM AT THE FARM",
"has_genre",
"THRILLER"
],
[
"TOM AT THE FARM",
"release_year",
"2013"
],
[
"TORMENT",
"has_genre",
"THRILLER"
],
[
"TORMENT",
"release_year",
"2013"
],
[
"TRANCE",
"has_tags",
"THRILLER"
],
[
"TRANCE",
"release_year",
"2013"
],
[
"VEHICLE 19",
"has_genre",
"THRILLER"
],
[
"VEHICLE 19",
"has_tags",
"SOUTH AFRICA"
],
[
"VEHICLE 19",
"release_year",
"2013"
],
[
"VEHICLE 19",
"starred_actors",
"PAUL WALKER"
],
[
"WELCOME TO THE PUNCH",
"has_genre",
"THRILLER"
],
[
"WELCOME TO THE PUNCH",
"release_year",
"2013"
],
[
"WHITE HOUSE DOWN",
"has_genre",
"THRILLER"
],
[
"WHITE HOUSE DOWN",
"has_tags",
"THRILLER"
],
[
"WHITE HOUSE DOWN",
"release_year",
"2013"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
30172, 1964
33387, CITY OF GOD
32183, DOUGLAS SILVA
15436, EPIC
11565, GOOD
26124, GOOD NEIGHBOR SAM
12502, GOODBYE CHARLIE
37848, MURDER MOST FOUL
23364, RENÉ PETER
34860, THIS IS THE NIGHT
src, edge_attr, dst
33387, has_tags, 15436
33387, starred_actors, 32183
15436, has_imdb_rating, 11565
11565, has_imdb_rating, 11565
26124, has_imdb_rating, 11565
26124, release_year, 30172
12502, has_imdb_rating, 11565
12502, release_year, 30172
37848, has_imdb_rating, 11565
37848, release_year, 30172
34860, has_imdb_rating, 11565
34860, written_by, 23364
Question: For what reason are DOUGLAS SILVA, GOODBYE CHARLIE, and RENÉ PETER associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DOUGLAS SILVA",
"GOODBYE CHARLIE",
"RENÉ PETER"
],
"valid_edges": [
[
"CITY OF GOD",
"has_tags",
"EPIC"
],
[
"CITY OF GOD",
"starred_actors",
"DOUGLAS SILVA"
],
[
"EPIC",
"has_imdb_rating",
"GOOD"
],
[
"GOOD",
"has_imdb_rating",
"GOOD"
],
[
"GOOD NEIGHBOR SAM",
"has_imdb_rating",
"GOOD"
],
[
"GOOD NEIGHBOR SAM",
"release_year",
"1964"
],
[
"GOODBYE CHARLIE",
"has_imdb_rating",
"GOOD"
],
[
"GOODBYE CHARLIE",
"release_year",
"1964"
],
[
"MURDER MOST FOUL",
"has_imdb_rating",
"GOOD"
],
[
"MURDER MOST FOUL",
"release_year",
"1964"
],
[
"THIS IS THE NIGHT",
"has_imdb_rating",
"GOOD"
],
[
"THIS IS THE NIGHT",
"written_by",
"RENÉ PETER"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
32539, BREAKFAST WITH SCOT
30463, COMEDY
36690, COMRADE X
9353, LAURIE LYND
3459, LONESOME JIM
src, edge_attr, dst
32539, directed_by, 9353
32539, has_genre, 30463
36690, has_genre, 30463
3459, has_genre, 30463
Question: How are COMRADE X, LAURIE LYND, and LONESOME JIM related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"COMRADE X",
"LAURIE LYND",
"LONESOME JIM"
],
"valid_edges": [
[
"BREAKFAST WITH SCOT",
"directed_by",
"LAURIE LYND"
],
[
"BREAKFAST WITH SCOT",
"has_genre",
"COMEDY"
],
[
"COMRADE X",
"has_genre",
"COMEDY"
],
[
"LONESOME JIM",
"has_genre",
"COMEDY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
39397, AIMEE MOLLOY
20757, CLOUDS OF SILS MARIA
36212, DRAMA
7480, EDEN
6480, GERMAN
15765, HAMSUN
16788, INBETWEEN WORLDS
39284, POSSESSION
30919, PRISON
3126, ROSEWATER
3416, SARABAND
23194, STATIONS OF THE CROSS
2227, THE GIRL IN THE PARK
9406, THE IMITATION GAME
14874, THE SCARLET LETTER
src, edge_attr, dst
20757, has_genre, 36212
20757, in_language, 6480
7480, has_genre, 36212
7480, in_language, 6480
15765, has_genre, 36212
15765, in_language, 6480
16788, has_genre, 36212
16788, in_language, 6480
39284, has_genre, 36212
39284, in_language, 6480
30919, has_genre, 36212
3126, has_genre, 36212
3126, has_tags, 30919
3126, written_by, 39397
3416, has_genre, 36212
3416, has_tags, 36212
3416, in_language, 6480
23194, has_genre, 36212
23194, in_language, 6480
2227, has_genre, 36212
9406, has_genre, 36212
9406, in_language, 6480
14874, has_genre, 36212
14874, in_language, 6480
Question: In what context are AIMEE MOLLOY, THE GIRL IN THE PARK, and THE SCARLET LETTER connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"AIMEE MOLLOY",
"THE GIRL IN THE PARK",
"THE SCARLET LETTER"
],
"valid_edges": [
[
"CLOUDS OF SILS MARIA",
"has_genre",
"DRAMA"
],
[
"CLOUDS OF SILS MARIA",
"in_language",
"GERMAN"
],
[
"EDEN",
"has_genre",
"DRAMA"
],
[
"EDEN",
"in_language",
"GERMAN"
],
[
"HAMSUN",
"has_genre",
"DRAMA"
],
[
"HAMSUN",
"in_language",
"GERMAN"
],
[
"INBETWEEN WORLDS",
"has_genre",
"DRAMA"
],
[
"INBETWEEN WORLDS",
"in_language",
"GERMAN"
],
[
"POSSESSION",
"has_genre",
"DRAMA"
],
[
"POSSESSION",
"in_language",
"GERMAN"
],
[
"PRISON",
"has_genre",
"DRAMA"
],
[
"ROSEWATER",
"has_genre",
"DRAMA"
],
[
"ROSEWATER",
"has_tags",
"PRISON"
],
[
"ROSEWATER",
"written_by",
"AIMEE MOLLOY"
],
[
"SARABAND",
"has_genre",
"DRAMA"
],
[
"SARABAND",
"has_tags",
"DRAMA"
],
[
"SARABAND",
"in_language",
"GERMAN"
],
[
"STATIONS OF THE CROSS",
"has_genre",
"DRAMA"
],
[
"STATIONS OF THE CROSS",
"in_language",
"GERMAN"
],
[
"THE GIRL IN THE PARK",
"has_genre",
"DRAMA"
],
[
"THE IMITATION GAME",
"has_genre",
"DRAMA"
],
[
"THE IMITATION GAME",
"in_language",
"GERMAN"
],
[
"THE SCARLET LETTER",
"has_genre",
"DRAMA"
],
[
"THE SCARLET LETTER",
"in_language",
"GERMAN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
10702, 1991
22229, CLAIRE OF THE MOON
30463, COMEDY
2890, DESERT HEARTS
36212, DRAMA
35150, FRIED GREEN TOMATOES
35421, GO FISH
8635, LESBIAN
7221, LOVE SICK
10378, MAURY YESTON
17860, NINE
8280, PARIAH
22661, RAISE THE RED LANTERN
24853, SPIDER LILIES
27200, SU TONG
20210, THE WOMEN
src, edge_attr, dst
22229, has_genre, 36212
22229, has_tags, 8635
2890, has_genre, 36212
2890, has_tags, 8635
35150, has_genre, 30463
35150, has_genre, 36212
35150, has_tags, 36212
35150, has_tags, 8635
35150, release_year, 10702
35421, has_genre, 36212
35421, has_tags, 8635
7221, has_genre, 36212
7221, has_tags, 8635
17860, has_genre, 36212
17860, written_by, 10378
8280, has_genre, 36212
8280, has_tags, 8635
22661, release_year, 10702
22661, written_by, 27200
24853, has_genre, 36212
24853, has_tags, 36212
24853, has_tags, 8635
20210, has_genre, 30463
20210, has_genre, 36212
20210, has_tags, 8635
Question: In what context are LESBIAN, MAURY YESTON, and SU TONG connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"LESBIAN",
"MAURY YESTON",
"SU TONG"
],
"valid_edges": [
[
"CLAIRE OF THE MOON",
"has_genre",
"DRAMA"
],
[
"CLAIRE OF THE MOON",
"has_tags",
"LESBIAN"
],
[
"DESERT HEARTS",
"has_genre",
"DRAMA"
],
[
"DESERT HEARTS",
"has_tags",
"LESBIAN"
],
[
"FRIED GREEN TOMATOES",
"has_genre",
"COMEDY"
],
[
"FRIED GREEN TOMATOES",
"has_genre",
"DRAMA"
],
[
"FRIED GREEN TOMATOES",
"has_tags",
"DRAMA"
],
[
"FRIED GREEN TOMATOES",
"has_tags",
"LESBIAN"
],
[
"FRIED GREEN TOMATOES",
"release_year",
"1991"
],
[
"GO FISH",
"has_genre",
"DRAMA"
],
[
"GO FISH",
"has_tags",
"LESBIAN"
],
[
"LOVE SICK",
"has_genre",
"DRAMA"
],
[
"LOVE SICK",
"has_tags",
"LESBIAN"
],
[
"NINE",
"has_genre",
"DRAMA"
],
[
"NINE",
"written_by",
"MAURY YESTON"
],
[
"PARIAH",
"has_genre",
"DRAMA"
],
[
"PARIAH",
"has_tags",
"LESBIAN"
],
[
"RAISE THE RED LANTERN",
"release_year",
"1991"
],
[
"RAISE THE RED LANTERN",
"written_by",
"SU TONG"
],
[
"SPIDER LILIES",
"has_genre",
"DRAMA"
],
[
"SPIDER LILIES",
"has_tags",
"DRAMA"
],
[
"SPIDER LILIES",
"has_tags",
"LESBIAN"
],
[
"THE WOMEN",
"has_genre",
"COMEDY"
],
[
"THE WOMEN",
"has_genre",
"DRAMA"
],
[
"THE WOMEN",
"has_tags",
"LESBIAN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
17315, 2007
10597, BECOMING JANE
30501, BEOWULF
21275, BROKEN ENGLISH
1424, CALIFORNIA DREAMIN'
3928, CHEENI KUM
30463, COMEDY
928, CONTROL
31783, ENGLISH
9003, FUNNY GAMES
26968, HOT FUZZ
12821, JAB WE MET
29792, JOY DIVISION
14878, KABHI HAAN KABHI NAA
33888, LOVE IN THE TIME OF CHOLERA
28622, MY BLUEBERRY NIGHTS
20348, PATHFINDER
12825, PERSUASION
1643, RISE OF THE FOOTSOLDIER
17447, SON OF RAMBOW
28002, SUKIYAKI WESTERN DJANGO
25270, THE ADVENTURES OF PRISCILLA, QUEEN OF THE DESERT
30090, THE AIR UP THERE
8201, THE BAND'S VISIT
25509, THE DEBT
1589, THE FLOCK
32459, THE HAMMER
10331, THE KITE RUNNER
8712, THE LORD OF THE RINGS
21696, THE MAN FROM LONDON
11046, UNDER THE SAME MOON
9265, YOLANDA VAZQUEZ
src, edge_attr, dst
10597, in_language, 31783
10597, release_year, 17315
30501, in_language, 31783
30501, release_year, 17315
21275, in_language, 31783
21275, release_year, 17315
1424, in_language, 31783
1424, release_year, 17315
3928, in_language, 31783
3928, release_year, 17315
928, in_language, 31783
928, release_year, 17315
9003, in_language, 31783
9003, release_year, 17315
26968, has_genre, 30463
26968, has_tags, 30463
26968, in_language, 31783
26968, release_year, 17315
12821, has_genre, 30463
12821, in_language, 31783
12821, release_year, 17315
29792, in_language, 31783
29792, release_year, 17315
14878, has_genre, 30463
14878, in_language, 31783
33888, in_language, 31783
33888, release_year, 17315
28622, in_language, 31783
28622, release_year, 17315
20348, in_language, 31783
20348, release_year, 17315
12825, in_language, 31783
12825, release_year, 17315
1643, in_language, 31783
1643, release_year, 17315
17447, has_genre, 30463
17447, in_language, 31783
17447, release_year, 17315
28002, in_language, 31783
28002, release_year, 17315
25270, has_genre, 30463
25270, in_language, 31783
30090, has_genre, 30463
30090, has_tags, 30463
30090, starred_actors, 9265
8201, in_language, 31783
8201, release_year, 17315
25509, in_language, 31783
25509, release_year, 17315
1589, in_language, 31783
1589, release_year, 17315
32459, has_genre, 30463
32459, release_year, 17315
10331, in_language, 31783
10331, release_year, 17315
8712, in_language, 31783
21696, in_language, 31783
21696, release_year, 17315
11046, in_language, 31783
11046, release_year, 17315
Question: For what reason are THE HAMMER, THE LORD OF THE RINGS, and YOLANDA VAZQUEZ associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"THE HAMMER",
"THE LORD OF THE RINGS",
"YOLANDA VAZQUEZ"
],
"valid_edges": [
[
"BECOMING JANE",
"in_language",
"ENGLISH"
],
[
"BECOMING JANE",
"release_year",
"2007"
],
[
"BEOWULF",
"in_language",
"ENGLISH"
],
[
"BEOWULF",
"release_year",
"2007"
],
[
"BROKEN ENGLISH",
"in_language",
"ENGLISH"
],
[
"BROKEN ENGLISH",
"release_year",
"2007"
],
[
"CALIFORNIA DREAMIN'",
"in_language",
"ENGLISH"
],
[
"CALIFORNIA DREAMIN'",
"release_year",
"2007"
],
[
"CHEENI KUM",
"in_language",
"ENGLISH"
],
[
"CHEENI KUM",
"release_year",
"2007"
],
[
"CONTROL",
"in_language",
"ENGLISH"
],
[
"CONTROL",
"release_year",
"2007"
],
[
"FUNNY GAMES",
"in_language",
"ENGLISH"
],
[
"FUNNY GAMES",
"release_year",
"2007"
],
[
"HOT FUZZ",
"has_genre",
"COMEDY"
],
[
"HOT FUZZ",
"has_tags",
"COMEDY"
],
[
"HOT FUZZ",
"in_language",
"ENGLISH"
],
[
"HOT FUZZ",
"release_year",
"2007"
],
[
"JAB WE MET",
"has_genre",
"COMEDY"
],
[
"JAB WE MET",
"in_language",
"ENGLISH"
],
[
"JAB WE MET",
"release_year",
"2007"
],
[
"JOY DIVISION",
"in_language",
"ENGLISH"
],
[
"JOY DIVISION",
"release_year",
"2007"
],
[
"KABHI HAAN KABHI NAA",
"has_genre",
"COMEDY"
],
[
"KABHI HAAN KABHI NAA",
"in_language",
"ENGLISH"
],
[
"LOVE IN THE TIME OF CHOLERA",
"in_language",
"ENGLISH"
],
[
"LOVE IN THE TIME OF CHOLERA",
"release_year",
"2007"
],
[
"MY BLUEBERRY NIGHTS",
"in_language",
"ENGLISH"
],
[
"MY BLUEBERRY NIGHTS",
"release_year",
"2007"
],
[
"PATHFINDER",
"in_language",
"ENGLISH"
],
[
"PATHFINDER",
"release_year",
"2007"
],
[
"PERSUASION",
"in_language",
"ENGLISH"
],
[
"PERSUASION",
"release_year",
"2007"
],
[
"RISE OF THE FOOTSOLDIER",
"in_language",
"ENGLISH"
],
[
"RISE OF THE FOOTSOLDIER",
"release_year",
"2007"
],
[
"SON OF RAMBOW",
"has_genre",
"COMEDY"
],
[
"SON OF RAMBOW",
"in_language",
"ENGLISH"
],
[
"SON OF RAMBOW",
"release_year",
"2007"
],
[
"SUKIYAKI WESTERN DJANGO",
"in_language",
"ENGLISH"
],
[
"SUKIYAKI WESTERN DJANGO",
"release_year",
"2007"
],
[
"THE ADVENTURES OF PRISCILLA, QUEEN OF THE DESERT",
"has_genre",
"COMEDY"
],
[
"THE ADVENTURES OF PRISCILLA, QUEEN OF THE DESERT",
"in_language",
"ENGLISH"
],
[
"THE AIR UP THERE",
"has_genre",
"COMEDY"
],
[
"THE AIR UP THERE",
"has_tags",
"COMEDY"
],
[
"THE AIR UP THERE",
"starred_actors",
"YOLANDA VAZQUEZ"
],
[
"THE BAND'S VISIT",
"in_language",
"ENGLISH"
],
[
"THE BAND'S VISIT",
"release_year",
"2007"
],
[
"THE DEBT",
"in_language",
"ENGLISH"
],
[
"THE DEBT",
"release_year",
"2007"
],
[
"THE FLOCK",
"in_language",
"ENGLISH"
],
[
"THE FLOCK",
"release_year",
"2007"
],
[
"THE HAMMER",
"has_genre",
"COMEDY"
],
[
"THE HAMMER",
"release_year",
"2007"
],
[
"THE KITE RUNNER",
"in_language",
"ENGLISH"
],
[
"THE KITE RUNNER",
"release_year",
"2007"
],
[
"THE LORD OF THE RINGS",
"in_language",
"ENGLISH"
],
[
"THE MAN FROM LONDON",
"in_language",
"ENGLISH"
],
[
"THE MAN FROM LONDON",
"release_year",
"2007"
],
[
"UNDER THE SAME MOON",
"in_language",
"ENGLISH"
],
[
"UNDER THE SAME MOON",
"release_year",
"2007"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
1892, 1932
6216, 1952
15374, 2005
38588, 5 FINGERS
33955, EMPIRE OF THE WOLVES
7498, FLIGHTPLAN
6480, GERMAN
34073, HELL
6047, HÔTEL DES INVALIDES
38312, MOUTH TO MOUTH
36899, SHORT
3008, SUMMER IN BERLIN
12267, THE BLUE LIGHT
3354, THE BROTHERS GRIMM
10661, THE MUSIC BOX
6575, THE WAVE
38370, VAMPYR
39544, WE FEED THE WORLD
src, edge_attr, dst
38588, in_language, 6480
38588, release_year, 6216
33955, release_year, 15374
7498, in_language, 6480
7498, release_year, 15374
34073, in_language, 6480
34073, release_year, 15374
6047, has_genre, 36899
6047, release_year, 6216
38312, in_language, 6480
38312, release_year, 15374
3008, in_language, 6480
3008, release_year, 15374
12267, in_language, 6480
12267, release_year, 1892
3354, in_language, 6480
3354, release_year, 15374
10661, has_genre, 36899
10661, has_tags, 36899
10661, release_year, 1892
6575, has_genre, 36899
6575, in_language, 6480
38370, in_language, 6480
38370, release_year, 1892
39544, in_language, 6480
39544, release_year, 15374
Question: For what reason are EMPIRE OF THE WOLVES, HÔTEL DES INVALIDES, and VAMPYR associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"EMPIRE OF THE WOLVES",
"HÔTEL DES INVALIDES",
"VAMPYR"
],
"valid_edges": [
[
"5 FINGERS",
"in_language",
"GERMAN"
],
[
"5 FINGERS",
"release_year",
"1952"
],
[
"EMPIRE OF THE WOLVES",
"release_year",
"2005"
],
[
"FLIGHTPLAN",
"in_language",
"GERMAN"
],
[
"FLIGHTPLAN",
"release_year",
"2005"
],
[
"HELL",
"in_language",
"GERMAN"
],
[
"HELL",
"release_year",
"2005"
],
[
"HÔTEL DES INVALIDES",
"has_genre",
"SHORT"
],
[
"HÔTEL DES INVALIDES",
"release_year",
"1952"
],
[
"MOUTH TO MOUTH",
"in_language",
"GERMAN"
],
[
"MOUTH TO MOUTH",
"release_year",
"2005"
],
[
"SUMMER IN BERLIN",
"in_language",
"GERMAN"
],
[
"SUMMER IN BERLIN",
"release_year",
"2005"
],
[
"THE BLUE LIGHT",
"in_language",
"GERMAN"
],
[
"THE BLUE LIGHT",
"release_year",
"1932"
],
[
"THE BROTHERS GRIMM",
"in_language",
"GERMAN"
],
[
"THE BROTHERS GRIMM",
"release_year",
"2005"
],
[
"THE MUSIC BOX",
"has_genre",
"SHORT"
],
[
"THE MUSIC BOX",
"has_tags",
"SHORT"
],
[
"THE MUSIC BOX",
"release_year",
"1932"
],
[
"THE WAVE",
"has_genre",
"SHORT"
],
[
"THE WAVE",
"in_language",
"GERMAN"
],
[
"VAMPYR",
"in_language",
"GERMAN"
],
[
"VAMPYR",
"release_year",
"1932"
],
[
"WE FEED THE WORLD",
"in_language",
"GERMAN"
],
[
"WE FEED THE WORLD",
"release_year",
"2005"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
4763, ADVENTURE
27192, DON PAUL
36212, DRAMA
36153, LAWRENCE B. MARCUS
15525, PETULIA
1400, RICHARD BRIERS
23530, THE ROAD TO EL DORADO
25311, WATERSHIP DOWN
src, edge_attr, dst
15525, has_genre, 36212
15525, written_by, 36153
23530, directed_by, 27192
23530, has_genre, 4763
25311, has_genre, 4763
25311, has_genre, 36212
25311, starred_actors, 1400
Question: For what reason are DON PAUL, LAWRENCE B. MARCUS, and RICHARD BRIERS associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DON PAUL",
"LAWRENCE B. MARCUS",
"RICHARD BRIERS"
],
"valid_edges": [
[
"PETULIA",
"has_genre",
"DRAMA"
],
[
"PETULIA",
"written_by",
"LAWRENCE B. MARCUS"
],
[
"THE ROAD TO EL DORADO",
"directed_by",
"DON PAUL"
],
[
"THE ROAD TO EL DORADO",
"has_genre",
"ADVENTURE"
],
[
"WATERSHIP DOWN",
"has_genre",
"ADVENTURE"
],
[
"WATERSHIP DOWN",
"has_genre",
"DRAMA"
],
[
"WATERSHIP DOWN",
"starred_actors",
"RICHARD BRIERS"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
1006, 1996
36448, DEADLY VOYAGE
9445, JANET GUNN
63, MICHAEL JORDAN
3288, SPACE JAM
12863, THE QUEST
src, edge_attr, dst
36448, release_year, 1006
3288, release_year, 1006
3288, starred_actors, 63
12863, release_year, 1006
12863, starred_actors, 9445
Question: For what reason are DEADLY VOYAGE, JANET GUNN, and MICHAEL JORDAN associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DEADLY VOYAGE",
"JANET GUNN",
"MICHAEL JORDAN"
],
"valid_edges": [
[
"DEADLY VOYAGE",
"release_year",
"1996"
],
[
"SPACE JAM",
"release_year",
"1996"
],
[
"SPACE JAM",
"starred_actors",
"MICHAEL JORDAN"
],
[
"THE QUEST",
"release_year",
"1996"
],
[
"THE QUEST",
"starred_actors",
"JANET GUNN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
7158, 1958
25221, 1981
33215, A NIGHT TO REMEMBER
21806, AUNTIE MAME
19992, BIG DEAL ON MADONNA STREET
30463, COMEDY
27772, GIANTS AND TOYS
5527, GIGI
14193, HOUSEBOAT
9712, INDISCREET
22253, JUDIT POGÁNY
9198, MALIBU'S MOST WANTED
8610, ME AND THE COLONEL
31657, MON ONCLE
24842, NO TIME FOR SERGEANTS
15070, ONIONHEAD
15988, PARTY GIRL
12895, TEACHER'S PET
7973, THE HIDDEN FORTRESS
22174, THE LITTLE FOX
6857, THE MATCHMAKER
36072, THE RELUCTANT DEBUTANTE
15546, THE TUNNEL OF LOVE
src, edge_attr, dst
25221, has_genre, 30463
33215, has_genre, 30463
33215, release_year, 7158
21806, has_genre, 30463
21806, release_year, 7158
19992, has_genre, 30463
19992, release_year, 7158
27772, has_genre, 30463
27772, release_year, 7158
5527, has_genre, 30463
5527, release_year, 7158
14193, has_genre, 30463
14193, release_year, 7158
9712, has_genre, 30463
9712, release_year, 7158
9198, has_genre, 30463
8610, has_genre, 30463
8610, release_year, 7158
31657, has_genre, 30463
31657, release_year, 7158
24842, has_genre, 30463
24842, release_year, 7158
15070, has_genre, 30463
15070, release_year, 7158
15988, has_genre, 30463
15988, release_year, 7158
12895, has_genre, 30463
12895, release_year, 7158
7973, release_year, 7158
22174, release_year, 25221
22174, starred_actors, 22253
6857, has_genre, 30463
6857, release_year, 7158
36072, has_genre, 30463
36072, release_year, 7158
15546, has_genre, 30463
15546, release_year, 7158
Question: In what context are JUDIT POGÁNY, MALIBU'S MOST WANTED, and THE HIDDEN FORTRESS connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JUDIT POGÁNY",
"MALIBU'S MOST WANTED",
"THE HIDDEN FORTRESS"
],
"valid_edges": [
[
"1981",
"has_genre",
"COMEDY"
],
[
"A NIGHT TO REMEMBER",
"has_genre",
"COMEDY"
],
[
"A NIGHT TO REMEMBER",
"release_year",
"1958"
],
[
"AUNTIE MAME",
"has_genre",
"COMEDY"
],
[
"AUNTIE MAME",
"release_year",
"1958"
],
[
"BIG DEAL ON MADONNA STREET",
"has_genre",
"COMEDY"
],
[
"BIG DEAL ON MADONNA STREET",
"release_year",
"1958"
],
[
"GIANTS AND TOYS",
"has_genre",
"COMEDY"
],
[
"GIANTS AND TOYS",
"release_year",
"1958"
],
[
"GIGI",
"has_genre",
"COMEDY"
],
[
"GIGI",
"release_year",
"1958"
],
[
"HOUSEBOAT",
"has_genre",
"COMEDY"
],
[
"HOUSEBOAT",
"release_year",
"1958"
],
[
"INDISCREET",
"has_genre",
"COMEDY"
],
[
"INDISCREET",
"release_year",
"1958"
],
[
"MALIBU'S MOST WANTED",
"has_genre",
"COMEDY"
],
[
"ME AND THE COLONEL",
"has_genre",
"COMEDY"
],
[
"ME AND THE COLONEL",
"release_year",
"1958"
],
[
"MON ONCLE",
"has_genre",
"COMEDY"
],
[
"MON ONCLE",
"release_year",
"1958"
],
[
"NO TIME FOR SERGEANTS",
"has_genre",
"COMEDY"
],
[
"NO TIME FOR SERGEANTS",
"release_year",
"1958"
],
[
"ONIONHEAD",
"has_genre",
"COMEDY"
],
[
"ONIONHEAD",
"release_year",
"1958"
],
[
"PARTY GIRL",
"has_genre",
"COMEDY"
],
[
"PARTY GIRL",
"release_year",
"1958"
],
[
"TEACHER'S PET",
"has_genre",
"COMEDY"
],
[
"TEACHER'S PET",
"release_year",
"1958"
],
[
"THE HIDDEN FORTRESS",
"release_year",
"1958"
],
[
"THE LITTLE FOX",
"release_year",
"1981"
],
[
"THE LITTLE FOX",
"starred_actors",
"JUDIT POGÁNY"
],
[
"THE MATCHMAKER",
"has_genre",
"COMEDY"
],
[
"THE MATCHMAKER",
"release_year",
"1958"
],
[
"THE RELUCTANT DEBUTANTE",
"has_genre",
"COMEDY"
],
[
"THE RELUCTANT DEBUTANTE",
"release_year",
"1958"
],
[
"THE TUNNEL OF LOVE",
"has_genre",
"COMEDY"
],
[
"THE TUNNEL OF LOVE",
"release_year",
"1958"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
17978, AMERICAN VIOLET
13792, DON JON
36212, DRAMA
7585, TEXAS
2555, THE RARE BREED
11614, TIM DISNEY
25313, TONY DANZA
36026, WESTERN
src, edge_attr, dst
17978, directed_by, 11614
17978, has_genre, 36212
17978, has_tags, 7585
13792, has_genre, 36212
13792, starred_actors, 25313
7585, has_genre, 36026
2555, has_genre, 36026
Question: For what reason are THE RARE BREED, TIM DISNEY, and TONY DANZA associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"THE RARE BREED",
"TIM DISNEY",
"TONY DANZA"
],
"valid_edges": [
[
"AMERICAN VIOLET",
"directed_by",
"TIM DISNEY"
],
[
"AMERICAN VIOLET",
"has_genre",
"DRAMA"
],
[
"AMERICAN VIOLET",
"has_tags",
"TEXAS"
],
[
"DON JON",
"has_genre",
"DRAMA"
],
[
"DON JON",
"starred_actors",
"TONY DANZA"
],
[
"TEXAS",
"has_genre",
"WESTERN"
],
[
"THE RARE BREED",
"has_genre",
"WESTERN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
26048, AMERICAN HUSTLE
11079, BORDERTOWN
29517, CARROLL GRAHAM
6871, COP LAND
14724, CRIME
36212, DRAMA
21640, GARDEN STATE
4246, JERSEY BOYS
22845, MUSIC
25511, NEW JERSEY
10275, ROBERT VERNAY
19351, THE COUNT OF MONTE CRISTO
src, edge_attr, dst
26048, has_genre, 14724
26048, has_genre, 36212
26048, has_tags, 25511
11079, has_genre, 36212
11079, written_by, 29517
6871, has_genre, 14724
6871, has_genre, 36212
6871, has_tags, 14724
6871, has_tags, 36212
6871, has_tags, 25511
21640, has_genre, 36212
21640, has_tags, 22845
21640, has_tags, 25511
4246, has_genre, 36212
4246, has_genre, 22845
4246, has_tags, 22845
4246, has_tags, 25511
19351, directed_by, 10275
19351, has_genre, 36212
19351, written_by, 10275
Question: In what context are CARROLL GRAHAM, NEW JERSEY, and ROBERT VERNAY connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"CARROLL GRAHAM",
"NEW JERSEY",
"ROBERT VERNAY"
],
"valid_edges": [
[
"AMERICAN HUSTLE",
"has_genre",
"CRIME"
],
[
"AMERICAN HUSTLE",
"has_genre",
"DRAMA"
],
[
"AMERICAN HUSTLE",
"has_tags",
"NEW JERSEY"
],
[
"BORDERTOWN",
"has_genre",
"DRAMA"
],
[
"BORDERTOWN",
"written_by",
"CARROLL GRAHAM"
],
[
"COP LAND",
"has_genre",
"CRIME"
],
[
"COP LAND",
"has_genre",
"DRAMA"
],
[
"COP LAND",
"has_tags",
"CRIME"
],
[
"COP LAND",
"has_tags",
"DRAMA"
],
[
"COP LAND",
"has_tags",
"NEW JERSEY"
],
[
"GARDEN STATE",
"has_genre",
"DRAMA"
],
[
"GARDEN STATE",
"has_tags",
"MUSIC"
],
[
"GARDEN STATE",
"has_tags",
"NEW JERSEY"
],
[
"JERSEY BOYS",
"has_genre",
"DRAMA"
],
[
"JERSEY BOYS",
"has_genre",
"MUSIC"
],
[
"JERSEY BOYS",
"has_tags",
"MUSIC"
],
[
"JERSEY BOYS",
"has_tags",
"NEW JERSEY"
],
[
"THE COUNT OF MONTE CRISTO",
"directed_by",
"ROBERT VERNAY"
],
[
"THE COUNT OF MONTE CRISTO",
"has_genre",
"DRAMA"
],
[
"THE COUNT OF MONTE CRISTO",
"written_by",
"ROBERT VERNAY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
25717, 1953
1567, 1954
2355, 3 RING CIRCUS
35934, A LADY TAKES A CHANCE
18914, A LESSON IN LOVE
9152, A STAR IS BORN
21802, ABBOTT AND COSTELLO GO TO MARS
15922, ABBOTT AND COSTELLO MEET DR. JEKYLL AND MR. HYDE
22569, ALL ABOUT THE BENJAMINS
39641, ALONG CAME JONES
33952, ATHENA
38657, BEAT THE DEVIL
4698, BETTY GRABLE
10218, BLACK WIDOW
29294, BREAD, LOVE AND DREAMS
26642, BUS STOP
8430, CALL ME MADAM
24276, CASANOVA BROWN
16795, CASANOVA'S BIG NIGHT
30463, COMEDY
5865, DAVID WAYNE
27558, DESIGNING WOMAN
36492, DIAMONDS
1480, DREAM WIFE
36249, GENEVIEVE
38125, HIS PRIVATE SECRETARY
20400, HOBSON'S CHOICE
12557, HOW TO MARRY A MILLIONAIRE
17344, I VITELLONI
14341, IT COULD HAPPEN TO YOU
30470, IT SHOULD HAPPEN TO YOU
12435, JOHN WAYNE
6956, KNOCK ON WOOD
31519, LAUREN BACALL
10267, LET'S MAKE LOVE
432, LOTTERY
27297, MAGIC TOWN
21143, MARILYN MONROE
7495, MCLINTOCK!
13717, MONKEY BUSINESS
18524, MY BLUE HEAVEN
1436, NIGHT PEOPLE
30968, NOTHING SACRED
11190, NUNNALLY JOHNSON
39193, PHFFFT
13096, ROMAN HOLIDAY
20954, ROXIE HART
4689, SABRINA
7941, SEX AND THE SINGLE GIRL
26840, SOME LIKE IT HOT
39543, SUSAN SLEPT HERE
11290, TAKE HER, SHE'S MINE
22407, THE ACTRESS
32851, THE BAND WAGON
18855, THE CADDY
18055, THE CAPTAIN'S PARADISE
23631, THE HIGH AND THE MIGHTY
17527, THE MIRROR HAS TWO FACES
12672, THE MOON IS BLUE
16199, THE QUIET MAN
11310, THE REFORMER AND THE REDHEAD
3848, THE RETURN OF DON CAMILLO
25574, THE SEVEN YEAR ITCH
31357, THE SHOOTIST
10991, THE SUN SHINES BRIGHT
23294, THE TENDER TRAP
8289, THE TITFIELD THUNDERBOLT
15263, THE TWONKY
17209, THERE'S NO BUSINESS LIKE SHOW BUSINESS
27872, TRACK OF THE CAT
31364, WE'RE NOT MARRIED!
36409, WELCOME MR. MARSHALL!
24706, WILLIAM A. WELLMAN
src, edge_attr, dst
2355, has_genre, 30463
2355, release_year, 1567
35934, has_genre, 30463
35934, starred_actors, 12435
18914, has_genre, 30463
18914, release_year, 1567
9152, directed_by, 24706
9152, has_tags, 24706
9152, release_year, 1567
9152, written_by, 24706
21802, has_genre, 30463
21802, release_year, 25717
15922, has_genre, 30463
15922, release_year, 25717
22569, has_genre, 30463
22569, has_tags, 30463
22569, has_tags, 432
39641, has_genre, 30463
39641, written_by, 11190
33952, has_genre, 30463
33952, release_year, 1567
38657, has_genre, 30463
38657, release_year, 25717
10218, directed_by, 11190
10218, release_year, 1567
10218, written_by, 11190
29294, has_genre, 30463
29294, release_year, 25717
26642, has_genre, 30463
26642, has_tags, 21143
26642, starred_actors, 21143
8430, has_genre, 30463
8430, release_year, 25717
24276, has_genre, 30463
24276, written_by, 11190
16795, has_genre, 30463
16795, release_year, 1567
27558, has_genre, 30463
27558, starred_actors, 31519
36492, has_genre, 30463
36492, starred_actors, 31519
1480, has_genre, 30463
1480, release_year, 25717
36249, has_genre, 30463
36249, release_year, 25717
38125, has_genre, 30463
38125, starred_actors, 12435
20400, has_genre, 30463
20400, release_year, 1567
12557, has_genre, 30463
12557, has_tags, 31519
12557, has_tags, 21143
12557, release_year, 25717
12557, starred_actors, 4698
12557, starred_actors, 5865
12557, starred_actors, 31519
12557, starred_actors, 21143
12557, written_by, 11190
17344, has_genre, 30463
17344, release_year, 25717
14341, has_genre, 30463
14341, has_tags, 30463
14341, has_tags, 432
30470, has_genre, 30463
30470, release_year, 1567
6956, has_genre, 30463
6956, release_year, 1567
10267, has_genre, 30463
10267, starred_actors, 21143
27297, directed_by, 24706
27297, has_genre, 30463
7495, has_genre, 30463
7495, has_tags, 12435
7495, starred_actors, 12435
13717, has_genre, 30463
13717, has_tags, 30463
13717, starred_actors, 21143
18524, has_genre, 30463
18524, starred_actors, 4698
1436, directed_by, 11190
1436, release_year, 1567
1436, written_by, 11190
30968, directed_by, 24706
30968, has_genre, 30463
30968, has_tags, 24706
39193, has_genre, 30463
39193, release_year, 1567
13096, has_genre, 30463
13096, has_tags, 30463
13096, release_year, 25717
20954, directed_by, 24706
20954, has_genre, 30463
20954, has_tags, 24706
4689, has_genre, 30463
4689, release_year, 1567
7941, has_genre, 30463
7941, starred_actors, 31519
26840, has_genre, 30463
26840, has_tags, 30463
26840, has_tags, 21143
26840, starred_actors, 21143
39543, has_genre, 30463
39543, release_year, 1567
11290, has_genre, 30463
11290, written_by, 11190
22407, has_genre, 30463
22407, release_year, 25717
32851, has_genre, 30463
32851, release_year, 25717
18855, has_genre, 30463
18855, release_year, 25717
18055, has_genre, 30463
18055, release_year, 25717
23631, directed_by, 24706
23631, has_tags, 24706
23631, release_year, 1567
23631, starred_actors, 12435
17527, has_genre, 30463
17527, starred_actors, 31519
12672, has_genre, 30463
12672, release_year, 25717
16199, has_genre, 30463
16199, has_tags, 12435
16199, starred_actors, 12435
11310, has_genre, 30463
11310, starred_actors, 5865
3848, has_genre, 30463
3848, release_year, 25717
25574, has_genre, 30463
25574, has_tags, 21143
25574, starred_actors, 21143
31357, has_tags, 12435
31357, starred_actors, 12435
31357, starred_actors, 31519
10991, has_genre, 30463
10991, release_year, 25717
23294, has_genre, 30463
23294, starred_actors, 5865
8289, has_genre, 30463
8289, release_year, 25717
15263, has_genre, 30463
15263, release_year, 25717
17209, has_genre, 30463
17209, release_year, 1567
17209, starred_actors, 21143
27872, directed_by, 24706
27872, release_year, 1567
31364, has_genre, 30463
31364, starred_actors, 21143
36409, has_genre, 30463
36409, release_year, 25717
Question: In what context are HOW TO MARRY A MILLIONAIRE, LOTTERY, and THE HIGH AND THE MIGHTY connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"HOW TO MARRY A MILLIONAIRE",
"LOTTERY",
"THE HIGH AND THE MIGHTY"
],
"valid_edges": [
[
"3 RING CIRCUS",
"has_genre",
"COMEDY"
],
[
"3 RING CIRCUS",
"release_year",
"1954"
],
[
"A LADY TAKES A CHANCE",
"has_genre",
"COMEDY"
],
[
"A LADY TAKES A CHANCE",
"starred_actors",
"JOHN WAYNE"
],
[
"A LESSON IN LOVE",
"has_genre",
"COMEDY"
],
[
"A LESSON IN LOVE",
"release_year",
"1954"
],
[
"A STAR IS BORN",
"directed_by",
"WILLIAM A. WELLMAN"
],
[
"A STAR IS BORN",
"has_tags",
"WILLIAM A. WELLMAN"
],
[
"A STAR IS BORN",
"release_year",
"1954"
],
[
"A STAR IS BORN",
"written_by",
"WILLIAM A. WELLMAN"
],
[
"ABBOTT AND COSTELLO GO TO MARS",
"has_genre",
"COMEDY"
],
[
"ABBOTT AND COSTELLO GO TO MARS",
"release_year",
"1953"
],
[
"ABBOTT AND COSTELLO MEET DR. JEKYLL AND MR. HYDE",
"has_genre",
"COMEDY"
],
[
"ABBOTT AND COSTELLO MEET DR. JEKYLL AND MR. HYDE",
"release_year",
"1953"
],
[
"ALL ABOUT THE BENJAMINS",
"has_genre",
"COMEDY"
],
[
"ALL ABOUT THE BENJAMINS",
"has_tags",
"COMEDY"
],
[
"ALL ABOUT THE BENJAMINS",
"has_tags",
"LOTTERY"
],
[
"ALONG CAME JONES",
"has_genre",
"COMEDY"
],
[
"ALONG CAME JONES",
"written_by",
"NUNNALLY JOHNSON"
],
[
"ATHENA",
"has_genre",
"COMEDY"
],
[
"ATHENA",
"release_year",
"1954"
],
[
"BEAT THE DEVIL",
"has_genre",
"COMEDY"
],
[
"BEAT THE DEVIL",
"release_year",
"1953"
],
[
"BLACK WIDOW",
"directed_by",
"NUNNALLY JOHNSON"
],
[
"BLACK WIDOW",
"release_year",
"1954"
],
[
"BLACK WIDOW",
"written_by",
"NUNNALLY JOHNSON"
],
[
"BREAD, LOVE AND DREAMS",
"has_genre",
"COMEDY"
],
[
"BREAD, LOVE AND DREAMS",
"release_year",
"1953"
],
[
"BUS STOP",
"has_genre",
"COMEDY"
],
[
"BUS STOP",
"has_tags",
"MARILYN MONROE"
],
[
"BUS STOP",
"starred_actors",
"MARILYN MONROE"
],
[
"CALL ME MADAM",
"has_genre",
"COMEDY"
],
[
"CALL ME MADAM",
"release_year",
"1953"
],
[
"CASANOVA BROWN",
"has_genre",
"COMEDY"
],
[
"CASANOVA BROWN",
"written_by",
"NUNNALLY JOHNSON"
],
[
"CASANOVA'S BIG NIGHT",
"has_genre",
"COMEDY"
],
[
"CASANOVA'S BIG NIGHT",
"release_year",
"1954"
],
[
"DESIGNING WOMAN",
"has_genre",
"COMEDY"
],
[
"DESIGNING WOMAN",
"starred_actors",
"LAUREN BACALL"
],
[
"DIAMONDS",
"has_genre",
"COMEDY"
],
[
"DIAMONDS",
"starred_actors",
"LAUREN BACALL"
],
[
"DREAM WIFE",
"has_genre",
"COMEDY"
],
[
"DREAM WIFE",
"release_year",
"1953"
],
[
"GENEVIEVE",
"has_genre",
"COMEDY"
],
[
"GENEVIEVE",
"release_year",
"1953"
],
[
"HIS PRIVATE SECRETARY",
"has_genre",
"COMEDY"
],
[
"HIS PRIVATE SECRETARY",
"starred_actors",
"JOHN WAYNE"
],
[
"HOBSON'S CHOICE",
"has_genre",
"COMEDY"
],
[
"HOBSON'S CHOICE",
"release_year",
"1954"
],
[
"HOW TO MARRY A MILLIONAIRE",
"has_genre",
"COMEDY"
],
[
"HOW TO MARRY A MILLIONAIRE",
"has_tags",
"LAUREN BACALL"
],
[
"HOW TO MARRY A MILLIONAIRE",
"has_tags",
"MARILYN MONROE"
],
[
"HOW TO MARRY A MILLIONAIRE",
"release_year",
"1953"
],
[
"HOW TO MARRY A MILLIONAIRE",
"starred_actors",
"BETTY GRABLE"
],
[
"HOW TO MARRY A MILLIONAIRE",
"starred_actors",
"DAVID WAYNE"
],
[
"HOW TO MARRY A MILLIONAIRE",
"starred_actors",
"LAUREN BACALL"
],
[
"HOW TO MARRY A MILLIONAIRE",
"starred_actors",
"MARILYN MONROE"
],
[
"HOW TO MARRY A MILLIONAIRE",
"written_by",
"NUNNALLY JOHNSON"
],
[
"I VITELLONI",
"has_genre",
"COMEDY"
],
[
"I VITELLONI",
"release_year",
"1953"
],
[
"IT COULD HAPPEN TO YOU",
"has_genre",
"COMEDY"
],
[
"IT COULD HAPPEN TO YOU",
"has_tags",
"COMEDY"
],
[
"IT COULD HAPPEN TO YOU",
"has_tags",
"LOTTERY"
],
[
"IT SHOULD HAPPEN TO YOU",
"has_genre",
"COMEDY"
],
[
"IT SHOULD HAPPEN TO YOU",
"release_year",
"1954"
],
[
"KNOCK ON WOOD",
"has_genre",
"COMEDY"
],
[
"KNOCK ON WOOD",
"release_year",
"1954"
],
[
"LET'S MAKE LOVE",
"has_genre",
"COMEDY"
],
[
"LET'S MAKE LOVE",
"starred_actors",
"MARILYN MONROE"
],
[
"MAGIC TOWN",
"directed_by",
"WILLIAM A. WELLMAN"
],
[
"MAGIC TOWN",
"has_genre",
"COMEDY"
],
[
"MCLINTOCK!",
"has_genre",
"COMEDY"
],
[
"MCLINTOCK!",
"has_tags",
"JOHN WAYNE"
],
[
"MCLINTOCK!",
"starred_actors",
"JOHN WAYNE"
],
[
"MONKEY BUSINESS",
"has_genre",
"COMEDY"
],
[
"MONKEY BUSINESS",
"has_tags",
"COMEDY"
],
[
"MONKEY BUSINESS",
"starred_actors",
"MARILYN MONROE"
],
[
"MY BLUE HEAVEN",
"has_genre",
"COMEDY"
],
[
"MY BLUE HEAVEN",
"starred_actors",
"BETTY GRABLE"
],
[
"NIGHT PEOPLE",
"directed_by",
"NUNNALLY JOHNSON"
],
[
"NIGHT PEOPLE",
"release_year",
"1954"
],
[
"NIGHT PEOPLE",
"written_by",
"NUNNALLY JOHNSON"
],
[
"NOTHING SACRED",
"directed_by",
"WILLIAM A. WELLMAN"
],
[
"NOTHING SACRED",
"has_genre",
"COMEDY"
],
[
"NOTHING SACRED",
"has_tags",
"WILLIAM A. WELLMAN"
],
[
"PHFFFT",
"has_genre",
"COMEDY"
],
[
"PHFFFT",
"release_year",
"1954"
],
[
"ROMAN HOLIDAY",
"has_genre",
"COMEDY"
],
[
"ROMAN HOLIDAY",
"has_tags",
"COMEDY"
],
[
"ROMAN HOLIDAY",
"release_year",
"1953"
],
[
"ROXIE HART",
"directed_by",
"WILLIAM A. WELLMAN"
],
[
"ROXIE HART",
"has_genre",
"COMEDY"
],
[
"ROXIE HART",
"has_tags",
"WILLIAM A. WELLMAN"
],
[
"SABRINA",
"has_genre",
"COMEDY"
],
[
"SABRINA",
"release_year",
"1954"
],
[
"SEX AND THE SINGLE GIRL",
"has_genre",
"COMEDY"
],
[
"SEX AND THE SINGLE GIRL",
"starred_actors",
"LAUREN BACALL"
],
[
"SOME LIKE IT HOT",
"has_genre",
"COMEDY"
],
[
"SOME LIKE IT HOT",
"has_tags",
"COMEDY"
],
[
"SOME LIKE IT HOT",
"has_tags",
"MARILYN MONROE"
],
[
"SOME LIKE IT HOT",
"starred_actors",
"MARILYN MONROE"
],
[
"SUSAN SLEPT HERE",
"has_genre",
"COMEDY"
],
[
"SUSAN SLEPT HERE",
"release_year",
"1954"
],
[
"TAKE HER, SHE'S MINE",
"has_genre",
"COMEDY"
],
[
"TAKE HER, SHE'S MINE",
"written_by",
"NUNNALLY JOHNSON"
],
[
"THE ACTRESS",
"has_genre",
"COMEDY"
],
[
"THE ACTRESS",
"release_year",
"1953"
],
[
"THE BAND WAGON",
"has_genre",
"COMEDY"
],
[
"THE BAND WAGON",
"release_year",
"1953"
],
[
"THE CADDY",
"has_genre",
"COMEDY"
],
[
"THE CADDY",
"release_year",
"1953"
],
[
"THE CAPTAIN'S PARADISE",
"has_genre",
"COMEDY"
],
[
"THE CAPTAIN'S PARADISE",
"release_year",
"1953"
],
[
"THE HIGH AND THE MIGHTY",
"directed_by",
"WILLIAM A. WELLMAN"
],
[
"THE HIGH AND THE MIGHTY",
"has_tags",
"WILLIAM A. WELLMAN"
],
[
"THE HIGH AND THE MIGHTY",
"release_year",
"1954"
],
[
"THE HIGH AND THE MIGHTY",
"starred_actors",
"JOHN WAYNE"
],
[
"THE MIRROR HAS TWO FACES",
"has_genre",
"COMEDY"
],
[
"THE MIRROR HAS TWO FACES",
"starred_actors",
"LAUREN BACALL"
],
[
"THE MOON IS BLUE",
"has_genre",
"COMEDY"
],
[
"THE MOON IS BLUE",
"release_year",
"1953"
],
[
"THE QUIET MAN",
"has_genre",
"COMEDY"
],
[
"THE QUIET MAN",
"has_tags",
"JOHN WAYNE"
],
[
"THE QUIET MAN",
"starred_actors",
"JOHN WAYNE"
],
[
"THE REFORMER AND THE REDHEAD",
"has_genre",
"COMEDY"
],
[
"THE REFORMER AND THE REDHEAD",
"starred_actors",
"DAVID WAYNE"
],
[
"THE RETURN OF DON CAMILLO",
"has_genre",
"COMEDY"
],
[
"THE RETURN OF DON CAMILLO",
"release_year",
"1953"
],
[
"THE SEVEN YEAR ITCH",
"has_genre",
"COMEDY"
],
[
"THE SEVEN YEAR ITCH",
"has_tags",
"MARILYN MONROE"
],
[
"THE SEVEN YEAR ITCH",
"starred_actors",
"MARILYN MONROE"
],
[
"THE SHOOTIST",
"has_tags",
"JOHN WAYNE"
],
[
"THE SHOOTIST",
"starred_actors",
"JOHN WAYNE"
],
[
"THE SHOOTIST",
"starred_actors",
"LAUREN BACALL"
],
[
"THE SUN SHINES BRIGHT",
"has_genre",
"COMEDY"
],
[
"THE SUN SHINES BRIGHT",
"release_year",
"1953"
],
[
"THE TENDER TRAP",
"has_genre",
"COMEDY"
],
[
"THE TENDER TRAP",
"starred_actors",
"DAVID WAYNE"
],
[
"THE TITFIELD THUNDERBOLT",
"has_genre",
"COMEDY"
],
[
"THE TITFIELD THUNDERBOLT",
"release_year",
"1953"
],
[
"THE TWONKY",
"has_genre",
"COMEDY"
],
[
"THE TWONKY",
"release_year",
"1953"
],
[
"THERE'S NO BUSINESS LIKE SHOW BUSINESS",
"has_genre",
"COMEDY"
],
[
"THERE'S NO BUSINESS LIKE SHOW BUSINESS",
"release_year",
"1954"
],
[
"THERE'S NO BUSINESS LIKE SHOW BUSINESS",
"starred_actors",
"MARILYN MONROE"
],
[
"TRACK OF THE CAT",
"directed_by",
"WILLIAM A. WELLMAN"
],
[
"TRACK OF THE CAT",
"release_year",
"1954"
],
[
"WE'RE NOT MARRIED!",
"has_genre",
"COMEDY"
],
[
"WE'RE NOT MARRIED!",
"starred_actors",
"MARILYN MONROE"
],
[
"WELCOME MR. MARSHALL!",
"has_genre",
"COMEDY"
],
[
"WELCOME MR. MARSHALL!",
"release_year",
"1953"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
10045, BD-R
235, BRINGING UP BABY
30463, COMEDY
23299, GET CARTER
22984, HAGAR WILDE
13163, I LOVE TROUBLE
8097, S. SYLVAN SIMON
4088, STEPHEN KAY
src, edge_attr, dst
235, has_genre, 30463
235, has_tags, 10045
235, has_tags, 30463
235, written_by, 22984
23299, directed_by, 4088
23299, has_tags, 10045
13163, directed_by, 8097
13163, has_genre, 30463
Question: In what context are HAGAR WILDE, S. SYLVAN SIMON, and STEPHEN KAY connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"HAGAR WILDE",
"S. SYLVAN SIMON",
"STEPHEN KAY"
],
"valid_edges": [
[
"BRINGING UP BABY",
"has_genre",
"COMEDY"
],
[
"BRINGING UP BABY",
"has_tags",
"BD-R"
],
[
"BRINGING UP BABY",
"has_tags",
"COMEDY"
],
[
"BRINGING UP BABY",
"written_by",
"HAGAR WILDE"
],
[
"GET CARTER",
"directed_by",
"STEPHEN KAY"
],
[
"GET CARTER",
"has_tags",
"BD-R"
],
[
"I LOVE TROUBLE",
"directed_by",
"S. SYLVAN SIMON"
],
[
"I LOVE TROUBLE",
"has_genre",
"COMEDY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
23257, AN UNFORGETTABLE SUMMER
2537, ANDRE DUBUS III
36212, DRAMA
18266, ERICSON CORE
20309, HOUSE OF SAND AND FOG
23380, INVINCIBLE
22155, LUCIAN PINTILIE
27464, ROMANIAN
25792, THE OAK
src, edge_attr, dst
23257, directed_by, 22155
23257, has_genre, 36212
23257, in_language, 27464
23257, written_by, 22155
20309, has_genre, 36212
20309, written_by, 2537
23380, directed_by, 18266
23380, has_genre, 36212
25792, directed_by, 22155
25792, has_genre, 36212
25792, in_language, 27464
25792, written_by, 22155
Question: For what reason are ANDRE DUBUS III, ERICSON CORE, and LUCIAN PINTILIE associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANDRE DUBUS III",
"ERICSON CORE",
"LUCIAN PINTILIE"
],
"valid_edges": [
[
"AN UNFORGETTABLE SUMMER",
"directed_by",
"LUCIAN PINTILIE"
],
[
"AN UNFORGETTABLE SUMMER",
"has_genre",
"DRAMA"
],
[
"AN UNFORGETTABLE SUMMER",
"in_language",
"ROMANIAN"
],
[
"AN UNFORGETTABLE SUMMER",
"written_by",
"LUCIAN PINTILIE"
],
[
"HOUSE OF SAND AND FOG",
"has_genre",
"DRAMA"
],
[
"HOUSE OF SAND AND FOG",
"written_by",
"ANDRE DUBUS III"
],
[
"INVINCIBLE",
"directed_by",
"ERICSON CORE"
],
[
"INVINCIBLE",
"has_genre",
"DRAMA"
],
[
"THE OAK",
"directed_by",
"LUCIAN PINTILIE"
],
[
"THE OAK",
"has_genre",
"DRAMA"
],
[
"THE OAK",
"in_language",
"ROMANIAN"
],
[
"THE OAK",
"written_by",
"LUCIAN PINTILIE"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
13408, 2001
13747, 25 WATTS
1543, 61*
30721, A BEAUTIFUL MIND
30146, A CHRISTMAS CAROL
19865, A.I. ARTIFICIAL INTELLIGENCE
1538, ALIAS BETTY
4141, AN AMERICAN RHAPSODY
22873, ANGEL EYES
462, AUTUMN SPRING
1156, AVALON
5593, BABY BOY
6309, BABY TAKE A BOW
23952, BANDITS
13418, BARTLEBY
28835, BIG BULLY
11298, BOLIVIA
20912, BRIDE OF THE WIND
7461, BROTHERHOOD OF THE WOLF
17892, CAMOUFLAGE
29794, CHARLOTTE GRAY
18016, CLICK
30463, COMEDY
10272, CONFESSIONS OF A TEENAGE DRAMA QUEEN
10293, CONSPIRACY
23979, CRAZY/BEAUTIFUL
656, CRUSH
6935, DIANE BAKER
1915, DIL CHAHTA HAI
7281, DON'S PLUM
22255, DONNIE DARKO
36212, DRAMA
27747, DRIVEN
10941, DRIVING MISS DAISY
17266, DUST
19194, ENIGMA
24686, FATE
6915, FOCUS
12664, GHOST WORLD
38300, GLITTER
15389, GYPSY 83
1937, HANNAH AND HER SISTERS
29107, HARLEM NIGHTS
21060, HARVARD MAN
19139, HEARTS IN ATLANTIS
1292, HEDWIG AND THE ANGRY INCH
38901, HIGH HEELS AND LOW LIFES
35625, HUMAN NATURE
10714, I AM SAM
20430, IN THE BEDROOM
23380, INVINCIBLE
39987, IT RUNS IN THE FAMILY
23526, JACKPOT
12610, JOE SOMEBODY
31226, JULIE JOHNSON
6206, KABHI KHUSHI KABHIE GHAM...
