text
stringlengths
5
58.6k
source
stringclasses
470 values
url
stringlengths
49
167
source_section
stringlengths
0
90
file_type
stringclasses
1 value
id
stringlengths
3
6
The bare Glm Model outputting raw hidden-states without any specific head on top. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`GlmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GlmDecoderLayer`] Args: config: GlmConfig Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/glm.md
https://huggingface.co/docs/transformers/en/model_doc/glm/#glmmodel
#glmmodel
.md
335_4
No docstring available for GlmForCausalLM Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/glm.md
https://huggingface.co/docs/transformers/en/model_doc/glm/#glmforcausallm
#glmforcausallm
.md
335_5
The Glm Model transformer with a sequence classification head on top (linear layer). [`GlmForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`GlmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/glm.md
https://huggingface.co/docs/transformers/en/model_doc/glm/#glmforsequenceclassification
#glmforsequenceclassification
.md
335_6
The Glm Model transformer with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`GlmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/glm.md
https://huggingface.co/docs/transformers/en/model_doc/glm/#glmfortokenclassification
#glmfortokenclassification
.md
335_7
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/
.md
336_0
This page provides code and pre-trained weights for Transformer protein language models from Meta AI's Fundamental AI Research Team, providing the state-of-the-art ESMFold and ESM-2, and the previously released ESM-1b and ESM-1v. Transformer protein language models were introduced in the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. The first version of this paper was [preprinted in 2019](https://www.biorxiv.org/content/10.1101/622803v1?versioned=true). ESM-2 outperforms all tested single-sequence protein language models across a range of structure prediction tasks, and enables atomic resolution structure prediction. It was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido and Alexander Rives. Also introduced in this paper was ESMFold. It uses an ESM-2 stem with a head that can predict folded protein structures with state-of-the-art accuracy. Unlike [AlphaFold2](https://www.nature.com/articles/s41586-021-03819-2), it relies on the token embeddings from the large pre-trained protein language model stem and does not perform a multiple sequence alignment (MSA) step at inference time, which means that ESMFold checkpoints are fully "standalone" - they do not require a database of known protein sequences and structures with associated external query tools to make predictions, and are much faster as a result. The abstract from "Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences" is *In the field of artificial intelligence, a combination of scale in data and model capacity enabled by unsupervised learning has led to major advances in representation learning and statistical generation. In the life sciences, the anticipated growth of sequencing promises unprecedented data on natural sequence diversity. Protein language modeling at the scale of evolution is a logical step toward predictive and generative artificial intelligence for biology. To this end, we use unsupervised learning to train a deep contextual language model on 86 billion amino acids across 250 million protein sequences spanning evolutionary diversity. The resulting model contains information about biological properties in its representations. The representations are learned from sequence data alone. The learned representation space has a multiscale organization reflecting structure from the level of biochemical properties of amino acids to remote homology of proteins. Information about secondary and tertiary structure is encoded in the representations and can be identified by linear projections. Representation learning produces features that generalize across a range of applications, enabling state-of-the-art supervised prediction of mutational effect and secondary structure and improving state-of-the-art features for long-range contact prediction.* The abstract from "Language models of protein sequences at the scale of evolution enable accurate structure prediction" is *Large language models have recently been shown to develop emergent capabilities with scale, going beyond simple pattern matching to perform higher level reasoning and generate lifelike images and text. While language models trained on protein sequences have been studied at a smaller scale, little is known about what they learn about biology as they are scaled up. In this work we train models up to 15 billion parameters, the largest language models of proteins to be evaluated to date. We find that as models are scaled they learn information enabling the prediction of the three-dimensional structure of a protein at the resolution of individual atoms. We present ESMFold for high accuracy end-to-end atomic level structure prediction directly from the individual sequence of a protein. ESMFold has similar accuracy to AlphaFold2 and RoseTTAFold for sequences with low perplexity that are well understood by the language model. ESMFold inference is an order of magnitude faster than AlphaFold2, enabling exploration of the structural space of metagenomic proteins in practical timescales.* The original code can be found [here](https://github.com/facebookresearch/esm) and was was developed by the Fundamental AI Research team at Meta AI. ESM-1b, ESM-1v and ESM-2 were contributed to huggingface by [jasonliu](https://huggingface.co/jasonliu) and [Matt](https://huggingface.co/Rocketknight1). ESMFold was contributed to huggingface by [Matt](https://huggingface.co/Rocketknight1) and [Sylvain](https://huggingface.co/sgugger), with a big thank you to Nikita Smetanin, Roshan Rao and Tom Sercu for their help throughout the process!
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#overview
#overview
.md
336_1
- ESM models are trained with a masked language modeling (MLM) objective. - The HuggingFace port of ESMFold uses portions of the [openfold](https://github.com/aqlaboratory/openfold) library. The `openfold` library is licensed under the Apache License 2.0.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#usage-tips
#usage-tips
.md
336_2
- [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Masked language modeling task guide](../tasks/masked_language_modeling)
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#resources
#resources
.md
336_3
This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ESM [facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*): Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ESMModel`]. mask_token_id (`int`, *optional*): The index of the mask token in the vocabulary. This must be included in the config because of the "mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens. pad_token_id (`int`, *optional*): The index of the padding token in the vocabulary. This must be included in the config because certain parts of the ESM code use this instead of the attention mask. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 1026): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. emb_layer_norm_before (`bool`, *optional*): Whether to apply layer normalization after embeddings but before the main stem of the network. token_dropout (`bool`, defaults to `False`): When this is enabled, masked tokens are treated as if they had been dropped out by input dropout. Examples: ```python >>> from transformers import EsmModel, EsmConfig >>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig(vocab_size=33) >>> # Initializing a model from the configuration >>> model = EsmModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` Methods: all
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#esmconfig
#esmconfig
.md
336_4
Constructs an ESM tokenizer. Methods: build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary <frameworkcontent> <pt>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#esmtokenizer
#esmtokenizer
.md
336_5
The bare ESM Model transformer outputting raw hidden-states without any specific head on top. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EsmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#esmmodel
#esmmodel
.md
336_6
ESM Model with a `language modeling` head on top. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EsmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#esmformaskedlm
#esmformaskedlm
.md
336_7
ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EsmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#esmforsequenceclassification
#esmforsequenceclassification
.md
336_8
ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EsmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#esmfortokenclassification
#esmfortokenclassification
.md
336_9
ESMForProteinFolding is the HuggingFace port of the original ESMFold model. It consists of an ESM-2 "stem" followed by a protein folding "head", although unlike most other output heads, this "head" is similar in size and runtime to the rest of the model combined! It outputs a dictionary containing predicted structural information about the input protein(s). This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EsmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward </pt> <tf>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#esmforproteinfolding
