Dataset Viewer
Search is not available for this dataset
video
video | label
class label 29
classes |
|---|---|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
0Apex_Legends
|
|
1Barony
|
|
1Barony
|
|
1Barony
|
|
1Barony
|
|
1Barony
|
|
1Barony
|
|
1Barony
|
|
1Barony
|
|
1Barony
|
|
1Barony
|
|
2Battlefield_6_Open_Beta
|
|
2Battlefield_6_Open_Beta
|
|
2Battlefield_6_Open_Beta
|
|
2Battlefield_6_Open_Beta
|
|
2Battlefield_6_Open_Beta
|
|
2Battlefield_6_Open_Beta
|
|
2Battlefield_6_Open_Beta
|
|
3Brotato
|
|
3Brotato
|
|
3Brotato
|
|
3Brotato
|
|
3Brotato
|
|
3Brotato
|
|
3Brotato
|
|
3Brotato
|
|
3Brotato
|
|
3Brotato
|
|
3Brotato
|
|
3Brotato
|
|
3Brotato
|
|
4Core_Keeper
|
|
4Core_Keeper
|
|
4Core_Keeper
|
|
4Core_Keeper
|
|
4Core_Keeper
|
|
4Core_Keeper
|
|
4Core_Keeper
|
|
5Counter-Strike_2
|
|
5Counter-Strike_2
|
|
5Counter-Strike_2
|
|
5Counter-Strike_2
|
|
5Counter-Strike_2
|
|
5Counter-Strike_2
|
|
5Counter-Strike_2
|
|
5Counter-Strike_2
|
|
5Counter-Strike_2
|
|
5Counter-Strike_2
|
|
6Cyberpunk_2077
|
|
6Cyberpunk_2077
|
|
6Cyberpunk_2077
|
|
6Cyberpunk_2077
|
|
6Cyberpunk_2077
|
|
6Cyberpunk_2077
|
|
6Cyberpunk_2077
|
|
7Dinkum
|
|
7Dinkum
|
|
7Dinkum
|
|
7Dinkum
|
|
7Dinkum
|
|
7Dinkum
|
|
7Dinkum
|
|
7Dinkum
|
|
7Dinkum
|
|
8Eternal_Return
|
End of preview. Expand
in Data Studio
🕹️ D2E: Scaling Vision-Action Pretraining on Desktop Data for Transfer to Embodied AI
This repository hosts the Vision-Action subset of the D2E dataset, preprocessed at 480p for training G-IDM, Vision-Action Pretraning or other game agents.
If you need the original high-resolution dataset (HD/QHD) for world-model or video-generation training, please visit open-world-agents/D2E-Original.
Dataset Description
This dataset is a curated subset of the desktop gameplay data introduced in the paper “D2E: Scaling Vision-Action Pretraining on Desktop Data for Transfer to Embodied AI”.
The dataset enables vision-action pretraining on large-scale human gameplay data, facilitating transfer to real-world embodied AI tasks such as robotic manipulation and navigation.
Motivation & Use Cases
- 🎮 Train your own game agent using high-quality vision-action trajectories.
- 🤖 Pretrain vision-action or vision-language-action models on diverse human gameplay to learn transferable sensorimotor primitives.
- 🌍 Use as world-model data for predicting future states or generating coherent action-conditioned videos (recommend using the original HD dataset for this).
- 🧠 Generalist learning — unify multiple game domains to train models capable of cross-environment reasoning.
Dataset Structure
- Each game entry includes:
- 🖥️ Video — desktop screen capture stored as {filename}.mkv
- 🧩 Action Metadata — synchronized desktop interactions stored as {filename}.mcap
- Format: Each file is an OWAMcap sequence (a variant of MCAP) recorded using the OWA Toolkit, synchronizing:
- Screen frames (up to 60 Hz)
- Keyboard & mouse events
- Window state changes
- Compatibility: Easily convertible to RLDS-style datasets for training or evaluation.
Dataset Details
- Recording Tool: ocap — captures screen, keyboard, and mouse events with precise timestamps, stored efficiently in OWAMcap.
- Game Genres: Includes FPS (Apex Legends), open-world (Cyberpunk 2077, GTA V), simulation (Euro Truck Simulator 2), strategy (Stardew Valley, Eternal Return), sandbox (Minecraft), and more.