7699, KINGDOM COME
7888, L.I.E.
19121, LAST ORDERS
39962, LIFE AS A HOUSE
29734, LITTLE SECRETS
22386, LOST AND DELIRIOUS
17728, MAD LOVE
30062, MANIC
33714, MEAN MACHINE
14565, MONSTER'S BALL
24616, MOSTLY MARTHA
10824, O
32514, ONE 2 KA 4
32186, ONE MAN UP
5023, PARENTHOOD
28044, PAULINE AND PAULETTE
234, PEARL HARBOR
29748, PISTOL OPERA
28106, PROZAC NATION
8367, RAIN
28182, RARE BIRDS
38381, ROCK STAR
29441, SEX AND LUCIA
2407, SON OF THE BRIDE
7175, STOLEN KISSES
7949, STORYTELLING
27762, SWEET NOVEMBER
15887, TAPE
13270, TEXAS RANGERS
2582, THE AFFAIR OF THE NECKLACE
15795, THE ANNIVERSARY PARTY
33436, THE BANK
267, THE BELIEVER
25674, THE BROTHERS
4789, THE BROTHERS MCMULLEN
30854, THE CAT'S MEOW
4946, THE CAVEMAN'S VALENTINE
28948, THE FAMILY STONE
27328, THE HORSE IN THE GRAY FLANNEL SUIT
39978, THE HUMAN COMEDY
14993, THE INVISIBLE CIRCUS
23268, THE JIMMY SHOW
4143, THE LAST CASTLE
28107, THE LAST KISS
12566, THE MAJESTIC
23940, THE MAN FROM ELYSIAN FIELDS
22538, THE OTHER SIDE OF HEAVEN
27573, THE OTHERS
39469, THE PORNOGRAPHER
18649, THE RIVER
20728, THE ROYAL TENENBAUMS
23798, THE SHIPPING NEWS
27910, THE UNSAID
2839, THE WIZARD OF BAGHDAD
38275, THIRTEEN CONVERSATIONS ABOUT ONE THING
25783, TIME OUT
27854, TO THE LEFT OF THE FATHER
35988, TORTILLA SOUP
8974, TREED MURRAY
17093, UNFAIR COMPETITION
6655, UPRISING
35443, VIZONTELE
18892, WAKING LIFE
8957, WE BOUGHT A ZOO
19679, WIDE AWAKE
19926, WORLD TRAVELER
25391, Y TU MAMÁ TAMBIÉN
src, edge_attr, dst
13747, has_genre, 30463
13747, has_genre, 36212
13747, release_year, 13408
1543, has_genre, 36212
1543, release_year, 13408
30721, has_genre, 36212
30721, has_tags, 36212
30721, release_year, 13408
30146, has_genre, 30463
30146, has_genre, 36212
19865, has_genre, 36212
19865, release_year, 13408
1538, has_genre, 36212
1538, release_year, 13408
4141, has_genre, 36212
4141, release_year, 13408
22873, has_genre, 36212
22873, release_year, 13408
462, has_genre, 36212
462, release_year, 13408
1156, has_genre, 36212
1156, release_year, 13408
5593, has_genre, 30463
5593, has_genre, 36212
5593, release_year, 13408
6309, has_genre, 30463
6309, has_genre, 36212
23952, has_genre, 30463
23952, has_genre, 36212
23952, release_year, 13408
13418, has_genre, 30463
13418, has_genre, 36212
13418, release_year, 13408
28835, has_genre, 30463
28835, has_genre, 36212
11298, has_genre, 36212
11298, release_year, 13408
20912, has_genre, 36212
20912, release_year, 13408
7461, has_genre, 36212
7461, release_year, 13408
17892, has_genre, 30463
17892, has_genre, 36212
17892, release_year, 13408
29794, has_genre, 36212
29794, release_year, 13408
18016, has_genre, 30463
18016, has_genre, 36212
18016, has_tags, 30463
10272, has_genre, 30463
10272, has_tags, 30463
10272, has_tags, 36212
10293, has_genre, 36212
10293, release_year, 13408
23979, has_genre, 36212
23979, release_year, 13408
656, has_genre, 36212
656, release_year, 13408
1915, has_genre, 30463
1915, has_genre, 36212
1915, has_tags, 30463
1915, release_year, 13408
7281, has_genre, 36212
7281, release_year, 13408
22255, has_genre, 36212
22255, release_year, 13408
27747, has_genre, 36212
27747, release_year, 13408
10941, has_genre, 30463
10941, has_genre, 36212
10941, has_tags, 36212
17266, has_genre, 36212
17266, release_year, 13408
19194, has_genre, 36212
19194, release_year, 13408
24686, has_genre, 36212
24686, release_year, 13408
6915, has_genre, 30463
6915, has_genre, 36212
6915, release_year, 13408
12664, has_genre, 30463
12664, has_genre, 36212
12664, release_year, 13408
38300, has_genre, 36212
38300, release_year, 13408
15389, has_genre, 36212
15389, release_year, 13408
1937, has_genre, 30463
1937, has_genre, 36212
1937, has_tags, 30463
29107, has_genre, 30463
29107, has_genre, 36212
21060, has_genre, 30463
21060, has_genre, 36212
21060, release_year, 13408
19139, has_genre, 36212
19139, release_year, 13408
1292, has_genre, 30463
1292, has_genre, 36212
1292, release_year, 13408
38901, has_genre, 30463
38901, has_genre, 36212
38901, release_year, 13408
35625, has_genre, 30463
35625, has_genre, 36212
35625, release_year, 13408
10714, has_genre, 36212
10714, release_year, 13408
20430, has_genre, 36212
20430, has_tags, 36212
20430, release_year, 13408
23380, has_genre, 36212
23380, release_year, 13408
39987, has_genre, 30463
39987, has_genre, 36212
23526, has_genre, 30463
23526, has_genre, 36212
23526, release_year, 13408
12610, has_genre, 30463
12610, has_genre, 36212
12610, release_year, 13408
31226, has_genre, 36212
31226, release_year, 13408
6206, has_genre, 36212
6206, release_year, 13408
7699, has_genre, 30463
7699, has_genre, 36212
7699, release_year, 13408
7888, has_genre, 36212
7888, release_year, 13408
19121, has_genre, 36212
19121, release_year, 13408
39962, has_genre, 36212
39962, release_year, 13408
29734, has_genre, 30463
29734, has_genre, 36212
29734, release_year, 13408
22386, has_genre, 36212
22386, release_year, 13408
17728, has_genre, 36212
17728, release_year, 13408
30062, has_genre, 36212
30062, release_year, 13408
33714, has_genre, 30463
33714, has_genre, 36212
33714, release_year, 13408
14565, has_genre, 36212
14565, release_year, 13408
24616, has_genre, 30463
24616, has_genre, 36212
24616, release_year, 13408
10824, has_genre, 36212
10824, release_year, 13408
32514, has_genre, 36212
32514, release_year, 13408
32186, has_genre, 30463
32186, has_genre, 36212
32186, release_year, 13408
5023, has_genre, 30463
5023, has_genre, 36212
5023, has_tags, 30463
28044, has_genre, 30463
28044, has_genre, 36212
28044, release_year, 13408
234, has_genre, 36212
234, has_tags, 36212
234, release_year, 13408
29748, release_year, 13408
28106, has_genre, 36212
28106, release_year, 13408
8367, has_genre, 36212
8367, release_year, 13408
28182, has_genre, 30463
28182, has_genre, 36212
28182, release_year, 13408
38381, has_genre, 30463
38381, has_genre, 36212
38381, release_year, 13408
29441, has_genre, 36212
29441, release_year, 13408
2407, has_genre, 30463
2407, has_genre, 36212
2407, release_year, 13408
7175, has_genre, 30463
7175, has_genre, 36212
7949, has_genre, 30463
7949, has_genre, 36212
7949, release_year, 13408
27762, has_genre, 30463
27762, has_genre, 36212
27762, release_year, 13408
15887, has_genre, 36212
15887, release_year, 13408
13270, has_genre, 36212
13270, release_year, 13408
2582, has_genre, 36212
2582, release_year, 13408
15795, has_genre, 30463
15795, has_genre, 36212
15795, release_year, 13408
33436, has_genre, 36212
33436, release_year, 13408
267, has_genre, 36212
267, release_year, 13408
25674, has_genre, 30463
25674, has_genre, 36212
25674, release_year, 13408
4789, has_genre, 30463
4789, has_genre, 36212
30854, has_genre, 36212
30854, release_year, 13408
4946, has_genre, 36212
4946, release_year, 13408
28948, has_genre, 30463
28948, has_genre, 36212
28948, has_tags, 30463
28948, has_tags, 36212
27328, has_genre, 30463
27328, starred_actors, 6935
39978, has_genre, 30463
39978, has_genre, 36212
14993, has_genre, 36212
14993, release_year, 13408
23268, has_genre, 36212
23268, release_year, 13408
4143, has_genre, 36212
4143, release_year, 13408
28107, has_genre, 30463
28107, has_genre, 36212
28107, release_year, 13408
12566, has_genre, 36212
12566, release_year, 13408
23940, has_genre, 36212
23940, release_year, 13408
22538, has_genre, 36212
22538, release_year, 13408
27573, has_tags, 36212
27573, release_year, 13408
39469, has_genre, 36212
39469, release_year, 13408
18649, has_genre, 36212
18649, release_year, 13408
20728, has_genre, 30463
20728, has_genre, 36212
20728, has_tags, 30463
20728, release_year, 13408
23798, has_genre, 36212
23798, release_year, 13408
27910, has_genre, 36212
27910, release_year, 13408
2839, has_genre, 30463
2839, starred_actors, 6935
38275, has_genre, 36212
38275, release_year, 13408
25783, has_genre, 36212
25783, release_year, 13408
27854, has_genre, 36212
27854, release_year, 13408
35988, has_genre, 30463
35988, has_genre, 36212
35988, release_year, 13408
8974, has_genre, 36212
8974, release_year, 13408
17093, has_genre, 36212
17093, release_year, 13408
6655, has_genre, 36212
6655, release_year, 13408
35443, has_genre, 30463
35443, has_genre, 36212
35443, has_tags, 30463
35443, release_year, 13408
18892, has_genre, 36212
18892, release_year, 13408
8957, has_genre, 30463
8957, has_genre, 36212
19679, has_genre, 30463
19679, has_genre, 36212
19926, has_genre, 36212
19926, release_year, 13408
25391, has_genre, 36212
25391, has_tags, 36212
25391, release_year, 13408
Question: In what context are DIANE BAKER, HARLEM NIGHTS, and PISTOL OPERA connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DIANE BAKER",
"HARLEM NIGHTS",
"PISTOL OPERA"
],
"valid_edges": [
[
"25 WATTS",
"has_genre",
"COMEDY"
],
[
"25 WATTS",
"has_genre",
"DRAMA"
],
[
"25 WATTS",
"release_year",
"2001"
],
[
"61*",
"has_genre",
"DRAMA"
],
[
"61*",
"release_year",
"2001"
],
[
"A BEAUTIFUL MIND",
"has_genre",
"DRAMA"
],
[
"A BEAUTIFUL MIND",
"has_tags",
"DRAMA"
],
[
"A BEAUTIFUL MIND",
"release_year",
"2001"
],
[
"A CHRISTMAS CAROL",
"has_genre",
"COMEDY"
],
[
"A CHRISTMAS CAROL",
"has_genre",
"DRAMA"
],
[
"A.I. ARTIFICIAL INTELLIGENCE",
"has_genre",
"DRAMA"
],
[
"A.I. ARTIFICIAL INTELLIGENCE",
"release_year",
"2001"
],
[
"ALIAS BETTY",
"has_genre",
"DRAMA"
],
[
"ALIAS BETTY",
"release_year",
"2001"
],
[
"AN AMERICAN RHAPSODY",
"has_genre",
"DRAMA"
],
[
"AN AMERICAN RHAPSODY",
"release_year",
"2001"
],
[
"ANGEL EYES",
"has_genre",
"DRAMA"
],
[
"ANGEL EYES",
"release_year",
"2001"
],
[
"AUTUMN SPRING",
"has_genre",
"DRAMA"
],
[
"AUTUMN SPRING",
"release_year",
"2001"
],
[
"AVALON",
"has_genre",
"DRAMA"
],
[
"AVALON",
"release_year",
"2001"
],
[
"BABY BOY",
"has_genre",
"COMEDY"
],
[
"BABY BOY",
"has_genre",
"DRAMA"
],
[
"BABY BOY",
"release_year",
"2001"
],
[
"BABY TAKE A BOW",
"has_genre",
"COMEDY"
],
[
"BABY TAKE A BOW",
"has_genre",
"DRAMA"
],
[
"BANDITS",
"has_genre",
"COMEDY"
],
[
"BANDITS",
"has_genre",
"DRAMA"
],
[
"BANDITS",
"release_year",
"2001"
],
[
"BARTLEBY",
"has_genre",
"COMEDY"
],
[
"BARTLEBY",
"has_genre",
"DRAMA"
],
[
"BARTLEBY",
"release_year",
"2001"
],
[
"BIG BULLY",
"has_genre",
"COMEDY"
],
[
"BIG BULLY",
"has_genre",
"DRAMA"
],
[
"BOLIVIA",
"has_genre",
"DRAMA"
],
[
"BOLIVIA",
"release_year",
"2001"
],
[
"BRIDE OF THE WIND",
"has_genre",
"DRAMA"
],
[
"BRIDE OF THE WIND",
"release_year",
"2001"
],
[
"BROTHERHOOD OF THE WOLF",
"has_genre",
"DRAMA"
],
[
"BROTHERHOOD OF THE WOLF",
"release_year",
"2001"
],
[
"CAMOUFLAGE",
"has_genre",
"COMEDY"
],
[
"CAMOUFLAGE",
"has_genre",
"DRAMA"
],
[
"CAMOUFLAGE",
"release_year",
"2001"
],
[
"CHARLOTTE GRAY",
"has_genre",
"DRAMA"
],
[
"CHARLOTTE GRAY",
"release_year",
"2001"
],
[
"CLICK",
"has_genre",
"COMEDY"
],
[
"CLICK",
"has_genre",
"DRAMA"
],
[
"CLICK",
"has_tags",
"COMEDY"
],
[
"CONFESSIONS OF A TEENAGE DRAMA QUEEN",
"has_genre",
"COMEDY"
],
[
"CONFESSIONS OF A TEENAGE DRAMA QUEEN",
"has_tags",
"COMEDY"
],
[
"CONFESSIONS OF A TEENAGE DRAMA QUEEN",
"has_tags",
"DRAMA"
],
[
"CONSPIRACY",
"has_genre",
"DRAMA"
],
[
"CONSPIRACY",
"release_year",
"2001"
],
[
"CRAZY/BEAUTIFUL",
"has_genre",
"DRAMA"
],
[
"CRAZY/BEAUTIFUL",
"release_year",
"2001"
],
[
"CRUSH",
"has_genre",
"DRAMA"
],
[
"CRUSH",
"release_year",
"2001"
],
[
"DIL CHAHTA HAI",
"has_genre",
"COMEDY"
],
[
"DIL CHAHTA HAI",
"has_genre",
"DRAMA"
],
[
"DIL CHAHTA HAI",
"has_tags",
"COMEDY"
],
[
"DIL CHAHTA HAI",
"release_year",
"2001"
],
[
"DON'S PLUM",
"has_genre",
"DRAMA"
],
[
"DON'S PLUM",
"release_year",
"2001"
],
[
"DONNIE DARKO",
"has_genre",
"DRAMA"
],
[
"DONNIE DARKO",
"release_year",
"2001"
],
[
"DRIVEN",
"has_genre",
"DRAMA"
],
[
"DRIVEN",
"release_year",
"2001"
],
[
"DRIVING MISS DAISY",
"has_genre",
"COMEDY"
],
[
"DRIVING MISS DAISY",
"has_genre",
"DRAMA"
],
[
"DRIVING MISS DAISY",
"has_tags",
"DRAMA"
],
[
"DUST",
"has_genre",
"DRAMA"
],
[
"DUST",
"release_year",
"2001"
],
[
"ENIGMA",
"has_genre",
"DRAMA"
],
[
"ENIGMA",
"release_year",
"2001"
],
[
"FATE",
"has_genre",
"DRAMA"
],
[
"FATE",
"release_year",
"2001"
],
[
"FOCUS",
"has_genre",
"COMEDY"
],
[
"FOCUS",
"has_genre",
"DRAMA"
],
[
"FOCUS",
"release_year",
"2001"
],
[
"GHOST WORLD",
"has_genre",
"COMEDY"
],
[
"GHOST WORLD",
"has_genre",
"DRAMA"
],
[
"GHOST WORLD",
"release_year",
"2001"
],
[
"GLITTER",
"has_genre",
"DRAMA"
],
[
"GLITTER",
"release_year",
"2001"
],
[
"GYPSY 83",
"has_genre",
"DRAMA"
],
[
"GYPSY 83",
"release_year",
"2001"
],
[
"HANNAH AND HER SISTERS",
"has_genre",
"COMEDY"
],
[
"HANNAH AND HER SISTERS",
"has_genre",
"DRAMA"
],
[
"HANNAH AND HER SISTERS",
"has_tags",
"COMEDY"
],
[
"HARLEM NIGHTS",
"has_genre",
"COMEDY"
],
[
"HARLEM NIGHTS",
"has_genre",
"DRAMA"
],
[
"HARVARD MAN",
"has_genre",
"COMEDY"
],
[
"HARVARD MAN",
"has_genre",
"DRAMA"
],
[
"HARVARD MAN",
"release_year",
"2001"
],
[
"HEARTS IN ATLANTIS",
"has_genre",
"DRAMA"
],
[
"HEARTS IN ATLANTIS",
"release_year",
"2001"
],
[
"HEDWIG AND THE ANGRY INCH",
"has_genre",
"COMEDY"
],
[
"HEDWIG AND THE ANGRY INCH",
"has_genre",
"DRAMA"
],
[
"HEDWIG AND THE ANGRY INCH",
"release_year",
"2001"
],
[
"HIGH HEELS AND LOW LIFES",
"has_genre",
"COMEDY"
],
[
"HIGH HEELS AND LOW LIFES",
"has_genre",
"DRAMA"
],
[
"HIGH HEELS AND LOW LIFES",
"release_year",
"2001"
],
[
"HUMAN NATURE",
"has_genre",
"COMEDY"
],
[
"HUMAN NATURE",
"has_genre",
"DRAMA"
],
[
"HUMAN NATURE",
"release_year",
"2001"
],
[
"I AM SAM",
"has_genre",
"DRAMA"
],
[
"I AM SAM",
"release_year",
"2001"
],
[
"IN THE BEDROOM",
"has_genre",
"DRAMA"
],
[
"IN THE BEDROOM",
"has_tags",
"DRAMA"
],
[
"IN THE BEDROOM",
"release_year",
"2001"
],
[
"INVINCIBLE",
"has_genre",
"DRAMA"
],
[
"INVINCIBLE",
"release_year",
"2001"
],
[
"IT RUNS IN THE FAMILY",
"has_genre",
"COMEDY"
],
[
"IT RUNS IN THE FAMILY",
"has_genre",
"DRAMA"
],
[
"JACKPOT",
"has_genre",
"COMEDY"
],
[
"JACKPOT",
"has_genre",
"DRAMA"
],
[
"JACKPOT",
"release_year",
"2001"
],
[
"JOE SOMEBODY",
"has_genre",
"COMEDY"
],
[
"JOE SOMEBODY",
"has_genre",
"DRAMA"
],
[
"JOE SOMEBODY",
"release_year",
"2001"
],
[
"JULIE JOHNSON",
"has_genre",
"DRAMA"
],
[
"JULIE JOHNSON",
"release_year",
"2001"
],
[
"KABHI KHUSHI KABHIE GHAM...",
"has_genre",
"DRAMA"
],
[
"KABHI KHUSHI KABHIE GHAM...",
"release_year",
"2001"
],
[
"KINGDOM COME",
"has_genre",
"COMEDY"
],
[
"KINGDOM COME",
"has_genre",
"DRAMA"
],
[
"KINGDOM COME",
"release_year",
"2001"
],
[
"L.I.E.",
"has_genre",
"DRAMA"
],
[
"L.I.E.",
"release_year",
"2001"
],
[
"LAST ORDERS",
"has_genre",
"DRAMA"
],
[
"LAST ORDERS",
"release_year",
"2001"
],
[
"LIFE AS A HOUSE",
"has_genre",
"DRAMA"
],
[
"LIFE AS A HOUSE",
"release_year",
"2001"
],
[
"LITTLE SECRETS",
"has_genre",
"COMEDY"
],
[
"LITTLE SECRETS",
"has_genre",
"DRAMA"
],
[
"LITTLE SECRETS",
"release_year",
"2001"
],
[
"LOST AND DELIRIOUS",
"has_genre",
"DRAMA"
],
[
"LOST AND DELIRIOUS",
"release_year",
"2001"
],
[
"MAD LOVE",
"has_genre",
"DRAMA"
],
[
"MAD LOVE",
"release_year",
"2001"
],
[
"MANIC",
"has_genre",
"DRAMA"
],
[
"MANIC",
"release_year",
"2001"
],
[
"MEAN MACHINE",
"has_genre",
"COMEDY"
],
[
"MEAN MACHINE",
"has_genre",
"DRAMA"
],
[
"MEAN MACHINE",
"release_year",
"2001"
],
[
"MONSTER'S BALL",
"has_genre",
"DRAMA"
],
[
"MONSTER'S BALL",
"release_year",
"2001"
],
[
"MOSTLY MARTHA",
"has_genre",
"COMEDY"
],
[
"MOSTLY MARTHA",
"has_genre",
"DRAMA"
],
[
"MOSTLY MARTHA",
"release_year",
"2001"
],
[
"O",
"has_genre",
"DRAMA"
],
[
"O",
"release_year",
"2001"
],
[
"ONE 2 KA 4",
"has_genre",
"DRAMA"
],
[
"ONE 2 KA 4",
"release_year",
"2001"
],
[
"ONE MAN UP",
"has_genre",
"COMEDY"
],
[
"ONE MAN UP",
"has_genre",
"DRAMA"
],
[
"ONE MAN UP",
"release_year",
"2001"
],
[
"PARENTHOOD",
"has_genre",
"COMEDY"
],
[
"PARENTHOOD",
"has_genre",
"DRAMA"
],
[
"PARENTHOOD",
"has_tags",
"COMEDY"
],
[
"PAULINE AND PAULETTE",
"has_genre",
"COMEDY"
],
[
"PAULINE AND PAULETTE",
"has_genre",
"DRAMA"
],
[
"PAULINE AND PAULETTE",
"release_year",
"2001"
],
[
"PEARL HARBOR",
"has_genre",
"DRAMA"
],
[
"PEARL HARBOR",
"has_tags",
"DRAMA"
],
[
"PEARL HARBOR",
"release_year",
"2001"
],
[
"PISTOL OPERA",
"release_year",
"2001"
],
[
"PROZAC NATION",
"has_genre",
"DRAMA"
],
[
"PROZAC NATION",
"release_year",
"2001"
],
[
"RAIN",
"has_genre",
"DRAMA"
],
[
"RAIN",
"release_year",
"2001"
],
[
"RARE BIRDS",
"has_genre",
"COMEDY"
],
[
"RARE BIRDS",
"has_genre",
"DRAMA"
],
[
"RARE BIRDS",
"release_year",
"2001"
],
[
"ROCK STAR",
"has_genre",
"COMEDY"
],
[
"ROCK STAR",
"has_genre",
"DRAMA"
],
[
"ROCK STAR",
"release_year",
"2001"
],
[
"SEX AND LUCIA",
"has_genre",
"DRAMA"
],
[
"SEX AND LUCIA",
"release_year",
"2001"
],
[
"SON OF THE BRIDE",
"has_genre",
"COMEDY"
],
[
"SON OF THE BRIDE",
"has_genre",
"DRAMA"
],
[
"SON OF THE BRIDE",
"release_year",
"2001"
],
[
"STOLEN KISSES",
"has_genre",
"COMEDY"
],
[
"STOLEN KISSES",
"has_genre",
"DRAMA"
],
[
"STORYTELLING",
"has_genre",
"COMEDY"
],
[
"STORYTELLING",
"has_genre",
"DRAMA"
],
[
"STORYTELLING",
"release_year",
"2001"
],
[
"SWEET NOVEMBER",
"has_genre",
"COMEDY"
],
[
"SWEET NOVEMBER",
"has_genre",
"DRAMA"
],
[
"SWEET NOVEMBER",
"release_year",
"2001"
],
[
"TAPE",
"has_genre",
"DRAMA"
],
[
"TAPE",
"release_year",
"2001"
],
[
"TEXAS RANGERS",
"has_genre",
"DRAMA"
],
[
"TEXAS RANGERS",
"release_year",
"2001"
],
[
"THE AFFAIR OF THE NECKLACE",
"has_genre",
"DRAMA"
],
[
"THE AFFAIR OF THE NECKLACE",
"release_year",
"2001"
],
[
"THE ANNIVERSARY PARTY",
"has_genre",
"COMEDY"
],
[
"THE ANNIVERSARY PARTY",
"has_genre",
"DRAMA"
],
[
"THE ANNIVERSARY PARTY",
"release_year",
"2001"
],
[
"THE BANK",
"has_genre",
"DRAMA"
],
[
"THE BANK",
"release_year",
"2001"
],
[
"THE BELIEVER",
"has_genre",
"DRAMA"
],
[
"THE BELIEVER",
"release_year",
"2001"
],
[
"THE BROTHERS",
"has_genre",
"COMEDY"
],
[
"THE BROTHERS",
"has_genre",
"DRAMA"
],
[
"THE BROTHERS",
"release_year",
"2001"
],
[
"THE BROTHERS MCMULLEN",
"has_genre",
"COMEDY"
],
[
"THE BROTHERS MCMULLEN",
"has_genre",
"DRAMA"
],
[
"THE CAT'S MEOW",
"has_genre",
"DRAMA"
],
[
"THE CAT'S MEOW",
"release_year",
"2001"
],
[
"THE CAVEMAN'S VALENTINE",
"has_genre",
"DRAMA"
],
[
"THE CAVEMAN'S VALENTINE",
"release_year",
"2001"
],
[
"THE FAMILY STONE",
"has_genre",
"COMEDY"
],
[
"THE FAMILY STONE",
"has_genre",
"DRAMA"
],
[
"THE FAMILY STONE",
"has_tags",
"COMEDY"
],
[
"THE FAMILY STONE",
"has_tags",
"DRAMA"
],
[
"THE HORSE IN THE GRAY FLANNEL SUIT",
"has_genre",
"COMEDY"
],
[
"THE HORSE IN THE GRAY FLANNEL SUIT",
"starred_actors",
"DIANE BAKER"
],
[
"THE HUMAN COMEDY",
"has_genre",
"COMEDY"
],
[
"THE HUMAN COMEDY",
"has_genre",
"DRAMA"
],
[
"THE INVISIBLE CIRCUS",
"has_genre",
"DRAMA"
],
[
"THE INVISIBLE CIRCUS",
"release_year",
"2001"
],
[
"THE JIMMY SHOW",
"has_genre",
"DRAMA"
],
[
"THE JIMMY SHOW",
"release_year",
"2001"
],
[
"THE LAST CASTLE",
"has_genre",
"DRAMA"
],
[
"THE LAST CASTLE",
"release_year",
"2001"
],
[
"THE LAST KISS",
"has_genre",
"COMEDY"
],
[
"THE LAST KISS",
"has_genre",
"DRAMA"
],
[
"THE LAST KISS",
"release_year",
"2001"
],
[
"THE MAJESTIC",
"has_genre",
"DRAMA"
],
[
"THE MAJESTIC",
"release_year",
"2001"
],
[
"THE MAN FROM ELYSIAN FIELDS",
"has_genre",
"DRAMA"
],
[
"THE MAN FROM ELYSIAN FIELDS",
"release_year",
"2001"
],
[
"THE OTHER SIDE OF HEAVEN",
"has_genre",
"DRAMA"
],
[
"THE OTHER SIDE OF HEAVEN",
"release_year",
"2001"
],
[
"THE OTHERS",
"has_tags",
"DRAMA"
],
[
"THE OTHERS",
"release_year",
"2001"
],
[
"THE PORNOGRAPHER",
"has_genre",
"DRAMA"
],
[
"THE PORNOGRAPHER",
"release_year",
"2001"
],
[
"THE RIVER",
"has_genre",
"DRAMA"
],
[
"THE RIVER",
"release_year",
"2001"
],
[
"THE ROYAL TENENBAUMS",
"has_genre",
"COMEDY"
],
[
"THE ROYAL TENENBAUMS",
"has_genre",
"DRAMA"
],
[
"THE ROYAL TENENBAUMS",
"has_tags",
"COMEDY"
],
[
"THE ROYAL TENENBAUMS",
"release_year",
"2001"
],
[
"THE SHIPPING NEWS",
"has_genre",
"DRAMA"
],
[
"THE SHIPPING NEWS",
"release_year",
"2001"
],
[
"THE UNSAID",
"has_genre",
"DRAMA"
],
[
"THE UNSAID",
"release_year",
"2001"
],
[
"THE WIZARD OF BAGHDAD",
"has_genre",
"COMEDY"
],
[
"THE WIZARD OF BAGHDAD",
"starred_actors",
"DIANE BAKER"
],
[
"THIRTEEN CONVERSATIONS ABOUT ONE THING",
"has_genre",
"DRAMA"
],
[
"THIRTEEN CONVERSATIONS ABOUT ONE THING",
"release_year",
"2001"
],
[
"TIME OUT",
"has_genre",
"DRAMA"
],
[
"TIME OUT",
"release_year",
"2001"
],
[
"TO THE LEFT OF THE FATHER",
"has_genre",
"DRAMA"
],
[
"TO THE LEFT OF THE FATHER",
"release_year",
"2001"
],
[
"TORTILLA SOUP",
"has_genre",
"COMEDY"
],
[
"TORTILLA SOUP",
"has_genre",
"DRAMA"
],
[
"TORTILLA SOUP",
"release_year",
"2001"
],
[
"TREED MURRAY",
"has_genre",
"DRAMA"
],
[
"TREED MURRAY",
"release_year",
"2001"
],
[
"UNFAIR COMPETITION",
"has_genre",
"DRAMA"
],
[
"UNFAIR COMPETITION",
"release_year",
"2001"
],
[
"UPRISING",
"has_genre",
"DRAMA"
],
[
"UPRISING",
"release_year",
"2001"
],
[
"VIZONTELE",
"has_genre",
"COMEDY"
],
[
"VIZONTELE",
"has_genre",
"DRAMA"
],
[
"VIZONTELE",
"has_tags",
"COMEDY"
],
[
"VIZONTELE",
"release_year",
"2001"
],
[
"WAKING LIFE",
"has_genre",
"DRAMA"
],
[
"WAKING LIFE",
"release_year",
"2001"
],
[
"WE BOUGHT A ZOO",
"has_genre",
"COMEDY"
],
[
"WE BOUGHT A ZOO",
"has_genre",
"DRAMA"
],
[
"WIDE AWAKE",
"has_genre",
"COMEDY"
],
[
"WIDE AWAKE",
"has_genre",
"DRAMA"
],
[
"WORLD TRAVELER",
"has_genre",
"DRAMA"
],
[
"WORLD TRAVELER",
"release_year",
"2001"
],
[
"Y TU MAMÁ TAMBIÉN",
"has_genre",
"DRAMA"
],
[
"Y TU MAMÁ TAMBIÉN",
"has_tags",
"DRAMA"
],
[
"Y TU MAMÁ TAMBIÉN",
"release_year",
"2001"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
32015, BEHIND ENEMY LINES
30463, COMEDY
21587, HOW I WON THE WAR
15503, JENÉE LAMARQUE
24297, MARK CARLTON
34811, PATRICK RYAN
4335, THE PRETTY ONE
22214, WAR
src, edge_attr, dst
32015, has_genre, 22214
32015, has_tags, 22214
32015, starred_actors, 24297
21587, has_genre, 30463
21587, has_genre, 22214
21587, written_by, 34811
4335, directed_by, 15503
4335, has_genre, 30463
4335, written_by, 15503
Question: In what context are JENÉE LAMARQUE, MARK CARLTON, and PATRICK RYAN connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JENÉE LAMARQUE",
"MARK CARLTON",
"PATRICK RYAN"
],
"valid_edges": [
[
"BEHIND ENEMY LINES",
"has_genre",
"WAR"
],
[
"BEHIND ENEMY LINES",
"has_tags",
"WAR"
],
[
"BEHIND ENEMY LINES",
"starred_actors",
"MARK CARLTON"
],
[
"HOW I WON THE WAR",
"has_genre",
"COMEDY"
],
[
"HOW I WON THE WAR",
"has_genre",
"WAR"
],
[
"HOW I WON THE WAR",
"written_by",
"PATRICK RYAN"
],
[
"THE PRETTY ONE",
"directed_by",
"JENÉE LAMARQUE"
],
[
"THE PRETTY ONE",
"has_genre",
"COMEDY"
],
[
"THE PRETTY ONE",
"written_by",
"JENÉE LAMARQUE"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
11112, 1939
26633, 1989
33875, A GRAND DAY OUT
24177, ANIMATION
39085, BILLY ELLIOT
16654, BRITISH
32706, FIRST LOVE
17440, GULLIVER'S TRAVELS
17118, HENRY V
24241, LEE HALL
15198, THE HUNCHBACK OF NOTRE DAME
31303, THE LITTLE MERMAID
src, edge_attr, dst
33875, has_genre, 24177
33875, has_tags, 16654
33875, release_year, 26633
39085, has_tags, 16654
39085, written_by, 24241
32706, release_year, 11112
17440, has_genre, 24177
17440, release_year, 11112
17118, has_tags, 16654
17118, release_year, 26633
15198, has_genre, 24177
15198, release_year, 11112
31303, has_genre, 24177
31303, has_tags, 24177
31303, release_year, 26633
Question: For what reason are A GRAND DAY OUT, FIRST LOVE, and LEE HALL associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"A GRAND DAY OUT",
"FIRST LOVE",
"LEE HALL"
],
"valid_edges": [
[
"A GRAND DAY OUT",
"has_genre",
"ANIMATION"
],
[
"A GRAND DAY OUT",
"has_tags",
"BRITISH"
],
[
"A GRAND DAY OUT",
"release_year",
"1989"
],
[
"BILLY ELLIOT",
"has_tags",
"BRITISH"
],
[
"BILLY ELLIOT",
"written_by",
"LEE HALL"
],
[
"FIRST LOVE",
"release_year",
"1939"
],
[
"GULLIVER'S TRAVELS",
"has_genre",
"ANIMATION"
],
[
"GULLIVER'S TRAVELS",
"release_year",
"1939"
],
[
"HENRY V",
"has_tags",
"BRITISH"
],
[
"HENRY V",
"release_year",
"1989"
],
[
"THE HUNCHBACK OF NOTRE DAME",
"has_genre",
"ANIMATION"
],
[
"THE HUNCHBACK OF NOTRE DAME",
"release_year",
"1939"
],
[
"THE LITTLE MERMAID",
"has_genre",
"ANIMATION"
],
[
"THE LITTLE MERMAID",
"has_tags",
"ANIMATION"
],
[
"THE LITTLE MERMAID",
"release_year",
"1989"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
21931, 1941
7841, 1987
10149, A HUNGARIAN FAIRY TALE
36420, A TAXING WOMAN
23612, DOLLS
22028, EMPIRE OF THE SUN
36874, JAPANESE
21030, NANA
7585, TEXAS
735, THE REVISIONARIES
8589, WICKED CITY
src, edge_attr, dst
21931, in_language, 36874
10149, release_year, 7841
36420, in_language, 36874
36420, release_year, 7841
23612, in_language, 36874
23612, release_year, 7841
22028, in_language, 36874
22028, release_year, 7841
21030, in_language, 36874
7585, release_year, 21931
735, has_tags, 7585
8589, in_language, 36874
8589, release_year, 7841
Question: For what reason are A HUNGARIAN FAIRY TALE, NANA, and THE REVISIONARIES associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"A HUNGARIAN FAIRY TALE",
"NANA",
"THE REVISIONARIES"
],
"valid_edges": [
[
"1941",
"in_language",
"JAPANESE"
],
[
"A HUNGARIAN FAIRY TALE",
"release_year",
"1987"
],
[
"A TAXING WOMAN",
"in_language",
"JAPANESE"
],
[
"A TAXING WOMAN",
"release_year",
"1987"
],
[
"DOLLS",
"in_language",
"JAPANESE"
],
[
"DOLLS",
"release_year",
"1987"
],
[
"EMPIRE OF THE SUN",
"in_language",
"JAPANESE"
],
[
"EMPIRE OF THE SUN",
"release_year",
"1987"
],
[
"NANA",
"in_language",
"JAPANESE"
],
[
"TEXAS",
"release_year",
"1941"
],
[
"THE REVISIONARIES",
"has_tags",
"TEXAS"
],
[
"WICKED CITY",
"in_language",
"JAPANESE"
],
[
"WICKED CITY",
"release_year",
"1987"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
36268, 1980
24525, 1984
38097, 1985
37484, 2004
32087, BARBARA CUPISTI
26883, CEMETERY MAN
9243, CHARLES GRODIN
30463, COMEDY
21942, DAWN OF THE DEAD
6095, DAY OF THE DEAD
18708, DEADHEADS
5963, GEORGE A. ROMERO
2600, HELL OF THE LIVING DEAD
36859, HELLO AGAIN
5870, HORROR
16200, ITALIAN
7548, JUDITH IVEY
25134, LAND OF THE DEAD
2072, MICHELE SOAVI
32988, NIGHT OF THE LIVING DEAD
25714, NIGHTMARE CITY
13081, R
28729, REMAKE
25673, ROMERO
29855, SHAUN OF THE DEAD
10334, THE CHURCH
36990, THE LONELY GUY
16017, THE RETURN OF THE LIVING DEAD
20553, THE WOMAN IN RED
9639, UNDEAD
14902, ZOMBIE
21798, ZOMBIE HOLOCAUST
33616, ZOMBIE LAKE
39354, ZOMBIES
src, edge_attr, dst
26883, directed_by, 2072
26883, has_genre, 30463
26883, has_genre, 5870
26883, has_tags, 14902
26883, has_tags, 39354
26883, in_language, 16200
21942, directed_by, 5963
21942, has_genre, 5870
21942, has_tags, 5963
21942, has_tags, 5870
21942, has_tags, 13081
21942, has_tags, 28729
21942, has_tags, 25673
21942, has_tags, 14902
21942, has_tags, 39354
21942, release_year, 37484
21942, written_by, 5963
6095, directed_by, 5963
6095, has_genre, 5870
6095, has_tags, 5963
6095, has_tags, 5870
6095, has_tags, 14902
6095, release_year, 38097
6095, written_by, 5963
18708, has_genre, 30463
18708, has_tags, 30463
18708, has_tags, 14902
2600, has_genre, 5870
2600, has_tags, 14902
2600, has_tags, 39354
2600, in_language, 16200
2600, release_year, 36268
36859, has_genre, 30463
36859, starred_actors, 7548
25134, directed_by, 5963
25134, has_genre, 5870
25134, has_tags, 5963
25134, has_tags, 25673
25134, has_tags, 14902
25134, written_by, 5963
32988, directed_by, 5963
32988, has_genre, 5870
32988, has_tags, 5963
32988, has_tags, 5870
32988, has_tags, 28729
32988, has_tags, 14902
32988, has_tags, 39354
32988, written_by, 5963
25714, has_tags, 14902
25714, has_tags, 39354
25714, in_language, 16200
25714, release_year, 36268
29855, has_genre, 30463
29855, has_tags, 30463
29855, has_tags, 13081
29855, has_tags, 14902
29855, has_tags, 39354
29855, release_year, 37484
10334, directed_by, 2072
10334, has_genre, 5870
10334, in_language, 16200
10334, starred_actors, 32087
10334, written_by, 2072
36990, has_genre, 30463
36990, release_year, 24525
36990, starred_actors, 9243
36990, starred_actors, 7548
16017, has_genre, 30463
16017, has_genre, 5870
16017, has_tags, 14902
16017, has_tags, 39354
16017, release_year, 38097
20553, has_genre, 30463
20553, release_year, 24525
20553, starred_actors, 9243
20553, starred_actors, 7548
9639, has_genre, 30463
9639, has_genre, 5870
9639, has_tags, 14902
21798, has_tags, 14902
21798, in_language, 16200
33616, has_genre, 5870
33616, has_tags, 14902
33616, has_tags, 39354
Question: In what context are BARBARA CUPISTI, JUDITH IVEY, and ZOMBIE connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BARBARA CUPISTI",
"JUDITH IVEY",
"ZOMBIE"
],
"valid_edges": [
[
"CEMETERY MAN",
"directed_by",
"MICHELE SOAVI"
],
[
"CEMETERY MAN",
"has_genre",
"COMEDY"
],
[
"CEMETERY MAN",
"has_genre",
"HORROR"
],
[
"CEMETERY MAN",
"has_tags",
"ZOMBIE"
],
[
"CEMETERY MAN",
"has_tags",
"ZOMBIES"
],
[
"CEMETERY MAN",
"in_language",
"ITALIAN"
],
[
"DAWN OF THE DEAD",
"directed_by",
"GEORGE A. ROMERO"
],
[
"DAWN OF THE DEAD",
"has_genre",
"HORROR"
],
[
"DAWN OF THE DEAD",
"has_tags",
"GEORGE A. ROMERO"
],
[
"DAWN OF THE DEAD",
"has_tags",
"HORROR"
],
[
"DAWN OF THE DEAD",
"has_tags",
"R"
],
[
"DAWN OF THE DEAD",
"has_tags",
"REMAKE"
],
[
"DAWN OF THE DEAD",
"has_tags",
"ROMERO"
],
[
"DAWN OF THE DEAD",
"has_tags",
"ZOMBIE"
],
[
"DAWN OF THE DEAD",
"has_tags",
"ZOMBIES"
],
[
"DAWN OF THE DEAD",
"release_year",
"2004"
],
[
"DAWN OF THE DEAD",
"written_by",
"GEORGE A. ROMERO"
],
[
"DAY OF THE DEAD",
"directed_by",
"GEORGE A. ROMERO"
],
[
"DAY OF THE DEAD",
"has_genre",
"HORROR"
],
[
"DAY OF THE DEAD",
"has_tags",
"GEORGE A. ROMERO"
],
[
"DAY OF THE DEAD",
"has_tags",
"HORROR"
],
[
"DAY OF THE DEAD",
"has_tags",
"ZOMBIE"
],
[
"DAY OF THE DEAD",
"release_year",
"1985"
],
[
"DAY OF THE DEAD",
"written_by",
"GEORGE A. ROMERO"
],
[
"DEADHEADS",
"has_genre",
"COMEDY"
],
[
"DEADHEADS",
"has_tags",
"COMEDY"
],
[
"DEADHEADS",
"has_tags",
"ZOMBIE"
],
[
"HELL OF THE LIVING DEAD",
"has_genre",
"HORROR"
],
[
"HELL OF THE LIVING DEAD",
"has_tags",
"ZOMBIE"
],
[
"HELL OF THE LIVING DEAD",
"has_tags",
"ZOMBIES"
],
[
"HELL OF THE LIVING DEAD",
"in_language",
"ITALIAN"
],
[
"HELL OF THE LIVING DEAD",
"release_year",
"1980"
],
[
"HELLO AGAIN",
"has_genre",
"COMEDY"
],
[
"HELLO AGAIN",
"starred_actors",
"JUDITH IVEY"
],
[
"LAND OF THE DEAD",
"directed_by",
"GEORGE A. ROMERO"
],
[
"LAND OF THE DEAD",
"has_genre",
"HORROR"
],
[
"LAND OF THE DEAD",
"has_tags",
"GEORGE A. ROMERO"
],
[
"LAND OF THE DEAD",
"has_tags",
"ROMERO"
],
[
"LAND OF THE DEAD",
"has_tags",
"ZOMBIE"
],
[
"LAND OF THE DEAD",
"written_by",
"GEORGE A. ROMERO"
],
[
"NIGHT OF THE LIVING DEAD",
"directed_by",
"GEORGE A. ROMERO"
],
[
"NIGHT OF THE LIVING DEAD",
"has_genre",
"HORROR"
],
[
"NIGHT OF THE LIVING DEAD",
"has_tags",
"GEORGE A. ROMERO"
],
[
"NIGHT OF THE LIVING DEAD",
"has_tags",
"HORROR"
],
[
"NIGHT OF THE LIVING DEAD",
"has_tags",
"REMAKE"
],
[
"NIGHT OF THE LIVING DEAD",
"has_tags",
"ZOMBIE"
],
[
"NIGHT OF THE LIVING DEAD",
"has_tags",
"ZOMBIES"
],
[
"NIGHT OF THE LIVING DEAD",
"written_by",
"GEORGE A. ROMERO"
],
[
"NIGHTMARE CITY",
"has_tags",
"ZOMBIE"
],
[
"NIGHTMARE CITY",
"has_tags",
"ZOMBIES"
],
[
"NIGHTMARE CITY",
"in_language",
"ITALIAN"
],
[
"NIGHTMARE CITY",
"release_year",
"1980"
],
[
"SHAUN OF THE DEAD",
"has_genre",
"COMEDY"
],
[
"SHAUN OF THE DEAD",
"has_tags",
"COMEDY"
],
[
"SHAUN OF THE DEAD",
"has_tags",
"R"
],
[
"SHAUN OF THE DEAD",
"has_tags",
"ZOMBIE"
],
[
"SHAUN OF THE DEAD",
"has_tags",
"ZOMBIES"
],
[
"SHAUN OF THE DEAD",
"release_year",
"2004"
],
[
"THE CHURCH",
"directed_by",
"MICHELE SOAVI"
],
[
"THE CHURCH",
"has_genre",
"HORROR"
],
[
"THE CHURCH",
"in_language",
"ITALIAN"
],
[
"THE CHURCH",
"starred_actors",
"BARBARA CUPISTI"
],
[
"THE CHURCH",
"written_by",
"MICHELE SOAVI"
],
[
"THE LONELY GUY",
"has_genre",
"COMEDY"
],
[
"THE LONELY GUY",
"release_year",
"1984"
],
[
"THE LONELY GUY",
"starred_actors",
"CHARLES GRODIN"
],
[
"THE LONELY GUY",
"starred_actors",
"JUDITH IVEY"
],
[
"THE RETURN OF THE LIVING DEAD",
"has_genre",
"COMEDY"
],
[
"THE RETURN OF THE LIVING DEAD",
"has_genre",
"HORROR"
],
[
"THE RETURN OF THE LIVING DEAD",
"has_tags",
"ZOMBIE"
],
[
"THE RETURN OF THE LIVING DEAD",
"has_tags",
"ZOMBIES"
],
[
"THE RETURN OF THE LIVING DEAD",
"release_year",
"1985"
],
[
"THE WOMAN IN RED",
"has_genre",
"COMEDY"
],
[
"THE WOMAN IN RED",
"release_year",
"1984"
],
[
"THE WOMAN IN RED",
"starred_actors",
"CHARLES GRODIN"
],
[
"THE WOMAN IN RED",
"starred_actors",
"JUDITH IVEY"
],
[
"UNDEAD",
"has_genre",
"COMEDY"
],
[
"UNDEAD",
"has_genre",
"HORROR"
],
[
"UNDEAD",
"has_tags",
"ZOMBIE"
],
[
"ZOMBIE HOLOCAUST",
"has_tags",
"ZOMBIE"
],
[
"ZOMBIE HOLOCAUST",
"in_language",
"ITALIAN"
],
[
"ZOMBIE LAKE",
"has_genre",
"HORROR"
],
[
"ZOMBIE LAKE",
"has_tags",
"ZOMBIE"
],
[
"ZOMBIE LAKE",
"has_tags",
"ZOMBIES"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
18132, 1938
35798, 2010
10768, BACK TO THE FUTURE
23299, GET CARTER
23544, INCEPTION
978, INFERNAL AFFAIRS
13825, INSOMNIA
29071, MEMENTO
28347, NICK WHITFIELD
32954, OLDBOY
32533, SCIENCE FICTION
11568, SKELETONS
16219, STORY
19102, SUPER 8
34042, THE CITADEL
4091, THE LADY VANISHES
24811, THRILLER
23568, VANILLA SKY
src, edge_attr, dst
35798, has_tags, 32533
10768, has_tags, 32533
10768, has_tags, 16219
23299, has_genre, 24811
23299, has_tags, 16219
23544, has_tags, 32533
23544, has_tags, 24811
978, has_genre, 24811
978, has_tags, 16219
978, has_tags, 24811
13825, has_genre, 24811
13825, has_tags, 16219
29071, has_genre, 24811
29071, has_tags, 16219
32954, has_genre, 24811
32954, has_tags, 16219
11568, directed_by, 28347
11568, release_year, 35798
11568, written_by, 28347
19102, has_genre, 24811
19102, has_tags, 32533
19102, has_tags, 16219
34042, release_year, 18132
4091, has_genre, 24811
4091, release_year, 18132
23568, has_tags, 32533
23568, has_tags, 24811
Question: In what context are NICK WHITFIELD, SUPER 8, and THE CITADEL connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"NICK WHITFIELD",
"SUPER 8",
"THE CITADEL"
],
"valid_edges": [
[
"2010",
"has_tags",
"SCIENCE FICTION"
],
[
"BACK TO THE FUTURE",
"has_tags",
"SCIENCE FICTION"
],
[
"BACK TO THE FUTURE",
"has_tags",
"STORY"
],
[
"GET CARTER",
"has_genre",
"THRILLER"
],
[
"GET CARTER",
"has_tags",
"STORY"
],
[
"INCEPTION",
"has_tags",
"SCIENCE FICTION"
],
[
"INCEPTION",
"has_tags",
"THRILLER"
],
[
"INFERNAL AFFAIRS",
"has_genre",
"THRILLER"
],
[
"INFERNAL AFFAIRS",
"has_tags",
"STORY"
],
[
"INFERNAL AFFAIRS",
"has_tags",
"THRILLER"
],
[
"INSOMNIA",
"has_genre",
"THRILLER"
],
[
"INSOMNIA",
"has_tags",
"STORY"
],
[
"MEMENTO",
"has_genre",
"THRILLER"
],
[
"MEMENTO",
"has_tags",
"STORY"
],
[
"OLDBOY",
"has_genre",
"THRILLER"
],
[
"OLDBOY",
"has_tags",
"STORY"
],
[
"SKELETONS",
"directed_by",
"NICK WHITFIELD"
],
[
"SKELETONS",
"release_year",
"2010"
],
[
"SKELETONS",
"written_by",
"NICK WHITFIELD"
],
[
"SUPER 8",
"has_genre",
"THRILLER"
],
[
"SUPER 8",
"has_tags",
"SCIENCE FICTION"
],
[
"SUPER 8",
"has_tags",
"STORY"
],
[
"THE CITADEL",
"release_year",
"1938"
],
[
"THE LADY VANISHES",
"has_genre",
"THRILLER"
],
[
"THE LADY VANISHES",
"release_year",
"1938"
],
[
"VANILLA SKY",
"has_tags",
"SCIENCE FICTION"
],
[
"VANILLA SKY",
"has_tags",
"THRILLER"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
27810, 1968
35845, 2006
3209, A NEW WAVE
33360, CANDY
22824, ICELANDIC
31412, JAR CITY
17302, OF HORSES AND MEN
15582, THE SHOES OF THE FISHERMAN
src, edge_attr, dst
3209, release_year, 35845
33360, release_year, 27810
33360, release_year, 35845
31412, in_language, 22824
31412, release_year, 35845
17302, in_language, 22824
15582, release_year, 27810
Question: In what context are A NEW WAVE, OF HORSES AND MEN, and THE SHOES OF THE FISHERMAN connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"A NEW WAVE",
"OF HORSES AND MEN",
"THE SHOES OF THE FISHERMAN"
],
"valid_edges": [
[
"A NEW WAVE",
"release_year",
"2006"
],
[
"CANDY",
"release_year",
"1968"
],
[
"CANDY",
"release_year",
"2006"
],
[
"JAR CITY",
"in_language",
"ICELANDIC"
],
[
"JAR CITY",
"release_year",
"2006"
],
[
"OF HORSES AND MEN",
"in_language",
"ICELANDIC"
],
[
"THE SHOES OF THE FISHERMAN",
"release_year",
"1968"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
30172, 1964
35935, 2002
27059, CATCH ME IF YOU CAN
14724, CRIME
39881, DAVID MCLEAN
17400, GANGS OF NEW YORK
17272, LEONARDO DICAPRIO
23963, MARIKO KAGA
5586, MARTIN SCORSESE
25658, PALE FLOWER
13081, R
18997, THE DEPARTED
29752, THE STRANGLER
src, edge_attr, dst
27059, has_genre, 14724
27059, has_tags, 14724
27059, has_tags, 17272
27059, release_year, 35935
27059, starred_actors, 17272
17400, directed_by, 5586
17400, has_genre, 14724
17400, has_tags, 17272
17400, has_tags, 5586
17400, has_tags, 13081
17400, release_year, 35935
17400, starred_actors, 17272
25658, has_genre, 14724
25658, release_year, 30172
25658, starred_actors, 23963
18997, directed_by, 5586
18997, has_genre, 14724
18997, has_tags, 14724
18997, has_tags, 17272
18997, has_tags, 5586
18997, has_tags, 13081
18997, starred_actors, 17272
29752, release_year, 30172
29752, starred_actors, 39881
Question: For what reason are DAVID MCLEAN, LEONARDO DICAPRIO, and MARIKO KAGA associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DAVID MCLEAN",
"LEONARDO DICAPRIO",
"MARIKO KAGA"
],
"valid_edges": [
[
"CATCH ME IF YOU CAN",
"has_genre",
"CRIME"
],
[
"CATCH ME IF YOU CAN",
"has_tags",
"CRIME"
],
[
"CATCH ME IF YOU CAN",
"has_tags",
"LEONARDO DICAPRIO"
],
[
"CATCH ME IF YOU CAN",
"release_year",
"2002"
],
[
"CATCH ME IF YOU CAN",
"starred_actors",
"LEONARDO DICAPRIO"
],
[
"GANGS OF NEW YORK",
"directed_by",
"MARTIN SCORSESE"
],
[
"GANGS OF NEW YORK",
"has_genre",
"CRIME"
],
[
"GANGS OF NEW YORK",
"has_tags",
"LEONARDO DICAPRIO"
],
[
"GANGS OF NEW YORK",
"has_tags",
"MARTIN SCORSESE"
],
[
"GANGS OF NEW YORK",
"has_tags",
"R"
],
[
"GANGS OF NEW YORK",
"release_year",
"2002"
],
[
"GANGS OF NEW YORK",
"starred_actors",
"LEONARDO DICAPRIO"
],
[
"PALE FLOWER",
"has_genre",
"CRIME"
],
[
"PALE FLOWER",
"release_year",
"1964"
],
[
"PALE FLOWER",
"starred_actors",
"MARIKO KAGA"
],
[
"THE DEPARTED",
"directed_by",
"MARTIN SCORSESE"
],
[
"THE DEPARTED",
"has_genre",
"CRIME"
],
[
"THE DEPARTED",
"has_tags",
"CRIME"
],
[
"THE DEPARTED",
"has_tags",
"LEONARDO DICAPRIO"
],
[
"THE DEPARTED",
"has_tags",
"MARTIN SCORSESE"
],
[
"THE DEPARTED",
"has_tags",
"R"
],
[
"THE DEPARTED",
"starred_actors",
"LEONARDO DICAPRIO"
],
[
"THE STRANGLER",
"release_year",
"1964"
],
[
"THE STRANGLER",
"starred_actors",
"DAVID MCLEAN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
39813, 1971
37484, 2004
20228, A GOOD OLD FASHIONED ORGY
24039, A GOOD YEAR
39801, A NEW LEAF
26525, ALEXANDER AND THE TERRIBLE, HORRIBLE, NO GOOD, VERY BAD DAY
1698, ALFIE
21398, AMERICAN PIE
1546, AN AMERICAN WEREWOLF IN LONDON
36172, AND NOW FOR SOMETHING COMPLETELY DIFFERENT
38136, ARACHNOPHOBIA
39137, AS GOOD AS IT GETS
17133, AS YOU LIKE IT
5658, BAD BOY BUBBY
27816, BANANAS
10045, BD-R
26356, BEAUTY IN TROUBLE
36479, BORN TO DANCE
16452, BORN TO WIN
37616, BORN YESTERDAY
34243, BRIGHT EYES
10361, BYE BYE BIRDIE
19950, CHASING LIBERTY
15721, CIAO, PROFESSORE!