#esmforproteinfolding
.md
336_10
No docstring available for TFEsmModel Methods: call
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#tfesmmodel
#tfesmmodel
.md
336_11
No docstring available for TFEsmForMaskedLM Methods: call
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#tfesmformaskedlm
#tfesmformaskedlm
.md
336_12
No docstring available for TFEsmForSequenceClassification Methods: call
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#tfesmforsequenceclassification
#tfesmforsequenceclassification
.md
336_13
No docstring available for TFEsmForTokenClassification Methods: call </tf> </frameworkcontent>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/esm.md
https://huggingface.co/docs/transformers/en/model_doc/esm/#tfesmfortokenclassification
#tfesmfortokenclassification
.md
336_14
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pvt.md
https://huggingface.co/docs/transformers/en/model_doc/pvt/
.md
337_0
The PVT model was proposed in [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/abs/2102.12122) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. The PVT is a type of vision transformer that utilizes a pyramid structure to make it an effective backbone for dense prediction tasks. Specifically it allows for more fine-grained inputs (4 x 4 pixels per patch) to be used, while simultaneously shrinking the sequence length of the Transformer as it deepens - reducing the computational cost. Additionally, a spatial-reduction attention (SRA) layer is used to further reduce the resource consumption when learning high-resolution features. The abstract from the paper is the following: *Although convolutional neural networks (CNNs) have achieved great success in computer vision, this work investigates a simpler, convolution-free backbone network useful for many dense prediction tasks. Unlike the recently proposed Vision Transformer (ViT) that was designed for image classification specifically, we introduce the Pyramid Vision Transformer (PVT), which overcomes the difficulties of porting Transformer to various dense prediction tasks. PVT has several merits compared to current state of the arts. Different from ViT that typically yields low resolution outputs and incurs high computational and memory costs, PVT not only can be trained on dense partitions of an image to achieve high output resolution, which is important for dense prediction, but also uses a progressive shrinking pyramid to reduce the computations of large feature maps. PVT inherits the advantages of both CNN and Transformer, making it a unified backbone for various vision tasks without convolutions, where it can be used as a direct replacement for CNN backbones. We validate PVT through extensive experiments, showing that it boosts the performance of many downstream tasks, including object detection, instance and semantic segmentation. For example, with a comparable number of parameters, PVT+RetinaNet achieves 40.4 AP on the COCO dataset, surpassing ResNet50+RetinNet (36.3 AP) by 4.1 absolute AP (see Figure 2). We hope that PVT could serve as an alternative and useful backbone for pixel-level predictions and facilitate future research.* This model was contributed by [Xrenya](https://huggingface.co/Xrenya). The original code can be found [here](https://github.com/whai362/PVT). - PVTv1 on ImageNet-1K | **Model variant** |**Size** |**Acc@1**|**Params (M)**| |--------------------|:-------:|:-------:|:------------:| | PVT-Tiny | 224 | 75.1 | 13.2 | | PVT-Small | 224 | 79.8 | 24.5 | | PVT-Medium | 224 | 81.2 | 44.2 | | PVT-Large | 224 | 81.7 | 61.4 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pvt.md
https://huggingface.co/docs/transformers/en/model_doc/pvt/#overview
#overview
.md
337_1
This is the configuration class to store the configuration of a [`PvtModel`]. It is used to instantiate an Pvt model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Pvt [Xrenya/pvt-tiny-224](https://huggingface.co/Xrenya/pvt-tiny-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The input image size num_channels (`int`, *optional*, defaults to 3): The number of input channels. num_encoder_blocks (`int`, *optional*, defaults to 4): The number of encoder blocks (i.e. stages in the Mix Transformer encoder). depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`): The number of layers in each encoder block. sequence_reduction_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`): Sequence reduction ratios in each encoder block. hidden_sizes (`List[int]`, *optional*, defaults to `[64, 128, 320, 512]`): Dimension of each of the encoder blocks. patch_sizes (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`): Patch size before each encoder block. strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`): Stride before each encoder block. num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`): Number of attention heads for each attention layer in each block of the Transformer encoder. mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`): Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the encoder blocks. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. drop_path_rate (`float`, *optional*, defaults to 0.0): The dropout probability for stochastic depth, used in the blocks of the Transformer encoder. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. qkv_bias (`bool`, *optional*, defaults to `True`): Whether or not a learnable bias should be added to the queries, keys and values. num_labels ('int', *optional*, defaults to 1000): The number of classes. Example: ```python >>> from transformers import PvtModel, PvtConfig >>> # Initializing a PVT Xrenya/pvt-tiny-224 style configuration >>> configuration = PvtConfig() >>> # Initializing a model from the Xrenya/pvt-tiny-224 style configuration >>> model = PvtModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pvt.md
https://huggingface.co/docs/transformers/en/model_doc/pvt/#pvtconfig
#pvtconfig
.md
337_2
Constructs a PVT image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `(size["height"], size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`): Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Methods: preprocess
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pvt.md
https://huggingface.co/docs/transformers/en/model_doc/pvt/#pvtimageprocessor
#pvtimageprocessor
.md
337_3
Pvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`~PvtConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pvt.md
https://huggingface.co/docs/transformers/en/model_doc/pvt/#pvtforimageclassification
#pvtforimageclassification
.md
337_4
The bare Pvt encoder outputting raw hidden-states without any specific head on top. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`~PvtConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pvt.md
https://huggingface.co/docs/transformers/en/model_doc/pvt/#pvtmodel
#pvtmodel
.md
337_5
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/
.md
338_0
<div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=reformer"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-reformer-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/reformer-crime-and-punishment"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#reformer
#reformer
.md
338_1
The Reformer model was proposed in the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451.pdf) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. The abstract from the paper is the following: *Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models can be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its complexity from O(L^2) to O(Llog(L)), where L is the length of the sequence. Furthermore, we use reversible residual layers instead of the standard residuals, which allows storing activations only once in the training process instead of N times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models while being much more memory-efficient and much faster on long sequences.* This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The Authors' code can be found [here](https://github.com/google/trax/tree/master/trax/models/reformer).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#overview
#overview
.md
338_2
- Reformer does **not** work with *torch.nn.DataParallel* due to a bug in PyTorch, see [issue #36035](https://github.com/pytorch/pytorch/issues/36035). - Use Axial position encoding (see below for more details). It’s a mechanism to avoid having a huge positional encoding matrix (when the sequence length is very big) by factorizing it into smaller matrices. - Replace traditional attention by LSH (local-sensitive hashing) attention (see below for more details). It’s a technique to avoid computing the full product query-key in the attention layers. - Avoid storing the intermediate results of each layer by using reversible transformer layers to obtain them during the backward pass (subtracting the residuals from the input of the next layer gives them back) or recomputing them for results inside a given layer (less efficient than storing them but saves memory). - Compute the feedforward operations by chunks and not on the whole batch.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#usage-tips
#usage-tips
