Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
37
1.31k
label
class label
25 classes
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
0Ardilla
End of preview. Expand in Data Studio

Authors

Salinas-Acosta, Adolfo; López-Venegas, María; Biarreta-Portillo, María; Morataya-Sandoval, Pamela; Víquez-Mora, Emilia; Mora-Cross, María; Gómez-Solís, William and Bautista-Solís, Pavel

Description

The cemede-redbioma-ct dataset contains 11,674 camera trap images (training 8088; validation 1801; and test 1785) of wildlife from Costa Rica, collected between 2022 and 2024 by the Mesoamerican Center for Sustainable Development of the Dry Tropics (CEMEDE, UNA) and processed by the Data Science Network for the Conservation of Mesoamerican Biodiversity (Redbioma) project. It covers 26 species of mammals, birds, and reptiles, with images extracted from more than 9,000 videos using MegaDetector. The dataset includes challenging conditions such as motion blur, rain, low light, and partial animal appearances, making it a valuable resource for developing and benchmarking computer vision methods in tropical biodiversity monitoring. Images are split into training, validation, and test sets at the video level to prevent data leakage. This dataset supports research on wildlife classification, class imbalance, rare species detection, and conservation applications.

The videos used to extract the images were recorded at the Nicoya campus of the National University of Costa Rica, where the SCALLUNA rainwater harvesting project was developed as a system for sustainable water management. Camera traps were deployed along the El Cornizuelo Trail, which provides year-round access for wildlife, particularly during the dry season. The site is a 10.6 ha fragment of dry tropical forest adjacent to the La Cruz Protected Zone, part of the Yaguarundi Forests Biological Corridor in the Tempisque Conservation Area. This corridor connects the counties of Nicoya, Santa Cruz, and Hojancha, and emphasizes water management, forest conservation, territorial connectivity, and ecological planning. Camera traps (Bushnell HD and Browning Strike Force models) operated from 2022 to 2024 generated the dataset.

The dataset preparation began by extracting frames from the input videos using MegaDetector. To reduce redundancy and avoid selecting nearly identical frames, only three frames containing animals were retained per video, skipping ten frames between each selection. Each image was then passed again through MegaDetector to obtain bounding boxes, which were required to train both the classification models and the object detection model. Keep in mind that the dataset contains the common names in Spanish for the species found in the image. The corresponding scientific name can be found in the summary of image counts by species, where file_name is the name found in the dataset.

The original unprocessed version of this dataset, containing the raw camera trap images (before being processed and cropped with the MegaDetector detections), is available at https://huggingface.co/datasets/redbioma/cemede-redbioma-ct-original. This version provides the original data from which the current dataset was derived.

Summary of image counts by species

Scientific Name Test Train Val Total file_name
Nasua narica 149 700 151 1000 Pizote
Columba livia 150 699 151 1000 Paloma
Crypturellus cinnamomeus 149 700 151 1000 Tinamu
Agouti paca 148 700 152 1000 Tepezcuintle
Odocoileus virginianus 150 699 151 1000 Venado
Ortalis cinereiceps 144 678 147 969 Chachalaca
Didelphis marsupialis 141 663 144 948 ZorroPelon
Zenaida asiatica 111 516 114 741 PalomaAliblanca
Nyctridromus albicollis 81 375 82 538 Cuyeo
Turdus grayi 66 309 69 444 Yiguirro
Piaya cayana 38 186 42 266 CucoArdilla
Sciurus variegatoides 36 168 46 250 Ardilla
Iguana iguana 37 168 39 244 Garrobo
Urocyon cinereoargenteus 34 174 33 241 ZorroGris
Coragyps atratus 36 149 53 238 Zopilote
Aramides cajaneus 35 156 41 232 Rascon
Canis latrans 64 156 9 229 Coyote
Falco peregrinus 33 152 37 222 HalconPeregrino
Conepatus semistriatus 35 126 37 198 Mofeta
Crotophaga sulcirostris 27 110 28 165 Tijo
Icterus auricapillus 30 114 20 164 Oropendola
Rhinella marina 18 91 26 135 Sapo
Megascops cooperi 17 78 25 120 Buho
Icterus galbula 18 75 18 111 OropendolaDeBaltimore
Myiarchus nuttingi 19 76 15 110 Copeton
Tyrannus melancholicus 19 70 20 109 TiranoMelancolico

Citation

This dataset can be used for investigation purposes including both the appropriate citations:

@misc{cemede_redbioma_ct,
 author       = {Salinas-Acosta, Adolfo and López-Venegas, María and Biarreta-Portillo, María and Morataya-Sandoval, Pamela and Víquez-Mora, Emilia and Mora-Cross, María and Gómez-Solís, William and Bautista-Solís, Pavel},
  title         = {redbioma/cemede-redbioma-ct},
  year       = {2025},
  month    = aug,
  note       = {Dataset published in Hugging Face, 31 August 2025},
  url          = {https://huggingface.co/datasets/redbioma/cemede-redbioma-ct}
}
PENDING: Paper

License

This dataset is released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. You are free to share and adapt it for any purpose, provided that appropriate credit is given, a link to the license is included, and any changes are indicated. Full license available at https://creativecommons.org/licenses/by/4.0/

Downloads last month
31