34828, COLD TURKEY
24116, COLLEGE
39887, COME BLOW YOUR HORN
30463, COMEDY
36016, COUSIN BETTE
30433, DELUSIONS OF GRANDEUR
20574, DICK VAN DYKE
21079, DIRTY DEEDS
20474, DIVORCE AMERICAN STYLE
33382, DOM HEMINGWAY
22983, DONA FLOR AND HER TWO HUSBANDS
27563, DOUBLE WEDDING
36212, DRAMA
38250, FATHER OF THE BRIDE
31060, GIGANTIC
11565, GOOD
10113, GOOD ADVICE
26282, GOOD HAIR
21763, GOOD MORNING, VIETNAM
26124, GOOD NEIGHBOR SAM
12502, GOODBYE CHARLIE
17652, GOODBYE, COLUMBUS
6388, HAROLD AND MAUDE
11014, HE'S JUST NOT THAT INTO YOU
35856, HEARTS OF THE WEST
10411, HOW TASTY WAS MY LITTLE FRENCHMAN
141, I HEART HUCKABEES
38304, IN GOOD COMPANY
7575, INTIMATE RELATIONS
25290, JERRY MAGUIRE
6099, JOHNNY DANGEROUSLY
1029, JUDE LAW
17397, KISS ME GOODBYE
19232, KOTCH
21091, LADY LIBERTY
22957, LEAP YEAR
17559, LEGALLY BLONDE
35898, LEMONY SNICKET'S A SERIES OF UNFORTUNATE EVENTS
11903, LET IT RIDE
16121, LITTLE MURDERS
3459, LONESOME JIM
32973, LT. ROBIN CRUSOE, U.S.N.
39913, MATINEE
26718, MEET THE PARENTS
27936, MONSTERS UNIVERSITY
12668, MRS. POLLIFAX-SPY
9435, MURDER AT THE GALLOP
112, MUSIC FROM ANOTHER ROOM
18524, MY BLUE HEAVEN
3027, NIGHT AT THE MUSEUM
1271, NO TIME FOR LOVE
15316, NORMAN LEAR
14797, O BROTHER, WHERE ART THOU?
8935, ONE NIGHT AT MCCOOL'S
10734, ORPHANS
36867, PAPER LION
35289, PARANORMAN
3297, PATCH ADAMS
5958, PERCHED ON A TREE
7053, PLATINUM BLONDE
10026, PLAZA SUITE
21040, PRETTY MAIDS ALL IN A ROW
21462, RAISING ARIZONA
32180, RAT RACE
35122, REVENGE OF THE NERDS
10066, ROMANTIC COMEDY
11370, RUSTLERS' RHAPSODY
21512, SHERLOCK HOLMES
6468, SKIN GAME
8456, SPLASH
3350, SUCH GOOD FRIENDS
29113, SUMMER OF '42
23720, TAKING OFF
6667, THE BIG CHILL
5299, THE BIG STORE
39463, THE BOY FRIEND
26573, THE GOLD RUSH
30181, THE GOOD FAIRY
914, THE GOOD GIRL
14807, THE GOODBYE GIRL
26955, THE HOLIDAY
31283, THE HOUND OF THE BASKERVILLES
27062, THE MILLION DOLLAR DUCK
14272, THE NIGHT THEY RAIDED MINSKY'S
15015, THE OPPOSITE SEX
16236, THE SURE THING
29643, THE TAO OF STEVE
33932, THE WHEELER DEALERS
34860, THIS IS THE NIGHT
6839, TOM MURRAY
17536, TRAFIC
832, TRUE STORIES
31620, UUNO TURHAPURO ARMEIJAN LEIVISSÄ
31, WELL KNOWN
26622, WHO IS HARRY KELLERMAN AND WHY IS HE SAYING THOSE TERRIBLE THINGS ABOUT ME?
36996, WHY BE GOOD?
22756, WINDOW TO PARIS
8184, YOU CAN'T TAKE IT WITH YOU
38863, YOU'LL NEVER GET RICH
5178, YOU'RE A GOOD MAN, CHARLIE BROWN
15808, YOU'VE GOT MAIL
src, edge_attr, dst
20228, has_genre, 30463
20228, has_imdb_rating, 11565
24039, has_genre, 30463
24039, has_imdb_rating, 11565
39801, has_genre, 30463
39801, release_year, 39813
26525, has_genre, 30463
26525, has_imdb_rating, 11565
1698, has_genre, 30463
1698, has_genre, 36212
1698, has_tags, 10045
1698, has_tags, 1029
1698, release_year, 37484
1698, starred_actors, 1029
21398, has_genre, 30463
21398, has_imdb_rating, 11565
21398, has_tags, 30463
1546, has_genre, 30463
1546, has_imdb_rating, 11565
36172, has_genre, 30463
36172, has_tags, 30463
36172, release_year, 39813
38136, has_genre, 30463
38136, has_imdb_rating, 11565
38136, has_tags, 30463
39137, has_genre, 30463
39137, has_imdb_rating, 11565
39137, has_tags, 30463
17133, has_genre, 30463
17133, has_imdb_rating, 11565
5658, has_genre, 30463
5658, has_imdb_rating, 11565
27816, has_genre, 30463
27816, has_tags, 30463
27816, release_year, 39813
26356, has_genre, 30463
26356, has_imdb_rating, 11565
36479, has_genre, 30463
36479, has_imdb_rating, 11565
16452, has_genre, 30463
16452, release_year, 39813
37616, has_genre, 30463
37616, has_imdb_rating, 11565
34243, has_genre, 30463
34243, has_imdb_rating, 11565
10361, has_genre, 30463
10361, starred_actors, 20574
19950, has_genre, 30463
19950, has_imdb_rating, 11565
15721, has_genre, 30463
15721, has_imdb_rating, 11565
34828, directed_by, 15316
34828, has_genre, 30463
34828, has_imdb_rating, 11565
34828, has_imdb_votes, 31
34828, release_year, 39813
34828, starred_actors, 20574
34828, written_by, 15316
24116, has_genre, 30463
24116, has_imdb_rating, 11565
39887, has_genre, 30463
39887, written_by, 15316
36016, has_genre, 30463
36016, has_imdb_rating, 11565
30433, has_genre, 30463
30433, release_year, 39813
21079, has_genre, 30463
21079, has_imdb_rating, 11565
21079, has_tags, 30463
20474, has_genre, 30463
20474, starred_actors, 20574
20474, written_by, 15316
33382, has_genre, 30463
33382, has_genre, 36212
33382, starred_actors, 1029
22983, has_genre, 30463
22983, has_imdb_rating, 11565
27563, has_genre, 30463
27563, has_imdb_rating, 11565
38250, has_genre, 30463
38250, has_imdb_rating, 11565
38250, has_tags, 30463
31060, has_genre, 30463
31060, has_imdb_rating, 11565
11565, has_imdb_rating, 11565
10113, has_genre, 30463
10113, has_imdb_rating, 11565
26282, has_genre, 30463
26282, has_imdb_rating, 11565
21763, has_genre, 30463
21763, has_imdb_rating, 11565
26124, has_genre, 30463
26124, has_imdb_rating, 11565
12502, has_genre, 30463
12502, has_imdb_rating, 11565
17652, has_genre, 30463
17652, has_imdb_rating, 11565
6388, has_genre, 30463
6388, release_year, 39813
11014, has_genre, 30463
11014, has_imdb_rating, 11565
35856, has_genre, 30463
35856, has_imdb_rating, 11565
10411, has_genre, 30463
10411, release_year, 39813
141, has_genre, 30463
141, has_tags, 30463
141, has_tags, 1029
141, release_year, 37484
38304, has_genre, 30463
38304, has_imdb_rating, 11565
7575, has_genre, 30463
7575, has_imdb_rating, 11565
25290, has_genre, 30463
25290, has_imdb_rating, 11565
25290, has_tags, 30463
6099, has_genre, 30463
6099, has_imdb_rating, 11565
17397, has_genre, 30463
17397, has_imdb_rating, 11565
19232, has_genre, 30463
19232, release_year, 39813
21091, has_genre, 30463
21091, release_year, 39813
22957, has_genre, 30463
22957, has_imdb_rating, 11565
17559, has_genre, 30463
17559, has_imdb_rating, 11565
17559, has_tags, 30463
35898, has_genre, 30463
35898, has_tags, 1029
35898, has_tags, 10734
35898, release_year, 37484
11903, has_genre, 30463
11903, has_imdb_rating, 11565
16121, has_genre, 30463
16121, release_year, 39813
3459, has_genre, 30463
3459, has_imdb_rating, 11565
32973, has_genre, 30463
32973, has_tags, 20574
32973, starred_actors, 20574
39913, has_genre, 30463
39913, has_imdb_rating, 11565
26718, has_genre, 30463
26718, has_imdb_rating, 11565
26718, has_tags, 30463
27936, has_genre, 30463
27936, has_imdb_rating, 11565
27936, has_tags, 30463
12668, has_genre, 30463
12668, release_year, 39813
9435, has_genre, 30463
9435, has_imdb_rating, 11565
112, has_genre, 30463
112, has_genre, 36212
112, has_tags, 1029
112, starred_actors, 1029
18524, has_genre, 30463
18524, has_imdb_rating, 11565
3027, has_genre, 30463
3027, has_tags, 20574
3027, starred_actors, 20574
1271, has_genre, 30463
1271, has_imdb_rating, 11565
14797, has_genre, 30463
14797, has_imdb_rating, 11565
14797, has_tags, 30463
8935, has_genre, 30463
8935, has_imdb_rating, 11565
10734, has_genre, 30463
36867, has_genre, 30463
36867, has_imdb_rating, 11565
35289, has_genre, 30463
35289, has_imdb_rating, 11565
3297, has_genre, 30463
3297, has_imdb_rating, 11565
5958, has_genre, 30463
5958, release_year, 39813
7053, has_genre, 30463
7053, has_imdb_votes, 31
10026, has_genre, 30463
10026, release_year, 39813
21040, has_genre, 30463
21040, release_year, 39813
21462, has_genre, 30463
21462, has_imdb_rating, 11565
21462, has_tags, 30463
32180, has_genre, 30463
32180, has_imdb_rating, 11565
32180, has_tags, 30463
35122, has_genre, 30463
35122, has_imdb_rating, 11565
10066, has_genre, 30463
11370, has_genre, 30463
11370, has_imdb_rating, 11565
21512, has_tags, 30463
21512, has_tags, 1029
21512, has_tags, 21512
21512, starred_actors, 1029
6468, has_genre, 30463
6468, release_year, 39813
8456, has_genre, 30463
8456, has_imdb_rating, 11565
3350, has_genre, 30463
3350, has_imdb_rating, 11565
3350, release_year, 39813
29113, has_genre, 30463
29113, release_year, 39813
23720, has_genre, 30463
23720, release_year, 39813
6667, has_genre, 30463
6667, has_imdb_rating, 11565
5299, has_genre, 30463
5299, has_imdb_rating, 11565
39463, has_genre, 30463
39463, release_year, 39813
26573, has_genre, 30463
26573, has_tags, 30463
26573, starred_actors, 6839
30181, has_genre, 30463
30181, has_imdb_rating, 11565
914, has_genre, 30463
914, has_imdb_rating, 11565
14807, has_genre, 30463
14807, has_imdb_rating, 11565
26955, has_genre, 30463
26955, has_tags, 10045
26955, has_tags, 1029
26955, has_tags, 10066
26955, starred_actors, 1029
31283, has_genre, 30463
31283, has_tags, 21512
27062, has_genre, 30463
27062, release_year, 39813
14272, has_genre, 30463
14272, written_by, 15316
15015, has_genre, 30463
15015, has_imdb_rating, 11565
16236, has_genre, 30463
16236, has_imdb_rating, 11565
29643, has_genre, 30463
29643, has_imdb_rating, 11565
33932, has_genre, 30463
33932, has_imdb_rating, 11565
34860, has_genre, 30463
34860, has_imdb_rating, 11565
17536, has_genre, 30463
17536, has_imdb_rating, 11565
17536, release_year, 39813
832, has_genre, 30463
832, has_imdb_rating, 11565
31620, has_genre, 30463
31620, has_imdb_votes, 31
26622, has_genre, 30463
26622, release_year, 39813
36996, has_genre, 30463
36996, has_imdb_rating, 11565
22756, has_genre, 30463
22756, has_imdb_rating, 11565
8184, has_genre, 30463
8184, has_imdb_rating, 11565
38863, has_genre, 30463
38863, has_imdb_rating, 11565
5178, has_genre, 30463
5178, has_imdb_rating, 11565
15808, has_genre, 30463
15808, has_imdb_rating, 11565
15808, has_tags, 30463
Question: In what context are COLD TURKEY, JUDE LAW, and TOM MURRAY connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"COLD TURKEY",
"JUDE LAW",
"TOM MURRAY"
],
"valid_edges": [
[
"A GOOD OLD FASHIONED ORGY",
"has_genre",
"COMEDY"
],
[
"A GOOD OLD FASHIONED ORGY",
"has_imdb_rating",
"GOOD"
],
[
"A GOOD YEAR",
"has_genre",
"COMEDY"
],
[
"A GOOD YEAR",
"has_imdb_rating",
"GOOD"
],
[
"A NEW LEAF",
"has_genre",
"COMEDY"
],
[
"A NEW LEAF",
"release_year",
"1971"
],
[
"ALEXANDER AND THE TERRIBLE, HORRIBLE, NO GOOD, VERY BAD DAY",
"has_genre",
"COMEDY"
],
[
"ALEXANDER AND THE TERRIBLE, HORRIBLE, NO GOOD, VERY BAD DAY",
"has_imdb_rating",
"GOOD"
],
[
"ALFIE",
"has_genre",
"COMEDY"
],
[
"ALFIE",
"has_genre",
"DRAMA"
],
[
"ALFIE",
"has_tags",
"BD-R"
],
[
"ALFIE",
"has_tags",
"JUDE LAW"
],
[
"ALFIE",
"release_year",
"2004"
],
[
"ALFIE",
"starred_actors",
"JUDE LAW"
],
[
"AMERICAN PIE",
"has_genre",
"COMEDY"
],
[
"AMERICAN PIE",
"has_imdb_rating",
"GOOD"
],
[
"AMERICAN PIE",
"has_tags",
"COMEDY"
],
[
"AN AMERICAN WEREWOLF IN LONDON",
"has_genre",
"COMEDY"
],
[
"AN AMERICAN WEREWOLF IN LONDON",
"has_imdb_rating",
"GOOD"
],
[
"AND NOW FOR SOMETHING COMPLETELY DIFFERENT",
"has_genre",
"COMEDY"
],
[
"AND NOW FOR SOMETHING COMPLETELY DIFFERENT",
"has_tags",
"COMEDY"
],
[
"AND NOW FOR SOMETHING COMPLETELY DIFFERENT",
"release_year",
"1971"
],
[
"ARACHNOPHOBIA",
"has_genre",
"COMEDY"
],
[
"ARACHNOPHOBIA",
"has_imdb_rating",
"GOOD"
],
[
"ARACHNOPHOBIA",
"has_tags",
"COMEDY"
],
[
"AS GOOD AS IT GETS",
"has_genre",
"COMEDY"
],
[
"AS GOOD AS IT GETS",
"has_imdb_rating",
"GOOD"
],
[
"AS GOOD AS IT GETS",
"has_tags",
"COMEDY"
],
[
"AS YOU LIKE IT",
"has_genre",
"COMEDY"
],
[
"AS YOU LIKE IT",
"has_imdb_rating",
"GOOD"
],
[
"BAD BOY BUBBY",
"has_genre",
"COMEDY"
],
[
"BAD BOY BUBBY",
"has_imdb_rating",
"GOOD"
],
[
"BANANAS",
"has_genre",
"COMEDY"
],
[
"BANANAS",
"has_tags",
"COMEDY"
],
[
"BANANAS",
"release_year",
"1971"
],
[
"BEAUTY IN TROUBLE",
"has_genre",
"COMEDY"
],
[
"BEAUTY IN TROUBLE",
"has_imdb_rating",
"GOOD"
],
[
"BORN TO DANCE",
"has_genre",
"COMEDY"
],
[
"BORN TO DANCE",
"has_imdb_rating",
"GOOD"
],
[
"BORN TO WIN",
"has_genre",
"COMEDY"
],
[
"BORN TO WIN",
"release_year",
"1971"
],
[
"BORN YESTERDAY",
"has_genre",
"COMEDY"
],
[
"BORN YESTERDAY",
"has_imdb_rating",
"GOOD"
],
[
"BRIGHT EYES",
"has_genre",
"COMEDY"
],
[
"BRIGHT EYES",
"has_imdb_rating",
"GOOD"
],
[
"BYE BYE BIRDIE",
"has_genre",
"COMEDY"
],
[
"BYE BYE BIRDIE",
"starred_actors",
"DICK VAN DYKE"
],
[
"CHASING LIBERTY",
"has_genre",
"COMEDY"
],
[
"CHASING LIBERTY",
"has_imdb_rating",
"GOOD"
],
[
"CIAO, PROFESSORE!",
"has_genre",
"COMEDY"
],
[
"CIAO, PROFESSORE!",
"has_imdb_rating",
"GOOD"
],
[
"COLD TURKEY",
"directed_by",
"NORMAN LEAR"
],
[
"COLD TURKEY",
"has_genre",
"COMEDY"
],
[
"COLD TURKEY",
"has_imdb_rating",
"GOOD"
],
[
"COLD TURKEY",
"has_imdb_votes",
"WELL KNOWN"
],
[
"COLD TURKEY",
"release_year",
"1971"
],
[
"COLD TURKEY",
"starred_actors",
"DICK VAN DYKE"
],
[
"COLD TURKEY",
"written_by",
"NORMAN LEAR"
],
[
"COLLEGE",
"has_genre",
"COMEDY"
],
[
"COLLEGE",
"has_imdb_rating",
"GOOD"
],
[
"COME BLOW YOUR HORN",
"has_genre",
"COMEDY"
],
[
"COME BLOW YOUR HORN",
"written_by",
"NORMAN LEAR"
],
[
"COUSIN BETTE",
"has_genre",
"COMEDY"
],
[
"COUSIN BETTE",
"has_imdb_rating",
"GOOD"
],
[
"DELUSIONS OF GRANDEUR",
"has_genre",
"COMEDY"
],
[
"DELUSIONS OF GRANDEUR",
"release_year",
"1971"
],
[
"DIRTY DEEDS",
"has_genre",
"COMEDY"
],
[
"DIRTY DEEDS",
"has_imdb_rating",
"GOOD"
],
[
"DIRTY DEEDS",
"has_tags",
"COMEDY"
],
[
"DIVORCE AMERICAN STYLE",
"has_genre",
"COMEDY"
],
[
"DIVORCE AMERICAN STYLE",
"starred_actors",
"DICK VAN DYKE"
],
[
"DIVORCE AMERICAN STYLE",
"written_by",
"NORMAN LEAR"
],
[
"DOM HEMINGWAY",
"has_genre",
"COMEDY"
],
[
"DOM HEMINGWAY",
"has_genre",
"DRAMA"
],
[
"DOM HEMINGWAY",
"starred_actors",
"JUDE LAW"
],
[
"DONA FLOR AND HER TWO HUSBANDS",
"has_genre",
"COMEDY"
],
[
"DONA FLOR AND HER TWO HUSBANDS",
"has_imdb_rating",
"GOOD"
],
[
"DOUBLE WEDDING",
"has_genre",
"COMEDY"
],
[
"DOUBLE WEDDING",
"has_imdb_rating",
"GOOD"
],
[
"FATHER OF THE BRIDE",
"has_genre",
"COMEDY"
],
[
"FATHER OF THE BRIDE",
"has_imdb_rating",
"GOOD"
],
[
"FATHER OF THE BRIDE",
"has_tags",
"COMEDY"
],
[
"GIGANTIC",
"has_genre",
"COMEDY"
],
[
"GIGANTIC",
"has_imdb_rating",
"GOOD"
],
[
"GOOD",
"has_imdb_rating",
"GOOD"
],
[
"GOOD ADVICE",
"has_genre",
"COMEDY"
],
[
"GOOD ADVICE",
"has_imdb_rating",
"GOOD"
],
[
"GOOD HAIR",
"has_genre",
"COMEDY"
],
[
"GOOD HAIR",
"has_imdb_rating",
"GOOD"
],
[
"GOOD MORNING, VIETNAM",
"has_genre",
"COMEDY"
],
[
"GOOD MORNING, VIETNAM",
"has_imdb_rating",
"GOOD"
],
[
"GOOD NEIGHBOR SAM",
"has_genre",
"COMEDY"
],
[
"GOOD NEIGHBOR SAM",
"has_imdb_rating",
"GOOD"
],
[
"GOODBYE CHARLIE",
"has_genre",
"COMEDY"
],
[
"GOODBYE CHARLIE",
"has_imdb_rating",
"GOOD"
],
[
"GOODBYE, COLUMBUS",
"has_genre",
"COMEDY"
],
[
"GOODBYE, COLUMBUS",
"has_imdb_rating",
"GOOD"
],
[
"HAROLD AND MAUDE",
"has_genre",
"COMEDY"
],
[
"HAROLD AND MAUDE",
"release_year",
"1971"
],
[
"HE'S JUST NOT THAT INTO YOU",
"has_genre",
"COMEDY"
],
[
"HE'S JUST NOT THAT INTO YOU",
"has_imdb_rating",
"GOOD"
],
[
"HEARTS OF THE WEST",
"has_genre",
"COMEDY"
],
[
"HEARTS OF THE WEST",
"has_imdb_rating",
"GOOD"
],
[
"HOW TASTY WAS MY LITTLE FRENCHMAN",
"has_genre",
"COMEDY"
],
[
"HOW TASTY WAS MY LITTLE FRENCHMAN",
"release_year",
"1971"
],
[
"I HEART HUCKABEES",
"has_genre",
"COMEDY"
],
[
"I HEART HUCKABEES",
"has_tags",
"COMEDY"
],
[
"I HEART HUCKABEES",
"has_tags",
"JUDE LAW"
],
[
"I HEART HUCKABEES",
"release_year",
"2004"
],
[
"IN GOOD COMPANY",
"has_genre",
"COMEDY"
],
[
"IN GOOD COMPANY",
"has_imdb_rating",
"GOOD"
],
[
"INTIMATE RELATIONS",
"has_genre",
"COMEDY"
],
[
"INTIMATE RELATIONS",
"has_imdb_rating",
"GOOD"
],
[
"JERRY MAGUIRE",
"has_genre",
"COMEDY"
],
[
"JERRY MAGUIRE",
"has_imdb_rating",
"GOOD"
],
[
"JERRY MAGUIRE",
"has_tags",
"COMEDY"
],
[
"JOHNNY DANGEROUSLY",
"has_genre",
"COMEDY"
],
[
"JOHNNY DANGEROUSLY",
"has_imdb_rating",
"GOOD"
],
[
"KISS ME GOODBYE",
"has_genre",
"COMEDY"
],
[
"KISS ME GOODBYE",
"has_imdb_rating",
"GOOD"
],
[
"KOTCH",
"has_genre",
"COMEDY"
],
[
"KOTCH",
"release_year",
"1971"
],
[
"LADY LIBERTY",
"has_genre",
"COMEDY"
],
[
"LADY LIBERTY",
"release_year",
"1971"
],
[
"LEAP YEAR",
"has_genre",
"COMEDY"
],
[
"LEAP YEAR",
"has_imdb_rating",
"GOOD"
],
[
"LEGALLY BLONDE",
"has_genre",
"COMEDY"
],
[
"LEGALLY BLONDE",
"has_imdb_rating",
"GOOD"
],
[
"LEGALLY BLONDE",
"has_tags",
"COMEDY"
],
[
"LEMONY SNICKET'S A SERIES OF UNFORTUNATE EVENTS",
"has_genre",
"COMEDY"
],
[
"LEMONY SNICKET'S A SERIES OF UNFORTUNATE EVENTS",
"has_tags",
"JUDE LAW"
],
[
"LEMONY SNICKET'S A SERIES OF UNFORTUNATE EVENTS",
"has_tags",
"ORPHANS"
],
[
"LEMONY SNICKET'S A SERIES OF UNFORTUNATE EVENTS",
"release_year",
"2004"
],
[
"LET IT RIDE",
"has_genre",
"COMEDY"
],
[
"LET IT RIDE",
"has_imdb_rating",
"GOOD"
],
[
"LITTLE MURDERS",
"has_genre",
"COMEDY"
],
[
"LITTLE MURDERS",
"release_year",
"1971"
],
[
"LONESOME JIM",
"has_genre",
"COMEDY"
],
[
"LONESOME JIM",
"has_imdb_rating",
"GOOD"
],
[
"LT. ROBIN CRUSOE, U.S.N.",
"has_genre",
"COMEDY"
],
[
"LT. ROBIN CRUSOE, U.S.N.",
"has_tags",
"DICK VAN DYKE"
],
[
"LT. ROBIN CRUSOE, U.S.N.",
"starred_actors",
"DICK VAN DYKE"
],
[
"MATINEE",
"has_genre",
"COMEDY"
],
[
"MATINEE",
"has_imdb_rating",
"GOOD"
],
[
"MEET THE PARENTS",
"has_genre",
"COMEDY"
],
[
"MEET THE PARENTS",
"has_imdb_rating",
"GOOD"
],
[
"MEET THE PARENTS",
"has_tags",
"COMEDY"
],
[
"MONSTERS UNIVERSITY",
"has_genre",
"COMEDY"
],
[
"MONSTERS UNIVERSITY",
"has_imdb_rating",
"GOOD"
],
[
"MONSTERS UNIVERSITY",
"has_tags",
"COMEDY"
],
[
"MRS. POLLIFAX-SPY",
"has_genre",
"COMEDY"
],
[
"MRS. POLLIFAX-SPY",
"release_year",
"1971"
],
[
"MURDER AT THE GALLOP",
"has_genre",
"COMEDY"
],
[
"MURDER AT THE GALLOP",
"has_imdb_rating",
"GOOD"
],
[
"MUSIC FROM ANOTHER ROOM",
"has_genre",
"COMEDY"
],
[
"MUSIC FROM ANOTHER ROOM",
"has_genre",
"DRAMA"
],
[
"MUSIC FROM ANOTHER ROOM",
"has_tags",
"JUDE LAW"
],
[
"MUSIC FROM ANOTHER ROOM",
"starred_actors",
"JUDE LAW"
],
[
"MY BLUE HEAVEN",
"has_genre",
"COMEDY"
],
[
"MY BLUE HEAVEN",
"has_imdb_rating",
"GOOD"
],
[
"NIGHT AT THE MUSEUM",
"has_genre",
"COMEDY"
],
[
"NIGHT AT THE MUSEUM",
"has_tags",
"DICK VAN DYKE"
],
[
"NIGHT AT THE MUSEUM",
"starred_actors",
"DICK VAN DYKE"
],
[
"NO TIME FOR LOVE",
"has_genre",
"COMEDY"
],
[
"NO TIME FOR LOVE",
"has_imdb_rating",
"GOOD"
],
[
"O BROTHER, WHERE ART THOU?",
"has_genre",
"COMEDY"
],
[
"O BROTHER, WHERE ART THOU?",
"has_imdb_rating",
"GOOD"
],
[
"O BROTHER, WHERE ART THOU?",
"has_tags",
"COMEDY"
],
[
"ONE NIGHT AT MCCOOL'S",
"has_genre",
"COMEDY"
],
[
"ONE NIGHT AT MCCOOL'S",
"has_imdb_rating",
"GOOD"
],
[
"ORPHANS",
"has_genre",
"COMEDY"
],
[
"PAPER LION",
"has_genre",
"COMEDY"
],
[
"PAPER LION",
"has_imdb_rating",
"GOOD"
],
[
"PARANORMAN",
"has_genre",
"COMEDY"
],
[
"PARANORMAN",
"has_imdb_rating",
"GOOD"
],
[
"PATCH ADAMS",
"has_genre",
"COMEDY"
],
[
"PATCH ADAMS",
"has_imdb_rating",
"GOOD"
],
[
"PERCHED ON A TREE",
"has_genre",
"COMEDY"
],
[
"PERCHED ON A TREE",
"release_year",
"1971"
],
[
"PLATINUM BLONDE",
"has_genre",
"COMEDY"
],
[
"PLATINUM BLONDE",
"has_imdb_votes",
"WELL KNOWN"
],
[
"PLAZA SUITE",
"has_genre",
"COMEDY"
],
[
"PLAZA SUITE",
"release_year",
"1971"
],
[
"PRETTY MAIDS ALL IN A ROW",
"has_genre",
"COMEDY"
],
[
"PRETTY MAIDS ALL IN A ROW",
"release_year",
"1971"
],
[
"RAISING ARIZONA",
"has_genre",
"COMEDY"
],
[
"RAISING ARIZONA",
"has_imdb_rating",
"GOOD"
],
[
"RAISING ARIZONA",
"has_tags",
"COMEDY"
],
[
"RAT RACE",
"has_genre",
"COMEDY"
],
[
"RAT RACE",
"has_imdb_rating",
"GOOD"
],
[
"RAT RACE",
"has_tags",
"COMEDY"
],
[
"REVENGE OF THE NERDS",
"has_genre",
"COMEDY"
],
[
"REVENGE OF THE NERDS",
"has_imdb_rating",
"GOOD"
],
[
"ROMANTIC COMEDY",
"has_genre",
"COMEDY"
],
[
"RUSTLERS' RHAPSODY",
"has_genre",
"COMEDY"
],
[
"RUSTLERS' RHAPSODY",
"has_imdb_rating",
"GOOD"
],
[
"SHERLOCK HOLMES",
"has_tags",
"COMEDY"
],
[
"SHERLOCK HOLMES",
"has_tags",
"JUDE LAW"
],
[
"SHERLOCK HOLMES",
"has_tags",
"SHERLOCK HOLMES"
],
[
"SHERLOCK HOLMES",
"starred_actors",
"JUDE LAW"
],
[
"SKIN GAME",
"has_genre",
"COMEDY"
],
[
"SKIN GAME",
"release_year",
"1971"
],
[
"SPLASH",
"has_genre",
"COMEDY"
],
[
"SPLASH",
"has_imdb_rating",
"GOOD"
],
[
"SUCH GOOD FRIENDS",
"has_genre",
"COMEDY"
],
[
"SUCH GOOD FRIENDS",
"has_imdb_rating",
"GOOD"
],
[
"SUCH GOOD FRIENDS",
"release_year",
"1971"
],
[
"SUMMER OF '42",
"has_genre",
"COMEDY"
],
[
"SUMMER OF '42",
"release_year",
"1971"
],
[
"TAKING OFF",
"has_genre",
"COMEDY"
],
[
"TAKING OFF",
"release_year",
"1971"
],
[
"THE BIG CHILL",
"has_genre",
"COMEDY"
],
[
"THE BIG CHILL",
"has_imdb_rating",
"GOOD"
],
[
"THE BIG STORE",
"has_genre",
"COMEDY"
],
[
"THE BIG STORE",
"has_imdb_rating",
"GOOD"
],
[
"THE BOY FRIEND",
"has_genre",
"COMEDY"
],
[
"THE BOY FRIEND",
"release_year",
"1971"
],
[
"THE GOLD RUSH",
"has_genre",
"COMEDY"
],
[
"THE GOLD RUSH",
"has_tags",
"COMEDY"
],
[
"THE GOLD RUSH",
"starred_actors",
"TOM MURRAY"
],
[
"THE GOOD FAIRY",
"has_genre",
"COMEDY"
],
[
"THE GOOD FAIRY",
"has_imdb_rating",
"GOOD"
],
[
"THE GOOD GIRL",
"has_genre",
"COMEDY"
],
[
"THE GOOD GIRL",
"has_imdb_rating",
"GOOD"
],
[
"THE GOODBYE GIRL",
"has_genre",
"COMEDY"
],
[
"THE GOODBYE GIRL",
"has_imdb_rating",
"GOOD"
],
[
"THE HOLIDAY",
"has_genre",
"COMEDY"
],
[
"THE HOLIDAY",
"has_tags",
"BD-R"
],
[
"THE HOLIDAY",
"has_tags",
"JUDE LAW"
],
[
"THE HOLIDAY",
"has_tags",
"ROMANTIC COMEDY"
],
[
"THE HOLIDAY",
"starred_actors",
"JUDE LAW"
],
[
"THE HOUND OF THE BASKERVILLES",
"has_genre",
"COMEDY"
],
[
"THE HOUND OF THE BASKERVILLES",
"has_tags",
"SHERLOCK HOLMES"
],
[
"THE MILLION DOLLAR DUCK",
"has_genre",
"COMEDY"
],
[
"THE MILLION DOLLAR DUCK",
"release_year",
"1971"
],
[
"THE NIGHT THEY RAIDED MINSKY'S",
"has_genre",
"COMEDY"
],
[
"THE NIGHT THEY RAIDED MINSKY'S",
"written_by",
"NORMAN LEAR"
],
[
"THE OPPOSITE SEX",
"has_genre",
"COMEDY"
],
[
"THE OPPOSITE SEX",
"has_imdb_rating",
"GOOD"
],
[
"THE SURE THING",
"has_genre",
"COMEDY"
],
[
"THE SURE THING",
"has_imdb_rating",
"GOOD"
],
[
"THE TAO OF STEVE",
"has_genre",
"COMEDY"
],
[
"THE TAO OF STEVE",
"has_imdb_rating",
"GOOD"
],
[
"THE WHEELER DEALERS",
"has_genre",
"COMEDY"
],
[
"THE WHEELER DEALERS",
"has_imdb_rating",
"GOOD"
],
[
"THIS IS THE NIGHT",
"has_genre",
"COMEDY"
],
[
"THIS IS THE NIGHT",
"has_imdb_rating",
"GOOD"
],
[
"TRAFIC",
"has_genre",
"COMEDY"
],
[
"TRAFIC",
"has_imdb_rating",
"GOOD"
],
[
"TRAFIC",
"release_year",
"1971"
],
[
"TRUE STORIES",
"has_genre",
"COMEDY"
],
[
"TRUE STORIES",
"has_imdb_rating",
"GOOD"
],
[
"UUNO TURHAPURO ARMEIJAN LEIVISSÄ",
"has_genre",
"COMEDY"
],
[
"UUNO TURHAPURO ARMEIJAN LEIVISSÄ",
"has_imdb_votes",
"WELL KNOWN"
],
[
"WHO IS HARRY KELLERMAN AND WHY IS HE SAYING THOSE TERRIBLE THINGS ABOUT ME?",
"has_genre",
"COMEDY"
],
[
"WHO IS HARRY KELLERMAN AND WHY IS HE SAYING THOSE TERRIBLE THINGS ABOUT ME?",
"release_year",
"1971"
],
[
"WHY BE GOOD?",
"has_genre",
"COMEDY"
],
[
"WHY BE GOOD?",
"has_imdb_rating",
"GOOD"
],
[
"WINDOW TO PARIS",
"has_genre",
"COMEDY"
],
[
"WINDOW TO PARIS",
"has_imdb_rating",
"GOOD"
],
[
"YOU CAN'T TAKE IT WITH YOU",
"has_genre",
"COMEDY"
],
[
"YOU CAN'T TAKE IT WITH YOU",
"has_imdb_rating",
"GOOD"
],
[
"YOU'LL NEVER GET RICH",
"has_genre",
"COMEDY"
],
[
"YOU'LL NEVER GET RICH",
"has_imdb_rating",
"GOOD"
],
[
"YOU'RE A GOOD MAN, CHARLIE BROWN",
"has_genre",
"COMEDY"
],
[
"YOU'RE A GOOD MAN, CHARLIE BROWN",
"has_imdb_rating",
"GOOD"
],
[
"YOU'VE GOT MAIL",
"has_genre",
"COMEDY"
],
[
"YOU'VE GOT MAIL",
"has_imdb_rating",
"GOOD"
],
[
"YOU'VE GOT MAIL",
"has_tags",
"COMEDY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35187, 1948
3863, 1962
40009, A FOREIGN AFFAIR
16566, A MONKEY IN WINTER
18595, HENRI VERNEUIL
25397, I AS IN ICARUS
12473, PITFALL
17361, THE BRAIN THAT WOULDN'T DIE
src, edge_attr, dst
40009, release_year, 35187
16566, directed_by, 18595
16566, has_tags, 18595
16566, release_year, 3863
25397, directed_by, 18595
25397, written_by, 18595
12473, release_year, 35187
12473, release_year, 3863
17361, release_year, 3863
Question: In what context are A FOREIGN AFFAIR, I AS IN ICARUS, and THE BRAIN THAT WOULDN'T DIE connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"A FOREIGN AFFAIR",
"I AS IN ICARUS",
"THE BRAIN THAT WOULDN'T DIE"
],
"valid_edges": [
[
"A FOREIGN AFFAIR",
"release_year",
"1948"
],
[
"A MONKEY IN WINTER",
"directed_by",
"HENRI VERNEUIL"
],
[
"A MONKEY IN WINTER",
"has_tags",
"HENRI VERNEUIL"
],
[
"A MONKEY IN WINTER",
"release_year",
"1962"
],
[
"I AS IN ICARUS",
"directed_by",
"HENRI VERNEUIL"
],
[
"I AS IN ICARUS",
"written_by",
"HENRI VERNEUIL"
],
[
"PITFALL",
"release_year",
"1948"
],
[
"PITFALL",
"release_year",
"1962"
],
[
"THE BRAIN THAT WOULDN'T DIE",
"release_year",
"1962"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35935, 2002
4310, 24 HOUR PARTY PEOPLE
9408, 40 DAYS AND 40 NIGHTS
36647, 8 WOMEN
11957, 9 DEAD GAY GUYS
6008, ABOUT A BOY
37599, ABOUT SCHMIDT
68, ADMISSION
33534, AFTERNOON DELIGHT
17111, ALI G INDAHOUSE
22569, ALL ABOUT THE BENJAMINS
28458, ALL IS BRIGHT
16113, ANALYZE THAT
32612, ANNA ODELL
7302, AS COOL AS I AM
35314, AUSTIN POWERS IN GOLDMEMBER
29535, AVENGING ANGELO
23899, BAD COMPANY
36819, BARBERSHOP
15433, BEND IT LIKE BECKHAM
39619, BIG FAT LIAR
8732, BIG TROUBLE
27128, BOAT TRIP
32620, BUBBA HO-TEP
14572, BUYING THE COW
27929, CABIN FEVER
23286, CARNAGE
20073, CHERISH
10349, CHICAGO
32644, CHINESE ODYSSEY 2002
1267, CLOSER TO THE MOON
30463, COMEDY
21391, CRACKERJACK
30019, CROSSROADS
21730, DAY OF THE WACKO
19179, DEATH TO SMOOCHY
29309, DELIVERY MAN
21079, DIRTY DEEDS
33382, DOM HEMINGWAY
13792, DON JON
36212, DRAMA
25651, DUMMY
26815, EIGHT CRAZY NIGHTS
38543, EIGHT LEGGED FREAKS
28256, FILTH
27539, FRANK MCKLUSKY, C.I.
29241, FRIDAY AFTER NEXT
5287, FROZEN
21415, GREGORY GO BOOM
10990, HEARTLANDS
3829, HERO
15629, HOME ALONE 4
21886, HOME ROOM
22069, I SPY
27919, I'M WITH LUCY
16371, ICE AGE
17197, IGBY GOES DOWN
15909, INSTRUCTIONS NOT INCLUDED
33001, JUST A KISS
2204, JUWANNA MANN
31245, KAL HO NAA HO
32010, KISS THE BRIDE
12137, LIFE OR SOMETHING LIKE IT
28832, LIFE WITHOUT DICK
16155, LOVE LIZA
9812, MAID IN MANHATTAN
4270, MEN WITH BROOMS
36083, MIRANDA
20803, MR. DEEDS
22064, MY BIG FAT GREEK WEDDING
4887, MY LEFT EYE SEES GHOSTS
35262, MY MOTHER LIKES WOMEN
35794, NOVO
1493, NOW YOU KNOW
2721, OCCIDENT
4582, ONCE UPON A TIME IN THE MIDLANDS
39121, ONE CHANCE
37178, ORANGE COUNTY
25824, PARADISE
27117, PASSIONADA
9976, PIPE DREAM
7136, PRINCE AVALANCHE
3688, PUMPKIN
34602, PUNCH-DRUNK LOVE
21890, R.S.V.P.