.md
338_3
Axial Positional Encodings were first implemented in Google's [trax library](https://github.com/google/trax/blob/4d99ad4965bab1deba227539758d59f0df0fef48/trax/layers/research/position_encodings.py#L29) and developed by the authors of this model's paper. In models that are treating very long input sequences, the conventional position id encodings store an embeddings vector of size \\(d\\) being the `config.hidden_size` for every position \\(i, \ldots, n_s\\), with \\(n_s\\) being `config.max_embedding_size`. This means that having a sequence length of \\(n_s = 2^{19} \approx 0.5M\\) and a `config.hidden_size` of \\(d = 2^{10} \approx 1000\\) would result in a position encoding matrix: $$X_{i,j}, \text{ with } i \in \left[1,\ldots, d\right] \text{ and } j \in \left[1,\ldots, n_s\right]$$ which alone has over 500M parameters to store. Axial positional encodings factorize \\(X_{i,j}\\) into two matrices: $$X^{1}_{i,j}, \text{ with } i \in \left[1,\ldots, d^1\right] \text{ and } j \in \left[1,\ldots, n_s^1\right]$$ and $$X^{2}_{i,j}, \text{ with } i \in \left[1,\ldots, d^2\right] \text{ and } j \in \left[1,\ldots, n_s^2\right]$$ with: $$d = d^1 + d^2 \text{ and } n_s = n_s^1 \times n_s^2 .$$ Therefore the following holds: $$X_{i,j} = \begin{cases} X^{1}_{i, k}, & \text{if }\ i < d^1 \text{ with } k = j \mod n_s^1 \\ X^{2}_{i - d^1, l}, & \text{if } i \ge d^1 \text{ with } l = \lfloor\frac{j}{n_s^1}\rfloor \end{cases}$$ Intuitively, this means that a position embedding vector \\(x_j \in \mathbb{R}^{d}\\) is now the composition of two factorized embedding vectors: \\(x^1_{k, l} + x^2_{l, k}\\), where as the `config.max_embedding_size` dimension \\(j\\) is factorized into \\(k \text{ and } l\\). This design ensures that each position embedding vector \\(x_j\\) is unique. Using the above example again, axial position encoding with \\(d^1 = 2^9, d^2 = 2^9, n_s^1 = 2^9, n_s^2 = 2^{10}\\) can drastically reduced the number of parameters from 500 000 000 to \\(2^{18} + 2^{19} \approx 780 000\\) parameters, this means 85% less memory usage. In practice, the parameter `config.axial_pos_embds_dim` is set to a tuple \\((d^1, d^2)\\) which sum has to be equal to `config.hidden_size` and `config.axial_pos_shape` is set to a tuple \\((n_s^1, n_s^2)\\) which product has to be equal to `config.max_embedding_size`, which during training has to be equal to the *sequence length* of the `input_ids`.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#axial-positional-encodings
#axial-positional-encodings
.md
338_4
In Locality sensitive hashing (LSH) self attention the key and query projection weights are tied. Therefore, the key query embedding vectors are also tied. LSH self attention uses the locality sensitive hashing mechanism proposed in [Practical and Optimal LSH for Angular Distance](https://arxiv.org/abs/1509.02897) to assign each of the tied key query embedding vectors to one of `config.num_buckets` possible buckets. The premise is that the more "similar" key query embedding vectors (in terms of *cosine similarity*) are to each other, the more likely they are assigned to the same bucket. The accuracy of the LSH mechanism can be improved by increasing `config.num_hashes` or directly the argument `num_hashes` of the forward function so that the output of the LSH self attention better approximates the output of the "normal" full self attention. The buckets are then sorted and chunked into query key embedding vector chunks each of length `config.lsh_chunk_length`. For each chunk, the query embedding vectors attend to its key vectors (which are tied to themselves) and to the key embedding vectors of `config.lsh_num_chunks_before` previous neighboring chunks and `config.lsh_num_chunks_after` following neighboring chunks. For more information, see the [original Paper](https://arxiv.org/abs/2001.04451) or this great [blog post](https://www.pragmatic.ml/reformer-deep-dive/). Note that `config.num_buckets` can also be factorized into a list \\((n_{\text{buckets}}^1, n_{\text{buckets}}^2)\\). This way instead of assigning the query key embedding vectors to one of \\((1,\ldots, n_{\text{buckets}})\\) they are assigned to one of \\((1-1,\ldots, n_{\text{buckets}}^1-1, \ldots, 1-n_{\text{buckets}}^2, \ldots, n_{\text{buckets}}^1-n_{\text{buckets}}^2)\\). This is crucial for very long sequences to save memory. When training a model from scratch, it is recommended to leave `config.num_buckets=None`, so that depending on the sequence length a good value for `num_buckets` is calculated on the fly. This value will then automatically be saved in the config and should be reused for inference. Using LSH self attention, the memory and time complexity of the query-key matmul operation can be reduced from \\(\mathcal{O}(n_s \times n_s)\\) to \\(\mathcal{O}(n_s \times \log(n_s))\\), which usually represents the memory and time bottleneck in a transformer model, with \\(n_s\\) being the sequence length.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#lsh-self-attention
#lsh-self-attention
.md
338_5
Local self attention is essentially a "normal" self attention layer with key, query and value projections, but is chunked so that in each chunk of length `config.local_chunk_length` the query embedding vectors only attends to the key embedding vectors in its chunk and to the key embedding vectors of `config.local_num_chunks_before` previous neighboring chunks and `config.local_num_chunks_after` following neighboring chunks. Using Local self attention, the memory and time complexity of the query-key matmul operation can be reduced from \\(\mathcal{O}(n_s \times n_s)\\) to \\(\mathcal{O}(n_s \times \log(n_s))\\), which usually represents the memory and time bottleneck in a transformer model, with \\(n_s\\) being the sequence length.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#local-self-attention
#local-self-attention
.md
338_6
During training, we must ensure that the sequence length is set to a value that can be divided by the least common multiple of `config.lsh_chunk_length` and `config.local_chunk_length` and that the parameters of the Axial Positional Encodings are correctly set as described above. Reformer is very memory efficient so that the model can easily be trained on sequences as long as 64000 tokens. For training, the [`ReformerModelWithLMHead`] should be used as follows: ```python input_ids = tokenizer.encode("This is a sentence from the training data", return_tensors="pt") loss = model(input_ids, labels=input_ids)[0] ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#training
#training
.md
338_7
- [Text classification task guide](../tasks/sequence_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling)
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#resources
#resources
.md
338_8
This is the configuration class to store the configuration of a [`ReformerModel`]. It is used to instantiate a Reformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ReFormer [google/reformer-crime-and-punishment](https://huggingface.co/google/reformer-crime-and-punishment) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: attention_head_size (`int`, *optional*, defaults to 64): Dimensionality of the projected key, query and value vectors attn_layers (`List[str]`, *optional*, defaults to `["local", "lsh", "local", "lsh", "local", "lsh"]`): List of attention layer types in ascending order. It can be chosen between a LSHSelfAttention layer (`"lsh"`) and a LocalSelfAttention layer (`"local"`). For more information on LSHSelfAttention layer, see [LSH Self Attention](reformer#lsh-self-attention). For more information on LocalSelfAttention layer, see [Local Self Attention](reformer#local-self-attention). axial_pos_embds (`bool`, *optional*, defaults to `True`): Whether or not to use axial position embeddings. For more information on how axial position embeddings work, see [Axial Position Encodings](reformer#axial-positional-encodings). axial_norm_std (`float`, *optional*, defaults to 1.0): The standard deviation of the normal_initializer for initializing the weight matrices of the axial positional encodings. axial_pos_shape (`List[int]`, *optional*, defaults to `[64, 64]`): The position dims of the axial position encodings. During training, the product of the position dims has to be equal to the sequence length. For more information on how axial position embeddings work, see [Axial Position Encodings](reformer#axial-positional-encodings). axial_pos_embds_dim (`List[int]`, *optional*, defaults to `[64, 192]`): The embedding dims of the axial position encodings. The sum of the embedding dims has to be equal to the hidden size. For more information on how axial position embeddings work, see [Axial Position Encodings](reformer#axial-positional-encodings). chunk_size_lm_head (`int`, *optional*, defaults to 0): The chunk size of the final language model feed forward head layer. A chunk size of 0 means that the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processes n < sequence_length embeddings at a time. For more information on feed forward chunking, see [How does Feed Forward Chunking work?](../glossary#feed-forward-chunking). eos_token_id (`int`, *optional*, defaults to 2): The token id for the end-of-sentence token. feed_forward_size (`int`, *optional*, defaults to 512): Dimensionality of the feed_forward layer in the residual attention block. hash_seed (`int`, *optional*): Seed that can be used to make local sensitive hashing in `LSHSelfAttention` deterministic. This should only be set for testing purposed. For evaluation and training purposes `hash_seed` should be left as `None` to ensure fully random rotations in local sensitive hashing scheme. hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the feed forward layer in the residual attention block. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.05): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the output hidden states of the residual attention blocks. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. is_decoder (`bool`, *optional*, defaults to `False`): Whether or not to use a causal mask in addition to the `attention_mask` passed to [`ReformerModel`]. When using the Reformer for causal language modeling, this argument should be set to `True`. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. local_chunk_length (`int`, *optional*, defaults to 64): Length of chunk which attends to itself in `LocalSelfAttention`. Chunking reduces memory complexity from sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk length (chunked self attention). local_num_chunks_before (`int`, *optional*, defaults to 1): Number of previous neighbouring chunks to attend to in `LocalSelfAttention` layer to itself. local_num_chunks_after (`int`, *optional*, defaults to 0): Number of following neighbouring chunks to attend to in `LocalSelfAttention` layer in addition to itself. local_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities in `LocalSelfAttention`. lsh_attn_chunk_length (`int`, *optional*, defaults to 64): Length of chunk which attends to itself in `LSHSelfAttention`. Chunking reduces memory complexity from sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk length (chunked self attention). lsh_num_chunks_before (`int`, *optional*, defaults to 1): Number of previous neighbouring chunks to attend to in `LSHSelfAttention` layer to itself. lsh_num_chunks_after (`int`, *optional*, defaults to 0): Number of following neighbouring chunks to attend to in `LSHSelfAttention` layer to itself. lsh_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities in `LSHSelfAttention`. max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_buckets (`int` or `List[int]`, *optional*): Number of buckets, the key query vectors can be "hashed into" using the locality sensitive hashing scheme. Each query key vector is hashed into a hash in `1, ..., num_buckets`. The number of buckets can also be factorized into a list for improved memory complexity. In this case, each query key vector is hashed into a hash in `1-1, 1-2, ..., num_buckets[0]-1, ..., num_buckets[0]-num_buckets[1]` if `num_buckets` is factorized into two factors. The number of buckets (or the product the factors) should approximately equal sequence length / lsh_chunk_length. If `num_buckets` not set, a good value is calculated on the fly. num_hashes (`int`, *optional*, defaults to 1): Number of hashing rounds (e.g., number of random rotations) in Local Sensitive Hashing scheme. The higher `num_hashes`, the more accurate the `LSHSelfAttention` becomes, but also the more memory and time intensive the hashing becomes. pad_token_id (`int`, *optional*, defaults to 0): The token id for the padding token. vocab_size (`int`, *optional*, defaults to 320):\ Vocabulary size of the Reformer model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ReformerModel`]. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie input and output embeddings. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import ReformerConfig, ReformerModel >>> # Initializing a Reformer configuration >>> configuration = ReformerConfig() >>> # Initializing a Reformer model (with random weights) >>> model = ReformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#reformerconfig
#reformerconfig
.md
338_9
Construct a Reformer tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece) . This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. additional_special_tokens (`List[str]`, *optional*, defaults to `[]`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Methods: save_vocabulary
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#reformertokenizer
#reformertokenizer
.md
338_10
Construct a "fast" Reformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#reformertokenizerfast
#reformertokenizerfast
.md
338_11
The bare Reformer Model transformer outputting raw hidden-stateswithout any specific head on top. Reformer was proposed in [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ReformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#reformermodel
#reformermodel
.md
338_12
Reformer Model with a `language modeling` head on top. Reformer was proposed in [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ReformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#reformermodelwithlmhead
#reformermodelwithlmhead
.md
338_13
Reformer Model with a `language modeling` head on top. Reformer was proposed in [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ReformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#reformerformaskedlm
#reformerformaskedlm
.md
338_14
Reformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. Reformer was proposed in [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ReformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#reformerforsequenceclassification
#reformerforsequenceclassification
.md
338_15
Reformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / TriviaQA ( a linear layer on top of hidden-states output to compute `span start logits` and `span end logits`. Reformer was proposed in [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ReformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/reformer.md
https://huggingface.co/docs/transformers/en/model_doc/reformer/#reformerforquestionanswering
#reformerforquestionanswering
.md
338_16
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/
.md
339_0
The CamemBERT model was proposed in [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by [Louis Martin](https://huggingface.co/louismartin), [Benjamin Muller](https://huggingface.co/benjamin-mlr), [Pedro Javier Ortiz Suárez](https://huggingface.co/pjox), Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, [Djamé Seddah](https://huggingface.co/Djame), and [Benoît Sagot](https://huggingface.co/sagot). It is based on Facebook's RoBERTa model released in 2019. It is a model trained on 138GB of French text. The abstract from the paper is the following: *Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available models have either been trained on English data or on the concatenation of data in multiple languages. This makes practical use of such models --in all languages except English-- very limited. Aiming to address this issue for French, we release CamemBERT, a French version of the Bi-directional Encoders for Transformers (BERT). We measure the performance of CamemBERT compared to multilingual models in multiple downstream tasks, namely part-of-speech tagging, dependency parsing, named-entity recognition, and natural language inference. CamemBERT improves the state of the art for most of the tasks considered. We release the pretrained model for CamemBERT hoping to foster research and downstream applications for French NLP.* This model was contributed by [the ALMAnaCH team (Inria)](https://huggingface.co/almanach). The original code can be found [here](https://camembert-model.fr/). <Tip> This implementation is the same as RoBERTa. Refer to the [documentation of RoBERTa](roberta) for usage examples as well as the information relative to the inputs and outputs. </Tip>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#overview
#overview
.md
339_1
- [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice)
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#resources
#resources
.md
339_2
This is the configuration class to store the configuration of a [`CamembertModel`] or a [`TFCamembertModel`]. It is used to instantiate a Camembert model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Camembert [almanach/camembert-base](https://huggingface.co/almanach/camembert-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`CamembertModel`] or [`TFCamembertModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`CamembertModel`] or [`TFCamembertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Example: ```python >>> from transformers import CamembertConfig, CamembertModel >>> # Initializing a Camembert almanach/camembert-base style configuration >>> configuration = CamembertConfig() >>> # Initializing a model (with random weights) from the almanach/camembert-base style configuration >>> model = CamembertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#camembertconfig
#camembertconfig
.md
339_3
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Construct a CamemBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `['<s>NOTUSED', '</s>NOTUSED', '<unk>NOTUSED']`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). Methods: build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#camemberttokenizer
#camemberttokenizer
.md
339_4
