text
stringlengths
5
58.6k
source
stringclasses
470 values
url
stringlengths
49
167
source_section
stringlengths
0
90
file_type
stringclasses
1 value
id
stringlengths
3
6
The XLMProphetNet Model with a language modeling head. Can be used for sequence generation tasks. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and behavior. Parameters: config ([`XLMProphetNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetforconditionalgeneration
#xlmprophetnetforconditionalgeneration
.md
209_9
The standalone decoder part of the XLMProphetNetModel with a lm head on top. The model can be used for causal language modeling. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and behavior. Parameters: config ([`XLMProphetNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetforcausallm
#xlmprophetnetforcausallm
.md
209_10
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
https://huggingface.co/docs/transformers/en/model_doc/open-llama/
.md
210_0
<Tip warning={true}> This model is in maintenance mode only, we don't accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.31.0. You can do so by running the following command: `pip install -U transformers==4.31.0`. </Tip> <Tip warning={true}> This model differs from the [OpenLLaMA models](https://huggingface.co/models?search=openllama) on the Hugging Face Hub, which primarily use the [LLaMA](llama) architecture. </Tip>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#open-llama
#open-llama
.md
210_1
The Open-Llama model was proposed in the open source Open-Llama project by community developer s-JoL. The model is mainly based on LLaMA with some modifications, incorporating memory-efficient attention from Xformers, stable embedding from Bloom, and shared input-output embedding from PaLM. And the model is pre-trained on both Chinese and English, which gives it better performance on Chinese language tasks. This model was contributed by [s-JoL](https://huggingface.co/s-JoL). The original code was released on GitHub by [s-JoL](https://github.com/s-JoL), but is now removed.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#overview
#overview
.md
210_2
This is the configuration class to store the configuration of a [`OpenLlamaModel`]. It is used to instantiate an Open-Llama model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Open-Llama model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`OpenLlamaModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings(`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. Example: ```python >>> from transformers import OpenLlamaModel, OpenLlamaConfig >>> # Initializing a Open-Llama open_llama-7b style configuration >>> configuration = OpenLlamaConfig() >>> # Initializing a model from the open_llama-7b style configuration >>> model = OpenLlamaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaconfig
#openllamaconfig
.md
210_3
The bare Open-Llama Model outputting raw hidden-states without any specific head on top. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`OpenLlamaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OpenLlamaDecoderLayer`] Args: config: OpenLlamaConfig Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamamodel
#openllamamodel
.md
210_4
No docstring available for OpenLlamaForCausalLM Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaforcausallm
#openllamaforcausallm
.md
210_5
The LLaMa Model transformer with a sequence classification head on top (linear layer). [`OpenLlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`OpenLlamaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaforsequenceclassification
#openllamaforsequenceclassification
.md
210_6
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
https://huggingface.co/docs/transformers/en/model_doc/phi/
.md
211_0
The Phi-1 model was proposed in [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li. The Phi-1.5 model was proposed in [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
https://huggingface.co/docs/transformers/en/model_doc/phi/#overview
#overview
.md
211_1
In Phi-1 and Phi-1.5 papers, the authors showed how important the quality of the data is in training relative to the model size. They selected high quality "textbook" data alongside with synthetically generated data for training their small sized Transformer based model Phi-1 with 1.3B parameters. Despite this small scale, phi-1 attains pass@1 accuracy 50.6% on HumanEval and 55.5% on MBPP. They follow the same strategy for Phi-1.5 and created another 1.3B parameter model with performance on natural language tasks comparable to models 5x larger, and surpassing most non-frontier LLMs. Phi-1.5 exhibits many of the traits of much larger LLMs such as the ability to “think step by step” or perform some rudimentary in-context learning. With these two experiments the authors successfully showed the huge impact of quality of training data when training machine learning models. The abstract from the Phi-1 paper is the following: *We introduce phi-1, a new large language model for code, with significantly smaller size than competing models: phi-1 is a Transformer-based model with 1.3B parameters, trained for 4 days on 8 A100s, using a selection of “textbook quality” data from the web (6B tokens) and synthetically generated textbooks and exercises with GPT-3.5 (1B tokens). Despite this small scale, phi-1 attains pass@1 accuracy 50.6% on HumanEval and 55.5% on MBPP. It also displays surprising emergent properties compared to phi-1-base, our model before our finetuning stage on a dataset of coding exercises, and phi-1-small, a smaller model with 350M parameters trained with the same pipeline as phi-1 that still achieves 45% on HumanEval.