25769, ROGER DODGER
25243, SAVING MR. BANKS
12987, SCOOBY-DOO
15252, SCREWED IN TALLINN
19244, SERVING SARA
6603, SEX IS COMEDY
26261, SHOWTIME
15043, SLACKERS
25151, SNOW DOGS
24961, SORORITY BOYS
35843, SPUN
5170, STEALING HARVARD
15100, SUPER SUCKER
9276, SWEET HOME ALABAMA
26790, SWEPT AWAY
36316, THE ADVENTURES OF PLUTO NASH
3961, THE AMAZING CATFISH
2316, THE ANARCHIST COOKBOOK
304, THE BANGER SISTERS
11696, THE CUCKOO
3324, THE DANGEROUS LIVES OF ALTAR BOYS
914, THE GOOD GIRL
26531, THE GURU
24302, THE HOT CHICK
13534, THE IMPORTANCE OF BEING EARNEST
2147, THE MAN WITHOUT A PAST
6908, THE MASTER OF DISGUISE
295, THE NEW GUY
1192, THE ONE AND ONLY
4335, THE PRETTY ONE
39078, THE REUNION
31401, THE RULES OF ATTRACTION
30746, THE SECRET LIFE OF WALTER MITTY
32975, THE SPECTACULAR NOW
7052, THE SWEETEST THING
34172, THE TUXEDO
34916, THE WAY WAY BACK
22625, TOGETHER
10720, TRIGGERMEN
26275, TRUST ME
9612, TWO WEEKS NOTICE
13214, UNCONDITIONAL LOVE
16991, UNDERCOVER BROTHER
21576, WAKING UP IN RENO
37568, WELCOME TO COLLINWOOD
39802, WHEN IN ROME
src, edge_attr, dst
4310, has_genre, 30463
4310, has_genre, 36212
4310, release_year, 35935
9408, has_genre, 30463
9408, has_tags, 30463
9408, release_year, 35935
36647, has_genre, 30463
36647, release_year, 35935
11957, has_genre, 30463
11957, release_year, 35935
6008, has_genre, 30463
6008, has_genre, 36212
6008, has_tags, 30463
6008, has_tags, 36212
6008, release_year, 35935
37599, has_genre, 30463
37599, has_genre, 36212
37599, has_tags, 30463
37599, has_tags, 36212
37599, release_year, 35935
68, has_genre, 30463
68, has_genre, 36212
68, has_tags, 30463
33534, has_genre, 30463
33534, has_genre, 36212
17111, has_genre, 30463
17111, release_year, 35935
22569, has_genre, 30463
22569, has_tags, 30463
22569, release_year, 35935
28458, has_genre, 30463
28458, has_genre, 36212
16113, has_genre, 30463
16113, has_tags, 30463
16113, release_year, 35935
7302, has_genre, 30463
7302, has_genre, 36212
35314, has_genre, 30463
35314, has_tags, 30463
35314, release_year, 35935
29535, has_genre, 30463
29535, release_year, 35935
23899, has_genre, 30463
23899, release_year, 35935
36819, has_genre, 30463
36819, release_year, 35935
15433, has_genre, 30463
15433, has_genre, 36212
15433, release_year, 35935
39619, has_genre, 30463
39619, release_year, 35935
8732, has_genre, 30463
8732, release_year, 35935
27128, has_genre, 30463
27128, release_year, 35935
32620, has_genre, 30463
32620, has_tags, 30463
32620, release_year, 35935
14572, has_genre, 30463
14572, release_year, 35935
27929, has_genre, 30463
27929, release_year, 35935
23286, has_genre, 30463
23286, has_genre, 36212
23286, release_year, 35935
20073, has_genre, 30463
20073, has_genre, 36212
20073, release_year, 35935
10349, has_genre, 30463
10349, has_genre, 36212
10349, release_year, 35935
32644, has_genre, 30463
32644, release_year, 35935
1267, has_genre, 30463
1267, has_genre, 36212
1267, has_tags, 30463
21391, has_genre, 30463
21391, release_year, 35935
30019, has_genre, 30463
30019, has_genre, 36212
30019, release_year, 35935
21730, has_genre, 30463
21730, has_genre, 36212
21730, release_year, 35935
19179, has_genre, 30463
19179, release_year, 35935
29309, has_genre, 30463
29309, has_genre, 36212
29309, has_tags, 36212
21079, has_genre, 30463
21079, has_tags, 30463
21079, release_year, 35935
33382, has_genre, 30463
33382, has_genre, 36212
13792, has_genre, 30463
13792, has_genre, 36212
25651, has_genre, 30463
25651, has_genre, 36212
25651, release_year, 35935
26815, has_genre, 30463
26815, release_year, 35935
38543, has_genre, 30463
38543, release_year, 35935
28256, has_genre, 30463
28256, has_genre, 36212
27539, has_genre, 30463
27539, release_year, 35935
29241, has_genre, 30463
29241, release_year, 35935
5287, has_genre, 30463
5287, has_genre, 36212
21415, has_genre, 30463
21415, has_genre, 36212
10990, has_genre, 30463
10990, has_genre, 36212
10990, release_year, 35935
3829, has_genre, 30463
3829, has_genre, 36212
3829, release_year, 35935
15629, has_genre, 30463
15629, release_year, 35935
21886, release_year, 35935
22069, has_genre, 30463
22069, has_tags, 30463
22069, release_year, 35935
27919, has_genre, 30463
27919, release_year, 35935
16371, has_genre, 30463
16371, has_tags, 30463
16371, release_year, 35935
17197, has_genre, 30463
17197, has_genre, 36212
17197, release_year, 35935
15909, has_genre, 30463
15909, has_genre, 36212
33001, has_genre, 30463
33001, release_year, 35935
2204, has_genre, 30463
2204, release_year, 35935
31245, has_genre, 30463
31245, has_genre, 36212
32010, has_genre, 30463
32010, release_year, 35935
12137, has_genre, 30463
12137, release_year, 35935
28832, has_genre, 30463
28832, release_year, 35935
16155, has_genre, 30463
16155, release_year, 35935
9812, has_genre, 30463
9812, release_year, 35935
4270, has_genre, 30463
4270, release_year, 35935
36083, has_genre, 30463
36083, release_year, 35935
20803, has_genre, 30463
20803, release_year, 35935
22064, has_genre, 30463
22064, has_tags, 30463
22064, release_year, 35935
4887, has_genre, 30463
4887, release_year, 35935
35262, has_genre, 30463
35262, release_year, 35935
35794, has_genre, 30463
35794, release_year, 35935
1493, has_genre, 30463
1493, release_year, 35935
2721, has_genre, 30463
2721, release_year, 35935
4582, has_genre, 30463
4582, release_year, 35935
39121, has_genre, 30463
39121, has_genre, 36212
37178, has_genre, 30463
37178, release_year, 35935
25824, has_genre, 30463
25824, has_genre, 36212
27117, has_genre, 30463
27117, release_year, 35935
9976, has_genre, 30463
9976, release_year, 35935
7136, has_genre, 30463
7136, has_genre, 36212
3688, has_genre, 30463
3688, release_year, 35935
34602, has_genre, 30463
34602, has_genre, 36212
34602, has_tags, 30463
34602, release_year, 35935
21890, has_genre, 30463
21890, release_year, 35935
25769, has_genre, 30463
25769, has_genre, 36212
25769, release_year, 35935
25243, has_genre, 30463
25243, has_genre, 36212
12987, has_genre, 30463
12987, release_year, 35935
15252, has_genre, 30463
15252, has_genre, 36212
19244, has_genre, 30463
19244, release_year, 35935
6603, has_genre, 30463
6603, release_year, 35935
26261, has_genre, 30463
26261, release_year, 35935
15043, has_genre, 30463
15043, release_year, 35935
25151, has_genre, 30463
25151, release_year, 35935
24961, has_genre, 30463
24961, release_year, 35935
35843, has_genre, 30463
35843, has_genre, 36212
35843, release_year, 35935
5170, has_genre, 30463
5170, release_year, 35935
15100, has_genre, 30463
15100, release_year, 35935
9276, has_genre, 30463
9276, release_year, 35935
26790, has_genre, 30463
26790, has_genre, 36212
26790, release_year, 35935
36316, has_genre, 30463
36316, release_year, 35935
3961, has_genre, 30463
3961, has_genre, 36212
2316, has_genre, 30463
2316, has_genre, 36212
2316, release_year, 35935
304, has_genre, 30463
304, release_year, 35935
11696, has_genre, 30463
11696, has_genre, 36212
11696, release_year, 35935
3324, has_genre, 30463
3324, has_genre, 36212
3324, release_year, 35935
914, has_genre, 30463
914, release_year, 35935
26531, has_genre, 30463
26531, release_year, 35935
24302, has_genre, 30463
24302, has_tags, 30463
24302, release_year, 35935
13534, has_genre, 30463
13534, has_genre, 36212
13534, release_year, 35935
2147, has_genre, 30463
2147, has_genre, 36212
2147, has_tags, 36212
2147, release_year, 35935
6908, has_genre, 30463
6908, release_year, 35935
295, has_genre, 30463
295, release_year, 35935
1192, has_genre, 30463
1192, release_year, 35935
4335, has_genre, 30463
4335, has_genre, 36212
39078, directed_by, 32612
39078, has_genre, 36212
39078, written_by, 32612
31401, has_genre, 30463
31401, has_genre, 36212
31401, release_year, 35935
30746, has_genre, 30463
30746, has_genre, 36212
32975, has_genre, 30463
32975, has_genre, 36212
7052, has_genre, 30463
7052, has_tags, 30463
7052, release_year, 35935
34172, has_genre, 30463
34172, has_tags, 30463
34172, release_year, 35935
34916, has_genre, 30463
34916, has_genre, 36212
34916, has_tags, 36212
22625, has_genre, 30463
22625, has_genre, 36212
10720, has_genre, 30463
10720, release_year, 35935
26275, has_genre, 30463
26275, has_genre, 36212
9612, has_genre, 30463
9612, release_year, 35935
13214, has_genre, 30463
13214, release_year, 35935
16991, has_genre, 30463
16991, release_year, 35935
21576, has_genre, 30463
21576, release_year, 35935
37568, has_genre, 30463
37568, has_tags, 30463
37568, release_year, 35935
39802, has_genre, 30463
39802, release_year, 35935
Question: In what context are ANNA ODELL, HOME ROOM, and KAL HO NAA HO connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANNA ODELL",
"HOME ROOM",
"KAL HO NAA HO"
],
"valid_edges": [
[
"24 HOUR PARTY PEOPLE",
"has_genre",
"COMEDY"
],
[
"24 HOUR PARTY PEOPLE",
"has_genre",
"DRAMA"
],
[
"24 HOUR PARTY PEOPLE",
"release_year",
"2002"
],
[
"40 DAYS AND 40 NIGHTS",
"has_genre",
"COMEDY"
],
[
"40 DAYS AND 40 NIGHTS",
"has_tags",
"COMEDY"
],
[
"40 DAYS AND 40 NIGHTS",
"release_year",
"2002"
],
[
"8 WOMEN",
"has_genre",
"COMEDY"
],
[
"8 WOMEN",
"release_year",
"2002"
],
[
"9 DEAD GAY GUYS",
"has_genre",
"COMEDY"
],
[
"9 DEAD GAY GUYS",
"release_year",
"2002"
],
[
"ABOUT A BOY",
"has_genre",
"COMEDY"
],
[
"ABOUT A BOY",
"has_genre",
"DRAMA"
],
[
"ABOUT A BOY",
"has_tags",
"COMEDY"
],
[
"ABOUT A BOY",
"has_tags",
"DRAMA"
],
[
"ABOUT A BOY",
"release_year",
"2002"
],
[
"ABOUT SCHMIDT",
"has_genre",
"COMEDY"
],
[
"ABOUT SCHMIDT",
"has_genre",
"DRAMA"
],
[
"ABOUT SCHMIDT",
"has_tags",
"COMEDY"
],
[
"ABOUT SCHMIDT",
"has_tags",
"DRAMA"
],
[
"ABOUT SCHMIDT",
"release_year",
"2002"
],
[
"ADMISSION",
"has_genre",
"COMEDY"
],
[
"ADMISSION",
"has_genre",
"DRAMA"
],
[
"ADMISSION",
"has_tags",
"COMEDY"
],
[
"AFTERNOON DELIGHT",
"has_genre",
"COMEDY"
],
[
"AFTERNOON DELIGHT",
"has_genre",
"DRAMA"
],
[
"ALI G INDAHOUSE",
"has_genre",
"COMEDY"
],
[
"ALI G INDAHOUSE",
"release_year",
"2002"
],
[
"ALL ABOUT THE BENJAMINS",
"has_genre",
"COMEDY"
],
[
"ALL ABOUT THE BENJAMINS",
"has_tags",
"COMEDY"
],
[
"ALL ABOUT THE BENJAMINS",
"release_year",
"2002"
],
[
"ALL IS BRIGHT",
"has_genre",
"COMEDY"
],
[
"ALL IS BRIGHT",
"has_genre",
"DRAMA"
],
[
"ANALYZE THAT",
"has_genre",
"COMEDY"
],
[
"ANALYZE THAT",
"has_tags",
"COMEDY"
],
[
"ANALYZE THAT",
"release_year",
"2002"
],
[
"AS COOL AS I AM",
"has_genre",
"COMEDY"
],
[
"AS COOL AS I AM",
"has_genre",
"DRAMA"
],
[
"AUSTIN POWERS IN GOLDMEMBER",
"has_genre",
"COMEDY"
],
[
"AUSTIN POWERS IN GOLDMEMBER",
"has_tags",
"COMEDY"
],
[
"AUSTIN POWERS IN GOLDMEMBER",
"release_year",
"2002"
],
[
"AVENGING ANGELO",
"has_genre",
"COMEDY"
],
[
"AVENGING ANGELO",
"release_year",
"2002"
],
[
"BAD COMPANY",
"has_genre",
"COMEDY"
],
[
"BAD COMPANY",
"release_year",
"2002"
],
[
"BARBERSHOP",
"has_genre",
"COMEDY"
],
[
"BARBERSHOP",
"release_year",
"2002"
],
[
"BEND IT LIKE BECKHAM",
"has_genre",
"COMEDY"
],
[
"BEND IT LIKE BECKHAM",
"has_genre",
"DRAMA"
],
[
"BEND IT LIKE BECKHAM",
"release_year",
"2002"
],
[
"BIG FAT LIAR",
"has_genre",
"COMEDY"
],
[
"BIG FAT LIAR",
"release_year",
"2002"
],
[
"BIG TROUBLE",
"has_genre",
"COMEDY"
],
[
"BIG TROUBLE",
"release_year",
"2002"
],
[
"BOAT TRIP",
"has_genre",
"COMEDY"
],
[
"BOAT TRIP",
"release_year",
"2002"
],
[
"BUBBA HO-TEP",
"has_genre",
"COMEDY"
],
[
"BUBBA HO-TEP",
"has_tags",
"COMEDY"
],
[
"BUBBA HO-TEP",
"release_year",
"2002"
],
[
"BUYING THE COW",
"has_genre",
"COMEDY"
],
[
"BUYING THE COW",
"release_year",
"2002"
],
[
"CABIN FEVER",
"has_genre",
"COMEDY"
],
[
"CABIN FEVER",
"release_year",
"2002"
],
[
"CARNAGE",
"has_genre",
"COMEDY"
],
[
"CARNAGE",
"has_genre",
"DRAMA"
],
[
"CARNAGE",
"release_year",
"2002"
],
[
"CHERISH",
"has_genre",
"COMEDY"
],
[
"CHERISH",
"has_genre",
"DRAMA"
],
[
"CHERISH",
"release_year",
"2002"
],
[
"CHICAGO",
"has_genre",
"COMEDY"
],
[
"CHICAGO",
"has_genre",
"DRAMA"
],
[
"CHICAGO",
"release_year",
"2002"
],
[
"CHINESE ODYSSEY 2002",
"has_genre",
"COMEDY"
],
[
"CHINESE ODYSSEY 2002",
"release_year",
"2002"
],
[
"CLOSER TO THE MOON",
"has_genre",
"COMEDY"
],
[
"CLOSER TO THE MOON",
"has_genre",
"DRAMA"
],
[
"CLOSER TO THE MOON",
"has_tags",
"COMEDY"
],
[
"CRACKERJACK",
"has_genre",
"COMEDY"
],
[
"CRACKERJACK",
"release_year",
"2002"
],
[
"CROSSROADS",
"has_genre",
"COMEDY"
],
[
"CROSSROADS",
"has_genre",
"DRAMA"
],
[
"CROSSROADS",
"release_year",
"2002"
],
[
"DAY OF THE WACKO",
"has_genre",
"COMEDY"
],
[
"DAY OF THE WACKO",
"has_genre",
"DRAMA"
],
[
"DAY OF THE WACKO",
"release_year",
"2002"
],
[
"DEATH TO SMOOCHY",
"has_genre",
"COMEDY"
],
[
"DEATH TO SMOOCHY",
"release_year",
"2002"
],
[
"DELIVERY MAN",
"has_genre",
"COMEDY"
],
[
"DELIVERY MAN",
"has_genre",
"DRAMA"
],
[
"DELIVERY MAN",
"has_tags",
"DRAMA"
],
[
"DIRTY DEEDS",
"has_genre",
"COMEDY"
],
[
"DIRTY DEEDS",
"has_tags",
"COMEDY"
],
[
"DIRTY DEEDS",
"release_year",
"2002"
],
[
"DOM HEMINGWAY",
"has_genre",
"COMEDY"
],
[
"DOM HEMINGWAY",
"has_genre",
"DRAMA"
],
[
"DON JON",
"has_genre",
"COMEDY"
],
[
"DON JON",
"has_genre",
"DRAMA"
],
[
"DUMMY",
"has_genre",
"COMEDY"
],
[
"DUMMY",
"has_genre",
"DRAMA"
],
[
"DUMMY",
"release_year",
"2002"
],
[
"EIGHT CRAZY NIGHTS",
"has_genre",
"COMEDY"
],
[
"EIGHT CRAZY NIGHTS",
"release_year",
"2002"
],
[
"EIGHT LEGGED FREAKS",
"has_genre",
"COMEDY"
],
[
"EIGHT LEGGED FREAKS",
"release_year",
"2002"
],
[
"FILTH",
"has_genre",
"COMEDY"
],
[
"FILTH",
"has_genre",
"DRAMA"
],
[
"FRANK MCKLUSKY, C.I.",
"has_genre",
"COMEDY"
],
[
"FRANK MCKLUSKY, C.I.",
"release_year",
"2002"
],
[
"FRIDAY AFTER NEXT",
"has_genre",
"COMEDY"
],
[
"FRIDAY AFTER NEXT",
"release_year",
"2002"
],
[
"FROZEN",
"has_genre",
"COMEDY"
],
[
"FROZEN",
"has_genre",
"DRAMA"
],
[
"GREGORY GO BOOM",
"has_genre",
"COMEDY"
],
[
"GREGORY GO BOOM",
"has_genre",
"DRAMA"
],
[
"HEARTLANDS",
"has_genre",
"COMEDY"
],
[
"HEARTLANDS",
"has_genre",
"DRAMA"
],
[
"HEARTLANDS",
"release_year",
"2002"
],
[
"HERO",
"has_genre",
"COMEDY"
],
[
"HERO",
"has_genre",
"DRAMA"
],
[
"HERO",
"release_year",
"2002"
],
[
"HOME ALONE 4",
"has_genre",
"COMEDY"
],
[
"HOME ALONE 4",
"release_year",
"2002"
],
[
"HOME ROOM",
"release_year",
"2002"
],
[
"I SPY",
"has_genre",
"COMEDY"
],
[
"I SPY",
"has_tags",
"COMEDY"
],
[
"I SPY",
"release_year",
"2002"
],
[
"I'M WITH LUCY",
"has_genre",
"COMEDY"
],
[
"I'M WITH LUCY",
"release_year",
"2002"
],
[
"ICE AGE",
"has_genre",
"COMEDY"
],
[
"ICE AGE",
"has_tags",
"COMEDY"
],
[
"ICE AGE",
"release_year",
"2002"
],
[
"IGBY GOES DOWN",
"has_genre",
"COMEDY"
],
[
"IGBY GOES DOWN",
"has_genre",
"DRAMA"
],
[
"IGBY GOES DOWN",
"release_year",
"2002"
],
[
"INSTRUCTIONS NOT INCLUDED",
"has_genre",
"COMEDY"
],
[
"INSTRUCTIONS NOT INCLUDED",
"has_genre",
"DRAMA"
],
[
"JUST A KISS",
"has_genre",
"COMEDY"
],
[
"JUST A KISS",
"release_year",
"2002"
],
[
"JUWANNA MANN",
"has_genre",
"COMEDY"
],
[
"JUWANNA MANN",
"release_year",
"2002"
],
[
"KAL HO NAA HO",
"has_genre",
"COMEDY"
],
[
"KAL HO NAA HO",
"has_genre",
"DRAMA"
],
[
"KISS THE BRIDE",
"has_genre",
"COMEDY"
],
[
"KISS THE BRIDE",
"release_year",
"2002"
],
[
"LIFE OR SOMETHING LIKE IT",
"has_genre",
"COMEDY"
],
[
"LIFE OR SOMETHING LIKE IT",
"release_year",
"2002"
],
[
"LIFE WITHOUT DICK",
"has_genre",
"COMEDY"
],
[
"LIFE WITHOUT DICK",
"release_year",
"2002"
],
[
"LOVE LIZA",
"has_genre",
"COMEDY"
],
[
"LOVE LIZA",
"release_year",
"2002"
],
[
"MAID IN MANHATTAN",
"has_genre",
"COMEDY"
],
[
"MAID IN MANHATTAN",
"release_year",
"2002"
],
[
"MEN WITH BROOMS",
"has_genre",
"COMEDY"
],
[
"MEN WITH BROOMS",
"release_year",
"2002"
],
[
"MIRANDA",
"has_genre",
"COMEDY"
],
[
"MIRANDA",
"release_year",
"2002"
],
[
"MR. DEEDS",
"has_genre",
"COMEDY"
],
[
"MR. DEEDS",
"release_year",
"2002"
],
[
"MY BIG FAT GREEK WEDDING",
"has_genre",
"COMEDY"
],
[
"MY BIG FAT GREEK WEDDING",
"has_tags",
"COMEDY"
],
[
"MY BIG FAT GREEK WEDDING",
"release_year",
"2002"
],
[
"MY LEFT EYE SEES GHOSTS",
"has_genre",
"COMEDY"
],
[
"MY LEFT EYE SEES GHOSTS",
"release_year",
"2002"
],
[
"MY MOTHER LIKES WOMEN",
"has_genre",
"COMEDY"
],
[
"MY MOTHER LIKES WOMEN",
"release_year",
"2002"
],
[
"NOVO",
"has_genre",
"COMEDY"
],
[
"NOVO",
"release_year",
"2002"
],
[
"NOW YOU KNOW",
"has_genre",
"COMEDY"
],
[
"NOW YOU KNOW",
"release_year",
"2002"
],
[
"OCCIDENT",
"has_genre",
"COMEDY"
],
[
"OCCIDENT",
"release_year",
"2002"
],
[
"ONCE UPON A TIME IN THE MIDLANDS",
"has_genre",
"COMEDY"
],
[
"ONCE UPON A TIME IN THE MIDLANDS",
"release_year",
"2002"
],
[
"ONE CHANCE",
"has_genre",
"COMEDY"
],
[
"ONE CHANCE",
"has_genre",
"DRAMA"
],
[
"ORANGE COUNTY",
"has_genre",
"COMEDY"
],
[
"ORANGE COUNTY",
"release_year",
"2002"
],
[
"PARADISE",
"has_genre",
"COMEDY"
],
[
"PARADISE",
"has_genre",
"DRAMA"
],
[
"PASSIONADA",
"has_genre",
"COMEDY"
],
[
"PASSIONADA",
"release_year",
"2002"
],
[
"PIPE DREAM",
"has_genre",
"COMEDY"
],
[
"PIPE DREAM",
"release_year",
"2002"
],
[
"PRINCE AVALANCHE",
"has_genre",
"COMEDY"
],
[
"PRINCE AVALANCHE",
"has_genre",
"DRAMA"
],
[
"PUMPKIN",
"has_genre",
"COMEDY"
],
[
"PUMPKIN",
"release_year",
"2002"
],
[
"PUNCH-DRUNK LOVE",
"has_genre",
"COMEDY"
],
[
"PUNCH-DRUNK LOVE",
"has_genre",
"DRAMA"
],
[
"PUNCH-DRUNK LOVE",
"has_tags",
"COMEDY"
],
[
"PUNCH-DRUNK LOVE",
"release_year",
"2002"
],
[
"R.S.V.P.",
"has_genre",
"COMEDY"
],
[
"R.S.V.P.",
"release_year",
"2002"
],
[
"ROGER DODGER",
"has_genre",
"COMEDY"
],
[
"ROGER DODGER",
"has_genre",
"DRAMA"
],
[
"ROGER DODGER",
"release_year",
"2002"
],
[
"SAVING MR. BANKS",
"has_genre",
"COMEDY"
],
[
"SAVING MR. BANKS",
"has_genre",
"DRAMA"
],
[
"SCOOBY-DOO",
"has_genre",
"COMEDY"
],
[
"SCOOBY-DOO",
"release_year",
"2002"
],
[
"SCREWED IN TALLINN",
"has_genre",
"COMEDY"
],
[
"SCREWED IN TALLINN",
"has_genre",
"DRAMA"
],
[
"SERVING SARA",
"has_genre",
"COMEDY"
],
[
"SERVING SARA",
"release_year",
"2002"
],
[
"SEX IS COMEDY",
"has_genre",
"COMEDY"
],
[
"SEX IS COMEDY",
"release_year",
"2002"
],
[
"SHOWTIME",
"has_genre",
"COMEDY"
],
[
"SHOWTIME",
"release_year",
"2002"
],
[
"SLACKERS",
"has_genre",
"COMEDY"
],
[
"SLACKERS",
"release_year",
"2002"
],
[
"SNOW DOGS",
"has_genre",
"COMEDY"
],
[
"SNOW DOGS",
"release_year",
"2002"
],
[
"SORORITY BOYS",
"has_genre",
"COMEDY"
],
[
"SORORITY BOYS",
"release_year",
"2002"
],
[
"SPUN",
"has_genre",
"COMEDY"
],
[
"SPUN",
"has_genre",
"DRAMA"
],
[
"SPUN",
"release_year",
"2002"
],
[
"STEALING HARVARD",
"has_genre",
"COMEDY"
],
[
"STEALING HARVARD",
"release_year",
"2002"
],
[
"SUPER SUCKER",
"has_genre",
"COMEDY"
],
[
"SUPER SUCKER",
"release_year",
"2002"
],
[
"SWEET HOME ALABAMA",
"has_genre",
"COMEDY"
],
[
"SWEET HOME ALABAMA",
"release_year",
"2002"
],
[
"SWEPT AWAY",
"has_genre",
"COMEDY"
],
[
"SWEPT AWAY",
"has_genre",
"DRAMA"
],
[
"SWEPT AWAY",
"release_year",
"2002"
],
[
"THE ADVENTURES OF PLUTO NASH",
"has_genre",
"COMEDY"
],
[
"THE ADVENTURES OF PLUTO NASH",
"release_year",
"2002"
],
[
"THE AMAZING CATFISH",
"has_genre",
"COMEDY"
],
[
"THE AMAZING CATFISH",
"has_genre",
"DRAMA"
],
[
"THE ANARCHIST COOKBOOK",
"has_genre",
"COMEDY"
],
[
"THE ANARCHIST COOKBOOK",
"has_genre",
"DRAMA"
],
[
"THE ANARCHIST COOKBOOK",
"release_year",
"2002"
],
[
"THE BANGER SISTERS",
"has_genre",
"COMEDY"
],
[
"THE BANGER SISTERS",
"release_year",
"2002"
],
[
"THE CUCKOO",
"has_genre",
"COMEDY"
],
[
"THE CUCKOO",
"has_genre",
"DRAMA"
],
[
"THE CUCKOO",
"release_year",
"2002"
],
[
"THE DANGEROUS LIVES OF ALTAR BOYS",
"has_genre",
"COMEDY"
],
[
"THE DANGEROUS LIVES OF ALTAR BOYS",
"has_genre",
"DRAMA"
],
[
"THE DANGEROUS LIVES OF ALTAR BOYS",
"release_year",
"2002"
],
[
"THE GOOD GIRL",
"has_genre",
"COMEDY"
],
[
"THE GOOD GIRL",
"release_year",
"2002"
],
[
"THE GURU",
"has_genre",
"COMEDY"
],
[
"THE GURU",
"release_year",
"2002"
],
[
"THE HOT CHICK",
"has_genre",
"COMEDY"
],
[
"THE HOT CHICK",
"has_tags",
"COMEDY"
],
[
"THE HOT CHICK",
"release_year",
"2002"
],
[
"THE IMPORTANCE OF BEING EARNEST",
"has_genre",
"COMEDY"
],
[
"THE IMPORTANCE OF BEING EARNEST",
"has_genre",
"DRAMA"
],
[
"THE IMPORTANCE OF BEING EARNEST",
"release_year",
"2002"
],
[
"THE MAN WITHOUT A PAST",
"has_genre",
"COMEDY"
],
[
"THE MAN WITHOUT A PAST",
"has_genre",
"DRAMA"
],
[
"THE MAN WITHOUT A PAST",
"has_tags",
"DRAMA"
],
[
"THE MAN WITHOUT A PAST",
"release_year",
"2002"
],
[
"THE MASTER OF DISGUISE",
"has_genre",
"COMEDY"
],
[
"THE MASTER OF DISGUISE",
"release_year",
"2002"
],
[
"THE NEW GUY",
"has_genre",
"COMEDY"
],
[
"THE NEW GUY",
"release_year",
"2002"
],
[
"THE ONE AND ONLY",
"has_genre",
"COMEDY"
],
[
"THE ONE AND ONLY",
"release_year",
"2002"
],
[
"THE PRETTY ONE",
"has_genre",
"COMEDY"
],
[
"THE PRETTY ONE",
"has_genre",
"DRAMA"
],
[
"THE REUNION",
"directed_by",
"ANNA ODELL"
],
[
"THE REUNION",
"has_genre",
"DRAMA"
],
[
"THE REUNION",
"written_by",
"ANNA ODELL"
],
[
"THE RULES OF ATTRACTION",
"has_genre",
"COMEDY"
],
[
"THE RULES OF ATTRACTION",
"has_genre",
"DRAMA"
],
[
"THE RULES OF ATTRACTION",
"release_year",
"2002"
],
[
"THE SECRET LIFE OF WALTER MITTY",
"has_genre",
"COMEDY"
],
[
"THE SECRET LIFE OF WALTER MITTY",
"has_genre",
"DRAMA"
],
[
"THE SPECTACULAR NOW",
"has_genre",
"COMEDY"
],
[
"THE SPECTACULAR NOW",
"has_genre",
"DRAMA"
],
[
"THE SWEETEST THING",
"has_genre",
"COMEDY"
],
[
"THE SWEETEST THING",
"has_tags",
"COMEDY"
],
[
"THE SWEETEST THING",
"release_year",
"2002"
],
[
"THE TUXEDO",
"has_genre",
"COMEDY"
],
[
"THE TUXEDO",
"has_tags",
"COMEDY"
],
[
"THE TUXEDO",
"release_year",
"2002"
],
[
"THE WAY WAY BACK",
"has_genre",
"COMEDY"
],
[
"THE WAY WAY BACK",
"has_genre",
"DRAMA"
],
[
"THE WAY WAY BACK",
"has_tags",
"DRAMA"
],
[
"TOGETHER",
"has_genre",
"COMEDY"
],
[
"TOGETHER",
"has_genre",
"DRAMA"
],
[
"TRIGGERMEN",
"has_genre",
"COMEDY"
],
[
"TRIGGERMEN",
"release_year",
"2002"
],
[
"TRUST ME",
"has_genre",
"COMEDY"
],
[
"TRUST ME",
"has_genre",
"DRAMA"
],
[
"TWO WEEKS NOTICE",
"has_genre",
"COMEDY"
],
[
"TWO WEEKS NOTICE",
"release_year",
"2002"
],
[
"UNCONDITIONAL LOVE",
"has_genre",
"COMEDY"
],
[
"UNCONDITIONAL LOVE",
"release_year",
"2002"
],
[
"UNDERCOVER BROTHER",
"has_genre",
"COMEDY"
],
[
"UNDERCOVER BROTHER",
"release_year",
"2002"
],
[
"WAKING UP IN RENO",
"has_genre",
"COMEDY"
],
[
"WAKING UP IN RENO",
"release_year",
"2002"
],
[
"WELCOME TO COLLINWOOD",
"has_genre",
"COMEDY"
],
[
"WELCOME TO COLLINWOOD",
"has_tags",
"COMEDY"
],
[
"WELCOME TO COLLINWOOD",
"release_year",
"2002"
],
[
"WHEN IN ROME",
"has_genre",
"COMEDY"
],
[
"WHEN IN ROME",
"release_year",
"2002"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
10702, 1991
10830, JÖRG BUTTGEREIT
14714, K2
38235, NEKROMANTIK 2
24916, PATRICK MEYERS
36578, THE PEOPLE UNDER THE STAIRS
src, edge_attr, dst
14714, release_year, 10702
14714, written_by, 24916
38235, directed_by, 10830
38235, release_year, 10702
38235, starred_actors, 10830
38235, written_by, 10830
36578, release_year, 10702
Question: For what reason are JÖRG BUTTGEREIT, PATRICK MEYERS, and THE PEOPLE UNDER THE STAIRS associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JÖRG BUTTGEREIT",
"PATRICK MEYERS",
"THE PEOPLE UNDER THE STAIRS"
],
"valid_edges": [
[
"K2",
"release_year",
"1991"
],
[
"K2",
"written_by",
"PATRICK MEYERS"
],
[
"NEKROMANTIK 2",
"directed_by",
"JÖRG BUTTGEREIT"
],
[
"NEKROMANTIK 2",
"release_year",
"1991"
],
[
"NEKROMANTIK 2",
"starred_actors",
"JÖRG BUTTGEREIT"
],
[
"NEKROMANTIK 2",
"written_by",
"JÖRG BUTTGEREIT"
],
[
"THE PEOPLE UNDER THE STAIRS",
"release_year",
"1991"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
37168, 15TH CENTURY
6925, 1966
39094, ANDREI RUBLEV
30330, CLEAVANT DERRICKS
38118, MOSCOW ON THE HUDSON
30659, PATRICK WYMARK
16206, RUSSIAN
37079, THE PSYCHOPATH
src, edge_attr, dst
39094, has_tags, 37168
39094, has_tags, 16206
39094, in_language, 16206
39094, release_year, 6925
38118, in_language, 16206
38118, starred_actors, 30330
37079, release_year, 6925
37079, starred_actors, 30659
Question: For what reason are 15TH CENTURY, CLEAVANT DERRICKS, and PATRICK WYMARK associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"15TH CENTURY",
"CLEAVANT DERRICKS",
"PATRICK WYMARK"
],
"valid_edges": [
[
"ANDREI RUBLEV",
"has_tags",
"15TH CENTURY"
],
[
"ANDREI RUBLEV",
"has_tags",
"RUSSIAN"
],
[
"ANDREI RUBLEV",
"in_language",
"RUSSIAN"
],
[
"ANDREI RUBLEV",
"release_year",
"1966"
],
[
"MOSCOW ON THE HUDSON",
"in_language",
"RUSSIAN"
],
[
"MOSCOW ON THE HUDSON",
"starred_actors",
"CLEAVANT DERRICKS"
],
[
"THE PSYCHOPATH",
"release_year",
"1966"
],
[
"THE PSYCHOPATH",
"starred_actors",
"PATRICK WYMARK"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35747, 1408
6216, 1952
35063, 1976
1421, 2013
33779, A HAUNTED HOUSE
36766, A HAUNTING AT SILVER FALLS
18644, A RESURRECTION
7327, ALL CHEERLEADERS DIE
36810, AN AMERICAN HAUNTING
9782, BANSHEE CHAPTER
34701, BENEATH
24456, BLOOD GLACIER
8065, BRIAN DE PALMA
5851, BURNT OFFERINGS
24454, CARRIE
32401, CAST A DEADLY SPELL
28328, CAT'S EYE
9241, CHASTITY BITES
5741, CHILDREN OF THE CORN
35713, CHLOË GRACE MORETZ
24443, CHRISTINE
40079, CONTRACTED
22349, CRAWLSPACE
30260, CREEPSHOW
19984, CREEPSHOW 2
25956, CUJO
4964, CURSE OF CHUCKY
33372, DARK SKIES
31257, DARK TOUCH
3093, DEAD IN TOMBSTONE
25528, DEVIL'S PASS
39647, DON PORTER
30262, DRACULA
35978, DREAMCATCHER
35855, ESCAPE FROM TOMORROW
23129, EVIL DEAD
10355, FRANKENSTEIN'S ARMY
23822, GOD TOLD ME TO
33104, HAUNT
14366, HAUNTER
798, HELL BABY
5870, HORROR
10147, HOUSE
32245, I SPIT ON YOUR GRAVE 2
39172, IN FEAR
39767, JUG FACE
14429, JULIANNE MOORE
2687, LAURENCE OLIVIER
29987, LET ME IN
24015, LORD OF TEARS
29898, MAMA
3129, MAXIMUM OVERDRIVE
33165, MISCHIEF NIGHT
7625, MISERY
21188, MR. JONES
13716, NOTHING LEFT TO FEAR
13530, NURSE 3D
848, OCULUS
28917, PET SEMATARY
19296, PROXY
3322, QUICKSILVER HIGHWAY
32894, RIDING THE BULLET
23082, RIGOR MORTIS
19611, SHE-WOLF OF LONDON
30671, SILVER BULLET
29168, SISSY SPACEK
19479, SISTERS
16247, SLEEPWALKERS
16551, SQUIRM
23284, STEPHEN KING
29841, THE BIRDS
16442, THE COLLECTOR
21288, THE COLONY
7853, THE CONJURING
25979, THE DARK HALF
26351, THE DEAD ZONE
28279, THE HUMAN RACE
17331, THE LAST DAYS ON MARS
12833, THE LAST EXORCISM PART II
10379, THE LAWNMOWER MAN
26566, THE MANGLER
33919, THE MIST
21784, THE MONKEY'S PAW
40021, THE NIGHT FLIER
17910, THE OMEN
6427, THE PURGE
13106, THE SACRAMENT
19018, THE SHINING
30502, THE WHITE REINDEER
10423, THE WITCH WHO CAME FROM THE SEA
7808, THINNER
1657, TIPPI HEDREN
20875, TO THE DEVIL A DAUGHTER
27476, TORMENT
17409, TRICK OR TREAT
34305, V/H/S/2
18049, WE ARE WHAT WE ARE
5553, WELCOME TO THE JUNGLE
26506, WER
24046, WEREWOLF WOMAN
22737, WICKED LITTLE THINGS
10486, WILLIAM KATT
29732, WILLIAM WYLER
33045, WOLF CREEK 2
20105, WORLD WAR Z
src, edge_attr, dst
35747, has_genre, 5870
35747, has_tags, 5870
35747, has_tags, 23284
35747, written_by, 23284
33779, has_genre, 5870
33779, release_year, 1421
36766, has_genre, 5870
36766, release_year, 1421
18644, has_genre, 5870
18644, release_year, 1421
7327, has_genre, 5870
7327, release_year, 1421
36810, has_genre, 5870
36810, starred_actors, 29168
9782, has_genre, 5870
9782, release_year, 1421
34701, has_genre, 5870
34701, release_year, 1421
24456, has_genre, 5870
24456, release_year, 1421
5851, has_genre, 5870
5851, release_year, 35063
24454, directed_by, 8065
24454, directed_by, 29732
24454, has_genre, 5870
24454, has_tags, 8065
24454, has_tags, 5870
24454, has_tags, 29168
24454, has_tags, 23284
24454, has_tags, 29732
24454, release_year, 6216
24454, release_year, 35063
24454, release_year, 1421
24454, starred_actors, 35713
24454, starred_actors, 14429
24454, starred_actors, 2687
24454, starred_actors, 29168
24454, starred_actors, 10486
24454, written_by, 23284
32401, has_genre, 5870
32401, starred_actors, 14429
28328, has_genre, 5870
28328, has_tags, 23284
28328, written_by, 23284
9241, has_genre, 5870
9241, release_year, 1421
5741, has_genre, 5870
5741, has_tags, 23284
5741, written_by, 23284
24443, has_genre, 5870
24443, has_tags, 23284
24443, written_by, 23284
40079, has_genre, 5870
40079, release_year, 1421
22349, has_genre, 5870
22349, release_year, 1421
30260, has_genre, 5870
30260, written_by, 23284
19984, has_genre, 5870
19984, has_tags, 23284
19984, written_by, 23284
25956, has_genre, 5870
25956, has_tags, 23284
25956, written_by, 23284
4964, has_genre, 5870
4964, has_tags, 5870
4964, release_year, 1421
33372, has_genre, 5870
33372, release_year, 1421
31257, has_genre, 5870
31257, release_year, 1421
3093, has_genre, 5870
3093, release_year, 1421
25528, has_genre, 5870
25528, release_year, 1421
30262, has_genre, 5870
30262, has_tags, 5870
30262, starred_actors, 2687
35978, has_genre, 5870
35978, has_tags, 23284
35978, written_by, 23284
35855, has_genre, 5870
35855, release_year, 1421
23129, has_genre, 5870
23129, has_tags, 5870
23129, release_year, 1421
10355, has_genre, 5870
10355, release_year, 1421
23822, has_genre, 5870
23822, release_year, 35063
33104, has_genre, 5870
33104, release_year, 1421
14366, has_genre, 5870
14366, release_year, 1421
798, has_genre, 5870
798, has_tags, 5870
798, release_year, 1421
10147, has_genre, 5870
10147, starred_actors, 10486
32245, has_genre, 5870
32245, release_year, 1421
39172, has_genre, 5870
39172, release_year, 1421
39767, has_genre, 5870
39767, release_year, 1421
29987, has_genre, 5870
29987, has_tags, 5870
29987, starred_actors, 35713
24015, has_genre, 5870
24015, release_year, 1421
29898, has_genre, 5870
29898, has_tags, 5870
29898, release_year, 1421
3129, directed_by, 23284
3129, has_genre, 5870
3129, has_tags, 23284
3129, written_by, 23284
33165, has_genre, 5870
33165, release_year, 1421
7625, has_tags, 5870
7625, has_tags, 23284
7625, written_by, 23284
21188, has_genre, 5870
21188, release_year, 1421
13716, has_genre, 5870
13716, release_year, 1421
13530, has_genre, 5870
13530, release_year, 1421
848, has_genre, 5870
848, release_year, 1421
28917, has_genre, 5870
28917, has_tags, 5870
28917, has_tags, 23284
28917, written_by, 23284
19296, has_genre, 5870
19296, release_year, 1421
3322, has_genre, 5870
3322, written_by, 23284
32894, has_genre, 5870
32894, has_tags, 23284
32894, written_by, 23284
23082, has_genre, 5870
23082, release_year, 1421
19611, has_genre, 5870
19611, starred_actors, 39647
30671, has_genre, 5870
30671, has_tags, 23284
30671, written_by, 23284
19479, directed_by, 8065
19479, has_genre, 5870
19479, has_tags, 8065
19479, written_by, 8065
16247, has_genre, 5870
16247, has_tags, 5870
16247, has_tags, 23284
16247, written_by, 23284
16551, has_genre, 5870
16551, release_year, 35063
29841, has_genre, 5870
29841, has_tags, 5870
29841, has_tags, 1657
29841, starred_actors, 1657
16442, directed_by, 29732
16442, has_genre, 5870
16442, has_tags, 29732
21288, has_genre, 5870
21288, release_year, 1421
7853, has_genre, 5870
7853, has_tags, 5870
7853, release_year, 1421
25979, has_genre, 5870
25979, has_tags, 23284
25979, written_by, 23284
26351, has_genre, 5870
26351, has_tags, 23284
26351, written_by, 23284
28279, has_genre, 5870
28279, release_year, 1421
17331, has_genre, 5870
17331, release_year, 1421
12833, has_genre, 5870
12833, release_year, 1421
10379, has_genre, 5870
10379, written_by, 23284
26566, has_genre, 5870
26566, has_tags, 5870
26566, has_tags, 23284
26566, written_by, 23284
33919, has_genre, 5870
33919, has_tags, 23284
33919, written_by, 23284
21784, has_genre, 5870
21784, release_year, 1421
40021, has_genre, 5870
40021, written_by, 23284
17910, has_genre, 5870
17910, has_tags, 5870
17910, release_year, 35063
6427, has_genre, 5870
6427, release_year, 1421
13106, has_genre, 5870
13106, has_tags, 5870
13106, release_year, 1421
19018, has_genre, 5870
19018, has_tags, 5870
19018, has_tags, 23284
19018, written_by, 23284
30502, has_genre, 5870
30502, release_year, 6216
10423, has_genre, 5870
10423, release_year, 35063
7808, has_genre, 5870
7808, has_tags, 23284
7808, written_by, 23284
20875, has_genre, 5870
20875, release_year, 35063
27476, has_genre, 5870
27476, release_year, 1421
17409, has_genre, 5870
17409, release_year, 6216
34305, has_genre, 5870
34305, has_tags, 5870
34305, release_year, 1421
18049, has_genre, 5870
18049, has_tags, 5870
18049, release_year, 1421
5553, has_genre, 5870
5553, release_year, 1421
26506, has_genre, 5870
26506, release_year, 1421
24046, has_genre, 5870
24046, release_year, 35063
22737, has_genre, 5870
22737, starred_actors, 35713
33045, has_genre, 5870
33045, release_year, 1421
20105, has_genre, 5870
20105, release_year, 1421
Question: In what context are CARRIE, DON PORTER, and TIPPI HEDREN connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"CARRIE",
"DON PORTER",
"TIPPI HEDREN"
],
"valid_edges": [
[
"1408",
"has_genre",
"HORROR"
],
[
"1408",
"has_tags",
"HORROR"
],
[
"1408",
"has_tags",
"STEPHEN KING"
],
[
"1408",
"written_by",
"STEPHEN KING"
],
[
"A HAUNTED HOUSE",
"has_genre",
"HORROR"
],
[
"A HAUNTED HOUSE",
"release_year",
"2013"
],
[
"A HAUNTING AT SILVER FALLS",
"has_genre",
"HORROR"
],
[
"A HAUNTING AT SILVER FALLS",
"release_year",
"2013"
],
[
"A RESURRECTION",
"has_genre",
"HORROR"
],
[
"A RESURRECTION",
"release_year",
"2013"
],
[
"ALL CHEERLEADERS DIE",
"has_genre",
"HORROR"
],
[
"ALL CHEERLEADERS DIE",
"release_year",
"2013"
],
[
"AN AMERICAN HAUNTING",
"has_genre",
"HORROR"
],
[
"AN AMERICAN HAUNTING",
"starred_actors",
"SISSY SPACEK"
],
[
"BANSHEE CHAPTER",
"has_genre",
"HORROR"
],
[
"BANSHEE CHAPTER",
"release_year",
"2013"
],
[
"BENEATH",
"has_genre",
"HORROR"
],
[
"BENEATH",
"release_year",
"2013"
],
[
"BLOOD GLACIER",
"has_genre",
"HORROR"
],
[
"BLOOD GLACIER",
"release_year",
"2013"
],
[
"BURNT OFFERINGS",
"has_genre",
"HORROR"
],
[
"BURNT OFFERINGS",
"release_year",
"1976"
],
[
"CARRIE",
"directed_by",
"BRIAN DE PALMA"
],
[
"CARRIE",
"directed_by",
"WILLIAM WYLER"
],
[
"CARRIE",
"has_genre",
"HORROR"
],
[
"CARRIE",
"has_tags",
"BRIAN DE PALMA"
],
[
"CARRIE",
"has_tags",
"HORROR"
],
[
"CARRIE",
"has_tags",
"SISSY SPACEK"
],
[
"CARRIE",
"has_tags",
"STEPHEN KING"
],
[
"CARRIE",
"has_tags",
"WILLIAM WYLER"
],
[
"CARRIE",
"release_year",
"1952"
],
[
"CARRIE",
"release_year",
"1976"
],
[
"CARRIE",
"release_year",
"2013"
],
[
"CARRIE",
"starred_actors",
"CHLOË GRACE MORETZ"
],
[
"CARRIE",
"starred_actors",
"JULIANNE MOORE"
],
[
"CARRIE",
"starred_actors",
"LAURENCE OLIVIER"
],
[
"CARRIE",
"starred_actors",
"SISSY SPACEK"
],
[
"CARRIE",
"starred_actors",
"WILLIAM KATT"
],
[
"CARRIE",
"written_by",
"STEPHEN KING"
],
[
"CAST A DEADLY SPELL",
"has_genre",
"HORROR"
],
[
"CAST A DEADLY SPELL",
"starred_actors",
"JULIANNE MOORE"
],
[
"CAT'S EYE",
"has_genre",
"HORROR"
],
[
"CAT'S EYE",
"has_tags",
"STEPHEN KING"
],
[
"CAT'S EYE",
"written_by",
"STEPHEN KING"
],
[
"CHASTITY BITES",
"has_genre",
"HORROR"
],
[
"CHASTITY BITES",
"release_year",
"2013"
],
[
"CHILDREN OF THE CORN",
"has_genre",
"HORROR"
],
[
"CHILDREN OF THE CORN",
"has_tags",
"STEPHEN KING"
],
[
"CHILDREN OF THE CORN",
"written_by",
"STEPHEN KING"
],
[
"CHRISTINE",
"has_genre",
"HORROR"
],
[
"CHRISTINE",
"has_tags",
"STEPHEN KING"
],
[
"CHRISTINE",
"written_by",
"STEPHEN KING"
],
[
"CONTRACTED",
"has_genre",
"HORROR"
],
[
"CONTRACTED",
"release_year",
"2013"
],
[
"CRAWLSPACE",
"has_genre",
"HORROR"
],
[
"CRAWLSPACE",
"release_year",
"2013"
],
[
"CREEPSHOW",
"has_genre",
"HORROR"
],
[
"CREEPSHOW",
"written_by",
"STEPHEN KING"
],
[
"CREEPSHOW 2",
"has_genre",
"HORROR"
],
[
"CREEPSHOW 2",
"has_tags",
"STEPHEN KING"
],
[
"CREEPSHOW 2",
"written_by",
"STEPHEN KING"
],
[
"CUJO",
"has_genre",
"HORROR"
],
[
"CUJO",
"has_tags",
"STEPHEN KING"
],
[
"CUJO",
"written_by",
"STEPHEN KING"
],
[
"CURSE OF CHUCKY",
"has_genre",
"HORROR"
],
[
"CURSE OF CHUCKY",
"has_tags",
"HORROR"
],
[
"CURSE OF CHUCKY",
"release_year",
"2013"
],
[
"DARK SKIES",
"has_genre",
"HORROR"
],
[
"DARK SKIES",
"release_year",
"2013"
],
[
"DARK TOUCH",
"has_genre",
"HORROR"
],
[
"DARK TOUCH",
"release_year",
"2013"
],
[
"DEAD IN TOMBSTONE",
"has_genre",
"HORROR"
],
[
"DEAD IN TOMBSTONE",
"release_year",
"2013"
],
[
"DEVIL'S PASS",
"has_genre",
"HORROR"
],
[
"DEVIL'S PASS",
"release_year",
"2013"
],
[
"DRACULA",
"has_genre",
"HORROR"
],
[
"DRACULA",
"has_tags",
"HORROR"
],
[
"DRACULA",
"starred_actors",
"LAURENCE OLIVIER"
],
[
"DREAMCATCHER",
"has_genre",
"HORROR"
],
[
"DREAMCATCHER",
"has_tags",
"STEPHEN KING"
],
[
"DREAMCATCHER",
"written_by",
"STEPHEN KING"
],
[
"ESCAPE FROM TOMORROW",
"has_genre",
"HORROR"
],
[
"ESCAPE FROM TOMORROW",
"release_year",
"2013"
],
[
"EVIL DEAD",
"has_genre",
"HORROR"
],
[
"EVIL DEAD",
"has_tags",
"HORROR"
],
[
"EVIL DEAD",
"release_year",
"2013"
],
[
"FRANKENSTEIN'S ARMY",
"has_genre",
"HORROR"
],
[
"FRANKENSTEIN'S ARMY",
"release_year",
"2013"
],
[
"GOD TOLD ME TO",
"has_genre",
"HORROR"
],
[
"GOD TOLD ME TO",
"release_year",
"1976"
],
[
"HAUNT",
"has_genre",
"HORROR"
],
[
"HAUNT",
"release_year",
"2013"
],
[
"HAUNTER",
"has_genre",
"HORROR"
],
[
"HAUNTER",
"release_year",
"2013"
],
[
"HELL BABY",
"has_genre",
"HORROR"
],
[
"HELL BABY",
"has_tags",
"HORROR"
],
[
"HELL BABY",
"release_year",
"2013"
],
[
"HOUSE",
"has_genre",
"HORROR"
],
[
"HOUSE",
"starred_actors",
"WILLIAM KATT"
],
[
"I SPIT ON YOUR GRAVE 2",
"has_genre",
"HORROR"
],
[
"I SPIT ON YOUR GRAVE 2",
"release_year",
"2013"
],
[
"IN FEAR",
"has_genre",
"HORROR"
],
[
"IN FEAR",
"release_year",
"2013"
],
[
"JUG FACE",
"has_genre",
"HORROR"
],
[
"JUG FACE",
"release_year",
"2013"
],
[
"LET ME IN",
"has_genre",
"HORROR"
],
[
"LET ME IN",
"has_tags",
"HORROR"
],
[
"LET ME IN",
"starred_actors",
"CHLOË GRACE MORETZ"
],
[
"LORD OF TEARS",
"has_genre",
"HORROR"
],
[
"LORD OF TEARS",
"release_year",
"2013"
],
[
"MAMA",
"has_genre",
"HORROR"
],
[
"MAMA",
"has_tags",
"HORROR"
],
[
"MAMA",
"release_year",
"2013"
],
[
"MAXIMUM OVERDRIVE",
"directed_by",
"STEPHEN KING"
],
[
"MAXIMUM OVERDRIVE",
"has_genre",
"HORROR"
],
[
"MAXIMUM OVERDRIVE",
"has_tags",
"STEPHEN KING"
],
[
"MAXIMUM OVERDRIVE",
"written_by",
"STEPHEN KING"
],
[
"MISCHIEF NIGHT",
"has_genre",
"HORROR"
],
[
"MISCHIEF NIGHT",
"release_year",
"2013"
],
[
"MISERY",
"has_tags",
"HORROR"
],
[
"MISERY",
"has_tags",
"STEPHEN KING"
],
[
"MISERY",
"written_by",
"STEPHEN KING"
],
[
"MR. JONES",
"has_genre",
"HORROR"
],
[
"MR. JONES",
"release_year",
"2013"
],
[
"NOTHING LEFT TO FEAR",
"has_genre",
"HORROR"
],
[
"NOTHING LEFT TO FEAR",
"release_year",
"2013"
],
[
"NURSE 3D",
"has_genre",
"HORROR"
],
[
"NURSE 3D",
"release_year",
"2013"
],
[
"OCULUS",
"has_genre",
"HORROR"
],
[
"OCULUS",
"release_year",
"2013"
],
[
"PET SEMATARY",
"has_genre",
"HORROR"
],
[
"PET SEMATARY",
"has_tags",
"HORROR"
],
[
"PET SEMATARY",
"has_tags",
"STEPHEN KING"
],
[
"PET SEMATARY",
"written_by",
"STEPHEN KING"
],
[
"PROXY",
"has_genre",
"HORROR"
],
[
"PROXY",
"release_year",
"2013"
],
[
"QUICKSILVER HIGHWAY",
"has_genre",
"HORROR"
],
[
"QUICKSILVER HIGHWAY",
"written_by",
"STEPHEN KING"
],
[
"RIDING THE BULLET",
"has_genre",
"HORROR"
],
[
"RIDING THE BULLET",
"has_tags",
"STEPHEN KING"
],
[
"RIDING THE BULLET",
"written_by",
"STEPHEN KING"
],
[
"RIGOR MORTIS",
"has_genre",
"HORROR"
],
[
"RIGOR MORTIS",
"release_year",
"2013"
],
[
"SHE-WOLF OF LONDON",
"has_genre",
"HORROR"
],
[
"SHE-WOLF OF LONDON",
"starred_actors",
"DON PORTER"
],
[
"SILVER BULLET",
"has_genre",
"HORROR"
],
[
"SILVER BULLET",
"has_tags",
"STEPHEN KING"
],
[
"SILVER BULLET",
"written_by",
"STEPHEN KING"
],
[
"SISTERS",
"directed_by",
"BRIAN DE PALMA"
],
[
"SISTERS",
"has_genre",
"HORROR"
],
[
"SISTERS",
"has_tags",
"BRIAN DE PALMA"
],
[
"SISTERS",
"written_by",
"BRIAN DE PALMA"
],
[
"SLEEPWALKERS",
"has_genre",
"HORROR"
],
[
"SLEEPWALKERS",
"has_tags",
"HORROR"
],
[
"SLEEPWALKERS",
"has_tags",
"STEPHEN KING"
],
[
"SLEEPWALKERS",
"written_by",
"STEPHEN KING"
],
[
"SQUIRM",
"has_genre",
"HORROR"
],
[
"SQUIRM",
"release_year",
"1976"
],
[
"THE BIRDS",
"has_genre",
"HORROR"
],
[
"THE BIRDS",
"has_tags",
"HORROR"
],
[
"THE BIRDS",
"has_tags",
"TIPPI HEDREN"
],
[
"THE BIRDS",
"starred_actors",
"TIPPI HEDREN"
],
[
"THE COLLECTOR",
"directed_by",
"WILLIAM WYLER"
],
[
"THE COLLECTOR",
"has_genre",
"HORROR"
],
[
"THE COLLECTOR",
"has_tags",
"WILLIAM WYLER"
],
[
"THE COLONY",
"has_genre",
"HORROR"
],
[
"THE COLONY",
"release_year",
"2013"
],
[
"THE CONJURING",
"has_genre",
"HORROR"
],
[
"THE CONJURING",
"has_tags",
"HORROR"
],
[
"THE CONJURING",
"release_year",
"2013"
],
[
"THE DARK HALF",
"has_genre",
"HORROR"
],
[
"THE DARK HALF",
"has_tags",
"STEPHEN KING"
],
[
"THE DARK HALF",
"written_by",
"STEPHEN KING"
],
[
"THE DEAD ZONE",
"has_genre",
"HORROR"
],
[
"THE DEAD ZONE",
"has_tags",
"STEPHEN KING"
],
[
"THE DEAD ZONE",
"written_by",
"STEPHEN KING"
],
[
"THE HUMAN RACE",
"has_genre",
"HORROR"
],
[
"THE HUMAN RACE",
"release_year",
"2013"
],
[
"THE LAST DAYS ON MARS",
"has_genre",
"HORROR"
],
[
"THE LAST DAYS ON MARS",
"release_year",
"2013"
],
[
"THE LAST EXORCISM PART II",
"has_genre",
"HORROR"
],
[
"THE LAST EXORCISM PART II",
"release_year",
"2013"
],
[
"THE LAWNMOWER MAN",
"has_genre",
"HORROR"
],
[
"THE LAWNMOWER MAN",
"written_by",
"STEPHEN KING"
],
[
"THE MANGLER",
"has_genre",
"HORROR"
],
[
"THE MANGLER",
"has_tags",
"HORROR"
],
[
"THE MANGLER",
"has_tags",
"STEPHEN KING"
],
[
"THE MANGLER",
"written_by",
"STEPHEN KING"
],
[
"THE MIST",
"has_genre",
"HORROR"
],
[
"THE MIST",
"has_tags",
"STEPHEN KING"
],
[
"THE MIST",
"written_by",
"STEPHEN KING"
],
[
"THE MONKEY'S PAW",
"has_genre",
"HORROR"
],
[
"THE MONKEY'S PAW",
"release_year",
"2013"
],
[
"THE NIGHT FLIER",
"has_genre",
"HORROR"
],
[
"THE NIGHT FLIER",
"written_by",
"STEPHEN KING"
],
[
"THE OMEN",
"has_genre",
"HORROR"
],
[
"THE OMEN",
"has_tags",
"HORROR"
],
[
"THE OMEN",
"release_year",
"1976"
],
[
"THE PURGE",
"has_genre",
"HORROR"
],
[
"THE PURGE",
"release_year",
"2013"
],
[
"THE SACRAMENT",
"has_genre",
"HORROR"
],
[
"THE SACRAMENT",
"has_tags",
"HORROR"
],
[
"THE SACRAMENT",
"release_year",
"2013"
],
[
"THE SHINING",
"has_genre",
"HORROR"
],
[
"THE SHINING",
"has_tags",
"HORROR"
],
[
"THE SHINING",
"has_tags",
"STEPHEN KING"
],
[
"THE SHINING",
"written_by",
"STEPHEN KING"
],
[
"THE WHITE REINDEER",
"has_genre",
"HORROR"
],
[
"THE WHITE REINDEER",
"release_year",
"1952"
],
[
"THE WITCH WHO CAME FROM THE SEA",
"has_genre",
"HORROR"
],
[
"THE WITCH WHO CAME FROM THE SEA",
"release_year",
"1976"
],
[
"THINNER",
"has_genre",
"HORROR"
],
[
"THINNER",
"has_tags",
"STEPHEN KING"
],
[
"THINNER",
"written_by",
"STEPHEN KING"
],
[
"TO THE DEVIL A DAUGHTER",
"has_genre",
"HORROR"
],
[
"TO THE DEVIL A DAUGHTER",
"release_year",
"1976"
],
[
"TORMENT",
"has_genre",
"HORROR"
],
[
"TORMENT",
"release_year",
"2013"
],
[
"TRICK OR TREAT",
"has_genre",
"HORROR"
],
[
"TRICK OR TREAT",
"release_year",
"1952"
],
[
"V/H/S/2",
"has_genre",
"HORROR"
],
[
"V/H/S/2",
"has_tags",
"HORROR"
],
[
"V/H/S/2",
"release_year",
"2013"
],
[
"WE ARE WHAT WE ARE",
"has_genre",
"HORROR"
],
[
"WE ARE WHAT WE ARE",
"has_tags",
"HORROR"
],
[
"WE ARE WHAT WE ARE",
"release_year",
"2013"
],
[
"WELCOME TO THE JUNGLE",
"has_genre",
"HORROR"
],
[
"WELCOME TO THE JUNGLE",
"release_year",
"2013"
],
[
"WER",
"has_genre",
"HORROR"
],
[
"WER",
"release_year",
"2013"
],
[
"WEREWOLF WOMAN",
"has_genre",
"HORROR"
],
[
"WEREWOLF WOMAN",
"release_year",
"1976"
],
[
"WICKED LITTLE THINGS",
"has_genre",
"HORROR"
],
[
"WICKED LITTLE THINGS",
"starred_actors",
"CHLOË GRACE MORETZ"
],
[
"WOLF CREEK 2",
"has_genre",
"HORROR"
],
[
"WOLF CREEK 2",
"release_year",
"2013"
],
[
"WORLD WAR Z",
"has_genre",
"HORROR"
],
[
"WORLD WAR Z",
"release_year",
"2013"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
1567, 1954
2133, 1998
6094, A CLOCKWORK ORANGE
19635, A TRUE MOB STORY
39208, APPOINTMENT WITH DEATH
30204, BAFFLED!
19633, BIRTHDAY GIRL
10218, BLACK WIDOW
6469, BODY COUNT
40039, BRAVE NEW WORLD
26884, BROWN'S REQUIEM
8313, CAUGHT UP
36568, CLAY PIGEONS
14724, CRIME
19328, CRIME WAVE
31527, DAD SAVAGE
34528, DARK CITY
23396, DIAL M FOR MURDER
20848, EARL CAMERON
8026, END OF THE GAME
31783, ENGLISH
19728, EVILENKO
6943, FALLEN
16516, FIFTY DEAD MEN WALKING
1033, FRACTURE
13308, FREEDOMLAND
3553, GODZILLA
31603, GORILLA AT LARGE
8046, GOSFORD PARK
38953, HIDEOUS KINKY
22006, I WANT YOU
28169, IN THE CUT
978, INFERNAL AFFAIRS
20264, JAIL BAIT
27661, JOHNNY SKIDMARKS
38160, JOURNEY TO ITALY
3743, JUDAS KISS
34878, LADY ON A TRAIN
14601, LES MISÉRABLES
38721, LOCK, STOCK AND TWO SMOKING BARRELS
34362, LULU ON THE BRIDGE
22792, MICHAEL WINTERBOTTOM
1454, MICKEY BLUE EYES
3487, MINORITY REPORT
10883, MONTANA
6137, MONUMENT AVE.