Construct a "fast" CamemBERT tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. <frameworkcontent> <pt>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#camemberttokenizerfast
#camemberttokenizerfast
.md
339_5
The bare CamemBERT Model transformer outputting raw hidden-states without any specific head on top. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CamembertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in *Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as a decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#camembertmodel
#camembertmodel
.md
339_6
CamemBERT Model with a `language modeling` head on top for CLM fine-tuning. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CamembertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#camembertforcausallm
#camembertforcausallm
.md
339_7
CamemBERT Model with a `language modeling` head on top. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CamembertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#camembertformaskedlm
#camembertformaskedlm
.md
339_8
CamemBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CamembertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#camembertforsequenceclassification
#camembertforsequenceclassification
.md
339_9
CamemBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CamembertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#camembertformultiplechoice
#camembertformultiplechoice
.md
339_10
CamemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CamembertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#camembertfortokenclassification
#camembertfortokenclassification
.md
339_11
CamemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits` This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CamembertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. </pt> <tf>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#camembertforquestionanswering
#camembertforquestionanswering
.md
339_12
No docstring available for TFCamembertModel
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#tfcamembertmodel
#tfcamembertmodel
.md
339_13
No docstring available for TFCamembertForCausalLM
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#tfcamembertforcausallm
#tfcamembertforcausallm
.md
339_14
No docstring available for TFCamembertForMaskedLM
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#tfcamembertformaskedlm
#tfcamembertformaskedlm
.md
339_15
No docstring available for TFCamembertForSequenceClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#tfcamembertforsequenceclassification
#tfcamembertforsequenceclassification
.md
339_16
No docstring available for TFCamembertForMultipleChoice
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#tfcamembertformultiplechoice
#tfcamembertformultiplechoice
.md
339_17
No docstring available for TFCamembertForTokenClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#tfcamembertfortokenclassification
#tfcamembertfortokenclassification
.md
339_18
No docstring available for TFCamembertForQuestionAnswering </tf> </frameworkcontent>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/camembert.md
https://huggingface.co/docs/transformers/en/model_doc/camembert/#tfcamembertforquestionanswering
#tfcamembertforquestionanswering
.md
339_19
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/gpt_neox_japanese.md
https://huggingface.co/docs/transformers/en/model_doc/gpt_neox_japanese/
.md
340_0
We introduce GPT-NeoX-Japanese, which is an autoregressive language model for Japanese, trained on top of [https://github.com/EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox). Japanese is a unique language with its large vocabulary and a combination of hiragana, katakana, and kanji writing scripts. To address this distinct structure of the Japanese language, we use a [special sub-word tokenizer](https://github.com/tanreinama/Japanese-BPEEncoder_V2). We are very grateful to *tanreinama* for open-sourcing this incredibly helpful tokenizer. Following the recommendations from Google's research on [PaLM](https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html), we have removed bias parameters from transformer blocks, achieving better model performance. Please refer [this article](https://medium.com/ml-abeja/training-a-better-gpt-2-93b157662ae4) in detail. Development of the model was led by [Shinya Otani](https://github.com/SO0529), [Takayoshi Makabe](https://github.com/spider-man-tm), [Anuj Arora](https://github.com/Anuj040), and [Kyo Hattori](https://github.com/go5paopao) from [ABEJA, Inc.](https://www.abejainc.com/). For more information on this model-building activity, please refer [here (ja)](https://tech-blog.abeja.asia/entry/abeja-gpt-project-202207).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/gpt_neox_japanese.md
https://huggingface.co/docs/transformers/en/model_doc/gpt_neox_japanese/#overview
#overview
.md
340_1
The `generate()` method can be used to generate text using GPT NeoX Japanese model. ```python >>> from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseTokenizer >>> model = GPTNeoXJapaneseForCausalLM.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> tokenizer = GPTNeoXJapaneseTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> prompt = "人とAIが協調するためには、" >>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids >>> gen_tokens = model.generate( ... input_ids, ... do_sample=True, ... temperature=0.9, ... max_length=100, ... ) >>> gen_text = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True)[0] >>> print(gen_text) 人とAIが協調するためには、AIと人が共存し、AIを正しく理解する必要があります。 ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/gpt_neox_japanese.md
https://huggingface.co/docs/transformers/en/model_doc/gpt_neox_japanese/#usage-example
#usage-example
.md
340_2
- [Causal language modeling task guide](../tasks/language_modeling)
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/gpt_neox_japanese.md
https://huggingface.co/docs/transformers/en/model_doc/gpt_neox_japanese/#resources
#resources
.md
340_3
This is the configuration class to store the configuration of a [`GPTNeoXModelJapanese`]. It is used to instantiate a GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPTNeoXJapanese [abeja/gpt-neox-japanese-2.7b](https://huggingface.co/abeja/gpt-neox-japanese-2.7b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Default configs is set as 2.7B model Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the GPTNeoXJapanese model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTNeoXJapanese`]. hidden_size (`int`, *optional*, defaults to 2560): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. intermediate_multiple_size (`int`, *optional*, defaults to 4): Dimension of the "intermediate" layer in the Transformer encoder is calculated by hidden_size * intermediate_multiple_size. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. rotary_pct (`float`, *optional*, defaults to 1.00): percentage of hidden dimensions to allocate to rotary embeddings rotary_emb_base (`int`, *optional*, defaults to 10000) base for computing rotary embeddings frequency max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. hidden_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the hidden layer. Example: ```python >>> from transformers import GPTNeoXJapaneseConfig, GPTNeoXJapaneseModel >>> # Initializing a GPTNeoXJapanese gpt-neox-japanese-2.7b style configuration >>> configuration = GPTNeoXJapaneseConfig() >>> # Initializing a model (with random weights) from the gpt-neox-japanese-2.7b style configuration >>> model = GPTNeoXJapaneseModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/gpt_neox_japanese.md
https://huggingface.co/docs/transformers/en/model_doc/gpt_neox_japanese/#gptneoxjapaneseconfig
#gptneoxjapaneseconfig
.md
340_4
This tokenizer inherits from [`PreTrainedTokenizer`] and is based on Japanese special Sub-Word-Encoding that is used in this repository (https://github.com/tanreinama/Japanese-BPEEncoder_V2). Check the repository for details. Japanese has a relatively large vocabulary and there is no separation between words. Furthermore, the language is a combination of hiragana, katakana, and kanji, and variants such as "1" and "①" are often used. In order to cope with these, this tokenizer has the following features - Subword-by-subword segmentation, which is intermediate between byte strings and morphological analysis. - BPEs are created for each Kanji, Hiragana, and Katakana character, and there are no BPEs that cross character types, such as Kanji + Hiragana or Hiragana + Katakana. - All-byte encoding that does not require <unk>. - Independent of UTF codes such as 2-byte and 3-byte characters - Conversion of heterographs to the same token_id - Emoji and Emoticon are grouped into 12 types as special tags. Example: ```python >>> from transformers import GPTNeoXJapaneseTokenizer >>> tokenizer = GPTNeoXJapaneseTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> # You can confirm both 慶応 and 慶應 are encoded to 17749 >>> tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"] [30014, 26883, 26638, 27228, 25, 26650, 31732, 31679, 27809, 26638, 17749, 31592, 17749, 31593, 321, 1281] >>> # Both 慶応 and 慶應 are decoded to 慶応 >>> tokenizer.decode(tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"]) '吾輩は猫である🐯。実は慶応(慶応)大学出身' ``` Args: vocab_file (`str`): File containing the vocabulary. emoji_file (`str`): File containing the emoji. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The token used for padding bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. do_clean_text (`bool`, *optional*, defaults to `False`): Whether or not to clean text for URL, EMAIL, TEL, Japanese DATE and Japanese PRICE.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/gpt_neox_japanese.md