* The abstract from the Phi-1.5 paper is the following: *We continue the investigation into the power of smaller Transformer-based language models as initiated by TinyStories – a 10 million parameter model that can produce coherent English – and the follow-up work on phi-1, a 1.3 billion parameter model with Python coding performance close to the state-of-the-art. The latter work proposed to use existing Large Language Models (LLMs) to generate “textbook quality” data as a way to enhance the learning process compared to traditional web data. We follow the “Textbooks Are All You Need” approach, focusing this time on common sense reasoning in natural language, and create a new 1.3 billion parameter model named phi-1.5, with performance on natural language tasks comparable to models 5x larger, and surpassing most non-frontier LLMs on more complex reasoning tasks such as grade-school mathematics and basic coding. More generally, phi-1.5 exhibits many of the traits of much larger LLMs, both good –such as the ability to “think step by step” or perform some rudimentary in-context learning– and bad, including hallucinations and the potential for toxic and biased generations –encouragingly though, we are seeing improvement on that front thanks to the absence of web data. We open-source phi-1.5 to promote further research on these urgent topics.* This model was contributed by [Susnato Dhar](https://huggingface.co/susnato). The original code for Phi-1, Phi-1.5 and Phi-2 can be found [here](https://huggingface.co/microsoft/phi-1), [here](https://huggingface.co/microsoft/phi-1_5) and [here](https://huggingface.co/microsoft/phi-2), respectively.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
https://huggingface.co/docs/transformers/en/model_doc/phi/#summary
#summary
.md
211_2
- This model is quite similar to `Llama` with the main difference in [`PhiDecoderLayer`], where they used [`PhiAttention`] and [`PhiMLP`] layers in parallel configuration. - The tokenizer used for this model is identical to the [`CodeGenTokenizer`].
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
https://huggingface.co/docs/transformers/en/model_doc/phi/#usage-tips
#usage-tips
.md
211_3
<Tip warning={true}> Phi-2 has been integrated in the development version (4.37.0.dev) of `transformers`. Until the official version is released through `pip`, ensure that you are doing one of the following: * When loading the model, ensure that `trust_remote_code=True` is passed as an argument of the `from_pretrained()` function. * Update your local `transformers` to the development version: `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers`. The previous command is an alternative to cloning and installing from the source. </Tip> ```python >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2") >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2") >>> inputs = tokenizer('Can you help me write a formal email to a potential business partner proposing a joint venture?', return_tensors="pt", return_attention_mask=False) >>> outputs = model.generate(**inputs, max_length=30) >>> text = tokenizer.batch_decode(outputs)[0] >>> print(text) Can you help me write a formal email to a potential business partner proposing a joint venture? Input: Company A: ABC Inc. Company B ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
https://huggingface.co/docs/transformers/en/model_doc/phi/#how-to-use-phi-2
#how-to-use-phi-2
.md
211_4
```python >>> from transformers import PhiForCausalLM, AutoTokenizer >>> # define the model and tokenizer. >>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1_5") >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5") >>> # feel free to change the prompt to your liking. >>> prompt = "If I were an AI that had just achieved" >>> # apply the tokenizer. >>> tokens = tokenizer(prompt, return_tensors="pt") >>> # use the model to generate new tokens. >>> generated_output = model.generate(**tokens, use_cache=True, max_new_tokens=10) >>> tokenizer.batch_decode(generated_output)[0] 'If I were an AI that had just achieved a breakthrough in machine learning, I would be thrilled' ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
https://huggingface.co/docs/transformers/en/model_doc/phi/#example-
#example-
.md
211_5
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature. ```bash pip install -U flash-attn --no-build-isolation ``` Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16``) To load and run a model using Flash Attention 2, refer to the snippet below: ```python >>> import torch >>> from transformers import PhiForCausalLM, AutoTokenizer >>> # define the model and tokenizer and push the model and tokens to the GPU. >>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1_5", torch_dtype=torch.float16, attn_implementation="flash_attention_2").to("cuda") # doctest: +SKIP >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5") >>> # feel free to change the prompt to your liking. >>> prompt = "If I were an AI that had just achieved" >>> # apply the tokenizer. >>> tokens = tokenizer(prompt, return_tensors="pt").to("cuda") >>> # use the model to generate new tokens. >>> generated_output = model.generate(**tokens, use_cache=True, max_new_tokens=10) # doctest: +SKIP >>> tokenizer.batch_decode(generated_output)[0] # doctest: +SKIP 'If I were an AI that had just achieved a breakthrough in machine learning, I would be thrilled' ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
https://huggingface.co/docs/transformers/en/model_doc/phi/#combining-phi-and-flash-attention-2
#combining-phi-and-flash-attention-2
.md
211_6
Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `microsoft/phi-1` checkpoint and the Flash Attention 2 version of the model using a sequence length of 2048. <div style="text-align: center"> <img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/phi_1_speedup_plot.jpg"> </div>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
https://huggingface.co/docs/transformers/en/model_doc/phi/#expected-speedups
#expected-speedups
.md
211_7
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Phi [microsoft/phi-1](https://huggingface.co/microsoft/phi-1). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 51200): Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`PhiModel`]. hidden_size (`int`, *optional*, defaults to 2048): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 8192): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. resid_pdrop (`float`, *optional*, defaults to 0.0): Dropout probability for mlp outputs. embd_pdrop (`int`, *optional*, defaults to 0.0): The dropout ratio for the embeddings. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after computing the attention scores. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE partial_rotary_factor (`float`, *optional*, defaults to 0.5): Percentage of the query and keys which will have rotary embedding. qk_layernorm (`bool`, *optional*, defaults to `False`): Whether or not to normalize the Queries and Keys after projecting the hidden states. bos_token_id (`int`, *optional*, defaults to 1): Denotes beginning of sequences token id. eos_token_id (`int`, *optional*, defaults to 2): Denotes end of sequences token id. Example: ```python >>> from transformers import PhiModel, PhiConfig >>> # Initializing a Phi-1 style configuration >>> configuration = PhiConfig.from_pretrained("microsoft/phi-1") >>> # Initializing a model from the configuration >>> model = PhiModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` <frameworkcontent> <pt>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
https://huggingface.co/docs/transformers/en/model_doc/phi/#phiconfig
#phiconfig
.md
211_8
The bare Phi Model outputting raw hidden-states without any specific head on top. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PhiConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`] Args: config: PhiConfig Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
https://huggingface.co/docs/transformers/en/model_doc/phi/#phimodel
#phimodel
.md
211_9
No docstring available for PhiForCausalLM Methods: forward - generate
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
https://huggingface.co/docs/transformers/en/model_doc/phi/#phiforcausallm
#phiforcausallm
.md
211_10
The Phi Model transformer with a sequence classification head on top (linear layer). [`PhiForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PhiConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
https://huggingface.co/docs/transformers/en/model_doc/phi/#phiforsequenceclassification
#phiforsequenceclassification
.md
211_11
The Phi Model transformer with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PhiConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward </pt> </frameworkcontent>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
https://huggingface.co/docs/transformers/en/model_doc/phi/#phifortokenclassification
#phifortokenclassification
.md
211_12
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/
.md
212_0
In many cases, the architecture you want to use can be guessed from the name or the path of the pretrained model you are supplying to the `from_pretrained()` method. AutoClasses are here to do this job for you so that you automatically retrieve the relevant model given the name/path to the pretrained weights/config/vocabulary. Instantiating one of [`AutoConfig`], [`AutoModel`], and [`AutoTokenizer`] will directly create a class of the relevant architecture. For instance ```python model = AutoModel.from_pretrained("google-bert/bert-base-cased") ``` will create a model that is an instance of [`BertModel`]. There is one class of `AutoModel` for each task, and for each backend (PyTorch, TensorFlow, or Flax).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#auto-classes
#auto-classes
.md
212_1
Each of the auto classes has a method to be extended with your custom classes. For instance, if you have defined a custom class of model `NewModel`, make sure you have a `NewModelConfig` then you can add those to the auto classes like this: ```python from transformers import AutoConfig, AutoModel AutoConfig.register("new-model", NewModelConfig) AutoModel.register(NewModelConfig, NewModel) ``` You will then be able to use the auto classes like you would usually do! <Tip warning={true}> If your `NewModelConfig` is a subclass of [`~transformers.PretrainedConfig`], make sure its `model_type` attribute is set to the same key you use when registering the config (here `"new-model"`). Likewise, if your `NewModel` is a subclass of [`PreTrainedModel`], make sure its `config_class` attribute is set to the same class you use when registering the model (here `NewModelConfig`). </Tip>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#extending-the-auto-classes
#extending-the-auto-classes
.md
212_2
AutoConfig This is a generic configuration class that will be instantiated as one of the configuration classes of the library when created with the [`~AutoConfig.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#autoconfig
#autoconfig
.md
212_3
AutoTokenizer This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when created with the [`AutoTokenizer.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#autotokenizer
#autotokenizer
.md
212_4
AutoFeatureExtractor This is a generic feature extractor class that will be instantiated as one of the feature extractor classes of the library when created with the [`AutoFeatureExtractor.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#autofeatureextractor