23695, MULAN
11311, MURDER ON THE ORIENT EXPRESS
15145, MYSTERY
35498, MYSTERY OF THE 13TH GUEST
7925, MYSTERY ROAD
30629, NIGHT NURSE
35865, ON THE WATERFRONT
15481, ONE TOUGH COP
4235, OUT OF SIGHT
8509, PASSION
19622, PHOENIX
39462, POOL OF LONDON
28091, PSYCHO
38043, PUSHER
1643, RISE OF THE FOOTSOLDIER
38195, ROBINSON CRUSOE
5362, ROUNDERS
32607, RUSH HOUR
8020, SAFE MEN
32487, SAPPHIRE
8436, SPIRITS OF THE DEAD
33414, SWEET SIXTEEN
32730, TALK OF ANGELS
14696, THE BIG LEBOWSKI
38918, THE FAMILY
4068, THE GENERAL
31283, THE HOUND OF THE BASKERVILLES
6870, THE KILLER INSIDE ME
28177, THE KRAYS
4091, THE LADY VANISHES
13050, THE LEGEND OF 1900
21696, THE MAN FROM LONDON
12887, THE MIRROR CRACK'D
30294, THE NIGHT OF THE GENERALS
37490, THE PERFECT MURDER
40086, THE PLACE BEYOND THE PINES
30014, THE RAID 2
8660, THE RECKONING
3275, THE REPLACEMENT KILLERS
19255, THE VALACHI PAPERS
14962, THE WATCHER IN THE WOODS
33585, THURSDAY
6485, TRIXIE
308, TRUE CRIME
10238, UNDERWORLD
10133, UNKNOWN
4736, WHERE'S MARLOWE?
8390, WHISTLING IN DIXIE
24960, WILD THINGS
31862, WONDERLAND
37210, ZODIAC
17777, ZULU
src, edge_attr, dst
6094, has_genre, 14724
6094, in_language, 31783
19635, has_genre, 14724
19635, release_year, 2133
39208, has_genre, 14724
39208, has_genre, 15145
30204, has_genre, 15145
30204, in_language, 31783
19633, has_genre, 14724
19633, in_language, 31783
10218, has_genre, 14724
10218, has_genre, 15145
10218, has_tags, 14724
10218, release_year, 1567
6469, has_genre, 14724
6469, release_year, 2133
40039, in_language, 31783
40039, release_year, 2133
26884, has_genre, 14724
26884, release_year, 2133
8313, has_genre, 14724
8313, release_year, 2133
36568, has_genre, 14724
36568, release_year, 2133
19328, has_genre, 14724
19328, release_year, 1567
31527, in_language, 31783
31527, release_year, 2133
34528, has_genre, 15145
34528, release_year, 2133
23396, has_genre, 14724
23396, in_language, 31783
23396, release_year, 1567
8026, has_genre, 14724
8026, in_language, 31783
19728, has_genre, 14724
19728, in_language, 31783
6943, has_genre, 14724
6943, release_year, 2133
16516, has_tags, 14724
16516, in_language, 31783
1033, has_genre, 14724
1033, has_genre, 15145
13308, has_genre, 14724
13308, has_genre, 15145
3553, release_year, 1567
3553, release_year, 2133
31603, has_genre, 15145
31603, release_year, 1567
8046, has_genre, 15145
8046, in_language, 31783
38953, in_language, 31783
38953, release_year, 2133
22006, directed_by, 22792
22006, has_genre, 14724
22006, in_language, 31783
22006, release_year, 2133
28169, has_genre, 15145
28169, in_language, 31783
978, has_genre, 14724
978, in_language, 31783
20264, has_genre, 14724
20264, release_year, 1567
27661, has_genre, 15145
27661, release_year, 2133
38160, in_language, 31783
38160, release_year, 1567
3743, has_genre, 14724
3743, release_year, 2133
34878, has_genre, 14724
34878, has_genre, 15145
14601, in_language, 31783
14601, release_year, 2133
38721, has_genre, 14724
38721, has_tags, 14724
38721, release_year, 2133
34362, has_genre, 15145
34362, release_year, 2133
1454, has_genre, 14724
1454, in_language, 31783
3487, has_genre, 15145
3487, has_tags, 14724
3487, has_tags, 15145
10883, has_genre, 14724
10883, release_year, 2133
6137, has_genre, 14724
6137, release_year, 2133
23695, in_language, 31783
23695, release_year, 2133
11311, has_genre, 14724
11311, has_genre, 15145
11311, has_tags, 15145
35498, has_genre, 14724
35498, has_genre, 15145
7925, has_genre, 14724
7925, has_genre, 15145
30629, has_genre, 14724
30629, has_genre, 15145
35865, has_genre, 14724
35865, release_year, 1567
15481, has_genre, 14724
15481, release_year, 2133
4235, has_genre, 14724
4235, release_year, 2133
8509, has_genre, 14724
8509, in_language, 31783
19622, has_genre, 14724
19622, release_year, 2133
39462, has_genre, 14724
39462, starred_actors, 20848
28091, has_genre, 15145
28091, has_tags, 15145
28091, release_year, 2133
38043, has_genre, 14724
38043, in_language, 31783
1643, has_genre, 14724
1643, has_tags, 14724
1643, in_language, 31783
38195, in_language, 31783
38195, release_year, 1567
5362, has_genre, 14724
5362, release_year, 2133
32607, has_tags, 14724
32607, release_year, 2133
8020, has_genre, 14724
8020, release_year, 2133
32487, has_genre, 14724
32487, has_genre, 15145
32487, in_language, 31783
8436, has_genre, 15145
8436, in_language, 31783
33414, has_genre, 14724
33414, in_language, 31783
32730, in_language, 31783
32730, release_year, 2133
14696, has_genre, 14724
14696, has_tags, 14724
14696, release_year, 2133
38918, has_genre, 14724
38918, in_language, 31783
4068, has_genre, 14724
4068, release_year, 2133
31283, has_genre, 14724
31283, has_genre, 15145
6870, directed_by, 22792
6870, has_genre, 14724
6870, has_tags, 22792
28177, has_genre, 14724
28177, in_language, 31783
4091, has_genre, 15145
4091, in_language, 31783
13050, in_language, 31783
13050, release_year, 2133
21696, has_genre, 14724
21696, in_language, 31783
12887, has_genre, 14724
12887, has_genre, 15145
30294, has_genre, 14724
30294, has_genre, 15145
37490, has_tags, 14724
37490, in_language, 31783
40086, has_genre, 14724
40086, in_language, 31783
30014, has_genre, 14724
30014, in_language, 31783
8660, has_genre, 14724
8660, has_genre, 15145
3275, has_genre, 14724
3275, release_year, 2133
19255, has_genre, 14724
19255, in_language, 31783
14962, has_genre, 15145
14962, in_language, 31783
33585, has_genre, 14724
33585, release_year, 2133
6485, has_genre, 14724
6485, has_genre, 15145
308, has_genre, 14724
308, has_genre, 15145
10238, has_genre, 14724
10238, in_language, 31783
10133, has_genre, 14724
10133, in_language, 31783
4736, has_genre, 15145
4736, release_year, 2133
8390, has_genre, 14724
8390, has_genre, 15145
24960, has_genre, 14724
24960, release_year, 2133
31862, directed_by, 22792
31862, has_genre, 14724
31862, has_tags, 22792
37210, has_genre, 14724
37210, has_genre, 15145
37210, has_tags, 14724
17777, has_genre, 14724
17777, in_language, 31783
Question: In what context are EARL CAMERON, GORILLA AT LARGE, and I WANT YOU connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"EARL CAMERON",
"GORILLA AT LARGE",
"I WANT YOU"
],
"valid_edges": [
[
"A CLOCKWORK ORANGE",
"has_genre",
"CRIME"
],
[
"A CLOCKWORK ORANGE",
"in_language",
"ENGLISH"
],
[
"A TRUE MOB STORY",
"has_genre",
"CRIME"
],
[
"A TRUE MOB STORY",
"release_year",
"1998"
],
[
"APPOINTMENT WITH DEATH",
"has_genre",
"CRIME"
],
[
"APPOINTMENT WITH DEATH",
"has_genre",
"MYSTERY"
],
[
"BAFFLED!",
"has_genre",
"MYSTERY"
],
[
"BAFFLED!",
"in_language",
"ENGLISH"
],
[
"BIRTHDAY GIRL",
"has_genre",
"CRIME"
],
[
"BIRTHDAY GIRL",
"in_language",
"ENGLISH"
],
[
"BLACK WIDOW",
"has_genre",
"CRIME"
],
[
"BLACK WIDOW",
"has_genre",
"MYSTERY"
],
[
"BLACK WIDOW",
"has_tags",
"CRIME"
],
[
"BLACK WIDOW",
"release_year",
"1954"
],
[
"BODY COUNT",
"has_genre",
"CRIME"
],
[
"BODY COUNT",
"release_year",
"1998"
],
[
"BRAVE NEW WORLD",
"in_language",
"ENGLISH"
],
[
"BRAVE NEW WORLD",
"release_year",
"1998"
],
[
"BROWN'S REQUIEM",
"has_genre",
"CRIME"
],
[
"BROWN'S REQUIEM",
"release_year",
"1998"
],
[
"CAUGHT UP",
"has_genre",
"CRIME"
],
[
"CAUGHT UP",
"release_year",
"1998"
],
[
"CLAY PIGEONS",
"has_genre",
"CRIME"
],
[
"CLAY PIGEONS",
"release_year",
"1998"
],
[
"CRIME WAVE",
"has_genre",
"CRIME"
],
[
"CRIME WAVE",
"release_year",
"1954"
],
[
"DAD SAVAGE",
"in_language",
"ENGLISH"
],
[
"DAD SAVAGE",
"release_year",
"1998"
],
[
"DARK CITY",
"has_genre",
"MYSTERY"
],
[
"DARK CITY",
"release_year",
"1998"
],
[
"DIAL M FOR MURDER",
"has_genre",
"CRIME"
],
[
"DIAL M FOR MURDER",
"in_language",
"ENGLISH"
],
[
"DIAL M FOR MURDER",
"release_year",
"1954"
],
[
"END OF THE GAME",
"has_genre",
"CRIME"
],
[
"END OF THE GAME",
"in_language",
"ENGLISH"
],
[
"EVILENKO",
"has_genre",
"CRIME"
],
[
"EVILENKO",
"in_language",
"ENGLISH"
],
[
"FALLEN",
"has_genre",
"CRIME"
],
[
"FALLEN",
"release_year",
"1998"
],
[
"FIFTY DEAD MEN WALKING",
"has_tags",
"CRIME"
],
[
"FIFTY DEAD MEN WALKING",
"in_language",
"ENGLISH"
],
[
"FRACTURE",
"has_genre",
"CRIME"
],
[
"FRACTURE",
"has_genre",
"MYSTERY"
],
[
"FREEDOMLAND",
"has_genre",
"CRIME"
],
[
"FREEDOMLAND",
"has_genre",
"MYSTERY"
],
[
"GODZILLA",
"release_year",
"1954"
],
[
"GODZILLA",
"release_year",
"1998"
],
[
"GORILLA AT LARGE",
"has_genre",
"MYSTERY"
],
[
"GORILLA AT LARGE",
"release_year",
"1954"
],
[
"GOSFORD PARK",
"has_genre",
"MYSTERY"
],
[
"GOSFORD PARK",
"in_language",
"ENGLISH"
],
[
"HIDEOUS KINKY",
"in_language",
"ENGLISH"
],
[
"HIDEOUS KINKY",
"release_year",
"1998"
],
[
"I WANT YOU",
"directed_by",
"MICHAEL WINTERBOTTOM"
],
[
"I WANT YOU",
"has_genre",
"CRIME"
],
[
"I WANT YOU",
"in_language",
"ENGLISH"
],
[
"I WANT YOU",
"release_year",
"1998"
],
[
"IN THE CUT",
"has_genre",
"MYSTERY"
],
[
"IN THE CUT",
"in_language",
"ENGLISH"
],
[
"INFERNAL AFFAIRS",
"has_genre",
"CRIME"
],
[
"INFERNAL AFFAIRS",
"in_language",
"ENGLISH"
],
[
"JAIL BAIT",
"has_genre",
"CRIME"
],
[
"JAIL BAIT",
"release_year",
"1954"
],
[
"JOHNNY SKIDMARKS",
"has_genre",
"MYSTERY"
],
[
"JOHNNY SKIDMARKS",
"release_year",
"1998"
],
[
"JOURNEY TO ITALY",
"in_language",
"ENGLISH"
],
[
"JOURNEY TO ITALY",
"release_year",
"1954"
],
[
"JUDAS KISS",
"has_genre",
"CRIME"
],
[
"JUDAS KISS",
"release_year",
"1998"
],
[
"LADY ON A TRAIN",
"has_genre",
"CRIME"
],
[
"LADY ON A TRAIN",
"has_genre",
"MYSTERY"
],
[
"LES MISÉRABLES",
"in_language",
"ENGLISH"
],
[
"LES MISÉRABLES",
"release_year",
"1998"
],
[
"LOCK, STOCK AND TWO SMOKING BARRELS",
"has_genre",
"CRIME"
],
[
"LOCK, STOCK AND TWO SMOKING BARRELS",
"has_tags",
"CRIME"
],
[
"LOCK, STOCK AND TWO SMOKING BARRELS",
"release_year",
"1998"
],
[
"LULU ON THE BRIDGE",
"has_genre",
"MYSTERY"
],
[
"LULU ON THE BRIDGE",
"release_year",
"1998"
],
[
"MICKEY BLUE EYES",
"has_genre",
"CRIME"
],
[
"MICKEY BLUE EYES",
"in_language",
"ENGLISH"
],
[
"MINORITY REPORT",
"has_genre",
"MYSTERY"
],
[
"MINORITY REPORT",
"has_tags",
"CRIME"
],
[
"MINORITY REPORT",
"has_tags",
"MYSTERY"
],
[
"MONTANA",
"has_genre",
"CRIME"
],
[
"MONTANA",
"release_year",
"1998"
],
[
"MONUMENT AVE.",
"has_genre",
"CRIME"
],
[
"MONUMENT AVE.",
"release_year",
"1998"
],
[
"MULAN",
"in_language",
"ENGLISH"
],
[
"MULAN",
"release_year",
"1998"
],
[
"MURDER ON THE ORIENT EXPRESS",
"has_genre",
"CRIME"
],
[
"MURDER ON THE ORIENT EXPRESS",
"has_genre",
"MYSTERY"
],
[
"MURDER ON THE ORIENT EXPRESS",
"has_tags",
"MYSTERY"
],
[
"MYSTERY OF THE 13TH GUEST",
"has_genre",
"CRIME"
],
[
"MYSTERY OF THE 13TH GUEST",
"has_genre",
"MYSTERY"
],
[
"MYSTERY ROAD",
"has_genre",
"CRIME"
],
[
"MYSTERY ROAD",
"has_genre",
"MYSTERY"
],
[
"NIGHT NURSE",
"has_genre",
"CRIME"
],
[
"NIGHT NURSE",
"has_genre",
"MYSTERY"
],
[
"ON THE WATERFRONT",
"has_genre",
"CRIME"
],
[
"ON THE WATERFRONT",
"release_year",
"1954"
],
[
"ONE TOUGH COP",
"has_genre",
"CRIME"
],
[
"ONE TOUGH COP",
"release_year",
"1998"
],
[
"OUT OF SIGHT",
"has_genre",
"CRIME"
],
[
"OUT OF SIGHT",
"release_year",
"1998"
],
[
"PASSION",
"has_genre",
"CRIME"
],
[
"PASSION",
"in_language",
"ENGLISH"
],
[
"PHOENIX",
"has_genre",
"CRIME"
],
[
"PHOENIX",
"release_year",
"1998"
],
[
"POOL OF LONDON",
"has_genre",
"CRIME"
],
[
"POOL OF LONDON",
"starred_actors",
"EARL CAMERON"
],
[
"PSYCHO",
"has_genre",
"MYSTERY"
],
[
"PSYCHO",
"has_tags",
"MYSTERY"
],
[
"PSYCHO",
"release_year",
"1998"
],
[
"PUSHER",
"has_genre",
"CRIME"
],
[
"PUSHER",
"in_language",
"ENGLISH"
],
[
"RISE OF THE FOOTSOLDIER",
"has_genre",
"CRIME"
],
[
"RISE OF THE FOOTSOLDIER",
"has_tags",
"CRIME"
],
[
"RISE OF THE FOOTSOLDIER",
"in_language",
"ENGLISH"
],
[
"ROBINSON CRUSOE",
"in_language",
"ENGLISH"
],
[
"ROBINSON CRUSOE",
"release_year",
"1954"
],
[
"ROUNDERS",
"has_genre",
"CRIME"
],
[
"ROUNDERS",
"release_year",
"1998"
],
[
"RUSH HOUR",
"has_tags",
"CRIME"
],
[
"RUSH HOUR",
"release_year",
"1998"
],
[
"SAFE MEN",
"has_genre",
"CRIME"
],
[
"SAFE MEN",
"release_year",
"1998"
],
[
"SAPPHIRE",
"has_genre",
"CRIME"
],
[
"SAPPHIRE",
"has_genre",
"MYSTERY"
],
[
"SAPPHIRE",
"in_language",
"ENGLISH"
],
[
"SPIRITS OF THE DEAD",
"has_genre",
"MYSTERY"
],
[
"SPIRITS OF THE DEAD",
"in_language",
"ENGLISH"
],
[
"SWEET SIXTEEN",
"has_genre",
"CRIME"
],
[
"SWEET SIXTEEN",
"in_language",
"ENGLISH"
],
[
"TALK OF ANGELS",
"in_language",
"ENGLISH"
],
[
"TALK OF ANGELS",
"release_year",
"1998"
],
[
"THE BIG LEBOWSKI",
"has_genre",
"CRIME"
],
[
"THE BIG LEBOWSKI",
"has_tags",
"CRIME"
],
[
"THE BIG LEBOWSKI",
"release_year",
"1998"
],
[
"THE FAMILY",
"has_genre",
"CRIME"
],
[
"THE FAMILY",
"in_language",
"ENGLISH"
],
[
"THE GENERAL",
"has_genre",
"CRIME"
],
[
"THE GENERAL",
"release_year",
"1998"
],
[
"THE HOUND OF THE BASKERVILLES",
"has_genre",
"CRIME"
],
[
"THE HOUND OF THE BASKERVILLES",
"has_genre",
"MYSTERY"
],
[
"THE KILLER INSIDE ME",
"directed_by",
"MICHAEL WINTERBOTTOM"
],
[
"THE KILLER INSIDE ME",
"has_genre",
"CRIME"
],
[
"THE KILLER INSIDE ME",
"has_tags",
"MICHAEL WINTERBOTTOM"
],
[
"THE KRAYS",
"has_genre",
"CRIME"
],
[
"THE KRAYS",
"in_language",
"ENGLISH"
],
[
"THE LADY VANISHES",
"has_genre",
"MYSTERY"
],
[
"THE LADY VANISHES",
"in_language",
"ENGLISH"
],
[
"THE LEGEND OF 1900",
"in_language",
"ENGLISH"
],
[
"THE LEGEND OF 1900",
"release_year",
"1998"
],
[
"THE MAN FROM LONDON",
"has_genre",
"CRIME"
],
[
"THE MAN FROM LONDON",
"in_language",
"ENGLISH"
],
[
"THE MIRROR CRACK'D",
"has_genre",
"CRIME"
],
[
"THE MIRROR CRACK'D",
"has_genre",
"MYSTERY"
],
[
"THE NIGHT OF THE GENERALS",
"has_genre",
"CRIME"
],
[
"THE NIGHT OF THE GENERALS",
"has_genre",
"MYSTERY"
],
[
"THE PERFECT MURDER",
"has_tags",
"CRIME"
],
[
"THE PERFECT MURDER",
"in_language",
"ENGLISH"
],
[
"THE PLACE BEYOND THE PINES",
"has_genre",
"CRIME"
],
[
"THE PLACE BEYOND THE PINES",
"in_language",
"ENGLISH"
],
[
"THE RAID 2",
"has_genre",
"CRIME"
],
[
"THE RAID 2",
"in_language",
"ENGLISH"
],
[
"THE RECKONING",
"has_genre",
"CRIME"
],
[
"THE RECKONING",
"has_genre",
"MYSTERY"
],
[
"THE REPLACEMENT KILLERS",
"has_genre",
"CRIME"
],
[
"THE REPLACEMENT KILLERS",
"release_year",
"1998"
],
[
"THE VALACHI PAPERS",
"has_genre",
"CRIME"
],
[
"THE VALACHI PAPERS",
"in_language",
"ENGLISH"
],
[
"THE WATCHER IN THE WOODS",
"has_genre",
"MYSTERY"
],
[
"THE WATCHER IN THE WOODS",
"in_language",
"ENGLISH"
],
[
"THURSDAY",
"has_genre",
"CRIME"
],
[
"THURSDAY",
"release_year",
"1998"
],
[
"TRIXIE",
"has_genre",
"CRIME"
],
[
"TRIXIE",
"has_genre",
"MYSTERY"
],
[
"TRUE CRIME",
"has_genre",
"CRIME"
],
[
"TRUE CRIME",
"has_genre",
"MYSTERY"
],
[
"UNDERWORLD",
"has_genre",
"CRIME"
],
[
"UNDERWORLD",
"in_language",
"ENGLISH"
],
[
"UNKNOWN",
"has_genre",
"CRIME"
],
[
"UNKNOWN",
"in_language",
"ENGLISH"
],
[
"WHERE'S MARLOWE?",
"has_genre",
"MYSTERY"
],
[
"WHERE'S MARLOWE?",
"release_year",
"1998"
],
[
"WHISTLING IN DIXIE",
"has_genre",
"CRIME"
],
[
"WHISTLING IN DIXIE",
"has_genre",
"MYSTERY"
],
[
"WILD THINGS",
"has_genre",
"CRIME"
],
[
"WILD THINGS",
"release_year",
"1998"
],
[
"WONDERLAND",
"directed_by",
"MICHAEL WINTERBOTTOM"
],
[
"WONDERLAND",
"has_genre",
"CRIME"
],
[
"WONDERLAND",
"has_tags",
"MICHAEL WINTERBOTTOM"
],
[
"ZODIAC",
"has_genre",
"CRIME"
],
[
"ZODIAC",
"has_genre",
"MYSTERY"
],
[
"ZODIAC",
"has_tags",
"CRIME"
],
[
"ZULU",
"has_genre",
"CRIME"
],
[
"ZULU",
"in_language",
"ENGLISH"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
26257, 1994
1006, 1996
35798, 2010
7698, ANIMATED
24177, ANIMATION
14271, BEETHOVEN
19826, BLACK DEATH
15757, BRIAN LEVANT
722, CHARACTERS
14728, CLASSIC
20883, DEATH
37059, DEATH AT A FUNERAL
10509, FAMILY
22958, FAMOUS
36066, FANTASY
18521, FLY AWAY HOME
15959, FRANK OZ
11565, GOOD
28307, HARRY AND THE HENDERSONS
34869, HOTEL TRANSYLVANIA
16200, ITALIAN
4798, JINGLE ALL THE WAY
7690, JOHN LITHGOW
26784, LITTLE WOMEN
4011, LOST IN SPACE
3764, MARMADUKE
19691, MAUDE T. HOWELL
15413, MONSTERS
37497, NATIONAL FILM REGISTRY
14026, PINOCCHIO
13081, R
32533, SCIENCE FICTION
24467, SPEED RACER
30812, THE DARK CRYSTAL
26726, THE DIARY OF ANNE FRANK
17956, THE FLINTSTONES
35551, THE GODFATHER
37999, THE MAN WHO PLAYED GOD
18537, THE SPY NEXT DOOR
12162, YOU CAN COUNT ON ME
src, edge_attr, dst
35798, has_tags, 7690
35798, has_tags, 32533
35798, starred_actors, 7690
14271, directed_by, 15757
14271, has_genre, 10509
14271, has_tags, 15757
14271, has_tags, 10509
19826, release_year, 35798
37059, directed_by, 15959
37059, has_tags, 20883
37059, has_tags, 10509
37059, has_tags, 15959
37059, has_tags, 13081
37059, release_year, 35798
18521, has_genre, 10509
18521, has_tags, 20883
18521, release_year, 1006
28307, has_genre, 10509
28307, has_genre, 36066
28307, has_tags, 10509
28307, has_tags, 7690
28307, starred_actors, 7690
34869, has_genre, 24177
34869, has_genre, 10509
34869, has_imdb_votes, 22958
34869, has_tags, 7698
34869, has_tags, 24177
34869, has_tags, 15413
4798, directed_by, 15757
4798, has_genre, 10509
4798, has_tags, 15757
4798, release_year, 1006
26784, has_genre, 10509
26784, has_imdb_rating, 11565
26784, has_tags, 722
26784, has_tags, 14728
26784, release_year, 26257
4011, has_genre, 10509
4011, has_tags, 32533
3764, has_genre, 10509
3764, release_year, 35798
15413, release_year, 35798
14026, has_genre, 24177
14026, has_genre, 10509
14026, has_genre, 36066
14026, has_imdb_rating, 11565
14026, has_tags, 7698
14026, has_tags, 24177
14026, has_tags, 722
14026, has_tags, 14728
14026, has_tags, 36066
14026, has_tags, 37497
14026, in_language, 16200
24467, has_genre, 10509
24467, has_imdb_rating, 11565
30812, directed_by, 15959
30812, has_genre, 10509
30812, has_imdb_votes, 22958
30812, has_tags, 36066
30812, has_tags, 15959
30812, starred_actors, 15959
26726, has_genre, 10509
26726, has_imdb_rating, 11565
17956, directed_by, 15757
17956, has_genre, 10509
17956, has_tags, 15757
17956, release_year, 26257
35551, has_tags, 10509
35551, has_tags, 16200
35551, has_tags, 37497
35551, has_tags, 13081
35551, in_language, 16200
37999, has_imdb_rating, 11565
37999, written_by, 19691
18537, directed_by, 15757
18537, has_genre, 10509
18537, release_year, 35798
12162, has_tags, 10509
12162, has_tags, 13081
Question: How are BLACK DEATH, FAMILY, and MAUDE T. HOWELL related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BLACK DEATH",
"FAMILY",
"MAUDE T. HOWELL"
],
"valid_edges": [
[
"2010",
"has_tags",
"JOHN LITHGOW"
],
[
"2010",
"has_tags",
"SCIENCE FICTION"
],
[
"2010",
"starred_actors",
"JOHN LITHGOW"
],
[
"BEETHOVEN",
"directed_by",
"BRIAN LEVANT"
],
[
"BEETHOVEN",
"has_genre",
"FAMILY"
],
[
"BEETHOVEN",
"has_tags",
"BRIAN LEVANT"
],
[
"BEETHOVEN",
"has_tags",
"FAMILY"
],
[
"BLACK DEATH",
"release_year",
"2010"
],
[
"DEATH AT A FUNERAL",
"directed_by",
"FRANK OZ"
],
[
"DEATH AT A FUNERAL",
"has_tags",
"DEATH"
],
[
"DEATH AT A FUNERAL",
"has_tags",
"FAMILY"
],
[
"DEATH AT A FUNERAL",
"has_tags",
"FRANK OZ"
],
[
"DEATH AT A FUNERAL",
"has_tags",
"R"
],
[
"DEATH AT A FUNERAL",
"release_year",
"2010"
],
[
"FLY AWAY HOME",
"has_genre",
"FAMILY"
],
[
"FLY AWAY HOME",
"has_tags",
"DEATH"
],
[
"FLY AWAY HOME",
"release_year",
"1996"
],
[
"HARRY AND THE HENDERSONS",
"has_genre",
"FAMILY"
],
[
"HARRY AND THE HENDERSONS",
"has_genre",
"FANTASY"
],
[
"HARRY AND THE HENDERSONS",
"has_tags",
"FAMILY"
],
[
"HARRY AND THE HENDERSONS",
"has_tags",
"JOHN LITHGOW"
],
[
"HARRY AND THE HENDERSONS",
"starred_actors",
"JOHN LITHGOW"
],
[
"HOTEL TRANSYLVANIA",
"has_genre",
"ANIMATION"
],
[
"HOTEL TRANSYLVANIA",
"has_genre",
"FAMILY"
],
[
"HOTEL TRANSYLVANIA",
"has_imdb_votes",
"FAMOUS"
],
[
"HOTEL TRANSYLVANIA",
"has_tags",
"ANIMATED"
],
[
"HOTEL TRANSYLVANIA",
"has_tags",
"ANIMATION"
],
[
"HOTEL TRANSYLVANIA",
"has_tags",
"MONSTERS"
],
[
"JINGLE ALL THE WAY",
"directed_by",
"BRIAN LEVANT"
],
[
"JINGLE ALL THE WAY",
"has_genre",
"FAMILY"
],
[
"JINGLE ALL THE WAY",
"has_tags",
"BRIAN LEVANT"
],
[
"JINGLE ALL THE WAY",
"release_year",
"1996"
],
[
"LITTLE WOMEN",
"has_genre",
"FAMILY"
],
[
"LITTLE WOMEN",
"has_imdb_rating",
"GOOD"
],
[
"LITTLE WOMEN",
"has_tags",
"CHARACTERS"
],
[
"LITTLE WOMEN",
"has_tags",
"CLASSIC"
],
[
"LITTLE WOMEN",
"release_year",
"1994"
],
[
"LOST IN SPACE",
"has_genre",
"FAMILY"
],
[
"LOST IN SPACE",
"has_tags",
"SCIENCE FICTION"
],
[
"MARMADUKE",
"has_genre",
"FAMILY"
],
[
"MARMADUKE",
"release_year",
"2010"
],
[
"MONSTERS",
"release_year",
"2010"
],
[
"PINOCCHIO",
"has_genre",
"ANIMATION"
],
[
"PINOCCHIO",
"has_genre",
"FAMILY"
],
[
"PINOCCHIO",
"has_genre",
"FANTASY"
],
[
"PINOCCHIO",
"has_imdb_rating",
"GOOD"
],
[
"PINOCCHIO",
"has_tags",
"ANIMATED"
],
[
"PINOCCHIO",
"has_tags",
"ANIMATION"
],
[
"PINOCCHIO",
"has_tags",
"CHARACTERS"
],
[
"PINOCCHIO",
"has_tags",
"CLASSIC"
],
[
"PINOCCHIO",
"has_tags",
"FANTASY"
],
[
"PINOCCHIO",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"PINOCCHIO",
"in_language",
"ITALIAN"
],
[
"SPEED RACER",
"has_genre",
"FAMILY"
],
[
"SPEED RACER",
"has_imdb_rating",
"GOOD"
],
[
"THE DARK CRYSTAL",
"directed_by",
"FRANK OZ"
],
[
"THE DARK CRYSTAL",
"has_genre",
"FAMILY"
],
[
"THE DARK CRYSTAL",
"has_imdb_votes",
"FAMOUS"
],
[
"THE DARK CRYSTAL",
"has_tags",
"FANTASY"
],
[
"THE DARK CRYSTAL",
"has_tags",
"FRANK OZ"
],
[
"THE DARK CRYSTAL",
"starred_actors",
"FRANK OZ"
],
[
"THE DIARY OF ANNE FRANK",
"has_genre",
"FAMILY"
],
[
"THE DIARY OF ANNE FRANK",
"has_imdb_rating",
"GOOD"
],
[
"THE FLINTSTONES",
"directed_by",
"BRIAN LEVANT"
],
[
"THE FLINTSTONES",
"has_genre",
"FAMILY"
],
[
"THE FLINTSTONES",
"has_tags",
"BRIAN LEVANT"
],
[
"THE FLINTSTONES",
"release_year",
"1994"
],
[
"THE GODFATHER",
"has_tags",
"FAMILY"
],
[
"THE GODFATHER",
"has_tags",
"ITALIAN"
],
[
"THE GODFATHER",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"THE GODFATHER",
"has_tags",
"R"
],
[
"THE GODFATHER",
"in_language",
"ITALIAN"
],
[
"THE MAN WHO PLAYED GOD",
"has_imdb_rating",
"GOOD"
],
[
"THE MAN WHO PLAYED GOD",
"written_by",
"MAUDE T. HOWELL"
],
[
"THE SPY NEXT DOOR",
"directed_by",
"BRIAN LEVANT"
],
[
"THE SPY NEXT DOOR",
"has_genre",
"FAMILY"
],
[
"THE SPY NEXT DOOR",
"release_year",
"2010"
],
[
"YOU CAN COUNT ON ME",
"has_tags",
"FAMILY"
],
[
"YOU CAN COUNT ON ME",
"has_tags",
"R"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
39435, 1975
32646, AT LONG LAST LOVE
30463, COMEDY
12489, CRAZY MAMA
2221, DOLEMITE
4649, HAPPY TEARS
35856, HEARTS OF THE WEST
13183, LOVE AND DEATH
33190, MAX SCHOTT
32834, MONTY PYTHON AND THE HOLY GRAIL
5237, MURPHY'S ROMANCE
32916, MY FRIENDS
18416, ONE OF OUR DINOSAURS IS MISSING
34930, RANCHO DELUXE
1045, SMILE
10409, THE ADVENTURE OF SHERLOCK HOLMES' SMARTER BROTHER
32237, THE FORTUNE
21920, THE OLSEN GANG ON THE TRACK
21459, THE PASSENGER
10721, THE ROCKY HORROR PICTURE SHOW
23847, THE STEPFORD WIVES
26081, THE SUNSHINE BOYS
src, edge_attr, dst
32646, has_genre, 30463
32646, release_year, 39435
12489, has_genre, 30463
12489, release_year, 39435
2221, has_genre, 30463
2221, release_year, 39435
4649, has_genre, 30463
35856, has_genre, 30463
35856, release_year, 39435
13183, has_genre, 30463
13183, has_tags, 30463
13183, release_year, 39435
32834, has_genre, 30463
32834, has_tags, 30463
32834, release_year, 39435
5237, has_genre, 30463
5237, written_by, 33190
32916, has_genre, 30463
32916, release_year, 39435
18416, has_genre, 30463
18416, release_year, 39435
34930, has_genre, 30463
34930, release_year, 39435
1045, has_genre, 30463
1045, release_year, 39435
10409, has_genre, 30463
10409, release_year, 39435
32237, has_genre, 30463
32237, release_year, 39435
21920, has_genre, 30463
21920, release_year, 39435
21459, release_year, 39435
10721, has_genre, 30463
10721, release_year, 39435
23847, has_genre, 30463
23847, release_year, 39435
26081, has_genre, 30463
26081, release_year, 39435
Question: How are HAPPY TEARS, MAX SCHOTT, and THE PASSENGER related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"HAPPY TEARS",
"MAX SCHOTT",
"THE PASSENGER"
],
"valid_edges": [
[
"AT LONG LAST LOVE",
"has_genre",
"COMEDY"
],
[
"AT LONG LAST LOVE",
"release_year",
"1975"
],
[
"CRAZY MAMA",
"has_genre",
"COMEDY"
],
[
"CRAZY MAMA",
"release_year",
"1975"
],
[
"DOLEMITE",
"has_genre",
"COMEDY"
],
[
"DOLEMITE",
"release_year",
"1975"
],
[
"HAPPY TEARS",
"has_genre",
"COMEDY"
],
[
"HEARTS OF THE WEST",
"has_genre",
"COMEDY"
],
[
"HEARTS OF THE WEST",
"release_year",
"1975"
],
[
"LOVE AND DEATH",
"has_genre",
"COMEDY"
],
[
"LOVE AND DEATH",
"has_tags",
"COMEDY"
],
[
"LOVE AND DEATH",
"release_year",
"1975"
],
[
"MONTY PYTHON AND THE HOLY GRAIL",
"has_genre",
"COMEDY"
],
[
"MONTY PYTHON AND THE HOLY GRAIL",
"has_tags",
"COMEDY"
],
[
"MONTY PYTHON AND THE HOLY GRAIL",
"release_year",
"1975"
],
[
"MURPHY'S ROMANCE",
"has_genre",
"COMEDY"
],
[
"MURPHY'S ROMANCE",
"written_by",
"MAX SCHOTT"
],
[
"MY FRIENDS",
"has_genre",
"COMEDY"
],
[
"MY FRIENDS",
"release_year",
"1975"
],
[
"ONE OF OUR DINOSAURS IS MISSING",
"has_genre",
"COMEDY"
],
[
"ONE OF OUR DINOSAURS IS MISSING",
"release_year",
"1975"
],
[
"RANCHO DELUXE",
"has_genre",
"COMEDY"
],
[
"RANCHO DELUXE",
"release_year",
"1975"
],
[
"SMILE",
"has_genre",
"COMEDY"
],
[
"SMILE",
"release_year",
"1975"
],
[
"THE ADVENTURE OF SHERLOCK HOLMES' SMARTER BROTHER",
"has_genre",
"COMEDY"
],
[
"THE ADVENTURE OF SHERLOCK HOLMES' SMARTER BROTHER",
"release_year",
"1975"
],
[
"THE FORTUNE",
"has_genre",
"COMEDY"
],
[
"THE FORTUNE",
"release_year",
"1975"
],
[
"THE OLSEN GANG ON THE TRACK",
"has_genre",
"COMEDY"
],
[
"THE OLSEN GANG ON THE TRACK",
"release_year",
"1975"
],
[
"THE PASSENGER",
"release_year",
"1975"
],
[
"THE ROCKY HORROR PICTURE SHOW",
"has_genre",
"COMEDY"
],
[
"THE ROCKY HORROR PICTURE SHOW",
"release_year",
"1975"
],
[
"THE STEPFORD WIVES",
"has_genre",
"COMEDY"
],
[
"THE STEPFORD WIVES",
"release_year",
"1975"
],
[
"THE SUNSHINE BOYS",
"has_genre",
"COMEDY"
],
[
"THE SUNSHINE BOYS",
"release_year",
"1975"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
3863, 1962
37484, 2004
1421, 2013
7603, CARY GRANT
847, JACK THE GIANT KILLER
37050, SHARKNADO
17493, SOUL PLANE
24322, THAT TOUCH OF MINK
38611, THE INTRUDER
32881, TOUCH OF PINK
src, edge_attr, dst
847, release_year, 3863
847, release_year, 1421
37050, release_year, 1421
17493, release_year, 37484
24322, has_tags, 7603
24322, release_year, 3863
24322, starred_actors, 7603
38611, release_year, 3863
38611, release_year, 37484
32881, has_tags, 7603
32881, release_year, 37484
Question: For what reason are SHARKNADO, SOUL PLANE, and THAT TOUCH OF MINK associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"SHARKNADO",
"SOUL PLANE",
"THAT TOUCH OF MINK"
],
"valid_edges": [
[
"JACK THE GIANT KILLER",
"release_year",
"1962"
],
[
"JACK THE GIANT KILLER",
"release_year",
"2013"
],
[
"SHARKNADO",
"release_year",
"2013"
],
[
"SOUL PLANE",
"release_year",
"2004"
],
[
"THAT TOUCH OF MINK",
"has_tags",
"CARY GRANT"
],
[
"THAT TOUCH OF MINK",
"release_year",
"1962"
],
[
"THAT TOUCH OF MINK",
"starred_actors",
"CARY GRANT"
],
[
"THE INTRUDER",
"release_year",
"1962"
],
[
"THE INTRUDER",
"release_year",
"2004"
],
[
"TOUCH OF PINK",
"has_tags",
"CARY GRANT"
],
[
"TOUCH OF PINK",
"release_year",
"2004"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
24004, 10
21931, 1941
724, 1979
1188, A FORCE OF ONE
12649, A LITTLE ROMANCE
4763, ADVENTURE
1216, AMERICATHON
34744, BEING THERE
37601, BREAKING AWAY
13302, CHAPTER TWO
38678, CHILLY SCENES OF WINTER
30463, COMEDY
15436, EPIC
19367, ESCAPE TO ATHENA
35760, H.O.T.S.
20263, HAIR
15547, HOMER
11331, LOVE AT FIRST BITE
33790, MANHATTAN
6108, MEATBALLS
26484, MORE AMERICAN GRAFFITI
14797, O BROTHER, WHERE ART THOU?
6773, REAL LIFE
22107, ROCK 'N' ROLL HIGH SCHOOL
27231, STARTING OVER
16018, THE APPLE DUMPLING GANG RIDES AGAIN
28510, THE FRISCO KID
19104, THE IN-LAWS
33024, THE JERK
4091, THE LADY VANISHES
32382, THE MAIN EVENT
12809, THE MUPPET MOVIE
31851, THE PRISONER OF ZENDA
26036, THE TEMPEST
33449, THE WEDDING PLANNER
5729, TROY
32079, ULYSSES
31435, UNCLE MARIN, THE BILLIONAIRE
22774, WISE BLOOD
src, edge_attr, dst
24004, has_genre, 30463
24004, release_year, 724
21931, has_genre, 30463
21931, release_year, 724
1188, release_year, 724
12649, has_genre, 30463
12649, release_year, 724
1216, has_genre, 30463
1216, release_year, 724
34744, has_genre, 30463
34744, release_year, 724
37601, has_genre, 30463
37601, release_year, 724
13302, has_genre, 30463
13302, release_year, 724
38678, has_genre, 30463
38678, release_year, 724
19367, has_genre, 30463
19367, release_year, 724
35760, has_genre, 30463
35760, release_year, 724
20263, has_genre, 30463
20263, release_year, 724
11331, has_genre, 30463
11331, release_year, 724
33790, has_genre, 30463
33790, has_tags, 30463
33790, release_year, 724
6108, has_genre, 30463
6108, release_year, 724
26484, has_genre, 30463
26484, release_year, 724
14797, has_genre, 4763
14797, has_genre, 30463
14797, has_tags, 4763
14797, has_tags, 30463
14797, has_tags, 15436
14797, written_by, 15547
6773, has_genre, 30463
6773, release_year, 724
22107, has_genre, 30463
22107, release_year, 724
27231, has_genre, 30463
27231, release_year, 724
16018, has_genre, 30463
16018, release_year, 724
28510, has_genre, 30463
28510, release_year, 724
19104, has_genre, 30463
19104, release_year, 724
33024, has_genre, 30463
33024, release_year, 724
4091, has_genre, 30463
4091, release_year, 724
32382, has_genre, 30463
32382, release_year, 724
12809, has_genre, 30463
12809, release_year, 724
31851, has_genre, 30463
31851, release_year, 724
26036, has_genre, 30463
26036, release_year, 724
33449, has_genre, 30463
5729, has_genre, 4763
5729, has_tags, 15436
5729, has_tags, 15547
5729, written_by, 15547
32079, has_genre, 4763
32079, has_tags, 15547
32079, written_by, 15547
31435, has_genre, 30463
31435, release_year, 724
22774, has_genre, 30463
22774, release_year, 724
Question: In what context are A FORCE OF ONE, HOMER, and THE WEDDING PLANNER connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"A FORCE OF ONE",
"HOMER",
"THE WEDDING PLANNER"
],
"valid_edges": [
[
"10",
"has_genre",
"COMEDY"
],
[
"10",
"release_year",
"1979"
],
[
"1941",
"has_genre",
"COMEDY"
],
[
"1941",
"release_year",
"1979"
],
[
"A FORCE OF ONE",
"release_year",
"1979"
],
[
"A LITTLE ROMANCE",
"has_genre",
"COMEDY"
],
[
"A LITTLE ROMANCE",
"release_year",
"1979"
],
[
"AMERICATHON",
"has_genre",
"COMEDY"
],
[
"AMERICATHON",
"release_year",
"1979"
],
[
"BEING THERE",
"has_genre",
"COMEDY"
],
[
"BEING THERE",
"release_year",
"1979"
],
[
"BREAKING AWAY",
"has_genre",
"COMEDY"
],
[
"BREAKING AWAY",
"release_year",
"1979"
],
[
"CHAPTER TWO",
"has_genre",
"COMEDY"
],
[
"CHAPTER TWO",
"release_year",
"1979"
],
[
"CHILLY SCENES OF WINTER",
"has_genre",
"COMEDY"
],
[
"CHILLY SCENES OF WINTER",
"release_year",
"1979"
],
[
"ESCAPE TO ATHENA",
"has_genre",
"COMEDY"
],
[
"ESCAPE TO ATHENA",
"release_year",
"1979"
],
[
"H.O.T.S.",
"has_genre",
"COMEDY"
],
[
"H.O.T.S.",
"release_year",
"1979"
],
[
"HAIR",
"has_genre",
"COMEDY"
],
[
"HAIR",
"release_year",
"1979"
],
[
"LOVE AT FIRST BITE",
"has_genre",
"COMEDY"
],
[
"LOVE AT FIRST BITE",
"release_year",
"1979"
],
[
"MANHATTAN",
"has_genre",
"COMEDY"
],
[
"MANHATTAN",
"has_tags",
"COMEDY"
],
[
"MANHATTAN",
"release_year",
"1979"
],
[
"MEATBALLS",
"has_genre",
"COMEDY"
],
[
"MEATBALLS",
"release_year",
"1979"
],
[
"MORE AMERICAN GRAFFITI",
"has_genre",
"COMEDY"
],
[
"MORE AMERICAN GRAFFITI",
"release_year",
"1979"
],
[
"O BROTHER, WHERE ART THOU?",
"has_genre",
"ADVENTURE"
],
[
"O BROTHER, WHERE ART THOU?",
"has_genre",
"COMEDY"
],
[
"O BROTHER, WHERE ART THOU?",
"has_tags",
"ADVENTURE"
],
[
"O BROTHER, WHERE ART THOU?",
"has_tags",
"COMEDY"
],
[
"O BROTHER, WHERE ART THOU?",
"has_tags",
"EPIC"
],
[
"O BROTHER, WHERE ART THOU?",
"written_by",
"HOMER"
],
[
"REAL LIFE",
"has_genre",
"COMEDY"
],
[
"REAL LIFE",
"release_year",
"1979"
],
[
"ROCK 'N' ROLL HIGH SCHOOL",
"has_genre",
"COMEDY"
],
[
"ROCK 'N' ROLL HIGH SCHOOL",
"release_year",
"1979"
],
[
"STARTING OVER",
"has_genre",
"COMEDY"
],
[
"STARTING OVER",
"release_year",
"1979"
],
[
"THE APPLE DUMPLING GANG RIDES AGAIN",
"has_genre",
"COMEDY"
],
[
"THE APPLE DUMPLING GANG RIDES AGAIN",
"release_year",
"1979"
],
[
"THE FRISCO KID",
"has_genre",
"COMEDY"
],
[
"THE FRISCO KID",
"release_year",
"1979"
],
[
"THE IN-LAWS",
"has_genre",
"COMEDY"
],
[
"THE IN-LAWS",
"release_year",
"1979"
],
[
"THE JERK",
"has_genre",
"COMEDY"
],
[
"THE JERK",
"release_year",
"1979"
],
[
"THE LADY VANISHES",
"has_genre",
"COMEDY"
],
[
"THE LADY VANISHES",
"release_year",
"1979"
],
[
"THE MAIN EVENT",
"has_genre",
"COMEDY"
],
[
"THE MAIN EVENT",
"release_year",
"1979"
],
[
"THE MUPPET MOVIE",
"has_genre",
"COMEDY"
],
[
"THE MUPPET MOVIE",
"release_year",
"1979"
],
[
"THE PRISONER OF ZENDA",
"has_genre",
"COMEDY"
],
[
"THE PRISONER OF ZENDA",
"release_year",
"1979"
],
[
"THE TEMPEST",
"has_genre",
"COMEDY"
],
[
"THE TEMPEST",
"release_year",
"1979"
],
[
"THE WEDDING PLANNER",
"has_genre",
"COMEDY"
],
[
"TROY",
"has_genre",
"ADVENTURE"
],
[
"TROY",
"has_tags",
"EPIC"
],
[
"TROY",
"has_tags",
"HOMER"
],
[
"TROY",
"written_by",
"HOMER"
],
[
"ULYSSES",
"has_genre",
"ADVENTURE"
],
[
"ULYSSES",
"has_tags",
"HOMER"
],
[
"ULYSSES",
"written_by",
"HOMER"
],
[
"UNCLE MARIN, THE BILLIONAIRE",
"has_genre",
"COMEDY"
],
[
"UNCLE MARIN, THE BILLIONAIRE",
"release_year",
"1979"
],
[
"WISE BLOOD",
"has_genre",
"COMEDY"
],
[
"WISE BLOOD",
"release_year",
"1979"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
21136, 10 MINUTES
3458, 1951
35935, 2002
4310, 24 HOUR PARTY PEOPLE
11069, 25TH HOUR
37315, A BRONX TALE
30846, A WALK TO REMEMBER
6008, ABOUT A BOY
37599, ABOUT SCHMIDT
27949, AKA
35288, ALL OR NOTHING
20584, AMERICAN GANGSTER
26599, AMERICAN GUN
28374, ANTWONE FISHER
24409, ARARAT
23513, ASH WEDNESDAY
20199, AUTO FOCUS
12144, BAD BOYS
10516, BANG BANG YOU'RE DEAD
10045, BD-R
12954, BEAR'S KISS
15433, BEND IT LIKE BECKHAM
12228, BETTER LUCK TOMORROW
36708, BLUE CAR
22703, BOMB THE SYSTEM
16809, BOYS' NIGHT OUT
1637, BOYZ N THE HOOD
23286, CARNAGE
27059, CATCH ME IF YOU CAN
26946, CHANGING LANES
20073, CHERISH
10349, CHICAGO
61, CITY OF GHOSTS
33387, CITY OF GOD
30463, COMEDY
14724, CRIME
30019, CROSSROADS
16536, CYRANO DE BERGERAC
21730, DAY OF THE WACKO
24410, DEMONLOVER
30729, DENZEL WASHINGTON
30734, DEREK LUKE
23027, DEUCES WILD
31163, DIRECTORIAL DEBUT
9641, DIRTY PRETTY THINGS
32958, DIVINE SECRETS OF THE YA-YA SISTERHOOD
38750, DRAGONFLY
36212, DRAMA
25651, DUMMY
26714, EDGE OF MADNESS
12259, ENOUGH
11866, EVELYN
11422, FAR FROM HEAVEN
5563, FLIGHT
6012, FRENCH
23808, G
17400, GANGS OF NEW YORK
34145, GEORGES DARIEN
9759, GLORY
14023, GLORY ROAD
36646, HE GOT GAME
951, HEART OF AMERICA
10990, HEARTLANDS
39351, HEAVY
1292, HEDWIG AND THE ANGRY INCH
17118, HENRY V
3829, HERO
19943, HOUSE OF FOOLS
22024, I CAN GET IT FOR YOU WHOLESALE
17197, IGBY GOES DOWN
19412, IN AMERICA
25271, IN THIS WORLD
6092, INTERVIEW WITH THE ASSASSIN
6713, KAMCHATKA
30206, KEN PARK
29840, LAUREL CANYON
26893, LITTLE MAN TATE
26784, LITTLE WOMEN
39755, LIVE FROM BAGHDAD
17395, LUSTER
10058, MADAME SATÃ
19549, MALCOLM X
2445, MAX
23502, MICHAEL GORDON
14165, MISSISSIPPI MASALA
37076, MO' BETTER BLUES
1052, MOONLIGHT MILE
34696, MORVERN CALLAR
35534, MUJHSE DOSTI KAROGE!
38585, NICHOLAS NICKLEBY
25269, NINE LIVES
26644, OK
11093, OPEN HEARTS
22991, OUT OF THE BLUE
32999, PAID IN FULL
11222, PATHER PANCHALI
14744, PEOPLE I KNOW
3389, PHILADELPHIA
6579, PILLOW TALK
5286, POOLHALL JUNKIES
31588, PORTRAIT IN BLACK
39284, POSSESSION
34602, PUNCH-DRUNK LOVE
25023, QUARTET
24073, RABBIT-PROOF FENCE
5193, REMEMBER THE TITANS
25769, ROGER DODGER
10881, SAFE CONDUCT
22312, SAY ANYTHING...