https://huggingface.co/docs/transformers/en/model_doc/gpt_neox_japanese/#gptneoxjapanesetokenizer
#gptneoxjapanesetokenizer
.md
340_5
The bare GPTNeoXJapanese Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`~GPTNeoXJapaneseConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/gpt_neox_japanese.md
https://huggingface.co/docs/transformers/en/model_doc/gpt_neox_japanese/#gptneoxjapanesemodel
#gptneoxjapanesemodel
.md
340_6
GPTNeoXJapanese Model with a `language modeling` head on top for Classifier Model fine-tuning. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`~GPTNeoXJapaneseConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/gpt_neox_japanese.md
https://huggingface.co/docs/transformers/en/model_doc/gpt_neox_japanese/#gptneoxjapaneseforcausallm
#gptneoxjapaneseforcausallm
.md
340_7
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/mra.md
https://huggingface.co/docs/transformers/en/model_doc/mra/
.md
341_0
The MRA model was proposed in [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, and Vikas Singh. The abstract from the paper is the following: *Transformers have emerged as a preferred model for many tasks in natural language processing and vision. Recent efforts on training and deploying Transformers more efficiently have identified many strategies to approximate the self-attention matrix, a key module in a Transformer architecture. Effective ideas include various prespecified sparsity patterns, low-rank basis expansions and combinations thereof. In this paper, we revisit classical Multiresolution Analysis (MRA) concepts such as Wavelets, whose potential value in this setting remains underexplored thus far. We show that simple approximations based on empirical feedback and design choices informed by modern hardware and implementation challenges, eventually yield a MRA-based approach for self-attention with an excellent performance profile across most criteria of interest. We undertake an extensive set of experiments and demonstrate that this multi-resolution scheme outperforms most efficient self-attention proposals and is favorable for both short and long sequences. Code is available at https://github.com/mlpen/mra-attention.* This model was contributed by [novice03](https://huggingface.co/novice03). The original code can be found [here](https://github.com/mlpen/mra-attention).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/mra.md
https://huggingface.co/docs/transformers/en/model_doc/mra/#overview
#overview
.md
341_1
This is the configuration class to store the configuration of a [`MraModel`]. It is used to instantiate an MRA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mra [uw-madison/mra-base-512-4](https://huggingface.co/uw-madison/mra-base-512-4) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the Mra model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MraModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 1): The vocabulary size of the `token_type_ids` passed when calling [`MraModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. block_per_row (`int`, *optional*, defaults to 4): Used to set the budget for the high resolution scale. approx_mode (`str`, *optional*, defaults to `"full"`): Controls whether both low and high resolution approximations are used. Set to `"full"` for both low and high resolution and `"sparse"` for only low resolution. initial_prior_first_n_blocks (`int`, *optional*, defaults to 0): The initial number of blocks for which high resolution is used. initial_prior_diagonal_n_blocks (`int`, *optional*, defaults to 0): The number of diagonal blocks for which high resolution is used. Example: ```python >>> from transformers import MraConfig, MraModel >>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration >>> configuration = MraConfig() >>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration >>> model = MraModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/mra.md
https://huggingface.co/docs/transformers/en/model_doc/mra/#mraconfig
#mraconfig
.md
341_2
The bare MRA Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MraConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/mra.md
https://huggingface.co/docs/transformers/en/model_doc/mra/#mramodel
#mramodel
.md
341_3
MRA Model with a `language modeling` head on top. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MraConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/mra.md
https://huggingface.co/docs/transformers/en/model_doc/mra/#mraformaskedlm
#mraformaskedlm
.md
341_4
MRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MraConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/mra.md
https://huggingface.co/docs/transformers/en/model_doc/mra/#mraforsequenceclassification
#mraforsequenceclassification
.md
341_5
MRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MraConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/mra.md
https://huggingface.co/docs/transformers/en/model_doc/mra/#mraformultiplechoice
#mraformultiplechoice
.md
341_6
MRA Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MraConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/mra.md
https://huggingface.co/docs/transformers/en/model_doc/mra/#mrafortokenclassification
#mrafortokenclassification
.md
341_7
MRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MraConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/mra.md
https://huggingface.co/docs/transformers/en/model_doc/mra/#mraforquestionanswering
#mraforquestionanswering
.md
341_8
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pop2piano.md
https://huggingface.co/docs/transformers/en/model_doc/pop2piano/
.md
342_0
<div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/spaces/sweetcocoa/pop2piano"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pop2piano.md
https://huggingface.co/docs/transformers/en/model_doc/pop2piano/#pop2piano
#pop2piano
.md
342_1
The Pop2Piano model was proposed in [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee. Piano covers of pop music are widely enjoyed, but generating them from music is not a trivial task. It requires great expertise with playing piano as well as knowing different characteristics and melodies of a song. With Pop2Piano you can directly generate a cover from a song's audio waveform. It is the first model to directly generate a piano cover from pop audio without melody and chord extraction modules. Pop2Piano is an encoder-decoder Transformer model based on [T5](https://arxiv.org/pdf/1910.10683.pdf). The input audio is transformed to its waveform and passed to the encoder, which transforms it to a latent representation. The decoder uses these latent representations to generate token ids in an autoregressive way. Each token id corresponds to one of four different token types: time, velocity, note and 'special'. The token ids are then decoded to their equivalent MIDI file. The abstract from the paper is the following: *Piano covers of pop music are enjoyed by many people. However, the task of automatically generating piano covers of pop music is still understudied. This is partly due to the lack of synchronized {Pop, Piano Cover} data pairs, which made it challenging to apply the latest data-intensive deep learning-based methods. To leverage the power of the data-driven approach, we make a large amount of paired and synchronized {Pop, Piano Cover} data using an automated pipeline. In this paper, we present Pop2Piano, a Transformer network that generates piano covers given waveforms of pop music. To the best of our knowledge, this is the first model to generate a piano cover directly from pop audio without using melody and chord extraction modules. We show that Pop2Piano, trained with our dataset, is capable of producing plausible piano covers.* This model was contributed by [Susnato Dhar](https://huggingface.co/susnato). The original code can be found [here](https://github.com/sweetcocoa/pop2piano).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pop2piano.md
https://huggingface.co/docs/transformers/en/model_doc/pop2piano/#overview
#overview
.md
342_2
* To use Pop2Piano, you will need to install the 🤗 Transformers library, as well as the following third party modules: ```bash pip install pretty-midi==0.2.9 essentia==2.1b6.dev1034 librosa scipy ``` Please note that you may need to restart your runtime after installation. * Pop2Piano is an Encoder-Decoder based model like T5. * Pop2Piano can be used to generate midi-audio files for a given audio sequence. * Choosing different composers in `Pop2PianoForConditionalGeneration.generate()` can lead to variety of different results. * Setting the sampling rate to 44.1 kHz when loading the audio file can give good performance. * Though Pop2Piano was mainly trained on Korean Pop music, it also does pretty well on other Western Pop or Hip Hop songs.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pop2piano.md
https://huggingface.co/docs/transformers/en/model_doc/pop2piano/#usage-tips
#usage-tips
.md
342_3