#autofeatureextractor
.md
212_5
AutoImageProcessor This is a generic image processor class that will be instantiated as one of the image processor classes of the library when created with the [`AutoImageProcessor.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#autoimageprocessor
#autoimageprocessor
.md
212_6
AutoProcessor This is a generic processor class that will be instantiated as one of the processor classes of the library when created with the [`AutoProcessor.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#autoprocessor
#autoprocessor
.md
212_7
The following auto classes are available for instantiating a base model class without a specific head.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#generic-model-classes
#generic-model-classes
.md
212_8
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodel
#automodel
.md
212_9
No docstring available for TFAutoModel
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodel
#tfautomodel
.md
212_10
No docstring available for FlaxAutoModel
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#flaxautomodel
#flaxautomodel
.md
212_11
The following auto classes are available for instantiating a model with a pretraining head.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#generic-pretraining-classes
#generic-pretraining-classes
.md
212_12
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForPreTraining
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforpretraining
#automodelforpretraining
.md
212_13
No docstring available for TFAutoModelForPreTraining
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelforpretraining
#tfautomodelforpretraining
.md
212_14
No docstring available for FlaxAutoModelForPreTraining
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#flaxautomodelforpretraining
#flaxautomodelforpretraining
.md
212_15
The following auto classes are available for the following natural language processing tasks.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#natural-language-processing
#natural-language-processing
.md
212_16
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForCausalLM
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforcausallm
#automodelforcausallm
.md
212_17
No docstring available for TFAutoModelForCausalLM
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelforcausallm
#tfautomodelforcausallm
.md
212_18
No docstring available for FlaxAutoModelForCausalLM
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#flaxautomodelforcausallm
#flaxautomodelforcausallm
.md
212_19
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForMaskedLM
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelformaskedlm
#automodelformaskedlm
.md
212_20
No docstring available for TFAutoModelForMaskedLM
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelformaskedlm
#tfautomodelformaskedlm
.md
212_21
No docstring available for FlaxAutoModelForMaskedLM
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#flaxautomodelformaskedlm
#flaxautomodelformaskedlm
.md
212_22
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForMaskGeneration
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelformaskgeneration
#automodelformaskgeneration
.md
212_23
No docstring available for TFAutoModelForMaskGeneration
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelformaskgeneration
#tfautomodelformaskgeneration
.md
212_24
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForSeq2SeqLM
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforseq2seqlm
#automodelforseq2seqlm
.md
212_25
No docstring available for TFAutoModelForSeq2SeqLM
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelforseq2seqlm
#tfautomodelforseq2seqlm
.md
212_26
No docstring available for FlaxAutoModelForSeq2SeqLM
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#flaxautomodelforseq2seqlm
#flaxautomodelforseq2seqlm
.md
212_27
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForSequenceClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforsequenceclassification
#automodelforsequenceclassification
.md
212_28
No docstring available for TFAutoModelForSequenceClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelforsequenceclassification
#tfautomodelforsequenceclassification
.md
212_29
No docstring available for FlaxAutoModelForSequenceClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#flaxautomodelforsequenceclassification
#flaxautomodelforsequenceclassification
.md
212_30
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForMultipleChoice
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelformultiplechoice
#automodelformultiplechoice
.md
212_31
No docstring available for TFAutoModelForMultipleChoice
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelformultiplechoice
#tfautomodelformultiplechoice
.md
212_32
No docstring available for FlaxAutoModelForMultipleChoice
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#flaxautomodelformultiplechoice
#flaxautomodelformultiplechoice
.md
212_33
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForNextSentencePrediction
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelfornextsentenceprediction
#automodelfornextsentenceprediction
.md
212_34
No docstring available for TFAutoModelForNextSentencePrediction
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelfornextsentenceprediction
#tfautomodelfornextsentenceprediction
.md
212_35
No docstring available for FlaxAutoModelForNextSentencePrediction
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#flaxautomodelfornextsentenceprediction
#flaxautomodelfornextsentenceprediction
.md
212_36