25921, SOAP GIRL
6014, SOLARIS
7083, SONNY
35843, SPUN
39016, STOLEN SUMMER
28935, SUNSHINE STATE
33414, SWEET SIXTEEN
26790, SWEPT AWAY
32105, SYNECDOCHE, NEW YORK
9972, TALK TO HER
34235, TEXAS ACROSS THE RIVER
40106, THE ADVERSARY
2316, THE ANARCHIST COOKBOOK
38704, THE BRIDGE TO NOWHERE
19351, THE COUNT OF MONTE CRISTO
11696, THE CUCKOO
3324, THE DANGEROUS LIVES OF ALTAR BOYS
13044, THE EMPEROR'S CLUB
9522, THE ESCAPIST
11635, THE FOUR FEATHERS
10213, THE GREAT DEBATERS
31443, THE GUYS
11713, THE HOURS
13534, THE IMPORTANCE OF BEING EARNEST
32805, THE INTENDED
16288, THE LARAMIE PROJECT
36676, THE MAN WITHOUT A FACE
2147, THE MAN WITHOUT A PAST
12614, THE PIANIST
13761, THE ROOKIE
31401, THE RULES OF ATTRACTION
38139, THE SECRET LIFE OF ZOEY
18326, THE SECRET LIVES OF DENTISTS
28829, THE SECRET OF CONVICT LAKE
8251, THE SECRET OF NIMH
11654, THE THIEF OF PARIS
27415, THE THREE MARIAS
39555, THE TRACKER
32772, UNFAITHFUL
4705, WAITING FOR HAPPINESS
8949, WE WERE SOLDIERS
36026, WESTERN
40043, WHALE RIDER
19262, WHIP IT
13026, WHITE OLEANDER
18995, XX/XY
src, edge_attr, dst
21136, has_genre, 36212
21136, release_year, 35935
4310, has_genre, 36212
4310, release_year, 35935
11069, has_genre, 36212
11069, release_year, 35935
37315, has_genre, 36212
37315, has_tags, 31163
30846, has_genre, 36212
30846, has_tags, 36212
30846, release_year, 35935
6008, has_genre, 36212
6008, has_tags, 36212
6008, release_year, 35935
37599, has_genre, 36212
37599, has_tags, 36212
37599, release_year, 35935
27949, has_genre, 36212
27949, release_year, 35935
35288, has_genre, 36212
35288, release_year, 35935
20584, has_genre, 36212
20584, has_tags, 30729
20584, starred_actors, 30729
26599, has_genre, 36212
26599, release_year, 35935
28374, directed_by, 30729
28374, has_genre, 36212
28374, has_tags, 30729
28374, has_tags, 31163
28374, has_tags, 26644
28374, release_year, 35935
28374, starred_actors, 30729
28374, starred_actors, 30734
28374, written_by, 28374
24409, has_genre, 36212
24409, release_year, 35935
23513, has_genre, 36212
23513, release_year, 35935
20199, has_genre, 36212
20199, release_year, 35935
12144, has_genre, 36212
12144, has_tags, 31163
10516, has_genre, 36212
10516, release_year, 35935
12954, has_genre, 36212
12954, release_year, 35935
15433, has_genre, 36212
15433, release_year, 35935
12228, has_genre, 36212
12228, release_year, 35935
36708, has_genre, 36212
36708, release_year, 35935
22703, has_genre, 36212
22703, release_year, 35935
16809, directed_by, 23502
16809, has_genre, 30463
1637, has_genre, 36212
1637, has_tags, 31163
1637, has_tags, 36212
23286, has_genre, 36212
23286, release_year, 35935
27059, has_genre, 36212
27059, has_tags, 36212
27059, release_year, 35935
26946, has_genre, 36212
26946, release_year, 35935
20073, has_genre, 36212
20073, release_year, 35935
10349, has_genre, 36212
10349, release_year, 35935
61, has_genre, 36212
61, release_year, 35935
33387, has_genre, 36212
33387, has_tags, 36212
33387, release_year, 35935
30019, has_genre, 36212
30019, release_year, 35935
16536, directed_by, 23502
16536, has_genre, 30463
16536, has_genre, 36212
16536, has_tags, 10045
16536, has_tags, 36212
16536, has_tags, 6012
16536, has_tags, 23502
16536, in_language, 6012
21730, has_genre, 36212
21730, release_year, 35935
24410, has_genre, 36212
24410, release_year, 35935
23027, has_genre, 36212
23027, release_year, 35935
9641, has_genre, 36212
9641, release_year, 35935
32958, has_genre, 36212
32958, release_year, 35935
38750, has_genre, 36212
38750, release_year, 35935
25651, has_genre, 36212
25651, release_year, 35935
26714, has_genre, 36212
26714, release_year, 35935
12259, has_genre, 36212
12259, release_year, 35935
11866, has_genre, 36212
11866, release_year, 35935
11422, has_genre, 36212
11422, release_year, 35935
5563, has_genre, 36212
5563, has_tags, 30729
5563, starred_actors, 30729
23808, has_genre, 36212
23808, release_year, 35935
17400, has_genre, 36212
17400, release_year, 35935
9759, has_genre, 36212
9759, has_tags, 30729
9759, starred_actors, 30729
14023, has_genre, 36212
14023, starred_actors, 30734
36646, has_genre, 36212
36646, starred_actors, 30729
951, has_genre, 36212
951, release_year, 35935
10990, has_genre, 36212
10990, release_year, 35935
39351, has_genre, 36212
39351, has_tags, 31163
1292, has_genre, 36212
1292, has_tags, 31163
17118, has_genre, 36212
17118, has_tags, 31163
3829, has_genre, 36212
3829, release_year, 35935
19943, has_genre, 36212
19943, release_year, 35935
22024, directed_by, 23502
22024, has_genre, 36212
22024, release_year, 3458
17197, has_genre, 36212
17197, release_year, 35935
19412, has_genre, 36212
19412, release_year, 35935
25271, has_genre, 36212
25271, release_year, 35935
6092, has_genre, 36212
6092, release_year, 35935
6713, has_genre, 36212
6713, release_year, 35935
30206, has_genre, 36212
30206, release_year, 35935
29840, has_genre, 36212
29840, release_year, 35935
26893, has_genre, 36212
26893, has_tags, 31163
26784, has_genre, 36212
26784, has_tags, 36212
26784, has_tags, 26644
39755, has_genre, 36212
39755, release_year, 35935
17395, has_genre, 36212
17395, release_year, 35935
10058, has_genre, 36212
10058, release_year, 35935
19549, has_genre, 36212
19549, has_tags, 30729
19549, starred_actors, 30729
2445, has_genre, 36212
2445, release_year, 35935
14165, has_genre, 36212
14165, starred_actors, 30729
37076, has_genre, 36212
37076, starred_actors, 30729
1052, has_genre, 36212
1052, release_year, 35935
34696, has_genre, 36212
34696, release_year, 35935
35534, has_genre, 36212
35534, release_year, 35935
38585, has_genre, 36212
38585, release_year, 35935
25269, has_genre, 36212
25269, release_year, 35935
11093, has_genre, 36212
11093, has_tags, 36212
11093, release_year, 35935
22991, has_genre, 36212
22991, release_year, 35935
32999, has_genre, 36212
32999, release_year, 35935
11222, has_genre, 36212
11222, has_tags, 31163
14744, has_genre, 36212
14744, release_year, 35935
3389, has_genre, 36212
3389, has_tags, 30729
3389, starred_actors, 30729
6579, directed_by, 23502
6579, has_genre, 30463
6579, has_tags, 10045
6579, has_tags, 30463
6579, has_tags, 23502
5286, has_genre, 36212
5286, release_year, 35935
31588, directed_by, 23502
31588, has_genre, 14724
31588, has_genre, 36212
39284, has_genre, 36212
39284, release_year, 35935
34602, has_genre, 36212
34602, release_year, 35935
25023, has_genre, 36212
25023, has_tags, 31163
24073, has_genre, 36212
24073, release_year, 35935
5193, has_genre, 36212
5193, has_tags, 30729
5193, has_tags, 36212
5193, starred_actors, 30729
25769, has_genre, 36212
25769, release_year, 35935
10881, has_genre, 36212
10881, release_year, 35935
22312, has_genre, 36212
22312, has_tags, 31163
25921, has_genre, 36212
25921, release_year, 35935
6014, has_genre, 36212
6014, release_year, 35935
7083, has_genre, 36212
7083, release_year, 35935
35843, has_genre, 36212
35843, release_year, 35935
39016, has_genre, 36212
39016, release_year, 35935
28935, has_genre, 36212
28935, release_year, 35935
33414, has_genre, 36212
33414, release_year, 35935
26790, has_genre, 36212
26790, release_year, 35935
32105, has_genre, 36212
32105, has_tags, 31163
9972, has_genre, 36212
9972, has_tags, 36212
9972, release_year, 35935
34235, directed_by, 23502
34235, has_genre, 30463
34235, has_genre, 36026
40106, has_genre, 36212
40106, release_year, 35935
2316, has_genre, 36212
2316, release_year, 35935
38704, has_genre, 36212
38704, has_tags, 31163
19351, has_genre, 36212
19351, release_year, 35935
11696, has_genre, 36212
11696, release_year, 35935
3324, has_genre, 36212
3324, release_year, 35935
13044, has_genre, 36212
13044, release_year, 35935
9522, has_genre, 36212
9522, release_year, 35935
11635, has_genre, 36212
11635, release_year, 35935
10213, directed_by, 30729
10213, has_genre, 36212
10213, has_tags, 30729
10213, starred_actors, 30729
31443, has_genre, 36212
31443, release_year, 35935
11713, has_genre, 36212
11713, has_tags, 36212
11713, release_year, 35935
13534, has_genre, 36212
13534, release_year, 35935
32805, has_genre, 36212
32805, release_year, 35935
16288, has_genre, 36212
16288, release_year, 35935
36676, has_genre, 36212
36676, has_tags, 31163
36676, has_tags, 36212
2147, has_genre, 36212
2147, has_tags, 36212
2147, release_year, 35935
12614, has_genre, 36212
12614, has_tags, 36212
12614, release_year, 35935
13761, has_genre, 36212
13761, release_year, 35935
31401, has_genre, 36212
31401, release_year, 35935
38139, has_genre, 36212
38139, release_year, 35935
18326, has_genre, 36212
18326, release_year, 35935
28829, directed_by, 23502
28829, has_genre, 36026
28829, release_year, 3458
8251, has_genre, 36212
8251, has_tags, 31163
11654, has_genre, 14724
11654, in_language, 6012
11654, written_by, 34145
27415, has_genre, 36212
27415, release_year, 35935
39555, has_genre, 36212
39555, release_year, 35935
32772, has_genre, 36212
32772, release_year, 35935
4705, has_genre, 36212
4705, release_year, 35935
8949, has_genre, 36212
8949, release_year, 35935
40043, has_genre, 36212
40043, has_tags, 36212
40043, release_year, 35935
19262, has_genre, 36212
19262, has_tags, 31163
13026, has_genre, 36212
13026, release_year, 35935
18995, has_genre, 36212
18995, release_year, 35935
Question: For what reason are ANTWONE FISHER, GEORGES DARIEN, and MICHAEL GORDON associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANTWONE FISHER",
"GEORGES DARIEN",
"MICHAEL GORDON"
],
"valid_edges": [
[
"10 MINUTES",
"has_genre",
"DRAMA"
],
[
"10 MINUTES",
"release_year",
"2002"
],
[
"24 HOUR PARTY PEOPLE",
"has_genre",
"DRAMA"
],
[
"24 HOUR PARTY PEOPLE",
"release_year",
"2002"
],
[
"25TH HOUR",
"has_genre",
"DRAMA"
],
[
"25TH HOUR",
"release_year",
"2002"
],
[
"A BRONX TALE",
"has_genre",
"DRAMA"
],
[
"A BRONX TALE",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"A WALK TO REMEMBER",
"has_genre",
"DRAMA"
],
[
"A WALK TO REMEMBER",
"has_tags",
"DRAMA"
],
[
"A WALK TO REMEMBER",
"release_year",
"2002"
],
[
"ABOUT A BOY",
"has_genre",
"DRAMA"
],
[
"ABOUT A BOY",
"has_tags",
"DRAMA"
],
[
"ABOUT A BOY",
"release_year",
"2002"
],
[
"ABOUT SCHMIDT",
"has_genre",
"DRAMA"
],
[
"ABOUT SCHMIDT",
"has_tags",
"DRAMA"
],
[
"ABOUT SCHMIDT",
"release_year",
"2002"
],
[
"AKA",
"has_genre",
"DRAMA"
],
[
"AKA",
"release_year",
"2002"
],
[
"ALL OR NOTHING",
"has_genre",
"DRAMA"
],
[
"ALL OR NOTHING",
"release_year",
"2002"
],
[
"AMERICAN GANGSTER",
"has_genre",
"DRAMA"
],
[
"AMERICAN GANGSTER",
"has_tags",
"DENZEL WASHINGTON"
],
[
"AMERICAN GANGSTER",
"starred_actors",
"DENZEL WASHINGTON"
],
[
"AMERICAN GUN",
"has_genre",
"DRAMA"
],
[
"AMERICAN GUN",
"release_year",
"2002"
],
[
"ANTWONE FISHER",
"directed_by",
"DENZEL WASHINGTON"
],
[
"ANTWONE FISHER",
"has_genre",
"DRAMA"
],
[
"ANTWONE FISHER",
"has_tags",
"DENZEL WASHINGTON"
],
[
"ANTWONE FISHER",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"ANTWONE FISHER",
"has_tags",
"OK"
],
[
"ANTWONE FISHER",
"release_year",
"2002"
],
[
"ANTWONE FISHER",
"starred_actors",
"DENZEL WASHINGTON"
],
[
"ANTWONE FISHER",
"starred_actors",
"DEREK LUKE"
],
[
"ANTWONE FISHER",
"written_by",
"ANTWONE FISHER"
],
[
"ARARAT",
"has_genre",
"DRAMA"
],
[
"ARARAT",
"release_year",
"2002"
],
[
"ASH WEDNESDAY",
"has_genre",
"DRAMA"
],
[
"ASH WEDNESDAY",
"release_year",
"2002"
],
[
"AUTO FOCUS",
"has_genre",
"DRAMA"
],
[
"AUTO FOCUS",
"release_year",
"2002"
],
[
"BAD BOYS",
"has_genre",
"DRAMA"
],
[
"BAD BOYS",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"BANG BANG YOU'RE DEAD",
"has_genre",
"DRAMA"
],
[
"BANG BANG YOU'RE DEAD",
"release_year",
"2002"
],
[
"BEAR'S KISS",
"has_genre",
"DRAMA"
],
[
"BEAR'S KISS",
"release_year",
"2002"
],
[
"BEND IT LIKE BECKHAM",
"has_genre",
"DRAMA"
],
[
"BEND IT LIKE BECKHAM",
"release_year",
"2002"
],
[
"BETTER LUCK TOMORROW",
"has_genre",
"DRAMA"
],
[
"BETTER LUCK TOMORROW",
"release_year",
"2002"
],
[
"BLUE CAR",
"has_genre",
"DRAMA"
],
[
"BLUE CAR",
"release_year",
"2002"
],
[
"BOMB THE SYSTEM",
"has_genre",
"DRAMA"
],
[
"BOMB THE SYSTEM",
"release_year",
"2002"
],
[
"BOYS' NIGHT OUT",
"directed_by",
"MICHAEL GORDON"
],
[
"BOYS' NIGHT OUT",
"has_genre",
"COMEDY"
],
[
"BOYZ N THE HOOD",
"has_genre",
"DRAMA"
],
[
"BOYZ N THE HOOD",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"BOYZ N THE HOOD",
"has_tags",
"DRAMA"
],
[
"CARNAGE",
"has_genre",
"DRAMA"
],
[
"CARNAGE",
"release_year",
"2002"
],
[
"CATCH ME IF YOU CAN",
"has_genre",
"DRAMA"
],
[
"CATCH ME IF YOU CAN",
"has_tags",
"DRAMA"
],
[
"CATCH ME IF YOU CAN",
"release_year",
"2002"
],
[
"CHANGING LANES",
"has_genre",
"DRAMA"
],
[
"CHANGING LANES",
"release_year",
"2002"
],
[
"CHERISH",
"has_genre",
"DRAMA"
],
[
"CHERISH",
"release_year",
"2002"
],
[
"CHICAGO",
"has_genre",
"DRAMA"
],
[
"CHICAGO",
"release_year",
"2002"
],
[
"CITY OF GHOSTS",
"has_genre",
"DRAMA"
],
[
"CITY OF GHOSTS",
"release_year",
"2002"
],
[
"CITY OF GOD",
"has_genre",
"DRAMA"
],
[
"CITY OF GOD",
"has_tags",
"DRAMA"
],
[
"CITY OF GOD",
"release_year",
"2002"
],
[
"CROSSROADS",
"has_genre",
"DRAMA"
],
[
"CROSSROADS",
"release_year",
"2002"
],
[
"CYRANO DE BERGERAC",
"directed_by",
"MICHAEL GORDON"
],
[
"CYRANO DE BERGERAC",
"has_genre",
"COMEDY"
],
[
"CYRANO DE BERGERAC",
"has_genre",
"DRAMA"
],
[
"CYRANO DE BERGERAC",
"has_tags",
"BD-R"
],
[
"CYRANO DE BERGERAC",
"has_tags",
"DRAMA"
],
[
"CYRANO DE BERGERAC",
"has_tags",
"FRENCH"
],
[
"CYRANO DE BERGERAC",
"has_tags",
"MICHAEL GORDON"
],
[
"CYRANO DE BERGERAC",
"in_language",
"FRENCH"
],
[
"DAY OF THE WACKO",
"has_genre",
"DRAMA"
],
[
"DAY OF THE WACKO",
"release_year",
"2002"
],
[
"DEMONLOVER",
"has_genre",
"DRAMA"
],
[
"DEMONLOVER",
"release_year",
"2002"
],
[
"DEUCES WILD",
"has_genre",
"DRAMA"
],
[
"DEUCES WILD",
"release_year",
"2002"
],
[
"DIRTY PRETTY THINGS",
"has_genre",
"DRAMA"
],
[
"DIRTY PRETTY THINGS",
"release_year",
"2002"
],
[
"DIVINE SECRETS OF THE YA-YA SISTERHOOD",
"has_genre",
"DRAMA"
],
[
"DIVINE SECRETS OF THE YA-YA SISTERHOOD",
"release_year",
"2002"
],
[
"DRAGONFLY",
"has_genre",
"DRAMA"
],
[
"DRAGONFLY",
"release_year",
"2002"
],
[
"DUMMY",
"has_genre",
"DRAMA"
],
[
"DUMMY",
"release_year",
"2002"
],
[
"EDGE OF MADNESS",
"has_genre",
"DRAMA"
],
[
"EDGE OF MADNESS",
"release_year",
"2002"
],
[
"ENOUGH",
"has_genre",
"DRAMA"
],
[
"ENOUGH",
"release_year",
"2002"
],
[
"EVELYN",
"has_genre",
"DRAMA"
],
[
"EVELYN",
"release_year",
"2002"
],
[
"FAR FROM HEAVEN",
"has_genre",
"DRAMA"
],
[
"FAR FROM HEAVEN",
"release_year",
"2002"
],
[
"FLIGHT",
"has_genre",
"DRAMA"
],
[
"FLIGHT",
"has_tags",
"DENZEL WASHINGTON"
],
[
"FLIGHT",
"starred_actors",
"DENZEL WASHINGTON"
],
[
"G",
"has_genre",
"DRAMA"
],
[
"G",
"release_year",
"2002"
],
[
"GANGS OF NEW YORK",
"has_genre",
"DRAMA"
],
[
"GANGS OF NEW YORK",
"release_year",
"2002"
],
[
"GLORY",
"has_genre",
"DRAMA"
],
[
"GLORY",
"has_tags",
"DENZEL WASHINGTON"
],
[
"GLORY",
"starred_actors",
"DENZEL WASHINGTON"
],
[
"GLORY ROAD",
"has_genre",
"DRAMA"
],
[
"GLORY ROAD",
"starred_actors",
"DEREK LUKE"
],
[
"HE GOT GAME",
"has_genre",
"DRAMA"
],
[
"HE GOT GAME",
"starred_actors",
"DENZEL WASHINGTON"
],
[
"HEART OF AMERICA",
"has_genre",
"DRAMA"
],
[
"HEART OF AMERICA",
"release_year",
"2002"
],
[
"HEARTLANDS",
"has_genre",
"DRAMA"
],
[
"HEARTLANDS",
"release_year",
"2002"
],
[
"HEAVY",
"has_genre",
"DRAMA"
],
[
"HEAVY",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"HEDWIG AND THE ANGRY INCH",
"has_genre",
"DRAMA"
],
[
"HEDWIG AND THE ANGRY INCH",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"HENRY V",
"has_genre",
"DRAMA"
],
[
"HENRY V",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"HERO",
"has_genre",
"DRAMA"
],
[
"HERO",
"release_year",
"2002"
],
[
"HOUSE OF FOOLS",
"has_genre",
"DRAMA"
],
[
"HOUSE OF FOOLS",
"release_year",
"2002"
],
[
"I CAN GET IT FOR YOU WHOLESALE",
"directed_by",
"MICHAEL GORDON"
],
[
"I CAN GET IT FOR YOU WHOLESALE",
"has_genre",
"DRAMA"
],
[
"I CAN GET IT FOR YOU WHOLESALE",
"release_year",
"1951"
],
[
"IGBY GOES DOWN",
"has_genre",
"DRAMA"
],
[
"IGBY GOES DOWN",
"release_year",
"2002"
],
[
"IN AMERICA",
"has_genre",
"DRAMA"
],
[
"IN AMERICA",
"release_year",
"2002"
],
[
"IN THIS WORLD",
"has_genre",
"DRAMA"
],
[
"IN THIS WORLD",
"release_year",
"2002"
],
[
"INTERVIEW WITH THE ASSASSIN",
"has_genre",
"DRAMA"
],
[
"INTERVIEW WITH THE ASSASSIN",
"release_year",
"2002"
],
[
"KAMCHATKA",
"has_genre",
"DRAMA"
],
[
"KAMCHATKA",
"release_year",
"2002"
],
[
"KEN PARK",
"has_genre",
"DRAMA"
],
[
"KEN PARK",
"release_year",
"2002"
],
[
"LAUREL CANYON",
"has_genre",
"DRAMA"
],
[
"LAUREL CANYON",
"release_year",
"2002"
],
[
"LITTLE MAN TATE",
"has_genre",
"DRAMA"
],
[
"LITTLE MAN TATE",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"LITTLE WOMEN",
"has_genre",
"DRAMA"
],
[
"LITTLE WOMEN",
"has_tags",
"DRAMA"
],
[
"LITTLE WOMEN",
"has_tags",
"OK"
],
[
"LIVE FROM BAGHDAD",
"has_genre",
"DRAMA"
],
[
"LIVE FROM BAGHDAD",
"release_year",
"2002"
],
[
"LUSTER",
"has_genre",
"DRAMA"
],
[
"LUSTER",
"release_year",
"2002"
],
[
"MADAME SATÃ",
"has_genre",
"DRAMA"
],
[
"MADAME SATÃ",
"release_year",
"2002"
],
[
"MALCOLM X",
"has_genre",
"DRAMA"
],
[
"MALCOLM X",
"has_tags",
"DENZEL WASHINGTON"
],
[
"MALCOLM X",
"starred_actors",
"DENZEL WASHINGTON"
],
[
"MAX",
"has_genre",
"DRAMA"
],
[
"MAX",
"release_year",
"2002"
],
[
"MISSISSIPPI MASALA",
"has_genre",
"DRAMA"
],
[
"MISSISSIPPI MASALA",
"starred_actors",
"DENZEL WASHINGTON"
],
[
"MO' BETTER BLUES",
"has_genre",
"DRAMA"
],
[
"MO' BETTER BLUES",
"starred_actors",
"DENZEL WASHINGTON"
],
[
"MOONLIGHT MILE",
"has_genre",
"DRAMA"
],
[
"MOONLIGHT MILE",
"release_year",
"2002"
],
[
"MORVERN CALLAR",
"has_genre",
"DRAMA"
],
[
"MORVERN CALLAR",
"release_year",
"2002"
],
[
"MUJHSE DOSTI KAROGE!",
"has_genre",
"DRAMA"
],
[
"MUJHSE DOSTI KAROGE!",
"release_year",
"2002"
],
[
"NICHOLAS NICKLEBY",
"has_genre",
"DRAMA"
],
[
"NICHOLAS NICKLEBY",
"release_year",
"2002"
],
[
"NINE LIVES",
"has_genre",
"DRAMA"
],
[
"NINE LIVES",
"release_year",
"2002"
],
[
"OPEN HEARTS",
"has_genre",
"DRAMA"
],
[
"OPEN HEARTS",
"has_tags",
"DRAMA"
],
[
"OPEN HEARTS",
"release_year",
"2002"
],
[
"OUT OF THE BLUE",
"has_genre",
"DRAMA"
],
[
"OUT OF THE BLUE",
"release_year",
"2002"
],
[
"PAID IN FULL",
"has_genre",
"DRAMA"
],
[
"PAID IN FULL",
"release_year",
"2002"
],
[
"PATHER PANCHALI",
"has_genre",
"DRAMA"
],
[
"PATHER PANCHALI",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"PEOPLE I KNOW",
"has_genre",
"DRAMA"
],
[
"PEOPLE I KNOW",
"release_year",
"2002"
],
[
"PHILADELPHIA",
"has_genre",
"DRAMA"
],
[
"PHILADELPHIA",
"has_tags",
"DENZEL WASHINGTON"
],
[
"PHILADELPHIA",
"starred_actors",
"DENZEL WASHINGTON"
],
[
"PILLOW TALK",
"directed_by",
"MICHAEL GORDON"
],
[
"PILLOW TALK",
"has_genre",
"COMEDY"
],
[
"PILLOW TALK",
"has_tags",
"BD-R"
],
[
"PILLOW TALK",
"has_tags",
"COMEDY"
],
[
"PILLOW TALK",
"has_tags",
"MICHAEL GORDON"
],
[
"POOLHALL JUNKIES",
"has_genre",
"DRAMA"
],
[
"POOLHALL JUNKIES",
"release_year",
"2002"
],
[
"PORTRAIT IN BLACK",
"directed_by",
"MICHAEL GORDON"
],
[
"PORTRAIT IN BLACK",
"has_genre",
"CRIME"
],
[
"PORTRAIT IN BLACK",
"has_genre",
"DRAMA"
],
[
"POSSESSION",
"has_genre",
"DRAMA"
],
[
"POSSESSION",
"release_year",
"2002"
],
[
"PUNCH-DRUNK LOVE",
"has_genre",
"DRAMA"
],
[
"PUNCH-DRUNK LOVE",
"release_year",
"2002"
],
[
"QUARTET",
"has_genre",
"DRAMA"
],
[
"QUARTET",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"RABBIT-PROOF FENCE",
"has_genre",
"DRAMA"
],
[
"RABBIT-PROOF FENCE",
"release_year",
"2002"
],
[
"REMEMBER THE TITANS",
"has_genre",
"DRAMA"
],
[
"REMEMBER THE TITANS",
"has_tags",
"DENZEL WASHINGTON"
],
[
"REMEMBER THE TITANS",
"has_tags",
"DRAMA"
],
[
"REMEMBER THE TITANS",
"starred_actors",
"DENZEL WASHINGTON"
],
[
"ROGER DODGER",
"has_genre",
"DRAMA"
],
[
"ROGER DODGER",
"release_year",
"2002"
],
[
"SAFE CONDUCT",
"has_genre",
"DRAMA"
],
[
"SAFE CONDUCT",
"release_year",
"2002"
],
[
"SAY ANYTHING...",
"has_genre",
"DRAMA"
],
[
"SAY ANYTHING...",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"SOAP GIRL",
"has_genre",
"DRAMA"
],
[
"SOAP GIRL",
"release_year",
"2002"
],
[
"SOLARIS",
"has_genre",
"DRAMA"
],
[
"SOLARIS",
"release_year",
"2002"
],
[
"SONNY",
"has_genre",
"DRAMA"
],
[
"SONNY",
"release_year",
"2002"
],
[
"SPUN",
"has_genre",
"DRAMA"
],
[
"SPUN",
"release_year",
"2002"
],
[
"STOLEN SUMMER",
"has_genre",
"DRAMA"
],
[
"STOLEN SUMMER",
"release_year",
"2002"
],
[
"SUNSHINE STATE",
"has_genre",
"DRAMA"
],
[
"SUNSHINE STATE",
"release_year",
"2002"
],
[
"SWEET SIXTEEN",
"has_genre",
"DRAMA"
],
[
"SWEET SIXTEEN",
"release_year",
"2002"
],
[
"SWEPT AWAY",
"has_genre",
"DRAMA"
],
[
"SWEPT AWAY",
"release_year",
"2002"
],
[
"SYNECDOCHE, NEW YORK",
"has_genre",
"DRAMA"
],
[
"SYNECDOCHE, NEW YORK",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"TALK TO HER",
"has_genre",
"DRAMA"
],
[
"TALK TO HER",
"has_tags",
"DRAMA"
],
[
"TALK TO HER",
"release_year",
"2002"
],
[
"TEXAS ACROSS THE RIVER",
"directed_by",
"MICHAEL GORDON"
],
[
"TEXAS ACROSS THE RIVER",
"has_genre",
"COMEDY"
],
[
"TEXAS ACROSS THE RIVER",
"has_genre",
"WESTERN"
],
[
"THE ADVERSARY",
"has_genre",
"DRAMA"
],
[
"THE ADVERSARY",
"release_year",
"2002"
],
[
"THE ANARCHIST COOKBOOK",
"has_genre",
"DRAMA"
],
[
"THE ANARCHIST COOKBOOK",
"release_year",
"2002"
],
[
"THE BRIDGE TO NOWHERE",
"has_genre",
"DRAMA"
],
[
"THE BRIDGE TO NOWHERE",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"THE COUNT OF MONTE CRISTO",
"has_genre",
"DRAMA"
],
[
"THE COUNT OF MONTE CRISTO",
"release_year",
"2002"
],
[
"THE CUCKOO",
"has_genre",
"DRAMA"
],
[
"THE CUCKOO",
"release_year",
"2002"
],
[
"THE DANGEROUS LIVES OF ALTAR BOYS",
"has_genre",
"DRAMA"
],
[
"THE DANGEROUS LIVES OF ALTAR BOYS",
"release_year",
"2002"
],
[
"THE EMPEROR'S CLUB",
"has_genre",
"DRAMA"
],
[
"THE EMPEROR'S CLUB",
"release_year",
"2002"
],
[
"THE ESCAPIST",
"has_genre",
"DRAMA"
],
[
"THE ESCAPIST",
"release_year",
"2002"
],
[
"THE FOUR FEATHERS",
"has_genre",
"DRAMA"
],
[
"THE FOUR FEATHERS",
"release_year",
"2002"
],
[
"THE GREAT DEBATERS",
"directed_by",
"DENZEL WASHINGTON"
],
[
"THE GREAT DEBATERS",
"has_genre",
"DRAMA"
],
[
"THE GREAT DEBATERS",
"has_tags",
"DENZEL WASHINGTON"
],
[
"THE GREAT DEBATERS",
"starred_actors",
"DENZEL WASHINGTON"
],
[
"THE GUYS",
"has_genre",
"DRAMA"
],
[
"THE GUYS",
"release_year",
"2002"
],
[
"THE HOURS",
"has_genre",
"DRAMA"
],
[
"THE HOURS",
"has_tags",
"DRAMA"
],
[
"THE HOURS",
"release_year",
"2002"
],
[
"THE IMPORTANCE OF BEING EARNEST",
"has_genre",
"DRAMA"
],
[
"THE IMPORTANCE OF BEING EARNEST",
"release_year",
"2002"
],
[
"THE INTENDED",
"has_genre",
"DRAMA"
],
[
"THE INTENDED",
"release_year",
"2002"
],
[
"THE LARAMIE PROJECT",
"has_genre",
"DRAMA"
],
[
"THE LARAMIE PROJECT",
"release_year",
"2002"
],
[
"THE MAN WITHOUT A FACE",
"has_genre",
"DRAMA"
],
[
"THE MAN WITHOUT A FACE",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"THE MAN WITHOUT A FACE",
"has_tags",
"DRAMA"
],
[
"THE MAN WITHOUT A PAST",
"has_genre",
"DRAMA"
],
[
"THE MAN WITHOUT A PAST",
"has_tags",
"DRAMA"
],
[
"THE MAN WITHOUT A PAST",
"release_year",
"2002"
],
[
"THE PIANIST",
"has_genre",
"DRAMA"
],
[
"THE PIANIST",
"has_tags",
"DRAMA"
],
[
"THE PIANIST",
"release_year",
"2002"
],
[
"THE ROOKIE",
"has_genre",
"DRAMA"
],
[
"THE ROOKIE",
"release_year",
"2002"
],
[
"THE RULES OF ATTRACTION",
"has_genre",
"DRAMA"
],
[
"THE RULES OF ATTRACTION",
"release_year",
"2002"
],
[
"THE SECRET LIFE OF ZOEY",
"has_genre",
"DRAMA"
],
[
"THE SECRET LIFE OF ZOEY",
"release_year",
"2002"
],
[
"THE SECRET LIVES OF DENTISTS",
"has_genre",
"DRAMA"
],
[
"THE SECRET LIVES OF DENTISTS",
"release_year",
"2002"
],
[
"THE SECRET OF CONVICT LAKE",
"directed_by",
"MICHAEL GORDON"
],
[
"THE SECRET OF CONVICT LAKE",
"has_genre",
"WESTERN"
],
[
"THE SECRET OF CONVICT LAKE",
"release_year",
"1951"
],
[
"THE SECRET OF NIMH",
"has_genre",
"DRAMA"
],
[
"THE SECRET OF NIMH",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"THE THIEF OF PARIS",
"has_genre",
"CRIME"
],
[
"THE THIEF OF PARIS",
"in_language",
"FRENCH"
],
[
"THE THIEF OF PARIS",
"written_by",
"GEORGES DARIEN"
],
[
"THE THREE MARIAS",
"has_genre",
"DRAMA"
],
[
"THE THREE MARIAS",
"release_year",
"2002"
],
[
"THE TRACKER",
"has_genre",
"DRAMA"
],
[
"THE TRACKER",
"release_year",
"2002"
],
[
"UNFAITHFUL",
"has_genre",
"DRAMA"
],
[
"UNFAITHFUL",
"release_year",
"2002"
],
[
"WAITING FOR HAPPINESS",
"has_genre",
"DRAMA"
],
[
"WAITING FOR HAPPINESS",
"release_year",
"2002"
],
[
"WE WERE SOLDIERS",
"has_genre",
"DRAMA"
],
[
"WE WERE SOLDIERS",
"release_year",
"2002"
],
[
"WHALE RIDER",
"has_genre",
"DRAMA"
],
[
"WHALE RIDER",
"has_tags",
"DRAMA"
],
[
"WHALE RIDER",
"release_year",
"2002"
],
[
"WHIP IT",
"has_genre",
"DRAMA"
],
[
"WHIP IT",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"WHITE OLEANDER",
"has_genre",
"DRAMA"
],
[
"WHITE OLEANDER",
"release_year",
"2002"
],
[
"XX/XY",
"has_genre",
"DRAMA"
],
[
"XX/XY",
"release_year",
"2002"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
33637, 1959
7977, 1969
30643, ACROSS THE UNIVERSE
8284, ANTHONY QUINN
14405, CHANGE OF HABIT
36000, CLAUDE CHABROL
22519, LAST TRAIN FROM GUN HILL
39572, LES COUSINS
22845, MUSIC
30889, ON THE BEACH
36122, STANLEY KRAMER
24926, SWEET CHARITY
25988, THE SECRET OF SANTA VITTORIA
10179, THIS MAN MUST DIE
10352, WARLOCK
src, edge_attr, dst
30643, has_tags, 22845
14405, has_genre, 22845
14405, release_year, 7977
22519, release_year, 33637
22519, starred_actors, 8284
39572, directed_by, 36000
39572, has_tags, 36000
39572, release_year, 33637
39572, written_by, 36000
30889, directed_by, 36122
30889, has_tags, 36122
30889, release_year, 33637
24926, has_genre, 22845
24926, release_year, 7977
25988, directed_by, 36122
25988, has_tags, 36122
25988, release_year, 7977
25988, starred_actors, 8284
10179, directed_by, 36000
10179, has_tags, 36000
10179, release_year, 7977
10179, written_by, 36000
10352, release_year, 33637
10352, starred_actors, 8284
Question: For what reason are ACROSS THE UNIVERSE, LES COUSINS, and THE SECRET OF SANTA VITTORIA associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ACROSS THE UNIVERSE",
"LES COUSINS",
"THE SECRET OF SANTA VITTORIA"
],
"valid_edges": [
[
"ACROSS THE UNIVERSE",
"has_tags",
"MUSIC"
],
[
"CHANGE OF HABIT",
"has_genre",
"MUSIC"
],
[
"CHANGE OF HABIT",
"release_year",
"1969"
],
[
"LAST TRAIN FROM GUN HILL",
"release_year",
"1959"
],
[
"LAST TRAIN FROM GUN HILL",
"starred_actors",
"ANTHONY QUINN"
],
[
"LES COUSINS",
"directed_by",
"CLAUDE CHABROL"
],
[
"LES COUSINS",
"has_tags",
"CLAUDE CHABROL"
],
[
"LES COUSINS",
"release_year",
"1959"
],
[
"LES COUSINS",
"written_by",
"CLAUDE CHABROL"
],
[
"ON THE BEACH",
"directed_by",
"STANLEY KRAMER"
],
[
"ON THE BEACH",
"has_tags",
"STANLEY KRAMER"
],
[
"ON THE BEACH",
"release_year",
"1959"
],
[
"SWEET CHARITY",
"has_genre",
"MUSIC"
],
[
"SWEET CHARITY",
"release_year",
"1969"
],
[
"THE SECRET OF SANTA VITTORIA",
"directed_by",
"STANLEY KRAMER"
],
[
"THE SECRET OF SANTA VITTORIA",
"has_tags",
"STANLEY KRAMER"
],
[
"THE SECRET OF SANTA VITTORIA",
"release_year",
"1969"
],
[
"THE SECRET OF SANTA VITTORIA",
"starred_actors",
"ANTHONY QUINN"
],
[
"THIS MAN MUST DIE",
"directed_by",
"CLAUDE CHABROL"
],
[
"THIS MAN MUST DIE",
"has_tags",
"CLAUDE CHABROL"
],
[
"THIS MAN MUST DIE",
"release_year",
"1969"
],
[
"THIS MAN MUST DIE",
"written_by",
"CLAUDE CHABROL"
],
[
"WARLOCK",
"release_year",
"1959"
],
[
"WARLOCK",
"starred_actors",
"ANTHONY QUINN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
11112, 1939
10393, ALLEGHENY UPRISING
15585, CITY SLICKERS
31347, DANIEL STERN
7159, DESTRY RIDES AGAIN
28651, DODGE CITY
32474, EMMANUELLE
33897, EMMANUELLE ARSAN
4691, ERROL FLYNN
6012, FRENCH
13889, MICHAEL CURTIZ
31613, SAN ANTONIO
3226, STAGECOACH
23804, THE COMANCHEROS
37528, THE OKLAHOMA KID
33147, UNION PACIFIC
36026, WESTERN
src, edge_attr, dst
10393, has_genre, 36026
10393, release_year, 11112
15585, has_genre, 36026
15585, has_tags, 31347
15585, starred_actors, 31347
7159, has_genre, 36026
7159, release_year, 11112
28651, directed_by, 13889
28651, has_genre, 36026
28651, has_tags, 13889
28651, release_year, 11112
28651, starred_actors, 4691
32474, in_language, 6012
32474, written_by, 33897
31613, has_genre, 36026
31613, starred_actors, 4691
3226, has_genre, 36026
3226, has_tags, 36026
3226, release_year, 11112
23804, directed_by, 13889
23804, has_genre, 36026
37528, has_genre, 36026
37528, has_tags, 36026
37528, release_year, 11112
33147, has_genre, 36026
33147, release_year, 11112
36026, in_language, 6012
Question: How are DANIEL STERN, DODGE CITY, and EMMANUELLE ARSAN related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DANIEL STERN",
"DODGE CITY",
"EMMANUELLE ARSAN"
],
"valid_edges": [
[
"ALLEGHENY UPRISING",
"has_genre",
"WESTERN"
],
[
"ALLEGHENY UPRISING",
"release_year",
"1939"
],
[
"CITY SLICKERS",
"has_genre",
"WESTERN"
],
[
"CITY SLICKERS",
"has_tags",
"DANIEL STERN"
],
[
"CITY SLICKERS",
"starred_actors",
"DANIEL STERN"
],
[
"DESTRY RIDES AGAIN",
"has_genre",
"WESTERN"
],
[
"DESTRY RIDES AGAIN",
"release_year",
"1939"
],
[
"DODGE CITY",
"directed_by",
"MICHAEL CURTIZ"
],
[
"DODGE CITY",
"has_genre",
"WESTERN"
],
[
"DODGE CITY",
"has_tags",
"MICHAEL CURTIZ"
],
[
"DODGE CITY",
"release_year",
"1939"
],
[
"DODGE CITY",
"starred_actors",
"ERROL FLYNN"
],
[
"EMMANUELLE",
"in_language",
"FRENCH"
],
[
"EMMANUELLE",
"written_by",
"EMMANUELLE ARSAN"
],
[
"SAN ANTONIO",
"has_genre",
"WESTERN"
],
[
"SAN ANTONIO",
"starred_actors",
"ERROL FLYNN"
],
[
"STAGECOACH",
"has_genre",
"WESTERN"
],
[
"STAGECOACH",
"has_tags",
"WESTERN"
],
[
"STAGECOACH",
"release_year",
"1939"
],
[
"THE COMANCHEROS",
"directed_by",
"MICHAEL CURTIZ"
],
[
"THE COMANCHEROS",
"has_genre",
"WESTERN"
],
[
"THE OKLAHOMA KID",
"has_genre",
"WESTERN"
],
[
"THE OKLAHOMA KID",
"has_tags",
"WESTERN"
],
[
"THE OKLAHOMA KID",
"release_year",
"1939"
],
[
"UNION PACIFIC",
"has_genre",
"WESTERN"
],
[
"UNION PACIFIC",
"release_year",
"1939"
],
[
"WESTERN",
"in_language",
"FRENCH"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
16363, ACROSS THE WIDE MISSOURI
39480, CHARLTON HESTON
31362, CLARK GABLE
37236, EDWARD DMYTRYK
20693, GONE WITH THE WIND
19802, LOVE
30629, NIGHT NURSE
20748, RECKLESS
655, SOLDIER OF FORTUNE
38416, SUSAN HAYWARD
572, THE CALL OF THE WILD
7272, THE PRESIDENT'S LADY
29044, WHERE LOVE HAS GONE
24706, WILLIAM A. WELLMAN
src, edge_attr, dst
16363, directed_by, 24706
16363, starred_actors, 31362
20693, has_tags, 31362
20693, has_tags, 19802
30629, directed_by, 24706
30629, has_tags, 31362
30629, has_tags, 24706
30629, starred_actors, 31362
20748, has_tags, 19802
655, directed_by, 37236
655, starred_actors, 31362
655, starred_actors, 38416
572, directed_by, 24706
572, starred_actors, 39480
572, starred_actors, 31362
7272, starred_actors, 39480
7272, starred_actors, 38416
29044, directed_by, 37236
29044, starred_actors, 38416
Question: How are RECKLESS, SUSAN HAYWARD, and THE CALL OF THE WILD related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"RECKLESS",
"SUSAN HAYWARD",
"THE CALL OF THE WILD"
],
"valid_edges": [
[
"ACROSS THE WIDE MISSOURI",
"directed_by",
"WILLIAM A. WELLMAN"
],
[
"ACROSS THE WIDE MISSOURI",
"starred_actors",
"CLARK GABLE"
],
[
"GONE WITH THE WIND",
"has_tags",
"CLARK GABLE"
],
[
"GONE WITH THE WIND",
"has_tags",
"LOVE"
],
[
"NIGHT NURSE",
"directed_by",
"WILLIAM A. WELLMAN"
],
[
"NIGHT NURSE",
"has_tags",
"CLARK GABLE"
],
[
"NIGHT NURSE",
"has_tags",
"WILLIAM A. WELLMAN"
],
[
"NIGHT NURSE",
"starred_actors",
"CLARK GABLE"
],
[
"RECKLESS",
"has_tags",
"LOVE"
],
[
"SOLDIER OF FORTUNE",
"directed_by",
"EDWARD DMYTRYK"
],
[
"SOLDIER OF FORTUNE",
"starred_actors",
"CLARK GABLE"
],
[
"SOLDIER OF FORTUNE",
"starred_actors",
"SUSAN HAYWARD"
],
[
"THE CALL OF THE WILD",
"directed_by",
"WILLIAM A. WELLMAN"
],
[
"THE CALL OF THE WILD",
"starred_actors",
"CHARLTON HESTON"
],
[
"THE CALL OF THE WILD",
"starred_actors",
"CLARK GABLE"
],
[
"THE PRESIDENT'S LADY",
"starred_actors",
"CHARLTON HESTON"
],
[
"THE PRESIDENT'S LADY",
"starred_actors",
"SUSAN HAYWARD"
],
[
"WHERE LOVE HAS GONE",
"directed_by",
"EDWARD DMYTRYK"
],
[
"WHERE LOVE HAS GONE",
"starred_actors",
"SUSAN HAYWARD"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
33637, 1959
36212, DRAMA
25651, DUMMY
12847, EDITH EVANS
23543, LOOK BACK IN ANGER
825, THE LIFEGUARD
23973, THE NUN'S STORY
src, edge_attr, dst
25651, has_genre, 36212
23543, has_genre, 36212
23543, release_year, 33637
23543, starred_actors, 12847
825, has_genre, 36212
23973, release_year, 33637
23973, starred_actors, 12847
Question: How are DUMMY, EDITH EVANS, and THE LIFEGUARD related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DUMMY",
"EDITH EVANS",
"THE LIFEGUARD"
],
"valid_edges": [
[
"DUMMY",
"has_genre",
"DRAMA"
],
[
"LOOK BACK IN ANGER",
"has_genre",
"DRAMA"
],
[
"LOOK BACK IN ANGER",
"release_year",
"1959"
],
[
"LOOK BACK IN ANGER",
"starred_actors",
"EDITH EVANS"
],
[
"THE LIFEGUARD",
"has_genre",
"DRAMA"
],
[
"THE NUN'S STORY",
"release_year",
"1959"
],
[
"THE NUN'S STORY",
"starred_actors",
"EDITH EVANS"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
11479, BAPSI SIDHWA
29159, BENOÎT JAUBERT
36212, DRAMA
26751, EARTH
1321, IRON ISLAND
33870, MOHAMMAD RASOULOF
39594, REBELLION
src, edge_attr, dst
26751, has_genre, 36212
26751, has_tags, 26751
26751, written_by, 11479
1321, directed_by, 33870
1321, has_genre, 36212
1321, written_by, 33870
39594, has_genre, 36212
39594, written_by, 29159
Question: How are BAPSI SIDHWA, BENOÎT JAUBERT, and MOHAMMAD RASOULOF related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BAPSI SIDHWA",
"BENOÎT JAUBERT",
"MOHAMMAD RASOULOF"
],
"valid_edges": [
[
"EARTH",
"has_genre",
"DRAMA"
],
[
"EARTH",
"has_tags",
"EARTH"
],
[
"EARTH",
"written_by",
"BAPSI SIDHWA"
],
[
"IRON ISLAND",
"directed_by",
"MOHAMMAD RASOULOF"
],
[
"IRON ISLAND",
"has_genre",
"DRAMA"
],
[
"IRON ISLAND",
"written_by",
"MOHAMMAD RASOULOF"
],
[
"REBELLION",
"has_genre",
"DRAMA"
],
[
"REBELLION",
"written_by",
"BENOÎT JAUBERT"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
29598, AKI KAURISMÄKI
4017, ARIEL
30463, COMEDY
2246, CRITERION
36212, DRAMA
6666, FINNISH
28101, JACK TREVOR STORY
38003, KINYARWANDA
6838, MATTI PELLONPÄÄ
14976, MUNYURANGABO
64, PROLETARIAT TRILOGY
37803, SHADOWS IN PARADISE
13187, THE TROUBLE WITH HARRY
src, edge_attr, dst
4017, directed_by, 29598
4017, has_genre, 36212
4017, has_tags, 29598
4017, has_tags, 2246
4017, has_tags, 6666
4017, has_tags, 64
4017, in_language, 6666
4017, starred_actors, 6838
4017, written_by, 29598
38003, has_genre, 36212
38003, in_language, 38003
14976, in_language, 38003
37803, directed_by, 29598
37803, has_genre, 30463
37803, has_genre, 36212
37803, has_tags, 29598
37803, has_tags, 2246
37803, has_tags, 64
37803, in_language, 6666
37803, starred_actors, 6838
37803, written_by, 29598
13187, has_genre, 30463
13187, written_by, 28101
Question: For what reason are JACK TREVOR STORY, MUNYURANGABO, and PROLETARIAT TRILOGY associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JACK TREVOR STORY",
"MUNYURANGABO",
"PROLETARIAT TRILOGY"
],
"valid_edges": [
[
"ARIEL",
"directed_by",
"AKI KAURISMÄKI"
],
[
"ARIEL",
"has_genre",
"DRAMA"
],
[
"ARIEL",
"has_tags",
"AKI KAURISMÄKI"
],
[
"ARIEL",
"has_tags",
"CRITERION"
],
[
"ARIEL",
"has_tags",
"FINNISH"
],
[
"ARIEL",
"has_tags",
"PROLETARIAT TRILOGY"
],
[
"ARIEL",
"in_language",
"FINNISH"
],
[
"ARIEL",
"starred_actors",
"MATTI PELLONPÄÄ"
],
[
"ARIEL",
"written_by",
"AKI KAURISMÄKI"
],
[
"KINYARWANDA",
"has_genre",
"DRAMA"
],
[
"KINYARWANDA",
"in_language",
"KINYARWANDA"
],
[
"MUNYURANGABO",
"in_language",
"KINYARWANDA"
],
[
"SHADOWS IN PARADISE",
"directed_by",
"AKI KAURISMÄKI"
],
[
"SHADOWS IN PARADISE",
"has_genre",
"COMEDY"
],
[
"SHADOWS IN PARADISE",
"has_genre",
"DRAMA"
],
[
"SHADOWS IN PARADISE",
"has_tags",
"AKI KAURISMÄKI"
],
[
"SHADOWS IN PARADISE",
"has_tags",
"CRITERION"
],
[
"SHADOWS IN PARADISE",
"has_tags",
"PROLETARIAT TRILOGY"
],
[
"SHADOWS IN PARADISE",
"in_language",
"FINNISH"
],
[
"SHADOWS IN PARADISE",
"starred_actors",
"MATTI PELLONPÄÄ"
],
[
"SHADOWS IN PARADISE",
"written_by",
"AKI KAURISMÄKI"
],
[
"THE TROUBLE WITH HARRY",
"has_genre",
"COMEDY"
],
[
"THE TROUBLE WITH HARRY",
"written_by",
"JACK TREVOR STORY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
6540, 12
25221, 1981
24438, 1993
17315, 2007
29424, 2011
20033, ANGEL
21731, BETRAYED
14984, BLOW OUT
28956, DEBRA WINGER
12628, EASTERN PROMISES
31783, ENGLISH
22423, GEORG
38465, HITMAN
27999, JOHN TRAVOLTA
22527, LANA TURNER
35491, LOOK WHO'S TALKING NOW
38169, MAD CITY
2990, MERMAID
17474, MICHAEL
34978, OLD DOGS
16206, RUSSIAN
30385, THE BANISHMENT
14131, THE POSTMAN ALWAYS RINGS TWICE
7816, THE THREE MUSKETEERS
13388, URBAN COWBOY
12255, WALT BECKER
18586, WILD HOGS
src, edge_attr, dst
6540, in_language, 16206
6540, release_year, 17315
20033, release_year, 17315
21731, starred_actors, 28956
21731, starred_actors, 22527
14984, release_year, 25221
14984, starred_actors, 27999
12628, has_tags, 16206
12628, in_language, 16206
12628, release_year, 17315
22423, in_language, 16206
22423, release_year, 17315
38465, in_language, 16206
38465, release_year, 17315
35491, release_year, 24438
35491, starred_actors, 27999
38169, in_language, 31783
38169, starred_actors, 27999
2990, in_language, 16206
2990, release_year, 17315
17474, has_tags, 20033
17474, has_tags, 27999
17474, release_year, 29424
17474, starred_actors, 27999
34978, directed_by, 12255
34978, has_tags, 27999
34978, starred_actors, 27999
30385, in_language, 16206
30385, release_year, 17315
14131, in_language, 31783
14131, release_year, 25221
14131, starred_actors, 22527
7816, release_year, 24438
7816, release_year, 29424
7816, starred_actors, 22527
13388, starred_actors, 28956
13388, starred_actors, 27999
18586, directed_by, 12255
18586, has_tags, 27999
18586, release_year, 17315
18586, starred_actors, 27999
Question: For what reason are JOHN TRAVOLTA, LANA TURNER, and THE BANISHMENT associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JOHN TRAVOLTA",
"LANA TURNER",
"THE BANISHMENT"
],
"valid_edges": [
[
"12",
"in_language",
"RUSSIAN"
],
[
"12",
"release_year",
"2007"
],
[
"ANGEL",
"release_year",
"2007"
],
[
"BETRAYED",
"starred_actors",
"DEBRA WINGER"
],
[
"BETRAYED",
"starred_actors",
"LANA TURNER"
],
[
"BLOW OUT",
"release_year",
"1981"
],
[
"BLOW OUT",
"starred_actors",
"JOHN TRAVOLTA"
],
[
"EASTERN PROMISES",
"has_tags",
"RUSSIAN"
],
[
"EASTERN PROMISES",
"in_language",
"RUSSIAN"
],
[
"EASTERN PROMISES",
"release_year",
"2007"
],
[
"GEORG",
"in_language",
"RUSSIAN"
],
[
"GEORG",
"release_year",
"2007"
],
[
"HITMAN",
"in_language",
"RUSSIAN"
],
[
"HITMAN",
"release_year",
"2007"
],
[
"LOOK WHO'S TALKING NOW",
"release_year",
"1993"
],
[
"LOOK WHO'S TALKING NOW",
"starred_actors",
"JOHN TRAVOLTA"
],
[
"MAD CITY",
"in_language",
"ENGLISH"
],
[
"MAD CITY",
"starred_actors",
"JOHN TRAVOLTA"
],
[
"MERMAID",
"in_language",
"RUSSIAN"
],
[
"MERMAID",
"release_year",
"2007"
],
[
"MICHAEL",
"has_tags",
"ANGEL"
],
[
"MICHAEL",
"has_tags",
"JOHN TRAVOLTA"
],
[
"MICHAEL",
"release_year",
"2011"
],
[
"MICHAEL",
"starred_actors",
"JOHN TRAVOLTA"
],
[
"OLD DOGS",
"directed_by",
"WALT BECKER"
],
[
"OLD DOGS",
"has_tags",
"JOHN TRAVOLTA"
],
[
"OLD DOGS",
"starred_actors",
"JOHN TRAVOLTA"
],
[
"THE BANISHMENT",
"in_language",
"RUSSIAN"
],
[
"THE BANISHMENT",
"release_year",
"2007"
],
[
"THE POSTMAN ALWAYS RINGS TWICE",
"in_language",
"ENGLISH"
],
[
"THE POSTMAN ALWAYS RINGS TWICE",
"release_year",
"1981"
],
[
"THE POSTMAN ALWAYS RINGS TWICE",
"starred_actors",
"LANA TURNER"
],
[
"THE THREE MUSKETEERS",
"release_year",
"1993"
],
[
"THE THREE MUSKETEERS",
"release_year",
"2011"
],
[
"THE THREE MUSKETEERS",
"starred_actors",
"LANA TURNER"
],
[
"URBAN COWBOY",
"starred_actors",
"DEBRA WINGER"
],
[
"URBAN COWBOY",
"starred_actors",
"JOHN TRAVOLTA"
],
[
"WILD HOGS",
"directed_by",
"WALT BECKER"
],
[
"WILD HOGS",
"has_tags",
"JOHN TRAVOLTA"
],
[
"WILD HOGS",
"release_year",
"2007"
],
[
"WILD HOGS",
"starred_actors",
"JOHN TRAVOLTA"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
37484, 2004
18598, APPLESEED
2182, BLOOD AND BONES
231, CASSHERN
5113, DEAD LEAVES
23809, DOG NAIL CLIPPER
13409, HANA AND ALICE
12087, HOWL'S MOVING CASTLE
34710, IN THE REALM OF THE SENSES
13174, INFECTION
8164, IZO
36874, JAPANESE
15150, KAMIKAZE GIRLS
30532, MIND GAME
25709, NOBODY KNOWS
6302, ONIBABA
31842, SURVIVE STYLE 5+
786, THE GRUDGE
9554, THROW DOWN
28132, TONY TAKITANI
12437, VITAL
src, edge_attr, dst
18598, in_language, 36874
18598, release_year, 37484
2182, in_language, 36874
2182, release_year, 37484
231, has_tags, 36874
231, in_language, 36874
231, release_year, 37484
5113, in_language, 36874
5113, release_year, 37484
23809, release_year, 37484
13409, in_language, 36874
13409, release_year, 37484
12087, in_language, 36874
12087, release_year, 37484
34710, has_tags, 36874
34710, in_language, 36874
13174, in_language, 36874
13174, release_year, 37484
8164, in_language, 36874
8164, release_year, 37484
15150, has_tags, 36874
15150, in_language, 36874
15150, release_year, 37484
30532, in_language, 36874
30532, release_year, 37484
25709, in_language, 36874
25709, release_year, 37484
6302, in_language, 36874
31842, has_tags, 36874
31842, in_language, 36874
31842, release_year, 37484
786, in_language, 36874
786, release_year, 37484
9554, in_language, 36874
9554, release_year, 37484
28132, in_language, 36874
28132, release_year, 37484
12437, in_language, 36874
12437, release_year, 37484
Question: In what context are DOG NAIL CLIPPER, IN THE REALM OF THE SENSES, and ONIBABA connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DOG NAIL CLIPPER",
"IN THE REALM OF THE SENSES",
"ONIBABA"
],
"valid_edges": [
[
"APPLESEED",
"in_language",
"JAPANESE"
],
[
"APPLESEED",
"release_year",
"2004"
],
[
"BLOOD AND BONES",
"in_language",
"JAPANESE"
],
[
"BLOOD AND BONES",
"release_year",
"2004"
],
[
"CASSHERN",
"has_tags",
"JAPANESE"
],
[
"CASSHERN",
"in_language",
"JAPANESE"
],
[
"CASSHERN",
"release_year",
"2004"
],
[
"DEAD LEAVES",
"in_language",
"JAPANESE"
],
[
"DEAD LEAVES",
"release_year",
"2004"
],
[
"DOG NAIL CLIPPER",
"release_year",
"2004"
],
[
"HANA AND ALICE",
"in_language",
"JAPANESE"
],
[
"HANA AND ALICE",
"release_year",
"2004"
],
[
"HOWL'S MOVING CASTLE",
"in_language",
"JAPANESE"
],
[
"HOWL'S MOVING CASTLE",
"release_year",
"2004"
],
[
"IN THE REALM OF THE SENSES",
"has_tags",
"JAPANESE"
],
[
"IN THE REALM OF THE SENSES",
"in_language",
"JAPANESE"
],
[
"INFECTION",
"in_language",
"JAPANESE"
],
[
"INFECTION",
"release_year",
"2004"
],
[
"IZO",
"in_language",
"JAPANESE"
],
[
"IZO",
"release_year",
"2004"
],
[
"KAMIKAZE GIRLS",
"has_tags",
"JAPANESE"
],
[
"KAMIKAZE GIRLS",
"in_language",
"JAPANESE"
],
[
"KAMIKAZE GIRLS",
"release_year",
"2004"
],
[
"MIND GAME",
"in_language",
"JAPANESE"
],
[
"MIND GAME",
"release_year",
"2004"
],
[
"NOBODY KNOWS",
"in_language",
"JAPANESE"
],
[
"NOBODY KNOWS",
"release_year",
"2004"
],
[
"ONIBABA",
"in_language",
"JAPANESE"
],
[
"SURVIVE STYLE 5+",
"has_tags",
"JAPANESE"
],
[
"SURVIVE STYLE 5+",
"in_language",
"JAPANESE"
],
[
"SURVIVE STYLE 5+",
"release_year",
"2004"
],
[
"THE GRUDGE",
"in_language",
"JAPANESE"
],
[
"THE GRUDGE",
"release_year",
"2004"
],
[
"THROW DOWN",
"in_language",
"JAPANESE"
],
[
"THROW DOWN",
"release_year",
"2004"
],
[
"TONY TAKITANI",
"in_language",
"JAPANESE"
],
[
"TONY TAKITANI",
"release_year",
"2004"
],
[
"VITAL",
"in_language",
"JAPANESE"
],
[
"VITAL",
"release_year",
"2004"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
19407, 8½
9677, ANATOMY OF A MURDER
19978, BEN GAZZARA
13577, CITY OF WOMEN
22958, FAMOUS
3353, FEDERICO FELLINI
34311, GENA ROWLANDS
15135, GINGER AND FRED
17549, MARCELLO MASTROIANNI
5343, OPENING NIGHT
6002, PAULIE
src, edge_attr, dst
19407, directed_by, 3353
19407, has_imdb_votes, 22958
19407, has_tags, 3353
19407, starred_actors, 17549
19407, written_by, 3353
9677, has_imdb_votes, 22958
9677, starred_actors, 19978
13577, directed_by, 3353
13577, starred_actors, 17549
13577, written_by, 3353
15135, directed_by, 3353
15135, starred_actors, 17549
15135, written_by, 3353
5343, starred_actors, 19978
5343, starred_actors, 34311
6002, starred_actors, 34311
Question: How are ANATOMY OF A MURDER, GINGER AND FRED, and PAULIE related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANATOMY OF A MURDER",
"GINGER AND FRED",
"PAULIE"
],
"valid_edges": [
[
"8½",
"directed_by",
"FEDERICO FELLINI"
],
[
"8½",
"has_imdb_votes",
"FAMOUS"
],
[
"8½",
"has_tags",
"FEDERICO FELLINI"
],
[
"8½",
"starred_actors",
"MARCELLO MASTROIANNI"
],
[
"8½",
"written_by",
"FEDERICO FELLINI"
],
[
"ANATOMY OF A MURDER",
"has_imdb_votes",
"FAMOUS"
],
[
"ANATOMY OF A MURDER",
"starred_actors",
"BEN GAZZARA"
],
[
"CITY OF WOMEN",
"directed_by",
"FEDERICO FELLINI"
],
[
"CITY OF WOMEN",
"starred_actors",
"MARCELLO MASTROIANNI"
],
[
"CITY OF WOMEN",
"written_by",
"FEDERICO FELLINI"
],
[
"GINGER AND FRED",
"directed_by",
"FEDERICO FELLINI"
],
[
"GINGER AND FRED",
"starred_actors",
"MARCELLO MASTROIANNI"
],
[
"GINGER AND FRED",
"written_by",
"FEDERICO FELLINI"
],
[
"OPENING NIGHT",
"starred_actors",
"BEN GAZZARA"
],
[
"OPENING NIGHT",
"starred_actors",
"GENA ROWLANDS"
],
[
"PAULIE",
"starred_actors",
"GENA ROWLANDS"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
6750, 10 RILLINGTON PLACE
30146, A CHRISTMAS CAROL
1698, ALFIE
9677, ANATOMY OF A MURDER
10045, BD-R
15771, BENGAZI
19826, BLACK DEATH
39111, BORN FREE
38680, COMPULSION
2149, DOG DAY AFTERNOON
36212, DRAMA
17986, GABRIEL OVER THE WHITE HOUSE
24900, JOHN RICHARDSON
35463, JUSTIN CHON
14209, KING OF HEARTS
36639, LADIES THEY TALK ABOUT
30029, LAWRENCE OF ARABIA
5996, MEET JOHN DOE
30629, NIGHT NURSE
35865, ON THE WATERFRONT
27496, ONE MILLION YEARS B.C.