- Data Collection:
- Human demonstrations collected across 31 games (~335 h total).
- Public release covers 29 games (~267.81 h) after privacy filtering.
- Frame Resolution: 480p (originals are HD/QHD in D2E-Original).
Dataset Summary
| Game Title | Files | Total Duration (hours / seconds) | Average Duration (seconds / minutes) |
|---|---|---|---|
| Apex_Legends | 36 | 25.58 h (92093.44 s) | 2558.15 s (42.64 min) |
| Euro_Truck_Simulator_2 | 14 | 19.62 h (70641.61 s) | 5045.83 s (84.10 min) |
| Eternal_Return | 31 | 17.13 h (61677.25 s) | 1989.59 s (33.16 min) |
| Cyberpunk_2077 | 7 | 14.22 h (51183.25 s) | 7311.89 s (121.86 min) |
| MapleStory_Worlds_Southperry | 8 | 14.09 h (50720.40 s) | 6340.05 s (105.67 min) |
| Stardew_Valley | 10 | 14.55 h (52381.45 s) | 5238.14 s (87.30 min) |
| Rainbow_Six | 11 | 13.74 h (49472.80 s) | 4497.53 s (74.96 min) |
| Grand_Theft_Auto_V | 11 | 11.81 h (42518.18 s) | 3865.29 s (64.42 min) |
| Slime_Rancher | 9 | 10.68 h (38463.32 s) | 4273.70 s (71.23 min) |
| Dinkum | 9 | 10.44 h (37600.32 s) | 4177.81 s (69.63 min) |
| Medieval_Dynasty | 3 | 10.32 h (37151.27 s) | 12383.76 s (206.40 min) |
| Counter-Strike_2 | 10 | 9.89 h (35614.96 s) | 3561.50 s (59.36 min) |
| Satisfactory | 4 | 9.79 h (35237.30 s) | 8809.32 s (146.82 min) |
| Grounded | 4 | 9.70 h (34912.31 s) | 8728.08 s (145.47 min) |
| Ready_Or_Not | 11 | 9.59 h (34521.40 s) | 3138.31 s (52.31 min) |
| Barony | 10 | 9.28 h (33406.96 s) | 3340.70 s (55.68 min) |
| Core_Keeper | 7 | 9.02 h (32460.05 s) | 4637.15 s (77.29 min) |
| Minecraft_1.21.8 | 8 | 8.64 h (31093.47 s) | 3886.68 s (64.78 min) |
| Monster_Hunter_Wilds | 5 | 8.32 h (29951.88 s) | 5990.38 s (99.84 min) |
| Raft | 5 | 9.95 h (35833.27 s) | 7166.65 s (119.44 min) |
| Brotato | 13 | 5.99 h (21574.78 s) | 1659.60 s (27.66 min) |
| PUBG | 7 | 4.88 h (17584.92 s) | 2512.13 s (41.87 min) |
| Vampire_Survivors | 2 | 2.81 h (10132.96 s) | 5066.48 s (84.44 min) |
| Battlefield_6_Open_Beta | 7 | 2.21 h (7965.42 s) | 1137.92 s (18.97 min) |
| Skul | 1 | 1.97 h (7078.00 s) | 7078.00 s (117.97 min) |
| PEAK | 2 | 1.75 h (6288.88 s) | 3144.44 s (52.41 min) |
| OguForest | 1 | 0.84 h (3040.94 s) | 3040.94 s (50.68 min) |
| Super_Bunny_Man | 2 | 0.72 h (2604.00 s) | 1302.00 s (21.70 min) |
| VALORANT | 1 | 0.25 h (911.94 s) | 911.94 s (15.20 min) |
Usage Example
from datasets import load_dataset
dataset = load_dataset("open-world-agents/D2E", split="train")
Citation
If you find this work useful, please cite our paper:
@article{choi2025d2e,
title={D2E: Scaling Vision-Action Pretraining on Desktop Data for Transfer to Embodied AI},
author={Choi, Suwhan and Jung, Jaeyoon and Seong, Haebin and Kim, Minchan and Kim, Minyeong and Cho, Yongjun and Kim, Yoonshik and Park, Yubeen and Yu, Youngjae and Lee, Yunsung},
journal={arXiv preprint arXiv:2510.05684},
year={2025}
}
- Downloads last month
- 46