- Example using HuggingFace Dataset: ```python >>> from datasets import load_dataset >>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor >>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano") >>> processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano") >>> ds = load_dataset("sweetcocoa/pop2piano_ci", split="test") >>> inputs = processor( ... audio=ds["audio"][0]["array"], sampling_rate=ds["audio"][0]["sampling_rate"], return_tensors="pt" ... ) >>> model_output = model.generate(input_features=inputs["input_features"], composer="composer1") >>> tokenizer_output = processor.batch_decode( ... token_ids=model_output, feature_extractor_output=inputs ... )["pretty_midi_objects"][0] >>> tokenizer_output.write("./Outputs/midi_output.mid") ``` - Example using your own audio file: ```python >>> import librosa >>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor >>> audio, sr = librosa.load("<your_audio_file_here>", sr=44100) # feel free to change the sr to a suitable value. >>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano") >>> processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano") >>> inputs = processor(audio=audio, sampling_rate=sr, return_tensors="pt") >>> model_output = model.generate(input_features=inputs["input_features"], composer="composer1") >>> tokenizer_output = processor.batch_decode( ... token_ids=model_output, feature_extractor_output=inputs ... )["pretty_midi_objects"][0] >>> tokenizer_output.write("./Outputs/midi_output.mid") ``` - Example of processing multiple audio files in batch: ```python >>> import librosa >>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor >>> # feel free to change the sr to a suitable value. >>> audio1, sr1 = librosa.load("<your_first_audio_file_here>", sr=44100) >>> audio2, sr2 = librosa.load("<your_second_audio_file_here>", sr=44100) >>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano") >>> processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano") >>> inputs = processor(audio=[audio1, audio2], sampling_rate=[sr1, sr2], return_attention_mask=True, return_tensors="pt") >>> # Since we now generating in batch(2 audios) we must pass the attention_mask >>> model_output = model.generate( ... input_features=inputs["input_features"], ... attention_mask=inputs["attention_mask"], ... composer="composer1", ... ) >>> tokenizer_output = processor.batch_decode( ... token_ids=model_output, feature_extractor_output=inputs ... )["pretty_midi_objects"] >>> # Since we now have 2 generated MIDI files >>> tokenizer_output[0].write("./Outputs/midi_output1.mid") >>> tokenizer_output[1].write("./Outputs/midi_output2.mid") ``` - Example of processing multiple audio files in batch (Using `Pop2PianoFeatureExtractor` and `Pop2PianoTokenizer`): ```python >>> import librosa >>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoFeatureExtractor, Pop2PianoTokenizer >>> # feel free to change the sr to a suitable value. >>> audio1, sr1 = librosa.load("<your_first_audio_file_here>", sr=44100) >>> audio2, sr2 = librosa.load("<your_second_audio_file_here>", sr=44100) >>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano") >>> feature_extractor = Pop2PianoFeatureExtractor.from_pretrained("sweetcocoa/pop2piano") >>> tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano") >>> inputs = feature_extractor( ... audio=[audio1, audio2], ... sampling_rate=[sr1, sr2], ... return_attention_mask=True, ... return_tensors="pt", ... ) >>> # Since we now generating in batch(2 audios) we must pass the attention_mask >>> model_output = model.generate( ... input_features=inputs["input_features"], ... attention_mask=inputs["attention_mask"], ... composer="composer1", ... ) >>> tokenizer_output = tokenizer.batch_decode( ... token_ids=model_output, feature_extractor_output=inputs ... )["pretty_midi_objects"] >>> # Since we now have 2 generated MIDI files >>> tokenizer_output[0].write("./Outputs/midi_output1.mid") >>> tokenizer_output[1].write("./Outputs/midi_output2.mid") ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pop2piano.md
https://huggingface.co/docs/transformers/en/model_doc/pop2piano/#examples
#examples
.md
342_4
This is the configuration class to store the configuration of a [`Pop2PianoForConditionalGeneration`]. It is used to instantiate a Pop2PianoForConditionalGeneration model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Pop2Piano [sweetcocoa/pop2piano](https://huggingface.co/sweetcocoa/pop2piano) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Arguments: vocab_size (`int`, *optional*, defaults to 2400): Vocabulary size of the `Pop2PianoForConditionalGeneration` model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Pop2PianoForConditionalGeneration`]. composer_vocab_size (`int`, *optional*, defaults to 21): Denotes the number of composers. d_model (`int`, *optional*, defaults to 512): Size of the encoder layers and the pooler layer. d_kv (`int`, *optional*, defaults to 64): Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will be defined as `num_heads * d_kv`. d_ff (`int`, *optional*, defaults to 2048): Size of the intermediate feed forward layer in each `Pop2PianoBlock`. num_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. num_decoder_layers (`int`, *optional*): Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. num_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. relative_attention_num_buckets (`int`, *optional*, defaults to 32): The number of buckets to use for each attention layer. relative_attention_max_distance (`int`, *optional*, defaults to 128): The maximum distance of the longer sequences for the bucket separation. dropout_rate (`float`, *optional*, defaults to 0.1): The ratio for all dropout layers. layer_norm_epsilon (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization testing). feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`): Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). dense_act_fn (`string`, *optional*, defaults to `"relu"`): Type of Activation Function to be used in `Pop2PianoDenseActDense` and in `Pop2PianoDenseGatedActDense`.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pop2piano.md
https://huggingface.co/docs/transformers/en/model_doc/pop2piano/#pop2pianoconfig
#pop2pianoconfig
.md
342_5
No docstring available for Pop2PianoFeatureExtractor Methods: __call__
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pop2piano.md
https://huggingface.co/docs/transformers/en/model_doc/pop2piano/#pop2pianofeatureextractor
#pop2pianofeatureextractor
.md
342_6
Pop2Piano Model with a `language modeling` head on top. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Pop2PianoConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward - generate
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pop2piano.md
https://huggingface.co/docs/transformers/en/model_doc/pop2piano/#pop2pianoforconditionalgeneration
#pop2pianoforconditionalgeneration
.md
342_7
No docstring available for Pop2PianoTokenizer Methods: __call__
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pop2piano.md
https://huggingface.co/docs/transformers/en/model_doc/pop2piano/#pop2pianotokenizer
#pop2pianotokenizer
.md
342_8
No docstring available for Pop2PianoProcessor Methods: __call__
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/pop2piano.md
https://huggingface.co/docs/transformers/en/model_doc/pop2piano/#pop2pianoprocessor
#pop2pianoprocessor
.md
342_9
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/falcon_mamba.md
https://huggingface.co/docs/transformers/en/model_doc/falcon_mamba/
.md
343_0
The FalconMamba model was proposed by TII UAE (Technology Innovation Institute) in their release. The abstract from the paper is the following: *We present FalconMamba, a new base large language model based on the novel Mamba architecture. FalconMamba is trained on 5.8 trillion tokens with carefully selected data mixtures. As a pure Mamba-based model, FalconMamba surpasses leading open-weight models based on Transformers, such as Mistral 7B, Llama3 8B, and Falcon2 11B. It is on par with Gemma 7B and outperforms models with different architecture designs, such as RecurrentGemma 9B. Currently, FalconMamba is the best-performing Mamba model in the literature at this scale, surpassing both existing Mamba and hybrid Mamba-Transformer models. Due to its architecture, FalconMamba is significantly faster at inference and requires substantially less memory for long sequence generation. Despite recent studies suggesting that hybrid Mamba-Transformer models outperform pure architecture designs, we argue and demonstrate that the pure Mamba design can achieve similar, even superior results compared to the hybrid design. We make the weights of our implementation of FalconMamba publicly available under a permissive license.* Tips: - FalconMamba is mostly based on Mamba architecture, the same [tips and best practices](./mamba) would be relevant here. The model has been trained on approximtely 6T tokens consisting a mixture of many data sources such as RefineWeb, Cosmopedia and Math data. For more details about the training procedure and the architecture, have a look at [the technical paper of FalconMamba]() (coming soon).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/falcon_mamba.md
https://huggingface.co/docs/transformers/en/model_doc/falcon_mamba/#overview
#overview
.md
343_1