29534, REVENGE OF THE GREEN DRAGONS
35586, SAHARA
6056, SCARFACE
15003, THE BATTLE OF ALGIERS
33978, THE BRIBE
11635, THE FOUR FEATHERS
37567, THE OSCAR
31851, THE PRISONER OF ZENDA
7478, THE RACKET
30746, THE SECRET LIFE OF WALTER MITTY
31647, THE SON OF THE SHEIK
7816, THE THREE MUSKETEERS
983, THE TREASURE OF THE SIERRA MADRE
28744, THE UNHOLY THREE
34407, THE WRONG MAN
873, THEY MADE ME A CRIMINAL
18596, THREE ON A MATCH
35212, WHO'S AFRAID OF VIRGINIA WOOLF?
297, WINGS
src, edge_attr, dst
6750, has_genre, 36212
6750, has_tags, 10045
30146, has_genre, 36212
30146, has_tags, 10045
1698, has_genre, 36212
1698, has_tags, 10045
9677, has_genre, 36212
9677, has_tags, 10045
15771, has_genre, 36212
15771, has_tags, 10045
19826, has_genre, 36212
19826, has_tags, 10045
39111, has_genre, 36212
39111, has_tags, 10045
38680, has_genre, 36212
38680, has_tags, 10045
2149, has_genre, 36212
2149, has_tags, 10045
17986, has_genre, 36212
17986, has_tags, 10045
14209, has_genre, 36212
14209, has_tags, 10045
36639, has_genre, 36212
36639, has_tags, 10045
30029, has_genre, 36212
30029, has_tags, 10045
5996, has_genre, 36212
5996, has_tags, 10045
30629, has_genre, 36212
30629, has_tags, 10045
35865, has_genre, 36212
35865, has_tags, 10045
27496, has_tags, 10045
27496, starred_actors, 24900
29534, has_genre, 36212
29534, starred_actors, 35463
35586, has_genre, 36212
35586, has_tags, 10045
6056, has_genre, 36212
6056, has_tags, 10045
6056, has_tags, 36212
15003, has_genre, 36212
15003, has_tags, 10045
33978, has_genre, 36212
33978, has_tags, 10045
11635, has_genre, 36212
11635, has_tags, 10045
37567, has_genre, 36212
37567, has_tags, 10045
31851, has_genre, 36212
31851, has_tags, 10045
7478, has_genre, 36212
7478, has_tags, 10045
30746, has_genre, 36212
30746, has_tags, 10045
31647, has_genre, 36212
31647, has_tags, 10045
7816, has_genre, 36212
7816, has_tags, 10045
983, has_genre, 36212
983, has_tags, 10045
28744, has_genre, 36212
28744, has_tags, 10045
34407, has_genre, 36212
34407, has_tags, 10045
873, has_genre, 36212
873, has_tags, 10045
18596, has_genre, 36212
18596, has_tags, 10045
35212, has_genre, 36212
35212, has_tags, 10045
297, has_genre, 36212
297, has_tags, 10045
Question: How are JOHN RICHARDSON, JUSTIN CHON, and MEET JOHN DOE related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JOHN RICHARDSON",
"JUSTIN CHON",
"MEET JOHN DOE"
],
"valid_edges": [
[
"10 RILLINGTON PLACE",
"has_genre",
"DRAMA"
],
[
"10 RILLINGTON PLACE",
"has_tags",
"BD-R"
],
[
"A CHRISTMAS CAROL",
"has_genre",
"DRAMA"
],
[
"A CHRISTMAS CAROL",
"has_tags",
"BD-R"
],
[
"ALFIE",
"has_genre",
"DRAMA"
],
[
"ALFIE",
"has_tags",
"BD-R"
],
[
"ANATOMY OF A MURDER",
"has_genre",
"DRAMA"
],
[
"ANATOMY OF A MURDER",
"has_tags",
"BD-R"
],
[
"BENGAZI",
"has_genre",
"DRAMA"
],
[
"BENGAZI",
"has_tags",
"BD-R"
],
[
"BLACK DEATH",
"has_genre",
"DRAMA"
],
[
"BLACK DEATH",
"has_tags",
"BD-R"
],
[
"BORN FREE",
"has_genre",
"DRAMA"
],
[
"BORN FREE",
"has_tags",
"BD-R"
],
[
"COMPULSION",
"has_genre",
"DRAMA"
],
[
"COMPULSION",
"has_tags",
"BD-R"
],
[
"DOG DAY AFTERNOON",
"has_genre",
"DRAMA"
],
[
"DOG DAY AFTERNOON",
"has_tags",
"BD-R"
],
[
"GABRIEL OVER THE WHITE HOUSE",
"has_genre",
"DRAMA"
],
[
"GABRIEL OVER THE WHITE HOUSE",
"has_tags",
"BD-R"
],
[
"KING OF HEARTS",
"has_genre",
"DRAMA"
],
[
"KING OF HEARTS",
"has_tags",
"BD-R"
],
[
"LADIES THEY TALK ABOUT",
"has_genre",
"DRAMA"
],
[
"LADIES THEY TALK ABOUT",
"has_tags",
"BD-R"
],
[
"LAWRENCE OF ARABIA",
"has_genre",
"DRAMA"
],
[
"LAWRENCE OF ARABIA",
"has_tags",
"BD-R"
],
[
"MEET JOHN DOE",
"has_genre",
"DRAMA"
],
[
"MEET JOHN DOE",
"has_tags",
"BD-R"
],
[
"NIGHT NURSE",
"has_genre",
"DRAMA"
],
[
"NIGHT NURSE",
"has_tags",
"BD-R"
],
[
"ON THE WATERFRONT",
"has_genre",
"DRAMA"
],
[
"ON THE WATERFRONT",
"has_tags",
"BD-R"
],
[
"ONE MILLION YEARS B.C.",
"has_tags",
"BD-R"
],
[
"ONE MILLION YEARS B.C.",
"starred_actors",
"JOHN RICHARDSON"
],
[
"REVENGE OF THE GREEN DRAGONS",
"has_genre",
"DRAMA"
],
[
"REVENGE OF THE GREEN DRAGONS",
"starred_actors",
"JUSTIN CHON"
],
[
"SAHARA",
"has_genre",
"DRAMA"
],
[
"SAHARA",
"has_tags",
"BD-R"
],
[
"SCARFACE",
"has_genre",
"DRAMA"
],
[
"SCARFACE",
"has_tags",
"BD-R"
],
[
"SCARFACE",
"has_tags",
"DRAMA"
],
[
"THE BATTLE OF ALGIERS",
"has_genre",
"DRAMA"
],
[
"THE BATTLE OF ALGIERS",
"has_tags",
"BD-R"
],
[
"THE BRIBE",
"has_genre",
"DRAMA"
],
[
"THE BRIBE",
"has_tags",
"BD-R"
],
[
"THE FOUR FEATHERS",
"has_genre",
"DRAMA"
],
[
"THE FOUR FEATHERS",
"has_tags",
"BD-R"
],
[
"THE OSCAR",
"has_genre",
"DRAMA"
],
[
"THE OSCAR",
"has_tags",
"BD-R"
],
[
"THE PRISONER OF ZENDA",
"has_genre",
"DRAMA"
],
[
"THE PRISONER OF ZENDA",
"has_tags",
"BD-R"
],
[
"THE RACKET",
"has_genre",
"DRAMA"
],
[
"THE RACKET",
"has_tags",
"BD-R"
],
[
"THE SECRET LIFE OF WALTER MITTY",
"has_genre",
"DRAMA"
],
[
"THE SECRET LIFE OF WALTER MITTY",
"has_tags",
"BD-R"
],
[
"THE SON OF THE SHEIK",
"has_genre",
"DRAMA"
],
[
"THE SON OF THE SHEIK",
"has_tags",
"BD-R"
],
[
"THE THREE MUSKETEERS",
"has_genre",
"DRAMA"
],
[
"THE THREE MUSKETEERS",
"has_tags",
"BD-R"
],
[
"THE TREASURE OF THE SIERRA MADRE",
"has_genre",
"DRAMA"
],
[
"THE TREASURE OF THE SIERRA MADRE",
"has_tags",
"BD-R"
],
[
"THE UNHOLY THREE",
"has_genre",
"DRAMA"
],
[
"THE UNHOLY THREE",
"has_tags",
"BD-R"
],
[
"THE WRONG MAN",
"has_genre",
"DRAMA"
],
[
"THE WRONG MAN",
"has_tags",
"BD-R"
],
[
"THEY MADE ME A CRIMINAL",
"has_genre",
"DRAMA"
],
[
"THEY MADE ME A CRIMINAL",
"has_tags",
"BD-R"
],
[
"THREE ON A MATCH",
"has_genre",
"DRAMA"
],
[
"THREE ON A MATCH",
"has_tags",
"BD-R"
],
[
"WHO'S AFRAID OF VIRGINIA WOOLF?",
"has_genre",
"DRAMA"
],
[
"WHO'S AFRAID OF VIRGINIA WOOLF?",
"has_tags",
"BD-R"
],
[
"WINGS",
"has_genre",
"DRAMA"
],
[
"WINGS",
"has_tags",
"BD-R"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
20720, BLACK LIKE ME
755, CHARLES MATTHAU
36212, DRAMA
6274, FRANK CRAVEN
10869, GERDA LERNER
23553, OUR TOWN
39138, THE GRASS HARP
src, edge_attr, dst
20720, has_genre, 36212
20720, written_by, 10869
23553, has_genre, 36212
23553, written_by, 6274
39138, directed_by, 755
39138, has_genre, 36212
Question: How are CHARLES MATTHAU, FRANK CRAVEN, and GERDA LERNER related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"CHARLES MATTHAU",
"FRANK CRAVEN",
"GERDA LERNER"
],
"valid_edges": [
[
"BLACK LIKE ME",
"has_genre",
"DRAMA"
],
[
"BLACK LIKE ME",
"written_by",
"GERDA LERNER"
],
[
"OUR TOWN",
"has_genre",
"DRAMA"
],
[
"OUR TOWN",
"written_by",
"FRANK CRAVEN"
],
[
"THE GRASS HARP",
"directed_by",
"CHARLES MATTHAU"
],
[
"THE GRASS HARP",
"has_genre",
"DRAMA"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
27261, 2009
9377, 2014
10023, 99 HOMES
10054, A WALK AMONG THE TOMBSTONES
23806, ADDICTED
38361, AFFLUENZA
17534, ALOFT
34713, AN EDUCATION
37270, AND SO IT GOES
39876, ANNIE
18725, BAREFOOT
28764, BEGIN AGAIN
25930, BETTER LIVING THROUGH CHEMISTRY
36169, BEYOND THE LIGHTS
22684, BIG EYES
2975, BIRD PEOPLE
28685, BLIND
16290, BOYHOOD
37883, BROKEN EMBRACES
19993, C.O.G.
19004, CAKE
13812, CALVARY
17633, CAMP X-RAY
14816, CHARMING
20757, CLOUDS OF SILS MARIA
34890, COMET
9864, COMMON
33976, DAYS AND NIGHTS
10518, DEAR WHITE PEOPLE
17921, DRAFT DAY
36212, DRAMA
4838, EAT PRAY LOVE
7480, EDEN
13700, ENDLESS LOVE
34996, FORCE MAJEURE
32235, FOXCATCHER
38339, FRANK
5287, FROZEN
39145, FURY
25582, GIRLHOOD
7291, GOD HELP THE GIRL
24733, GOD'S NOT DEAD
31512, GOD'S POCKET
7319, GOODBYE TO LANGUAGE
28947, HAIDER
8617, HAPPY CHRISTMAS
6599, HEALING
9610, HEAVEN IS FOR REAL
20139, HELLION
29012, HER
6025, HIGHWAY
16788, INBETWEEN WORLDS
9748, INHERENT VICE
8793, JAMESY BOY
12031, JAMIE MARKS IS DEAD
21080, JAUJA
4246, JERSEY BOYS
17871, JONATHAN GROFF
1073, KILL THE MESSENGER
29887, KUMIKO, THE TREASURE HUNTER
37258, LARRY KRAMER
12760, LATE PHASES
824, LATITUDES
36329, LEVIATHAN
35542, LILTING
21502, LISTEN UP PHILIP
27480, LITTLE ACCIDENTS
24601, LOST HORIZON
31635, LOVE IS STRANGE
13249, LULLABY
7203, MAPS TO THE STARS
6592, MARGARET
5032, MARK RUFFALO
35271, MELODRAMA
35465, MILLION DOLLAR ARM
1911, MOMMY
9635, MR. TURNER
12944, MY LIFE WITHOUT ME
40064, MY OLD LADY
6766, PERFECT SISTERS
34922, PK
23152, PRIDE
12428, RAGE
17082, RESERVATION ROAD
28797, ROB THE MOB
3126, ROSEWATER
30895, RUDDERLESS
5766, RUNNING WITH SCISSORS
31492, RYAN MURPHY
32252, SAINT LAURENT
33939, SALTING THE BATTLEFIELD
38319, SELMA
26687, SENSO
3096, SERENA
19715, ST. VINCENT
23194, STATIONS OF THE CROSS
13635, STILL ALICE
34516, SYMPATHY FOR DELICIOUS
21160, THANK YOU A LOT
19501, THANKS FOR SHARING
9114, THE ANGRIEST MAN IN BROOKLYN
29460, THE BEST OF ME
5013, THE CIRCLE
11375, THE COBBLER
23306, THE DROP
4766, THE FAULT IN OUR STARS
32416, THE GOOD LIE
14626, THE HOMESMAN
36793, THE HUNDRED-FOOT JOURNEY
9406, THE IMITATION GAME
19629, THE JUDGE
4143, THE LAST CASTLE
30805, THE NEW GIRLFRIEND
35470, THE NORMAL HEART
3765, THE OTHER WOMAN
14064, THE OUTSIDER
8660, THE RECKONING
14115, THE ROVER
1492, THE SINGLE MOMS CLUB
9568, THE SKELETON TWINS
2559, THE THEORY OF EVERYTHING
31381, THE WAY HE LOOKS
34649, THE WONDERS
14919, THERE'S ALWAYS TOMORROW
698, THIS IS WHERE I LEAVE YOU
7969, TIMBUKTU
17726, TUSK
14504, UNBROKEN
36178, VERONICA MARS
10185, WELCOME TO NEW YORK
5465, WHAT DOESN'T KILL YOU
15726, WHEN ANIMALS DREAM
38804, WHIPLASH
14840, WHITE GOD
142, WILD
26235, WINTER SLEEP
4820, WISH I WAS HERE
37252, WOMEN IN LOVE
18995, XX/XY
12162, YOU CAN COUNT ON ME
5209, YVES SAINT LAURENT
src, edge_attr, dst
10023, has_genre, 36212
10023, release_year, 9377
10054, has_genre, 36212
10054, release_year, 9377
23806, has_genre, 36212
23806, release_year, 9377
38361, has_genre, 36212
38361, release_year, 9377
17534, has_genre, 36212
17534, release_year, 9377
34713, has_genre, 36212
34713, has_tags, 14816
34713, release_year, 27261
37270, has_genre, 36212
37270, release_year, 9377
39876, has_genre, 36212
39876, release_year, 9377
18725, has_genre, 36212
18725, release_year, 9377
28764, has_genre, 36212
28764, has_tags, 5032
28764, starred_actors, 5032
25930, has_genre, 36212
25930, release_year, 9377
36169, has_genre, 36212
36169, release_year, 9377
22684, has_genre, 36212
22684, release_year, 9377
2975, has_genre, 36212
2975, release_year, 9377
28685, has_genre, 36212
28685, release_year, 9377
16290, has_genre, 36212
16290, has_tags, 9377
16290, release_year, 9377
37883, has_genre, 36212
37883, has_tags, 35271
37883, release_year, 27261
19993, has_genre, 36212
19993, starred_actors, 17871
19004, has_genre, 36212
19004, release_year, 9377
13812, has_genre, 36212
13812, release_year, 9377
17633, has_genre, 36212
17633, release_year, 9377
20757, has_genre, 36212
20757, release_year, 9377
34890, has_genre, 36212
34890, release_year, 9377
9864, has_genre, 36212
9864, release_year, 9377
33976, has_genre, 36212
33976, release_year, 9377
10518, has_genre, 36212
10518, release_year, 9377
17921, has_genre, 36212
17921, release_year, 9377
4838, directed_by, 31492
4838, has_genre, 36212
4838, written_by, 31492
7480, has_genre, 36212
7480, release_year, 9377
13700, has_genre, 36212
13700, release_year, 9377
34996, has_genre, 36212
34996, has_tags, 9377
34996, release_year, 9377
32235, has_genre, 36212
32235, has_tags, 5032
32235, release_year, 9377
32235, starred_actors, 5032
38339, has_genre, 36212
38339, release_year, 9377
5287, has_genre, 36212
5287, starred_actors, 17871
39145, has_genre, 36212
39145, release_year, 9377
25582, has_genre, 36212
25582, release_year, 9377
7291, has_genre, 36212
7291, release_year, 9377
24733, has_genre, 36212
24733, release_year, 9377
31512, has_genre, 36212
31512, release_year, 9377
7319, has_genre, 36212
7319, release_year, 9377
28947, has_genre, 36212
28947, release_year, 9377
8617, has_genre, 36212
8617, release_year, 9377
6599, has_genre, 36212
6599, release_year, 9377
9610, has_genre, 36212
9610, release_year, 9377
20139, has_genre, 36212
20139, release_year, 9377
29012, has_genre, 36212
29012, has_tags, 9377
6025, has_genre, 36212
6025, release_year, 9377
16788, has_genre, 36212
16788, release_year, 9377
9748, has_genre, 36212
9748, release_year, 9377
8793, has_genre, 36212
8793, release_year, 9377
12031, has_genre, 36212
12031, release_year, 9377
21080, has_genre, 36212
21080, release_year, 9377
4246, has_genre, 36212
4246, release_year, 9377
1073, has_genre, 36212
1073, release_year, 9377
29887, has_genre, 36212
29887, release_year, 9377
12760, has_genre, 36212
12760, release_year, 9377
824, has_genre, 36212
824, release_year, 9377
36329, has_genre, 36212
36329, release_year, 9377
35542, has_genre, 36212
35542, release_year, 9377
21502, has_genre, 36212
21502, release_year, 9377
27480, has_genre, 36212
27480, release_year, 9377
24601, has_genre, 36212
24601, written_by, 37258
31635, has_genre, 36212
31635, release_year, 9377
13249, has_genre, 36212
13249, release_year, 9377
7203, has_genre, 36212
7203, has_tags, 36212
7203, release_year, 9377
6592, has_genre, 36212
6592, has_tags, 36212
6592, starred_actors, 5032
35465, has_genre, 36212
35465, release_year, 9377
1911, has_genre, 36212
1911, release_year, 9377
9635, has_genre, 36212
9635, release_year, 9377
12944, has_genre, 36212
12944, has_tags, 5032
40064, has_genre, 36212
40064, release_year, 9377
6766, has_genre, 36212
6766, release_year, 9377
34922, has_genre, 36212
34922, release_year, 9377
23152, has_genre, 36212
23152, release_year, 9377
12428, has_genre, 36212
12428, release_year, 9377
17082, has_genre, 36212
17082, has_tags, 5032
28797, has_genre, 36212
28797, release_year, 9377
3126, has_genre, 36212
3126, release_year, 9377
30895, has_genre, 36212
30895, release_year, 9377
5766, directed_by, 31492
5766, has_genre, 36212
5766, written_by, 31492
32252, has_genre, 36212
32252, release_year, 9377
33939, has_genre, 36212
33939, release_year, 9377
38319, has_genre, 36212
38319, release_year, 9377
26687, has_genre, 36212
26687, has_tags, 35271
3096, has_genre, 36212
3096, release_year, 9377
19715, has_genre, 36212
19715, release_year, 9377
23194, has_genre, 36212
23194, release_year, 9377
13635, has_genre, 36212
13635, release_year, 9377
34516, directed_by, 5032
34516, has_genre, 36212
34516, starred_actors, 5032
21160, has_genre, 36212
21160, release_year, 9377
19501, has_genre, 36212
19501, starred_actors, 5032
9114, has_genre, 36212
9114, release_year, 9377
29460, has_genre, 36212
29460, release_year, 9377
5013, has_genre, 36212
5013, release_year, 9377
11375, has_genre, 36212
11375, release_year, 9377
23306, has_genre, 36212
23306, release_year, 9377
4766, has_genre, 36212
4766, has_tags, 36212
4766, release_year, 9377
32416, has_genre, 36212
32416, release_year, 9377
14626, has_genre, 36212
14626, release_year, 9377
36793, has_genre, 36212
36793, release_year, 9377
9406, has_genre, 36212
9406, release_year, 9377
19629, has_genre, 36212
19629, release_year, 9377
4143, has_genre, 36212
4143, starred_actors, 5032
30805, has_genre, 36212
30805, release_year, 9377
35470, directed_by, 31492
35470, has_genre, 36212
35470, release_year, 9377
35470, starred_actors, 17871
35470, starred_actors, 5032
35470, written_by, 37258
3765, has_genre, 36212
3765, release_year, 9377
14064, has_genre, 36212
14064, release_year, 9377
8660, has_genre, 36212
8660, release_year, 9377
14115, has_genre, 36212
14115, release_year, 9377
1492, has_genre, 36212
1492, release_year, 9377
9568, has_genre, 36212
9568, release_year, 9377
2559, has_genre, 36212
2559, release_year, 9377
31381, has_genre, 36212
31381, has_tags, 36212
31381, release_year, 9377
34649, has_genre, 36212
34649, release_year, 9377
14919, has_genre, 36212
14919, has_tags, 35271
698, has_genre, 36212
698, release_year, 9377
7969, has_genre, 36212
7969, release_year, 9377
17726, has_genre, 36212
17726, release_year, 9377
14504, has_genre, 36212
14504, release_year, 9377
36178, has_genre, 36212
36178, release_year, 9377
10185, has_genre, 36212
10185, release_year, 9377
5465, has_genre, 36212
5465, has_tags, 5032
5465, starred_actors, 5032
15726, has_genre, 36212
15726, release_year, 9377
38804, has_genre, 36212
38804, release_year, 9377
14840, has_genre, 36212
14840, release_year, 9377
142, has_genre, 36212
142, release_year, 9377
26235, has_genre, 36212
26235, release_year, 9377
4820, has_genre, 36212
4820, release_year, 9377
37252, has_genre, 36212
37252, written_by, 37258
18995, has_genre, 36212
18995, starred_actors, 5032
12162, has_genre, 36212
12162, has_tags, 5032
12162, starred_actors, 5032
5209, has_genre, 36212
5209, release_year, 9377
Question: For what reason are CHARMING, MELODRAMA, and THE NORMAL HEART associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"CHARMING",
"MELODRAMA",
"THE NORMAL HEART"
],
"valid_edges": [
[
"99 HOMES",
"has_genre",
"DRAMA"
],
[
"99 HOMES",
"release_year",
"2014"
],
[
"A WALK AMONG THE TOMBSTONES",
"has_genre",
"DRAMA"
],
[
"A WALK AMONG THE TOMBSTONES",
"release_year",
"2014"
],
[
"ADDICTED",
"has_genre",
"DRAMA"
],
[
"ADDICTED",
"release_year",
"2014"
],
[
"AFFLUENZA",
"has_genre",
"DRAMA"
],
[
"AFFLUENZA",
"release_year",
"2014"
],
[
"ALOFT",
"has_genre",
"DRAMA"
],
[
"ALOFT",
"release_year",
"2014"
],
[
"AN EDUCATION",
"has_genre",
"DRAMA"
],
[
"AN EDUCATION",
"has_tags",
"CHARMING"
],
[
"AN EDUCATION",
"release_year",
"2009"
],
[
"AND SO IT GOES",
"has_genre",
"DRAMA"
],
[
"AND SO IT GOES",
"release_year",
"2014"
],
[
"ANNIE",
"has_genre",
"DRAMA"
],
[
"ANNIE",
"release_year",
"2014"
],
[
"BAREFOOT",
"has_genre",
"DRAMA"
],
[
"BAREFOOT",
"release_year",
"2014"
],
[
"BEGIN AGAIN",
"has_genre",
"DRAMA"
],
[
"BEGIN AGAIN",
"has_tags",
"MARK RUFFALO"
],
[
"BEGIN AGAIN",
"starred_actors",
"MARK RUFFALO"
],
[
"BETTER LIVING THROUGH CHEMISTRY",
"has_genre",
"DRAMA"
],
[
"BETTER LIVING THROUGH CHEMISTRY",
"release_year",
"2014"
],
[
"BEYOND THE LIGHTS",
"has_genre",
"DRAMA"
],
[
"BEYOND THE LIGHTS",
"release_year",
"2014"
],
[
"BIG EYES",
"has_genre",
"DRAMA"
],
[
"BIG EYES",
"release_year",
"2014"
],
[
"BIRD PEOPLE",
"has_genre",
"DRAMA"
],
[
"BIRD PEOPLE",
"release_year",
"2014"
],
[
"BLIND",
"has_genre",
"DRAMA"
],
[
"BLIND",
"release_year",
"2014"
],
[
"BOYHOOD",
"has_genre",
"DRAMA"
],
[
"BOYHOOD",
"has_tags",
"2014"
],
[
"BOYHOOD",
"release_year",
"2014"
],
[
"BROKEN EMBRACES",
"has_genre",
"DRAMA"
],
[
"BROKEN EMBRACES",
"has_tags",
"MELODRAMA"
],
[
"BROKEN EMBRACES",
"release_year",
"2009"
],
[
"C.O.G.",
"has_genre",
"DRAMA"
],
[
"C.O.G.",
"starred_actors",
"JONATHAN GROFF"
],
[
"CAKE",
"has_genre",
"DRAMA"
],
[
"CAKE",
"release_year",
"2014"
],
[
"CALVARY",
"has_genre",
"DRAMA"
],
[
"CALVARY",
"release_year",
"2014"
],
[
"CAMP X-RAY",
"has_genre",
"DRAMA"
],
[
"CAMP X-RAY",
"release_year",
"2014"
],
[
"CLOUDS OF SILS MARIA",
"has_genre",
"DRAMA"
],
[
"CLOUDS OF SILS MARIA",
"release_year",
"2014"
],
[
"COMET",
"has_genre",
"DRAMA"
],
[
"COMET",
"release_year",
"2014"
],
[
"COMMON",
"has_genre",
"DRAMA"
],
[
"COMMON",
"release_year",
"2014"
],
[
"DAYS AND NIGHTS",
"has_genre",
"DRAMA"
],
[
"DAYS AND NIGHTS",
"release_year",
"2014"
],
[
"DEAR WHITE PEOPLE",
"has_genre",
"DRAMA"
],
[
"DEAR WHITE PEOPLE",
"release_year",
"2014"
],
[
"DRAFT DAY",
"has_genre",
"DRAMA"
],
[
"DRAFT DAY",
"release_year",
"2014"
],
[
"EAT PRAY LOVE",
"directed_by",
"RYAN MURPHY"
],
[
"EAT PRAY LOVE",
"has_genre",
"DRAMA"
],
[
"EAT PRAY LOVE",
"written_by",
"RYAN MURPHY"
],
[
"EDEN",
"has_genre",
"DRAMA"
],
[
"EDEN",
"release_year",
"2014"
],
[
"ENDLESS LOVE",
"has_genre",
"DRAMA"
],
[
"ENDLESS LOVE",
"release_year",
"2014"
],
[
"FORCE MAJEURE",
"has_genre",
"DRAMA"
],
[
"FORCE MAJEURE",
"has_tags",
"2014"
],
[
"FORCE MAJEURE",
"release_year",
"2014"
],
[
"FOXCATCHER",
"has_genre",
"DRAMA"
],
[
"FOXCATCHER",
"has_tags",
"MARK RUFFALO"
],
[
"FOXCATCHER",
"release_year",
"2014"
],
[
"FOXCATCHER",
"starred_actors",
"MARK RUFFALO"
],
[
"FRANK",
"has_genre",
"DRAMA"
],
[
"FRANK",
"release_year",
"2014"
],
[
"FROZEN",
"has_genre",
"DRAMA"
],
[
"FROZEN",
"starred_actors",
"JONATHAN GROFF"
],
[
"FURY",
"has_genre",
"DRAMA"
],
[
"FURY",
"release_year",
"2014"
],
[
"GIRLHOOD",
"has_genre",
"DRAMA"
],
[
"GIRLHOOD",
"release_year",
"2014"
],
[
"GOD HELP THE GIRL",
"has_genre",
"DRAMA"
],
[
"GOD HELP THE GIRL",
"release_year",
"2014"
],
[
"GOD'S NOT DEAD",
"has_genre",
"DRAMA"
],
[
"GOD'S NOT DEAD",
"release_year",
"2014"
],
[
"GOD'S POCKET",
"has_genre",
"DRAMA"
],
[
"GOD'S POCKET",
"release_year",
"2014"
],
[
"GOODBYE TO LANGUAGE",
"has_genre",
"DRAMA"
],
[
"GOODBYE TO LANGUAGE",
"release_year",
"2014"
],
[
"HAIDER",
"has_genre",
"DRAMA"
],
[
"HAIDER",
"release_year",
"2014"
],
[
"HAPPY CHRISTMAS",
"has_genre",
"DRAMA"
],
[
"HAPPY CHRISTMAS",
"release_year",
"2014"
],
[
"HEALING",
"has_genre",
"DRAMA"
],
[
"HEALING",
"release_year",
"2014"
],
[
"HEAVEN IS FOR REAL",
"has_genre",
"DRAMA"
],
[
"HEAVEN IS FOR REAL",
"release_year",
"2014"
],
[
"HELLION",
"has_genre",
"DRAMA"
],
[
"HELLION",
"release_year",
"2014"
],
[
"HER",
"has_genre",
"DRAMA"
],
[
"HER",
"has_tags",
"2014"
],
[
"HIGHWAY",
"has_genre",
"DRAMA"
],
[
"HIGHWAY",
"release_year",
"2014"
],
[
"INBETWEEN WORLDS",
"has_genre",
"DRAMA"
],
[
"INBETWEEN WORLDS",
"release_year",
"2014"
],
[
"INHERENT VICE",
"has_genre",
"DRAMA"
],
[
"INHERENT VICE",
"release_year",
"2014"
],
[
"JAMESY BOY",
"has_genre",
"DRAMA"
],
[
"JAMESY BOY",
"release_year",
"2014"
],
[
"JAMIE MARKS IS DEAD",
"has_genre",
"DRAMA"
],
[
"JAMIE MARKS IS DEAD",
"release_year",
"2014"
],
[
"JAUJA",
"has_genre",
"DRAMA"
],
[
"JAUJA",
"release_year",
"2014"
],
[
"JERSEY BOYS",
"has_genre",
"DRAMA"
],
[
"JERSEY BOYS",
"release_year",
"2014"
],
[
"KILL THE MESSENGER",
"has_genre",
"DRAMA"
],
[
"KILL THE MESSENGER",
"release_year",
"2014"
],
[
"KUMIKO, THE TREASURE HUNTER",
"has_genre",
"DRAMA"
],
[
"KUMIKO, THE TREASURE HUNTER",
"release_year",
"2014"
],
[
"LATE PHASES",
"has_genre",
"DRAMA"
],
[
"LATE PHASES",
"release_year",
"2014"
],
[
"LATITUDES",
"has_genre",
"DRAMA"
],
[
"LATITUDES",
"release_year",
"2014"
],
[
"LEVIATHAN",
"has_genre",
"DRAMA"
],
[
"LEVIATHAN",
"release_year",
"2014"
],
[
"LILTING",
"has_genre",
"DRAMA"
],
[
"LILTING",
"release_year",
"2014"
],
[
"LISTEN UP PHILIP",
"has_genre",
"DRAMA"
],
[
"LISTEN UP PHILIP",
"release_year",
"2014"
],
[
"LITTLE ACCIDENTS",
"has_genre",
"DRAMA"
],
[
"LITTLE ACCIDENTS",
"release_year",
"2014"
],
[
"LOST HORIZON",
"has_genre",
"DRAMA"
],
[
"LOST HORIZON",
"written_by",
"LARRY KRAMER"
],
[
"LOVE IS STRANGE",
"has_genre",
"DRAMA"
],
[
"LOVE IS STRANGE",
"release_year",
"2014"
],
[
"LULLABY",
"has_genre",
"DRAMA"
],
[
"LULLABY",
"release_year",
"2014"
],
[
"MAPS TO THE STARS",
"has_genre",
"DRAMA"
],
[
"MAPS TO THE STARS",
"has_tags",
"DRAMA"
],
[
"MAPS TO THE STARS",
"release_year",
"2014"
],
[
"MARGARET",
"has_genre",
"DRAMA"
],
[
"MARGARET",
"has_tags",
"DRAMA"
],
[
"MARGARET",
"starred_actors",
"MARK RUFFALO"
],
[
"MILLION DOLLAR ARM",
"has_genre",
"DRAMA"
],
[
"MILLION DOLLAR ARM",
"release_year",
"2014"
],
[
"MOMMY",
"has_genre",
"DRAMA"
],
[
"MOMMY",
"release_year",
"2014"
],
[
"MR. TURNER",
"has_genre",
"DRAMA"
],
[
"MR. TURNER",
"release_year",
"2014"
],
[
"MY LIFE WITHOUT ME",
"has_genre",
"DRAMA"
],
[
"MY LIFE WITHOUT ME",
"has_tags",
"MARK RUFFALO"
],
[
"MY OLD LADY",
"has_genre",
"DRAMA"
],
[
"MY OLD LADY",
"release_year",
"2014"
],
[
"PERFECT SISTERS",
"has_genre",
"DRAMA"
],
[
"PERFECT SISTERS",
"release_year",
"2014"
],
[
"PK",
"has_genre",
"DRAMA"
],
[
"PK",
"release_year",
"2014"
],
[
"PRIDE",
"has_genre",
"DRAMA"
],
[
"PRIDE",
"release_year",
"2014"
],
[
"RAGE",
"has_genre",
"DRAMA"
],
[
"RAGE",
"release_year",
"2014"
],
[
"RESERVATION ROAD",
"has_genre",
"DRAMA"
],
[
"RESERVATION ROAD",
"has_tags",
"MARK RUFFALO"
],
[
"ROB THE MOB",
"has_genre",
"DRAMA"
],
[
"ROB THE MOB",
"release_year",
"2014"
],
[
"ROSEWATER",
"has_genre",
"DRAMA"
],
[
"ROSEWATER",
"release_year",
"2014"
],
[
"RUDDERLESS",
"has_genre",
"DRAMA"
],
[
"RUDDERLESS",
"release_year",
"2014"
],
[
"RUNNING WITH SCISSORS",
"directed_by",
"RYAN MURPHY"
],
[
"RUNNING WITH SCISSORS",
"has_genre",
"DRAMA"
],
[
"RUNNING WITH SCISSORS",
"written_by",
"RYAN MURPHY"
],
[
"SAINT LAURENT",
"has_genre",
"DRAMA"
],
[
"SAINT LAURENT",
"release_year",
"2014"
],
[
"SALTING THE BATTLEFIELD",
"has_genre",
"DRAMA"
],
[
"SALTING THE BATTLEFIELD",
"release_year",
"2014"
],
[
"SELMA",
"has_genre",
"DRAMA"
],
[
"SELMA",
"release_year",
"2014"
],
[
"SENSO",
"has_genre",
"DRAMA"
],
[
"SENSO",
"has_tags",
"MELODRAMA"
],
[
"SERENA",
"has_genre",
"DRAMA"
],
[
"SERENA",
"release_year",
"2014"
],
[
"ST. VINCENT",
"has_genre",
"DRAMA"
],
[
"ST. VINCENT",
"release_year",
"2014"
],
[
"STATIONS OF THE CROSS",
"has_genre",
"DRAMA"
],
[
"STATIONS OF THE CROSS",
"release_year",
"2014"
],
[
"STILL ALICE",
"has_genre",
"DRAMA"
],
[
"STILL ALICE",
"release_year",
"2014"
],
[
"SYMPATHY FOR DELICIOUS",
"directed_by",
"MARK RUFFALO"
],
[
"SYMPATHY FOR DELICIOUS",
"has_genre",
"DRAMA"
],
[
"SYMPATHY FOR DELICIOUS",
"starred_actors",
"MARK RUFFALO"
],
[
"THANK YOU A LOT",
"has_genre",
"DRAMA"
],
[
"THANK YOU A LOT",
"release_year",
"2014"
],
[
"THANKS FOR SHARING",
"has_genre",
"DRAMA"
],
[
"THANKS FOR SHARING",
"starred_actors",
"MARK RUFFALO"
],
[
"THE ANGRIEST MAN IN BROOKLYN",
"has_genre",
"DRAMA"
],
[
"THE ANGRIEST MAN IN BROOKLYN",
"release_year",
"2014"
],
[
"THE BEST OF ME",
"has_genre",
"DRAMA"
],
[
"THE BEST OF ME",
"release_year",
"2014"
],
[
"THE CIRCLE",
"has_genre",
"DRAMA"
],
[
"THE CIRCLE",
"release_year",
"2014"
],
[
"THE COBBLER",
"has_genre",
"DRAMA"
],
[
"THE COBBLER",
"release_year",
"2014"
],
[
"THE DROP",
"has_genre",
"DRAMA"
],
[
"THE DROP",
"release_year",
"2014"
],
[
"THE FAULT IN OUR STARS",
"has_genre",
"DRAMA"
],
[
"THE FAULT IN OUR STARS",
"has_tags",
"DRAMA"
],
[
"THE FAULT IN OUR STARS",
"release_year",
"2014"
],
[
"THE GOOD LIE",
"has_genre",
"DRAMA"
],
[
"THE GOOD LIE",
"release_year",
"2014"
],
[
"THE HOMESMAN",
"has_genre",
"DRAMA"
],
[
"THE HOMESMAN",
"release_year",
"2014"
],
[
"THE HUNDRED-FOOT JOURNEY",
"has_genre",
"DRAMA"
],
[
"THE HUNDRED-FOOT JOURNEY",
"release_year",
"2014"
],
[
"THE IMITATION GAME",
"has_genre",
"DRAMA"
],
[
"THE IMITATION GAME",
"release_year",
"2014"
],
[
"THE JUDGE",
"has_genre",
"DRAMA"
],
[
"THE JUDGE",
"release_year",
"2014"
],
[
"THE LAST CASTLE",
"has_genre",
"DRAMA"
],
[
"THE LAST CASTLE",
"starred_actors",
"MARK RUFFALO"
],
[
"THE NEW GIRLFRIEND",
"has_genre",
"DRAMA"
],
[
"THE NEW GIRLFRIEND",
"release_year",
"2014"
],
[
"THE NORMAL HEART",
"directed_by",
"RYAN MURPHY"
],
[
"THE NORMAL HEART",
"has_genre",
"DRAMA"
],
[
"THE NORMAL HEART",
"release_year",
"2014"
],
[
"THE NORMAL HEART",
"starred_actors",
"JONATHAN GROFF"
],
[
"THE NORMAL HEART",
"starred_actors",
"MARK RUFFALO"
],
[
"THE NORMAL HEART",
"written_by",
"LARRY KRAMER"
],
[
"THE OTHER WOMAN",
"has_genre",
"DRAMA"
],
[
"THE OTHER WOMAN",
"release_year",
"2014"
],
[
"THE OUTSIDER",
"has_genre",
"DRAMA"
],
[
"THE OUTSIDER",
"release_year",
"2014"
],
[
"THE RECKONING",
"has_genre",
"DRAMA"
],
[
"THE RECKONING",
"release_year",
"2014"
],
[
"THE ROVER",
"has_genre",
"DRAMA"
],
[
"THE ROVER",
"release_year",
"2014"
],
[
"THE SINGLE MOMS CLUB",
"has_genre",
"DRAMA"
],
[
"THE SINGLE MOMS CLUB",
"release_year",
"2014"
],
[
"THE SKELETON TWINS",
"has_genre",
"DRAMA"
],
[
"THE SKELETON TWINS",
"release_year",
"2014"
],
[
"THE THEORY OF EVERYTHING",
"has_genre",
"DRAMA"
],
[
"THE THEORY OF EVERYTHING",
"release_year",
"2014"
],
[
"THE WAY HE LOOKS",
"has_genre",
"DRAMA"
],
[
"THE WAY HE LOOKS",
"has_tags",
"DRAMA"
],
[
"THE WAY HE LOOKS",
"release_year",
"2014"
],
[
"THE WONDERS",
"has_genre",
"DRAMA"
],
[
"THE WONDERS",
"release_year",
"2014"
],
[
"THERE'S ALWAYS TOMORROW",
"has_genre",
"DRAMA"
],
[
"THERE'S ALWAYS TOMORROW",
"has_tags",
"MELODRAMA"
],
[
"THIS IS WHERE I LEAVE YOU",
"has_genre",
"DRAMA"
],
[
"THIS IS WHERE I LEAVE YOU",
"release_year",
"2014"
],
[
"TIMBUKTU",
"has_genre",
"DRAMA"
],
[
"TIMBUKTU",
"release_year",
"2014"
],
[
"TUSK",
"has_genre",
"DRAMA"
],
[
"TUSK",
"release_year",
"2014"
],
[
"UNBROKEN",
"has_genre",
"DRAMA"
],
[
"UNBROKEN",
"release_year",
"2014"
],
[
"VERONICA MARS",
"has_genre",
"DRAMA"
],
[
"VERONICA MARS",
"release_year",
"2014"
],
[
"WELCOME TO NEW YORK",
"has_genre",
"DRAMA"
],
[
"WELCOME TO NEW YORK",
"release_year",
"2014"
],
[
"WHAT DOESN'T KILL YOU",
"has_genre",
"DRAMA"
],
[
"WHAT DOESN'T KILL YOU",
"has_tags",
"MARK RUFFALO"
],
[
"WHAT DOESN'T KILL YOU",
"starred_actors",
"MARK RUFFALO"
],
[
"WHEN ANIMALS DREAM",
"has_genre",
"DRAMA"
],
[
"WHEN ANIMALS DREAM",
"release_year",
"2014"
],
[
"WHIPLASH",
"has_genre",
"DRAMA"
],
[
"WHIPLASH",
"release_year",
"2014"
],
[
"WHITE GOD",
"has_genre",
"DRAMA"
],
[
"WHITE GOD",
"release_year",
"2014"
],
[
"WILD",
"has_genre",
"DRAMA"
],
[
"WILD",
"release_year",
"2014"
],
[
"WINTER SLEEP",
"has_genre",
"DRAMA"
],
[
"WINTER SLEEP",
"release_year",
"2014"
],
[
"WISH I WAS HERE",
"has_genre",
"DRAMA"
],
[
"WISH I WAS HERE",
"release_year",
"2014"
],
[
"WOMEN IN LOVE",
"has_genre",
"DRAMA"
],
[
"WOMEN IN LOVE",
"written_by",
"LARRY KRAMER"
],
[
"XX/XY",
"has_genre",
"DRAMA"
],
[
"XX/XY",
"starred_actors",
"MARK RUFFALO"
],
[
"YOU CAN COUNT ON ME",
"has_genre",
"DRAMA"
],
[
"YOU CAN COUNT ON ME",
"has_tags",
"MARK RUFFALO"
],
[
"YOU CAN COUNT ON ME",
"starred_actors",
"MARK RUFFALO"
],
[
"YVES SAINT LAURENT",
"has_genre",
"DRAMA"
],
[
"YVES SAINT LAURENT",
"release_year",
"2014"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
24438, 1993
35845, 2006
39289, ACTION
40074, BLACK BOOK
16664, BLOOD DIAMOND
22435, CHILDREN OF MEN
17602, DAS MILLIONENSPIEL
3567, DAYS OF GLORY
10315, FLAGS OF OUR FATHERS
36601, FLANDERS
1273, FLYBOYS
3990, GETTYSBURG
18934, LETTERS FROM IWO JIMA
39852, PAN'S LABYRINTH
34732, PLATOON
16772, SNIPER
11124, STALINGRAD
9355, THE MARSH
32618, THE RAPE OF EUROPA
4294, THE SUBSTITUTE
2783, THE WIND THAT SHAKES THE BARLEY
2930, TOM BERENGER
11413, TOM TOELLE
22214, WAR
src, edge_attr, dst
40074, has_genre, 22214
40074, release_year, 35845
16664, has_tags, 22214
16664, release_year, 35845
22435, has_tags, 22214
22435, release_year, 35845
17602, directed_by, 11413
17602, has_genre, 39289
3567, has_genre, 22214
3567, has_tags, 22214
3567, release_year, 35845
10315, has_genre, 22214
10315, has_tags, 22214
10315, release_year, 35845
36601, has_genre, 22214
36601, release_year, 35845
1273, has_tags, 22214
1273, release_year, 35845
3990, has_genre, 22214
3990, release_year, 24438
3990, starred_actors, 2930
18934, has_genre, 22214
18934, has_tags, 22214
18934, release_year, 35845
39852, has_genre, 22214
39852, has_tags, 22214
39852, release_year, 35845
34732, has_genre, 22214
34732, has_tags, 2930
34732, has_tags, 22214
34732, starred_actors, 2930
16772, release_year, 24438
16772, starred_actors, 2930
11124, has_genre, 22214
11124, release_year, 24438
9355, release_year, 35845
32618, has_genre, 22214
32618, release_year, 35845
4294, release_year, 24438
4294, starred_actors, 2930
2783, has_genre, 22214
2783, release_year, 35845
22214, has_genre, 39289
Question: How are GETTYSBURG, THE MARSH, and TOM TOELLE related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"GETTYSBURG",
"THE MARSH",
"TOM TOELLE"
],
"valid_edges": [
[
"BLACK BOOK",
"has_genre",
"WAR"
],
[
"BLACK BOOK",
"release_year",
"2006"
],
[
"BLOOD DIAMOND",
"has_tags",
"WAR"
],
[
"BLOOD DIAMOND",
"release_year",
"2006"
],
[
"CHILDREN OF MEN",
"has_tags",
"WAR"
],
[
"CHILDREN OF MEN",
"release_year",
"2006"
],
[
"DAS MILLIONENSPIEL",
"directed_by",
"TOM TOELLE"
],
[
"DAS MILLIONENSPIEL",
"has_genre",
"ACTION"
],
[
"DAYS OF GLORY",
"has_genre",
"WAR"
],
[
"DAYS OF GLORY",
"has_tags",
"WAR"
],
[
"DAYS OF GLORY",
"release_year",
"2006"
],
[
"FLAGS OF OUR FATHERS",
"has_genre",
"WAR"
],
[
"FLAGS OF OUR FATHERS",
"has_tags",
"WAR"
],
[
"FLAGS OF OUR FATHERS",
"release_year",
"2006"
],
[
"FLANDERS",
"has_genre",
"WAR"
],
[
"FLANDERS",
"release_year",
"2006"
],
[
"FLYBOYS",
"has_tags",
"WAR"
],
[
"FLYBOYS",
"release_year",
"2006"
],
[
"GETTYSBURG",
"has_genre",
"WAR"
],
[
"GETTYSBURG",
"release_year",
"1993"
],
[
"GETTYSBURG",
"starred_actors",
"TOM BERENGER"
],
[
"LETTERS FROM IWO JIMA",
"has_genre",
"WAR"
],
[
"LETTERS FROM IWO JIMA",
"has_tags",
"WAR"
],
[
"LETTERS FROM IWO JIMA",
"release_year",
"2006"
],
[
"PAN'S LABYRINTH",
"has_genre",
"WAR"
],
[
"PAN'S LABYRINTH",
"has_tags",
"WAR"
],
[
"PAN'S LABYRINTH",
"release_year",
"2006"
],
[
"PLATOON",
"has_genre",
"WAR"
],
[
"PLATOON",
"has_tags",
"TOM BERENGER"
],
[
"PLATOON",
"has_tags",
"WAR"
],
[
"PLATOON",
"starred_actors",
"TOM BERENGER"
],
[
"SNIPER",
"release_year",
"1993"
],
[
"SNIPER",
"starred_actors",
"TOM BERENGER"
],
[
"STALINGRAD",
"has_genre",
"WAR"
],
[
"STALINGRAD",
"release_year",
"1993"
],
[
"THE MARSH",
"release_year",
"2006"
],
[
"THE RAPE OF EUROPA",
"has_genre",
"WAR"
],
[
"THE RAPE OF EUROPA",
"release_year",
"2006"
],
[
"THE SUBSTITUTE",
"release_year",
"1993"
],
[
"THE SUBSTITUTE",
"starred_actors",
"TOM BERENGER"
],
[
"THE WIND THAT SHAKES THE BARLEY",
"has_genre",
"WAR"
],
[
"THE WIND THAT SHAKES THE BARLEY",
"release_year",
"2006"
],
[
"WAR",
"has_genre",
"ACTION"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
27261, 2009
34443, 31 NORTH 62 EAST
28568, A PERFECT GETAWAY
12694, A PISTOL FOR RINGO
12088, ACCIDENT
22144, ALEC BALDWIN
29167, AMER
23227, ARMORED
6891, BAARÌA
31895, BERBERIAN SOUND STUDIO
2570, BLACK SUNDAY
39539, BLOOD AND BLACK LACE
20961, BLOOD RIVER
4197, BLUEBEARD
37883, BROKEN EMBRACES
37594, BROTHERHOOD
6283, CARGO
7143, CHLOE
31844, COSMONAUT
8438, CUT AND RUN
10313, DEAD AGAIN
3645, DEADLINE
8381, DETOUR
6692, DISTRICT 9
17274, DOLAN'S CADILLAC
11127, DON MCKAY
27842, DON'T LOOK NOW
30123, DORIAN GRAY
23387, EVERYBODY'S FINE
14585, EXAM
8176, FAREWELL
4159, FEAR ISLAND
31919, FORMOSA BETRAYED
3724, GAMER
12638, GLORIOUS 39
3345, HEAVEN'S PRISONERS
27937, HIERRO
37563, HOMECOMING
23780, HURT
4749, I AM LOVE
24167, INFERNO
16200, ITALIAN
30872, KILL THEORY
14653, LAW ABIDING CITIZEN
11652, LONELY STREET
38786, MALICE
14537, NOT FORGOTTEN
36387, OBSESSED
1827, ORPHAN
738, PLOT OF FEAR
25809, PUSH
12428, RAGE
2010, RAMPAGE
3091, SCOTT FRANK
6119, SLEUTH
40102, THE CANYON
16442, THE COLLECTOR
4337, THE CRY OF THE OWL
15205, THE DISAPPEARANCE OF ALICE CREED
32932, THE DOUBLE HOUR
24006, THE FIFTH CORD
19760, THE FRIENDS AT THE MARGHERITA CAFE
35772, THE GIRL BY THE LAKE
36893, THE GIRL ON THE TRAIN
38083, THE GIRL WHO KICKED THE HORNETS' NEST
21338, THE GIRL WHO PLAYED WITH FIRE
7240, THE GIRL WITH THE DRAGON TATTOO
23333, THE HOLE
28886, THE KILLING ROOM
11542, THE LAUGHING WOMAN
37148, THE SECRET IN THEIR EYES
35993, THE STEPFATHER
17719, THE THAW
24489, THE TOURNAMENT
25030, THE UNKNOWN WOMAN
5463, THE WAGES OF FEAR
24811, THRILLER
17396, TORSO
37099, TRIANGLE
8129, VIDEOCRACY
15645, VINCERE
15036, WHITEOUT
src, edge_attr, dst
34443, has_genre, 24811
34443, release_year, 27261
28568, has_genre, 24811
28568, release_year, 27261
12694, in_language, 16200
12088, has_genre, 24811
12088, release_year, 27261
29167, has_genre, 24811
29167, release_year, 27261
23227, has_genre, 24811
23227, release_year, 27261
6891, in_language, 16200
6891, release_year, 27261
31895, has_genre, 24811
31895, in_language, 16200
2570, has_genre, 24811
2570, in_language, 16200
39539, has_genre, 24811
39539, in_language, 16200
20961, has_genre, 24811
20961, release_year, 27261
4197, has_genre, 24811
4197, release_year, 27261
37883, has_genre, 24811
37883, release_year, 27261
37594, has_genre, 24811
37594, release_year, 27261
6283, has_genre, 24811
6283, release_year, 27261
7143, has_genre, 24811
7143, release_year, 27261
31844, in_language, 16200
31844, release_year, 27261
8438, has_genre, 24811
8438, in_language, 16200
10313, has_genre, 24811
10313, written_by, 3091
3645, has_genre, 24811
3645, release_year, 27261
8381, has_genre, 24811
8381, release_year, 27261
6692, has_genre, 24811
6692, has_tags, 24811
6692, release_year, 27261
17274, has_genre, 24811
17274, release_year, 27261
11127, has_genre, 24811
11127, release_year, 27261
27842, has_genre, 24811
27842, in_language, 16200
30123, has_genre, 24811
30123, release_year, 27261
23387, in_language, 16200
23387, release_year, 27261
14585, has_genre, 24811
14585, release_year, 27261
8176, has_genre, 24811
8176, release_year, 27261
4159, has_genre, 24811
4159, release_year, 27261
31919, has_genre, 24811
31919, release_year, 27261
3724, has_genre, 24811
3724, release_year, 27261
12638, has_genre, 24811
12638, release_year, 27261
3345, has_genre, 24811
3345, starred_actors, 22144
3345, written_by, 3091
27937, has_genre, 24811
27937, release_year, 27261
37563, has_genre, 24811
37563, release_year, 27261
23780, has_genre, 24811
23780, release_year, 27261
4749, in_language, 16200
4749, release_year, 27261
24167, has_genre, 24811
24167, in_language, 16200
30872, has_genre, 24811
30872, release_year, 27261
14653, has_genre, 24811
14653, release_year, 27261
11652, has_genre, 24811
11652, release_year, 27261
38786, has_genre, 24811
38786, starred_actors, 22144
38786, written_by, 3091
14537, has_genre, 24811
14537, release_year, 27261
36387, has_genre, 24811
36387, release_year, 27261
1827, has_genre, 24811
1827, release_year, 27261
738, has_genre, 24811
738, in_language, 16200
25809, has_genre, 24811
25809, release_year, 27261
12428, has_genre, 24811
12428, release_year, 27261
2010, has_genre, 24811
2010, release_year, 27261
6119, has_genre, 24811
6119, in_language, 16200
40102, has_genre, 24811
40102, release_year, 27261
16442, has_genre, 24811
16442, release_year, 27261
4337, has_genre, 24811
4337, release_year, 27261
15205, has_genre, 24811
15205, release_year, 27261
32932, in_language, 16200
32932, release_year, 27261
24006, has_genre, 24811
24006, in_language, 16200
19760, in_language, 16200
19760, release_year, 27261
35772, has_genre, 24811
35772, in_language, 16200
36893, has_genre, 24811
36893, release_year, 27261
38083, has_genre, 24811
38083, has_tags, 24811
38083, release_year, 27261
21338, has_tags, 24811
21338, release_year, 27261
7240, has_tags, 24811
7240, release_year, 27261
23333, has_genre, 24811
23333, release_year, 27261
28886, has_genre, 24811
28886, release_year, 27261
11542, has_genre, 24811
11542, in_language, 16200
37148, has_genre, 24811
37148, release_year, 27261
35993, has_genre, 24811
35993, release_year, 27261
17719, has_genre, 24811
17719, release_year, 27261
24489, has_genre, 24811
24489, release_year, 27261
25030, has_genre, 24811
25030, in_language, 16200
5463, has_genre, 24811
5463, in_language, 16200
17396, has_genre, 24811
17396, in_language, 16200
37099, has_genre, 24811
37099, release_year, 27261
8129, in_language, 16200
8129, release_year, 27261
15645, in_language, 16200
15645, release_year, 27261
15036, has_tags, 24811
15036, release_year, 27261
Question: For what reason are A PISTOL FOR RINGO, SCOTT FRANK, and THE CANYON associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"A PISTOL FOR RINGO",
"SCOTT FRANK",
"THE CANYON"
],
"valid_edges": [
[
"31 NORTH 62 EAST",
"has_genre",
"THRILLER"
],
[
"31 NORTH 62 EAST",
"release_year",
"2009"
],
[
"A PERFECT GETAWAY",
"has_genre",
"THRILLER"
],
[
"A PERFECT GETAWAY",
"release_year",
"2009"
],
[
"A PISTOL FOR RINGO",
"in_language",
"ITALIAN"
],
[
"ACCIDENT",
"has_genre",
"THRILLER"
],
[
"ACCIDENT",
"release_year",
"2009"
],
[
"AMER",
"has_genre",
"THRILLER"
],
[
"AMER",
"release_year",
"2009"
],
[
"ARMORED",
"has_genre",
"THRILLER"
],
[
"ARMORED",
"release_year",
"2009"
],
[
"BAARÌA",
"in_language",
"ITALIAN"
],
[
"BAARÌA",
"release_year",
"2009"
],
[
"BERBERIAN SOUND STUDIO",
"has_genre",
"THRILLER"
],
[
"BERBERIAN SOUND STUDIO",
"in_language",
"ITALIAN"
],
[
"BLACK SUNDAY",
"has_genre",
"THRILLER"
],
[
"BLACK SUNDAY",
"in_language",
"ITALIAN"
],
[
"BLOOD AND BLACK LACE",
"has_genre",
"THRILLER"
],
[
"BLOOD AND BLACK LACE",
"in_language",
"ITALIAN"
],
[
"BLOOD RIVER",
"has_genre",
"THRILLER"
],
[
"BLOOD RIVER",
"release_year",
"2009"
],
[
"BLUEBEARD",
"has_genre",
"THRILLER"
],
[
"BLUEBEARD",
"release_year",
"2009"
],
[
"BROKEN EMBRACES",
"has_genre",
"THRILLER"
],
[
"BROKEN EMBRACES",
"release_year",
"2009"
],
[
"BROTHERHOOD",
"has_genre",
"THRILLER"
],
[
"BROTHERHOOD",
"release_year",
"2009"
],
[
"CARGO",
"has_genre",
"THRILLER"
],
[
"CARGO",
"release_year",
"2009"
],
[
"CHLOE",
"has_genre",
"THRILLER"
],
[
"CHLOE",
"release_year",
"2009"
],
[
"COSMONAUT",
"in_language",
"ITALIAN"
],
[
"COSMONAUT",
"release_year",
"2009"
],
[
"CUT AND RUN",
"has_genre",
"THRILLER"
],
[
"CUT AND RUN",
"in_language",
"ITALIAN"
],
[
"DEAD AGAIN",
"has_genre",
"THRILLER"
],
[
"DEAD AGAIN",
"written_by",
"SCOTT FRANK"
],
[
"DEADLINE",
"has_genre",
"THRILLER"
],
[
"DEADLINE",
"release_year",
"2009"
],
[
"DETOUR",
"has_genre",
"THRILLER"
],
[
"DETOUR",
"release_year",
"2009"
],
[
"DISTRICT 9",
"has_genre",
"THRILLER"
],
[
"DISTRICT 9",
"has_tags",
"THRILLER"
],
[
"DISTRICT 9",
"release_year",
"2009"
],
[
"DOLAN'S CADILLAC",
"has_genre",
"THRILLER"
],
[
"DOLAN'S CADILLAC",
"release_year",
"2009"
],
[
"DON MCKAY",
"has_genre",
"THRILLER"
],
[
"DON MCKAY",
"release_year",
"2009"
],
[
"DON'T LOOK NOW",
"has_genre",
"THRILLER"
],
[
"DON'T LOOK NOW",
"in_language",
"ITALIAN"
],
[
"DORIAN GRAY",
"has_genre",
"THRILLER"
],
[
"DORIAN GRAY",
"release_year",
"2009"
],
[
"EVERYBODY'S FINE",
"in_language",
"ITALIAN"
],
[
"EVERYBODY'S FINE",
"release_year",
"2009"
],
[
"EXAM",
"has_genre",
"THRILLER"
],
[
"EXAM",
"release_year",
"2009"
],
[
"FAREWELL",
"has_genre",
"THRILLER"
],
[
"FAREWELL",
"release_year",
"2009"
],
[
"FEAR ISLAND",
"has_genre",
"THRILLER"
],
[
"FEAR ISLAND",
"release_year",
"2009"
],
[
"FORMOSA BETRAYED",
"has_genre",
"THRILLER"
],
[
"FORMOSA BETRAYED",
"release_year",
"2009"
],
[
"GAMER",
"has_genre",
"THRILLER"
],
[
"GAMER",
"release_year",
"2009"
],
[
"GLORIOUS 39",
"has_genre",
"THRILLER"
],
[
"GLORIOUS 39",
"release_year",
"2009"
],
[
"HEAVEN'S PRISONERS",
"has_genre",
"THRILLER"
],
[
"HEAVEN'S PRISONERS",
"starred_actors",
"ALEC BALDWIN"
],
[
"HEAVEN'S PRISONERS",
"written_by",
"SCOTT FRANK"
],
[
"HIERRO",
"has_genre",
"THRILLER"
],
[
"HIERRO",
"release_year",
"2009"
],
[
"HOMECOMING",
"has_genre",
"THRILLER"
],
[
"HOMECOMING",
"release_year",
"2009"
],
[
"HURT",
"has_genre",
"THRILLER"
],
[
"HURT",
"release_year",
"2009"
],
[
"I AM LOVE",
"in_language",
"ITALIAN"
],
[
"I AM LOVE",
"release_year",
"2009"
],
[
"INFERNO",
"has_genre",
"THRILLER"
],
[
"INFERNO",
"in_language",
"ITALIAN"
],
[
"KILL THEORY",
"has_genre",
"THRILLER"
],
[
"KILL THEORY",
"release_year",
"2009"
],
[
"LAW ABIDING CITIZEN",
"has_genre",
"THRILLER"
],
[
"LAW ABIDING CITIZEN",
"release_year",
"2009"
],
[
"LONELY STREET",
"has_genre",
"THRILLER"
],
[
"LONELY STREET",
"release_year",
"2009"
],
[
"MALICE",
"has_genre",
"THRILLER"
],
[
"MALICE",
"starred_actors",
"ALEC BALDWIN"
],
[
"MALICE",
"written_by",
"SCOTT FRANK"
],
[
"NOT FORGOTTEN",
"has_genre",
"THRILLER"
],
[
"NOT FORGOTTEN",
"release_year",
"2009"
],
[
"OBSESSED",
"has_genre",
"THRILLER"
],
[
"OBSESSED",
"release_year",
"2009"
],
[
"ORPHAN",
"has_genre",
"THRILLER"
],
[
"ORPHAN",
"release_year",
"2009"
],
[
"PLOT OF FEAR",
"has_genre",
"THRILLER"
],
[
"PLOT OF FEAR",
"in_language",
"ITALIAN"
],
[
"PUSH",
"has_genre",
"THRILLER"
],
[
"PUSH",
"release_year",
"2009"
],
[
"RAGE",
"has_genre",
"THRILLER"
],
[
"RAGE",
"release_year",
"2009"
],
[
"RAMPAGE",
"has_genre",
"THRILLER"
],
[
"RAMPAGE",
"release_year",
"2009"
],
[
"SLEUTH",
"has_genre",
"THRILLER"
],
[
"SLEUTH",
"in_language",
"ITALIAN"
],
[
"THE CANYON",
"has_genre",
"THRILLER"
],
[
"THE CANYON",
"release_year",
"2009"
],
[
"THE COLLECTOR",
"has_genre",
"THRILLER"
],
[
"THE COLLECTOR",
"release_year",
"2009"
],
[
"THE CRY OF THE OWL",
"has_genre",
"THRILLER"
],
[
"THE CRY OF THE OWL",
"release_year",
"2009"
],
[
"THE DISAPPEARANCE OF ALICE CREED",
"has_genre",
"THRILLER"
],
[
"THE DISAPPEARANCE OF ALICE CREED",
"release_year",
"2009"
],
[
"THE DOUBLE HOUR",
"in_language",
"ITALIAN"
],
[
"THE DOUBLE HOUR",
"release_year",
"2009"
],
[
"THE FIFTH CORD",
"has_genre",
"THRILLER"
],
[
"THE FIFTH CORD",
"in_language",
"ITALIAN"
],
[
"THE FRIENDS AT THE MARGHERITA CAFE",
"in_language",
"ITALIAN"
],
[
"THE FRIENDS AT THE MARGHERITA CAFE",
"release_year",
"2009"
],
[
"THE GIRL BY THE LAKE",
"has_genre",
"THRILLER"
],
[
"THE GIRL BY THE LAKE",
"in_language",
"ITALIAN"
],
[
"THE GIRL ON THE TRAIN",
"has_genre",
"THRILLER"
],
[
"THE GIRL ON THE TRAIN",
"release_year",
"2009"
],
[
"THE GIRL WHO KICKED THE HORNETS' NEST",
"has_genre",
"THRILLER"
],
[
"THE GIRL WHO KICKED THE HORNETS' NEST",
"has_tags",
"THRILLER"
],
[
"THE GIRL WHO KICKED THE HORNETS' NEST",
"release_year",
"2009"
],
[
"THE GIRL WHO PLAYED WITH FIRE",
"has_tags",
"THRILLER"
],
[
"THE GIRL WHO PLAYED WITH FIRE",
"release_year",
"2009"
],
[
"THE GIRL WITH THE DRAGON TATTOO",
"has_tags",
"THRILLER"
],
[
"THE GIRL WITH THE DRAGON TATTOO",
"release_year",
"2009"
],
[
"THE HOLE",
"has_genre",
"THRILLER"
],
[
"THE HOLE",
"release_year",
"2009"
],
[
"THE KILLING ROOM",
"has_genre",
"THRILLER"
],
[
"THE KILLING ROOM",
"release_year",
"2009"
],
[
"THE LAUGHING WOMAN",
"has_genre",
"THRILLER"
],
[
"THE LAUGHING WOMAN",
"in_language",
"ITALIAN"
],
[
"THE SECRET IN THEIR EYES",
"has_genre",
"THRILLER"
],
[
"THE SECRET IN THEIR EYES",
"release_year",
"2009"
],
[
"THE STEPFATHER",
"has_genre",
"THRILLER"
],
[
"THE STEPFATHER",
"release_year",
"2009"
],
[
"THE THAW",
"has_genre",
"THRILLER"
],
[
"THE THAW",
"release_year",
"2009"
],
[
"THE TOURNAMENT",
"has_genre",
"THRILLER"
],
[
"THE TOURNAMENT",
"release_year",
"2009"
],
[
"THE UNKNOWN WOMAN",
"has_genre",
"THRILLER"
],
[
"THE UNKNOWN WOMAN",
"in_language",
"ITALIAN"
],
[
"THE WAGES OF FEAR",
"has_genre",
"THRILLER"
],
[
"THE WAGES OF FEAR",
"in_language",
"ITALIAN"
],
[
"TORSO",
"has_genre",
"THRILLER"
],
[
"TORSO",
"in_language",
"ITALIAN"
],
[
"TRIANGLE",
"has_genre",
"THRILLER"
],
[
"TRIANGLE",
"release_year",
"2009"
],
[
"VIDEOCRACY",
"in_language",
"ITALIAN"
],
[
"VIDEOCRACY",
"release_year",
"2009"
],
[
"VINCERE",
"in_language",
"ITALIAN"
],
[
"VINCERE",
"release_year",
"2009"
],
[
"WHITEOUT",
"has_tags",
"THRILLER"
],
[
"WHITEOUT",
"release_year",
"2009"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
13408, 2001
13747, 25 WATTS
5478, 30 YEARS TO LIFE
8200, ALL OVER THE GUY
32427, ALL THE QUEEN'S MEN
17687, AMERICA'S SWEETHEARTS
34899, AMERICAN PIE 2
12224, AMÉLIE
5593, BABY BOY
23952, BANDITS
13418, BARTLEBY
9654, BLACK KNIGHT
35213, BLOW DRY
18692, BOB THE BUTLER
23128, BRIDGET JONES'S DIARY
19026, BUBBLE BOY
17892, CAMOUFLAGE
30463, COMEDY
2605, CORKY ROMANO
18980, CROCODILE DUNDEE IN LOS ANGELES
1915, DIL CHAHTA HAI
12217, DON'T TEMPT ME
7023, DOUBLE TAKE
19756, DOWN TO EARTH
8704, DR. DOLITTLE 2
28808, ESCANABA IN DA MOONLIGHT
23470, EVOLUTION
6915, FOCUS
21322, FREDDY GOT FINGERED
30712, FREEBIE AND THE BEAN
5287, FROZEN
23511, GAUDI AFTERNOON
37949, GET OVER IT
12664, GHOST WORLD
18445, GOD IS GREAT AND I'M NOT
10113, GOOD ADVICE
8648, HAPPY CAMPERS
21060, HARVARD MAN
37229, HE DIED WITH A FELAFEL IN HIS HAND
11344, HEARTBREAKERS
1292, HEDWIG AND THE ANGRY INCH
38901, HIGH HEELS AND LOW LIFES
10703, HOW HIGH
35625, HUMAN NATURE
4358, ICE
16371, ICE AGE
23526, JACKPOT
263, JAY AND SILENT BOB STRIKE BACK
32383, JOE DIRT
12610, JOE SOMEBODY
10109, JOSIE AND THE PUSSYCATS
30384, JUMP TOMORROW
16839, JUST VISITING
7699, KINGDOM COME
20428, KISSING JESSICA STEIN
17559, LEGALLY BLONDE
29734, LITTLE SECRETS
26731, LUCKY BREAK
28660, MADE
6068, MAX KEEBLE'S BIG MOVE
33714, MEAN MACHINE
33853, MONKEYBONE
20003, MONSTERS, INC.
24616, MOSTLY MARTHA
26151, NOBODY'S BABY
5731, NOT ANOTHER TEEN MOVIE
29029, NOVOCAINE
21875, OCEAN'S ELEVEN
6959, ON THE LINE
32186, ONE MAN UP
8935, ONE NIGHT AT MCCOOL'S
28044, PAULINE AND PAULETTE
31445, PONTEROSA
13381, POOTIE TANG
28182, RARE BIRDS
32180, RAT RACE
30422, RICHARD RUSH
38381, ROCK STAR
9530, RUSH HOUR 2
1789, SAVING SILVERMAN
37244, SAY IT ISN'T SO
5880, SERENDIPITY
35100, SHALLOW HAL
7519, SHAOLIN SOCCER
36159, SHREK
30089, SIDEWALKS OF NEW YORK
2407, SON OF THE BRIDE
24221, SPEAKING OF SEX
5170, STEALING HARVARD
7949, STORYTELLING
2235, SUMMER CATCH
4783, SUPER TROOPERS
27762, SWEET NOVEMBER
345, TANGUY
23280, THE ANIMAL
15795, THE ANNIVERSARY PARTY
25674, THE BROTHERS
30164, THE CLOSET
4927, THE CURSE OF THE JADE SCORPION
17778, THE HAPPINESS OF THE KATAKURIS
28107, THE LAST KISS
10353, THE MAN WHO SUED GOD
27713, THE MEXICAN
23086, THE PRINCESS DIARIES
20728, THE ROYAL TENENBAUMS
36231, THE SHRINK IS IN
37184, THE TRIUMPH OF LOVE
33449, THE WEDDING PLANNER
8644, TOM GREEN
11027, TOMCATS
35988, TORTILLA SOUP
19451, TWO CAN PLAY THAT GAME
21790, VERY ANNIE MARY
3137, VISITOR Q
35443, VIZONTELE
29077, WASABI
25414, WATERBOYS
27083, WET HOT AMERICAN SUMMER
37358, WHAT'S THE WORST THAT COULD HAPPEN?
23844, WHO IS CLETIS TOUT?
4063, ZOOLANDER
src, edge_attr, dst
13747, has_genre, 30463
13747, release_year, 13408
5478, has_genre, 30463
5478, release_year, 13408
8200, has_genre, 30463
8200, release_year, 13408
32427, has_genre, 30463
32427, release_year, 13408
17687, has_genre, 30463
17687, release_year, 13408
34899, has_genre, 30463
34899, has_tags, 30463
34899, release_year, 13408
12224, has_genre, 30463
12224, has_tags, 30463
12224, release_year, 13408
5593, has_genre, 30463
5593, release_year, 13408
23952, has_genre, 30463
23952, release_year, 13408
13418, has_genre, 30463
13418, release_year, 13408
9654, has_genre, 30463
9654, has_tags, 30463
9654, release_year, 13408
35213, has_genre, 30463
35213, release_year, 13408
18692, has_genre, 30463
18692, starred_actors, 8644
23128, has_genre, 30463
23128, has_tags, 30463
23128, release_year, 13408
19026, has_genre, 30463
19026, release_year, 13408
17892, has_genre, 30463
17892, release_year, 13408
2605, has_genre, 30463
2605, release_year, 13408
18980, has_genre, 30463
18980, release_year, 13408
1915, has_genre, 30463
1915, has_tags, 30463
1915, release_year, 13408
12217, has_genre, 30463
12217, release_year, 13408
7023, has_genre, 30463
7023, release_year, 13408
19756, has_genre, 30463
19756, release_year, 13408
8704, has_genre, 30463
8704, release_year, 13408
28808, has_genre, 30463
28808, release_year, 13408
23470, has_genre, 30463
23470, has_tags, 30463
23470, release_year, 13408
6915, has_genre, 30463
6915, release_year, 13408
21322, directed_by, 8644
21322, has_genre, 30463
21322, has_tags, 8644
21322, release_year, 13408
21322, starred_actors, 8644
21322, written_by, 8644
30712, directed_by, 30422
30712, has_genre, 30463
5287, has_genre, 30463
5287, has_tags, 4358
23511, has_genre, 30463
23511, release_year, 13408
37949, has_genre, 30463
37949, has_tags, 30463
37949, release_year, 13408
12664, has_genre, 30463
12664, release_year, 13408
18445, has_genre, 30463
18445, release_year, 13408
10113, has_genre, 30463
10113, release_year, 13408
8648, has_genre, 30463
8648, release_year, 13408
21060, has_genre, 30463
21060, release_year, 13408
37229, has_genre, 30463
37229, release_year, 13408
11344, has_genre, 30463
11344, release_year, 13408
1292, has_genre, 30463
1292, release_year, 13408
38901, has_genre, 30463
38901, release_year, 13408
10703, has_genre, 30463
10703, release_year, 13408
35625, has_genre, 30463
35625, release_year, 13408
16371, has_genre, 30463
16371, has_tags, 30463
16371, has_tags, 4358
23526, has_genre, 30463
23526, release_year, 13408
263, has_genre, 30463
263, has_tags, 30463
263, release_year, 13408
32383, has_genre, 30463
32383, release_year, 13408
12610, has_genre, 30463
12610, release_year, 13408
10109, has_genre, 30463
10109, release_year, 13408
30384, has_genre, 30463
30384, release_year, 13408
16839, has_genre, 30463
16839, release_year, 13408
7699, has_genre, 30463
7699, release_year, 13408
20428, has_genre, 30463
20428, release_year, 13408
17559, has_genre, 30463
17559, has_tags, 30463
17559, release_year, 13408
29734, has_genre, 30463
29734, release_year, 13408
26731, has_genre, 30463
26731, release_year, 13408
28660, has_genre, 30463
28660, release_year, 13408
6068, has_genre, 30463
6068, release_year, 13408
33714, has_genre, 30463
33714, release_year, 13408
33853, has_genre, 30463
33853, release_year, 13408
20003, has_genre, 30463
20003, has_tags, 30463
20003, release_year, 13408
24616, has_genre, 30463
24616, release_year, 13408
26151, has_genre, 30463
26151, release_year, 13408
5731, has_genre, 30463
5731, release_year, 13408
29029, has_genre, 30463
29029, release_year, 13408
21875, has_tags, 30463
21875, release_year, 13408
6959, has_genre, 30463
6959, release_year, 13408
32186, has_genre, 30463
32186, release_year, 13408
8935, has_genre, 30463
8935, release_year, 13408
28044, has_genre, 30463
28044, release_year, 13408
31445, has_genre, 30463
31445, has_tags, 30463
31445, release_year, 13408
13381, has_genre, 30463
13381, release_year, 13408
28182, has_genre, 30463
28182, release_year, 13408
32180, has_genre, 30463
32180, has_tags, 30463
32180, release_year, 13408
38381, has_genre, 30463
38381, release_year, 13408
9530, has_genre, 30463
9530, has_tags, 30463
9530, release_year, 13408
1789, has_genre, 30463
1789, has_tags, 30463
1789, release_year, 13408
37244, has_genre, 30463
37244, release_year, 13408
5880, has_genre, 30463
5880, release_year, 13408
35100, has_genre, 30463
35100, release_year, 13408
7519, has_genre, 30463
7519, release_year, 13408
36159, has_genre, 30463
36159, has_tags, 30463
36159, release_year, 13408
30089, has_genre, 30463
30089, release_year, 13408
2407, has_genre, 30463
2407, release_year, 13408
24221, has_genre, 30463
24221, release_year, 13408
5170, has_genre, 30463
5170, starred_actors, 8644
7949, has_genre, 30463
7949, release_year, 13408
2235, has_genre, 30463
2235, release_year, 13408
4783, has_genre, 30463
4783, has_tags, 30463
4783, release_year, 13408
27762, has_genre, 30463
27762, release_year, 13408
345, has_genre, 30463
345, release_year, 13408
23280, has_genre, 30463
23280, release_year, 13408
15795, has_genre, 30463
15795, release_year, 13408
25674, has_genre, 30463
25674, release_year, 13408
30164, has_genre, 30463
30164, has_tags, 30463
30164, release_year, 13408
4927, has_genre, 30463
4927, release_year, 13408
17778, has_genre, 30463
17778, release_year, 13408
28107, has_genre, 30463
28107, release_year, 13408
10353, has_genre, 30463
10353, release_year, 13408
27713, has_genre, 30463
27713, has_tags, 30463
27713, release_year, 13408
23086, has_genre, 30463
23086, has_tags, 30463
23086, release_year, 13408
20728, has_genre, 30463
20728, has_tags, 30463
20728, release_year, 13408
36231, has_genre, 30463
36231, release_year, 13408
37184, has_genre, 30463
37184, release_year, 13408
33449, has_genre, 30463
33449, release_year, 13408
11027, has_genre, 30463
11027, release_year, 13408
35988, has_genre, 30463
35988, release_year, 13408
19451, has_genre, 30463
19451, release_year, 13408
21790, has_genre, 30463
21790, release_year, 13408
3137, has_genre, 30463
3137, release_year, 13408
35443, has_genre, 30463
35443, has_tags, 30463
35443, release_year, 13408
29077, has_genre, 30463
29077, has_tags, 30463
29077, release_year, 13408
25414, has_genre, 30463
25414, release_year, 13408
27083, has_genre, 30463
27083, release_year, 13408
37358, has_genre, 30463
37358, release_year, 13408
23844, has_genre, 30463
23844, release_year, 13408
4063, has_genre, 30463
4063, has_tags, 30463
4063, release_year, 13408
Question: How are FREDDY GOT FINGERED, ICE, and RICHARD RUSH related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"FREDDY GOT FINGERED",
"ICE",
"RICHARD RUSH"
],
"valid_edges": [
[
"25 WATTS",
"has_genre",
"COMEDY"
],
[
"25 WATTS",
"release_year",
"2001"
],
[
"30 YEARS TO LIFE",
"has_genre",
"COMEDY"
],
[
"30 YEARS TO LIFE",
"release_year",
"2001"
],
[
"ALL OVER THE GUY",
"has_genre",
"COMEDY"
],
[
"ALL OVER THE GUY",
"release_year",
"2001"
],
[
"ALL THE QUEEN'S MEN",
"has_genre",
"COMEDY"
],
[
"ALL THE QUEEN'S MEN",
"release_year",
"2001"
],
[
"AMERICA'S SWEETHEARTS",
"has_genre",
"COMEDY"
],
[
"AMERICA'S SWEETHEARTS",
"release_year",
"2001"
],
[
"AMERICAN PIE 2",
"has_genre",
"COMEDY"
],
[
"AMERICAN PIE 2",
"has_tags",
"COMEDY"
],
[
"AMERICAN PIE 2",
"release_year",
"2001"
],
[
"AMÉLIE",
"has_genre",
"COMEDY"
],
[
"AMÉLIE",
"has_tags",
"COMEDY"
],
[
"AMÉLIE",
"release_year",
"2001"
],
[
"BABY BOY",
"has_genre",
"COMEDY"
],
[
"BABY BOY",
"release_year",
"2001"
],
[
"BANDITS",
"has_genre",
"COMEDY"
],
[
"BANDITS",
"release_year",
"2001"
],
[
"BARTLEBY",
"has_genre",
"COMEDY"
],
[
"BARTLEBY",
"release_year",
"2001"
],
[
"BLACK KNIGHT",
"has_genre",
"COMEDY"
],
[
"BLACK KNIGHT",
"has_tags",
"COMEDY"
],
[
"BLACK KNIGHT",
"release_year",
"2001"
],
[
"BLOW DRY",
"has_genre",
"COMEDY"
],
[
"BLOW DRY",
"release_year",
"2001"
],
[
"BOB THE BUTLER",
"has_genre",
"COMEDY"
],
[
"BOB THE BUTLER",
"starred_actors",
"TOM GREEN"
],
[
"BRIDGET JONES'S DIARY",
"has_genre",
"COMEDY"
],
[
"BRIDGET JONES'S DIARY",
"has_tags",
"COMEDY"
],
[
"BRIDGET JONES'S DIARY",
"release_year",
"2001"
],
[
"BUBBLE BOY",
"has_genre",
"COMEDY"
],
[
"BUBBLE BOY",
"release_year",
"2001"
],
[
"CAMOUFLAGE",
"has_genre",
"COMEDY"
],
[
"CAMOUFLAGE",
"release_year",
"2001"
],
[
"CORKY ROMANO",
"has_genre",
"COMEDY"
],
[
"CORKY ROMANO",
"release_year",
"2001"
],
[
"CROCODILE DUNDEE IN LOS ANGELES",
"has_genre",
"COMEDY"
],
[
"CROCODILE DUNDEE IN LOS ANGELES",
"release_year",
"2001"
],
[
"DIL CHAHTA HAI",
"has_genre",
"COMEDY"
],
[
"DIL CHAHTA HAI",
"has_tags",
"COMEDY"
],
[
"DIL CHAHTA HAI",
"release_year",
"2001"
],
[
"DON'T TEMPT ME",
"has_genre",
"COMEDY"
],
[
"DON'T TEMPT ME",
"release_year",
"2001"
],
[
"DOUBLE TAKE",
"has_genre",
"COMEDY"
],
[
"DOUBLE TAKE",
"release_year",
"2001"
],
[
"DOWN TO EARTH",
"has_genre",
"COMEDY"
],
[
"DOWN TO EARTH",
"release_year",
"2001"
],
[
"DR. DOLITTLE 2",
"has_genre",
"COMEDY"
],
[
"DR. DOLITTLE 2",
"release_year",
"2001"
],
[
"ESCANABA IN DA MOONLIGHT",
"has_genre",
"COMEDY"
],
[
"ESCANABA IN DA MOONLIGHT",
"release_year",
"2001"
],
[
"EVOLUTION",
"has_genre",
"COMEDY"
],
[
"EVOLUTION",
"has_tags",
"COMEDY"
],
[
"EVOLUTION",
"release_year",
"2001"
],
[
"FOCUS",
"has_genre",
"COMEDY"
],
[
"FOCUS",
"release_year",
"2001"
],
[
"FREDDY GOT FINGERED",
"directed_by",
"TOM GREEN"
],
[
"FREDDY GOT FINGERED",
"has_genre",
"COMEDY"
],
[
"FREDDY GOT FINGERED",
"has_tags",
"TOM GREEN"
],
[
"FREDDY GOT FINGERED",
"release_year",
"2001"
],
[
"FREDDY GOT FINGERED",
"starred_actors",
"TOM GREEN"
],
[
"FREDDY GOT FINGERED",
"written_by",
"TOM GREEN"
],
[
"FREEBIE AND THE BEAN",
"directed_by",
"RICHARD RUSH"
],
[
"FREEBIE AND THE BEAN",
"has_genre",
"COMEDY"
],
[
"FROZEN",
"has_genre",
"COMEDY"
],
[
"FROZEN",
"has_tags",
"ICE"
],
[
"GAUDI AFTERNOON",
"has_genre",
"COMEDY"
],
[
"GAUDI AFTERNOON",
"release_year",
"2001"
],
[
"GET OVER IT",
"has_genre",
"COMEDY"
],
[
"GET OVER IT",
"has_tags",
"COMEDY"
],
[
"GET OVER IT",
"release_year",
"2001"
],
[
"GHOST WORLD",
"has_genre",
"COMEDY"
],
[
"GHOST WORLD",
"release_year",
"2001"
],
[
"GOD IS GREAT AND I'M NOT",
"has_genre",
"COMEDY"
],
[
"GOD IS GREAT AND I'M NOT",
"release_year",
"2001"
],
[
"GOOD ADVICE",
"has_genre",
"COMEDY"
],
[
"GOOD ADVICE",
"release_year",
"2001"
],
[
"HAPPY CAMPERS",
"has_genre",
"COMEDY"
],
[
"HAPPY CAMPERS",
"release_year",
"2001"
],
[
"HARVARD MAN",
"has_genre",
"COMEDY"
],
[
"HARVARD MAN",
"release_year",
"2001"
],
[
"HE DIED WITH A FELAFEL IN HIS HAND",
"has_genre",
"COMEDY"
],
[
"HE DIED WITH A FELAFEL IN HIS HAND",
"release_year",
"2001"
],
[
"HEARTBREAKERS",
"has_genre",
"COMEDY"
],
[
"HEARTBREAKERS",
"release_year",
"2001"
],
[
"HEDWIG AND THE ANGRY INCH",
"has_genre",
"COMEDY"
],
[
"HEDWIG AND THE ANGRY INCH",
"release_year",
"2001"
],
[
"HIGH HEELS AND LOW LIFES",
"has_genre",
"COMEDY"
],
[
"HIGH HEELS AND LOW LIFES",
"release_year",
"2001"
],
[
"HOW HIGH",
"has_genre",
"COMEDY"
],
[
"HOW HIGH",
"release_year",
"2001"
],
[
"HUMAN NATURE",
"has_genre",
"COMEDY"
],
[
"HUMAN NATURE",
"release_year",
"2001"
],
[
"ICE AGE",
"has_genre",
"COMEDY"
],
[
"ICE AGE",
"has_tags",
"COMEDY"
],
[
"ICE AGE",
"has_tags",
"ICE"
],
[
"JACKPOT",
"has_genre",
"COMEDY"
],
[
"JACKPOT",
"release_year",
"2001"
],
[
"JAY AND SILENT BOB STRIKE BACK",
"has_genre",
"COMEDY"
],
[
"JAY AND SILENT BOB STRIKE BACK",
"has_tags",
"COMEDY"
],
[
"JAY AND SILENT BOB STRIKE BACK",
"release_year",
"2001"
],
[
"JOE DIRT",
"has_genre",
"COMEDY"
],
[
"JOE DIRT",
"release_year",
"2001"
],
[
"JOE SOMEBODY",
"has_genre",
"COMEDY"
],
[
"JOE SOMEBODY",
"release_year",
"2001"
],
[
"JOSIE AND THE PUSSYCATS",
"has_genre",
"COMEDY"
],
[
"JOSIE AND THE PUSSYCATS",
"release_year",
"2001"
],
[
"JUMP TOMORROW",
"has_genre",
"COMEDY"
],
[
"JUMP TOMORROW",
"release_year",
"2001"
],
[
"JUST VISITING",
"has_genre",
"COMEDY"
],
[
"JUST VISITING",
"release_year",
"2001"
],
[
"KINGDOM COME",
"has_genre",
"COMEDY"
],
[
"KINGDOM COME",
"release_year",
"2001"
],
[
"KISSING JESSICA STEIN",
"has_genre",
"COMEDY"
],
[
"KISSING JESSICA STEIN",
"release_year",
"2001"
],
[
"LEGALLY BLONDE",
"has_genre",
"COMEDY"
],
[
"LEGALLY BLONDE",
"has_tags",
"COMEDY"
],
[
"LEGALLY BLONDE",
"release_year",
"2001"
],
[
"LITTLE SECRETS",
"has_genre",
"COMEDY"
],
[
"LITTLE SECRETS",
"release_year",
"2001"
],
[
"LUCKY BREAK",
"has_genre",
"COMEDY"
],
[
"LUCKY BREAK",
"release_year",
"2001"
],
[
"MADE",
"has_genre",
"COMEDY"
],
[
"MADE",
"release_year",
"2001"
],
[
"MAX KEEBLE'S BIG MOVE",
"has_genre",
"COMEDY"
],
[
"MAX KEEBLE'S BIG MOVE",
"release_year",
"2001"
],
[
"MEAN MACHINE",
"has_genre",
"COMEDY"
],
[
"MEAN MACHINE",
"release_year",
"2001"
],
[
"MONKEYBONE",
"has_genre",
"COMEDY"
],
[
"MONKEYBONE",
"release_year",
"2001"
],
[
"MONSTERS, INC.",
"has_genre",
"COMEDY"
],
[
"MONSTERS, INC.",
"has_tags",
"COMEDY"
],
[
"MONSTERS, INC.",
"release_year",
"2001"
],
[
"MOSTLY MARTHA",
"has_genre",
"COMEDY"
],
[
"MOSTLY MARTHA",
"release_year",
"2001"
],
[
"NOBODY'S BABY",
"has_genre",
"COMEDY"
],
[
"NOBODY'S BABY",
"release_year",
"2001"
],
[
"NOT ANOTHER TEEN MOVIE",
"has_genre",
"COMEDY"
],
[
"NOT ANOTHER TEEN MOVIE",
"release_year",
"2001"
],
[
"NOVOCAINE",
"has_genre",
"COMEDY"
],
[
"NOVOCAINE",
"release_year",
"2001"
],
[
"OCEAN'S ELEVEN",
"has_tags",
"COMEDY"
],
[
"OCEAN'S ELEVEN",
"release_year",
"2001"
],
[
"ON THE LINE",
"has_genre",
"COMEDY"
],
[
"ON THE LINE",
"release_year",
"2001"
],
[
"ONE MAN UP",
"has_genre",
"COMEDY"
],
[
"ONE MAN UP",
"release_year",
"2001"
],
[
"ONE NIGHT AT MCCOOL'S",
"has_genre",
"COMEDY"
],
[
"ONE NIGHT AT MCCOOL'S",
"release_year",
"2001"
],
[
"PAULINE AND PAULETTE",
"has_genre",
"COMEDY"
],
[
"PAULINE AND PAULETTE",
"release_year",
"2001"
],
[
"PONTEROSA",
"has_genre",
"COMEDY"
],
[
"PONTEROSA",
"has_tags",
"COMEDY"
],
[
"PONTEROSA",
"release_year",
"2001"
],
[
"POOTIE TANG",
"has_genre",
"COMEDY"
],
[
"POOTIE TANG",
"release_year",
"2001"
],
[
"RARE BIRDS",
"has_genre",
"COMEDY"
],
[
"RARE BIRDS",
"release_year",
"2001"
],
[
"RAT RACE",
"has_genre",
"COMEDY"
],
[
"RAT RACE",
"has_tags",
"COMEDY"
],
[
"RAT RACE",
"release_year",
"2001"
],
[
"ROCK STAR",
"has_genre",
"COMEDY"
],
[
"ROCK STAR",
"release_year",
"2001"
],
[
"RUSH HOUR 2",
"has_genre",
"COMEDY"
],
[
"RUSH HOUR 2",
"has_tags",
"COMEDY"
],
[
"RUSH HOUR 2",
"release_year",
"2001"
],
[
"SAVING SILVERMAN",
"has_genre",
"COMEDY"
],
[
"SAVING SILVERMAN",
"has_tags",
"COMEDY"
],
[
"SAVING SILVERMAN",
"release_year",
"2001"
],
[
"SAY IT ISN'T SO",
"has_genre",
"COMEDY"
],
[
"SAY IT ISN'T SO",
"release_year",
"2001"
],
[
"SERENDIPITY",
"has_genre",
"COMEDY"
],
[
"SERENDIPITY",
"release_year",
"2001"
],
[
"SHALLOW HAL",
"has_genre",
"COMEDY"
],
[
"SHALLOW HAL",
"release_year",
"2001"
],
[
"SHAOLIN SOCCER",
"has_genre",
"COMEDY"
],
[
"SHAOLIN SOCCER",
"release_year",
"2001"
],
[
"SHREK",
"has_genre",
"COMEDY"
],
[
"SHREK",
"has_tags",
"COMEDY"
],
[
"SHREK",
"release_year",
"2001"
],
[
"SIDEWALKS OF NEW YORK",
"has_genre",
"COMEDY"
],
[
"SIDEWALKS OF NEW YORK",
"release_year",
"2001"
],
[
"SON OF THE BRIDE",
"has_genre",
"COMEDY"
],
[
"SON OF THE BRIDE",
"release_year",
"2001"
],
[
"SPEAKING OF SEX",
"has_genre",
"COMEDY"
],
[
"SPEAKING OF SEX",
"release_year",
"2001"
],
[
"STEALING HARVARD",
"has_genre",
"COMEDY"
],
[
"STEALING HARVARD",
"starred_actors",
"TOM GREEN"
],
[
"STORYTELLING",
"has_genre",
"COMEDY"
],
[
"STORYTELLING",
"release_year",
"2001"
],
[
"SUMMER CATCH",
"has_genre",
"COMEDY"
],
[
"SUMMER CATCH",
"release_year",
"2001"
],
[
"SUPER TROOPERS",
"has_genre",
"COMEDY"
],
[
"SUPER TROOPERS",
"has_tags",
"COMEDY"
],
[
"SUPER TROOPERS",
"release_year",
"2001"
],
[
"SWEET NOVEMBER",
"has_genre",
"COMEDY"
],
[
"SWEET NOVEMBER",
"release_year",
"2001"
],
[
"TANGUY",
"has_genre",
"COMEDY"
],
[
"TANGUY",
"release_year",
"2001"
],
[
"THE ANIMAL",
"has_genre",
"COMEDY"
],
[
"THE ANIMAL",
"release_year",
"2001"
],
[
"THE ANNIVERSARY PARTY",
"has_genre",
"COMEDY"
],
[
"THE ANNIVERSARY PARTY",
"release_year",
"2001"
],
[
"THE BROTHERS",
"has_genre",
"COMEDY"
],
[
"THE BROTHERS",
"release_year",
"2001"
],
[
"THE CLOSET",
"has_genre",
"COMEDY"
],
[
"THE CLOSET",
"has_tags",
"COMEDY"
],
[
"THE CLOSET",
"release_year",
"2001"
],
[
"THE CURSE OF THE JADE SCORPION",
"has_genre",
"COMEDY"
],
[
"THE CURSE OF THE JADE SCORPION",
"release_year",
"2001"
],
[
"THE HAPPINESS OF THE KATAKURIS",
"has_genre",
"COMEDY"
],
[
"THE HAPPINESS OF THE KATAKURIS",
"release_year",
"2001"
],
[
"THE LAST KISS",
"has_genre",
"COMEDY"
],
[
"THE LAST KISS",
"release_year",
"2001"
],
[
"THE MAN WHO SUED GOD",
"has_genre",
"COMEDY"
],
[
"THE MAN WHO SUED GOD",
"release_year",
"2001"
],
[
"THE MEXICAN",
"has_genre",
"COMEDY"
],
[
"THE MEXICAN",
"has_tags",
"COMEDY"
],
[
"THE MEXICAN",
"release_year",
"2001"
],
[
"THE PRINCESS DIARIES",
"has_genre",
"COMEDY"
],
[
"THE PRINCESS DIARIES",
"has_tags",
"COMEDY"
],
[
"THE PRINCESS DIARIES",
"release_year",
"2001"
],
[
"THE ROYAL TENENBAUMS",
"has_genre",
"COMEDY"
],
[
"THE ROYAL TENENBAUMS",
"has_tags",
"COMEDY"
],
[
"THE ROYAL TENENBAUMS",
"release_year",
"2001"
],
[
"THE SHRINK IS IN",
"has_genre",
"COMEDY"
],
[
"THE SHRINK IS IN",
"release_year",
"2001"
],
[
"THE TRIUMPH OF LOVE",
"has_genre",
"COMEDY"
],
[
"THE TRIUMPH OF LOVE",
"release_year",
"2001"
],
[
"THE WEDDING PLANNER",
"has_genre",
"COMEDY"
],
[
"THE WEDDING PLANNER",
"release_year",
"2001"
],
[
"TOMCATS",
"has_genre",
"COMEDY"
],
[
"TOMCATS",
"release_year",
"2001"
],
[
"TORTILLA SOUP",
"has_genre",
"COMEDY"
],
[
"TORTILLA SOUP",
"release_year",
"2001"
],
[
"TWO CAN PLAY THAT GAME",
"has_genre",
"COMEDY"
],
[
"TWO CAN PLAY THAT GAME",
"release_year",
"2001"
],
[
"VERY ANNIE MARY",
"has_genre",
"COMEDY"
],
[
"VERY ANNIE MARY",
"release_year",
"2001"
],
[
"VISITOR Q",
"has_genre",
"COMEDY"
],
[
"VISITOR Q",
"release_year",
"2001"
],
[
"VIZONTELE",
"has_genre",
"COMEDY"
],
[
"VIZONTELE",
"has_tags",
"COMEDY"
],
[
"VIZONTELE",
"release_year",
"2001"
],
[
"WASABI",
"has_genre",
"COMEDY"
],
[
"WASABI",
"has_tags",
"COMEDY"
],
[
"WASABI",
"release_year",
"2001"
],
[
"WATERBOYS",
"has_genre",
"COMEDY"
],
[
"WATERBOYS",
"release_year",
"2001"
],
[
"WET HOT AMERICAN SUMMER",
"has_genre",
"COMEDY"
],
[
"WET HOT AMERICAN SUMMER",
"release_year",
"2001"
],
[
"WHAT'S THE WORST THAT COULD HAPPEN?",
"has_genre",
"COMEDY"
],
[
"WHAT'S THE WORST THAT COULD HAPPEN?",
"release_year",
"2001"
],
[
"WHO IS CLETIS TOUT?",
"has_genre",
"COMEDY"
],
[
"WHO IS CLETIS TOUT?",
"release_year",
"2001"
],
[
"ZOOLANDER",
"has_genre",
"COMEDY"
],
[
"ZOOLANDER",
"has_tags",
"COMEDY"
],
[
"ZOOLANDER",
"release_year",
"2001"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
9377, 2014
8165, BAD
10987, HALEY JOEL OSMENT
1919, ROLLING THUNDER
1725, THE BEAST OF YUCCA FLATS
7013, THE COUNTRY BEARS
14626, THE HOMESMAN
38537, TOMMY LEE JONES
17726, TUSK
src, edge_attr, dst
1919, starred_actors, 38537
1725, has_imdb_rating, 8165
7013, has_imdb_rating, 8165
7013, starred_actors, 10987
14626, directed_by, 38537
14626, has_tags, 38537
14626, release_year, 9377
14626, starred_actors, 38537
14626, written_by, 38537
17726, release_year, 9377
17726, starred_actors, 10987
Question: How are ROLLING THUNDER, THE BEAST OF YUCCA FLATS, and TUSK related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ROLLING THUNDER",
"THE BEAST OF YUCCA FLATS",
"TUSK"
],
"valid_edges": [
[
"ROLLING THUNDER",
"starred_actors",
"TOMMY LEE JONES"
],
[
"THE BEAST OF YUCCA FLATS",
"has_imdb_rating",
"BAD"
],
[
"THE COUNTRY BEARS",
"has_imdb_rating",
"BAD"
],
[
"THE COUNTRY BEARS",
"starred_actors",
"HALEY JOEL OSMENT"
],
[
"THE HOMESMAN",
"directed_by",
"TOMMY LEE JONES"
],
[
"THE HOMESMAN",
"has_tags",
"TOMMY LEE JONES"
],
[
"THE HOMESMAN",
"release_year",
"2014"
],
[
"THE HOMESMAN",
"starred_actors",
"TOMMY LEE JONES"
],
[
"THE HOMESMAN",
"written_by",
"TOMMY LEE JONES"
],
[
"TUSK",
"release_year",
"2014"
],
[
"TUSK",
"starred_actors",
"HALEY JOEL OSMENT"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
18366, 1960
10825, 1973
22798, A RAGE IN HARLEM
25522, A WARM DECEMBER
34348, ALL THE YOUNG MEN
16346, DRACULA A.D. 1972
34032, HARLEM
5810, HELL UP IN HARLEM
26647, NOTHING BUT THE NIGHT
23249, PETER CUSHING
1777, SIDNEY POITIER
2709, THE BRIDES OF DRACULA
38676, THE CREEPING FLESH
14162, THE SATANIC RITES OF DRACULA
19088, VAN HELSING
src, edge_attr, dst
22798, has_tags, 34032
25522, directed_by, 1777
25522, release_year, 10825
25522, starred_actors, 1777
34348, release_year, 18366
34348, starred_actors, 1777
16346, has_tags, 23249
16346, has_tags, 19088
16346, starred_actors, 23249
5810, has_tags, 34032
5810, release_year, 10825
26647, release_year, 10825
26647, starred_actors, 23249
2709, has_tags, 23249
2709, has_tags, 19088
2709, release_year, 18366
2709, starred_actors, 23249
38676, release_year, 10825
38676, starred_actors, 23249
14162, has_tags, 23249
14162, has_tags, 19088
14162, release_year, 10825
14162, starred_actors, 23249
19088, has_tags, 19088
Question: How are A RAGE IN HARLEM, A WARM DECEMBER, and THE BRIDES OF DRACULA related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"A RAGE IN HARLEM",
"A WARM DECEMBER",
"THE BRIDES OF DRACULA"
],
"valid_edges": [
[
"A RAGE IN HARLEM",
"has_tags",
"HARLEM"
],
[
"A WARM DECEMBER",
"directed_by",
"SIDNEY POITIER"
],
[
"A WARM DECEMBER",
"release_year",
"1973"
],
[
"A WARM DECEMBER",
"starred_actors",
"SIDNEY POITIER"
],
[
"ALL THE YOUNG MEN",
"release_year",
"1960"
],
[
"ALL THE YOUNG MEN",
"starred_actors",
"SIDNEY POITIER"
],
[
"DRACULA A.D. 1972",
"has_tags",
"PETER CUSHING"
],
[
"DRACULA A.D. 1972",
"has_tags",
"VAN HELSING"
],
[
"DRACULA A.D. 1972",
"starred_actors",
"PETER CUSHING"
],
[
"HELL UP IN HARLEM",
"has_tags",
"HARLEM"
],
[
"HELL UP IN HARLEM",
"release_year",
"1973"
],
[
"NOTHING BUT THE NIGHT",
"release_year",
"1973"
],
[
"NOTHING BUT THE NIGHT",
"starred_actors",
"PETER CUSHING"
],
[
"THE BRIDES OF DRACULA",
"has_tags",
"PETER CUSHING"
],
[
"THE BRIDES OF DRACULA",
"has_tags",
"VAN HELSING"
],
[
"THE BRIDES OF DRACULA",
"release_year",
"1960"
],
[
"THE BRIDES OF DRACULA",
"starred_actors",
"PETER CUSHING"
],
[
"THE CREEPING FLESH",
"release_year",
"1973"
],
[
"THE CREEPING FLESH",
"starred_actors",
"PETER CUSHING"
],
[
"THE SATANIC RITES OF DRACULA",
"has_tags",
"PETER CUSHING"
],
[
"THE SATANIC RITES OF DRACULA",
"has_tags",
"VAN HELSING"
],
[
"THE SATANIC RITES OF DRACULA",
"release_year",
"1973"
],
[
"THE SATANIC RITES OF DRACULA",
"starred_actors",
"PETER CUSHING"
],
[
"VAN HELSING",
"has_tags",
"VAN HELSING"
]
]
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.