Below we demonstrate how to use the model: ```python from transformers import FalconMambaForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b") model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b") input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"] out = model.generate(input_ids, max_new_tokens=10) print(tokenizer.batch_decode(out)) ``` The architecture is also compatible with `torch.compile` for faster generation: ```python from transformers import FalconMambaForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b") model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", torch_dtype=torch.bfloat16).to(0) model = torch.compile(model) input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"] out = model.generate(input_ids, max_new_tokens=10) print(tokenizer.batch_decode(out)) ``` If you have access to a GPU that is compatible with `bitsandbytes`, you can also quantize the model in 4-bit precision: ```python from transformers import FalconMambaForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b") quantization_config = BitsAndBytesConfig(load_in_4bit=True) model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", quantization_config=quantization_config) input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"] out = model.generate(input_ids, max_new_tokens=10) print(tokenizer.batch_decode(out)) ``` You can also play with the instruction fine-tuned model: ```python from transformers import FalconMambaForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct") model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] input_ids = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True).input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/falcon_mamba.md
https://huggingface.co/docs/transformers/en/model_doc/falcon_mamba/#usage
#usage
.md
343_2
This is the configuration class to store the configuration of a [`FalconMambaModel`]. It is used to instantiate a FALCON_MAMBA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FALCON_MAMBA [tiiuae/falcon-mamba-7b](https://huggingface.co/tiiuae/falcon-mamba-7b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50280): Vocabulary size of the FALCON_MAMBA model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FalconMambaModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the embeddings and hidden states. state_size (`int`, *optional*, defaults to 16): shape of the state space latents. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the model. layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): The epsilon to use in the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. bos_token_id (`int`, *optional*, defaults to 0): The id of the beginning of sentence token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 0): The id of the end of sentence token in the vocabulary. expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size. conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel. use_bias (`bool`, *optional*, defaults to `False`): Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block use_conv_bias (`bool`, *optional*, defaults to `True`): Whether or not to use bias in the convolution layer of the mixer block. hidden_act (`str`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. initializer_range (`float`, *optional*, defaults to 0.1): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. residual_in_fp32 (`bool`, *optional*, defaults to `True`): Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` time_step_scale (`float`, *optional*, defaults to 1.0): Scale used used to scale `dt_proj.bias`. time_step_min (`float`, *optional*, defaults to 0.001): Minimum `time_step` used to bound `dt_proj.bias`. time_step_max (`float`, *optional*, defaults to 0.1): Maximum `time_step` used to bound `dt_proj.bias`. time_step_init_scheme (`float`, *optional*, defaults to `"random"`): Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]` time_step_floor (`float`, *optional*, defaults to 0.0001): Minimum clamping value of the `dt_proj.bias` layer initialization. rescale_prenorm_residual (`bool`, *optional*, defaults to `False`): Whether or not to rescale `out_proj` weights when initializing. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the cache should be used. use_mambapy (`bool`, *optional*, defaults to `False`): Determines the fallback strategy during training if the CUDA-based official implementation of FalconMamba is not avaiable. If `True`, the falcon_mamba.py implementation is used. If `False`, the naive and slower implementation is used. Consider switching to the naive version if memory is limited. mixer_rms_eps (`float`, *optional*, defaults to 1e-06): The RMS norm epsilon value that is used in the Mixer RMS norm for B, C and dt states. Example: ```python >>> from transformers import FalconMambaConfig, FalconMambaModel >>> # Initializing a FalconMamba configuration >>> configuration = FalconMambaConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = FalconMambaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/falcon_mamba.md
https://huggingface.co/docs/transformers/en/model_doc/falcon_mamba/#falconmambaconfig
#falconmambaconfig
.md
343_3
The bare FALCONMAMBA Model transformer outputting raw hidden-states without any specific head on top. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FalconMambaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/falcon_mamba.md
https://huggingface.co/docs/transformers/en/model_doc/falcon_mamba/#falconmambamodel
#falconmambamodel
.md
343_4
The FALCONMAMBA Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FalconMambaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/falcon_mamba.md
https://huggingface.co/docs/transformers/en/model_doc/falcon_mamba/#falconmambalmheadmodel
#falconmambalmheadmodel
.md
343_5
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/convnextv2.md
https://huggingface.co/docs/transformers/en/model_doc/convnextv2/
.md
344_0
The ConvNeXt V2 model was proposed in [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie. ConvNeXt V2 is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, and a successor of [ConvNeXT](convnext). The abstract from the paper is the following: *Driven by improved architectures and better representation learning frameworks, the field of visual recognition has enjoyed rapid modernization and performance boost in the early 2020s. For example, modern ConvNets, represented by ConvNeXt, have demonstrated strong performance in various scenarios. While these models were originally designed for supervised learning with ImageNet labels, they can also potentially benefit from self-supervised learning techniques such as masked autoencoders (MAE). However, we found that simply combining these two approaches leads to subpar performance. In this paper, we propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation. We also provide pre-trained ConvNeXt V2 models of various sizes, ranging from an efficient 3.7M-parameter Atto model with 76.7% top-1 accuracy on ImageNet, to a 650M Huge model that achieves a state-of-the-art 88.9% accuracy using only public training data.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnextv2_architecture.png" alt="drawing" width="600"/> <small> ConvNeXt V2 architecture. Taken from the <a href="https://arxiv.org/abs/2301.00808">original paper</a>.</small> This model was contributed by [adirik](https://huggingface.co/adirik). The original code can be found [here](https://github.com/facebookresearch/ConvNeXt-V2).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/convnextv2.md
https://huggingface.co/docs/transformers/en/model_doc/convnextv2/#overview
#overview
.md
344_1
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ConvNeXt V2. <PipelineTag pipeline="image-classification"/> - [`ConvNextV2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/convnextv2.md
https://huggingface.co/docs/transformers/en/model_doc/convnextv2/#resources
#resources
.md
344_2
This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ConvNeXTV2 [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. patch_size (`int`, *optional*, defaults to 4): Patch size to use in the patch embedding layer. num_stages (`int`, *optional*, defaults to 4): The number of stages in the model. hidden_sizes (`List[int]`, *optional*, defaults to `[96, 192, 384, 768]`): Dimensionality (hidden size) at each stage. depths (`List[int]`, *optional*, defaults to `[3, 3, 9, 3]`): Depth (number of blocks) for each stage. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. drop_path_rate (`float`, *optional*, defaults to 0.0): The drop rate for stochastic depth. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import ConvNeXTV2Config, ConvNextV2Model >>> # Initializing a ConvNeXTV2 convnextv2-tiny-1k-224 style configuration >>> configuration = ConvNeXTV2Config() >>> # Initializing a model (with random weights) from the convnextv2-tiny-1k-224 style configuration >>> model = ConvNextV2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/convnextv2.md
https://huggingface.co/docs/transformers/en/model_doc/convnextv2/#convnextv2config
#convnextv2config
.md
344_3
The bare ConvNextV2 model outputting raw features without any specific head on top. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/convnextv2.md
https://huggingface.co/docs/transformers/en/model_doc/convnextv2/#convnextv2model
#convnextv2model
.md
344_4