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForTokenClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelfortokenclassification
#automodelfortokenclassification
.md
212_37
No docstring available for TFAutoModelForTokenClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelfortokenclassification
#tfautomodelfortokenclassification
.md
212_38
No docstring available for FlaxAutoModelForTokenClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#flaxautomodelfortokenclassification
#flaxautomodelfortokenclassification
.md
212_39
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForQuestionAnswering
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforquestionanswering
#automodelforquestionanswering
.md
212_40
No docstring available for TFAutoModelForQuestionAnswering
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelforquestionanswering
#tfautomodelforquestionanswering
.md
212_41
No docstring available for FlaxAutoModelForQuestionAnswering
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#flaxautomodelforquestionanswering
#flaxautomodelforquestionanswering
.md
212_42
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForTextEncoding
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelfortextencoding
#automodelfortextencoding
.md
212_43
No docstring available for TFAutoModelForTextEncoding
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelfortextencoding
#tfautomodelfortextencoding
.md
212_44
The following auto classes are available for the following computer vision tasks.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#computer-vision
#computer-vision
.md
212_45
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForDepthEstimation
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelfordepthestimation
#automodelfordepthestimation
.md
212_46
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForImageClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforimageclassification
#automodelforimageclassification
.md
212_47
No docstring available for TFAutoModelForImageClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelforimageclassification
#tfautomodelforimageclassification
.md
212_48
No docstring available for FlaxAutoModelForImageClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#flaxautomodelforimageclassification
#flaxautomodelforimageclassification
.md
212_49
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForVideoClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforvideoclassification
#automodelforvideoclassification
.md
212_50
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForKeypointDetection
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforkeypointdetection
#automodelforkeypointdetection
.md
212_51
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForMaskedImageModeling
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelformaskedimagemodeling
#automodelformaskedimagemodeling
.md
212_52
No docstring available for TFAutoModelForMaskedImageModeling
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelformaskedimagemodeling
#tfautomodelformaskedimagemodeling
.md
212_53
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForObjectDetection
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforobjectdetection
#automodelforobjectdetection
.md
212_54
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForImageSegmentation
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforimagesegmentation
#automodelforimagesegmentation
.md
212_55
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForImageToImage
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforimagetoimage
#automodelforimagetoimage
.md
212_56
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForSemanticSegmentation
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforsemanticsegmentation
#automodelforsemanticsegmentation
.md
212_57
No docstring available for TFAutoModelForSemanticSegmentation
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelforsemanticsegmentation
#tfautomodelforsemanticsegmentation
.md
212_58
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForInstanceSegmentation
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforinstancesegmentation
#automodelforinstancesegmentation
.md
212_59
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForUniversalSegmentation
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforuniversalsegmentation
#automodelforuniversalsegmentation
.md
212_60
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForZeroShotImageClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforzeroshotimageclassification
#automodelforzeroshotimageclassification
.md
212_61
No docstring available for TFAutoModelForZeroShotImageClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelforzeroshotimageclassification
#tfautomodelforzeroshotimageclassification
.md
212_62
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForZeroShotObjectDetection
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforzeroshotobjectdetection
#automodelforzeroshotobjectdetection
.md
212_63
The following auto classes are available for the following audio tasks.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#audio
#audio
.md
212_64
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForAudioClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforaudioclassification
#automodelforaudioclassification
.md
212_65
No docstring available for TFAutoModelForAudioClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforaudioframeclassification
#automodelforaudioframeclassification
.md
212_66
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForAudioFrameClassification
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelforaudioframeclassification
#tfautomodelforaudioframeclassification
.md
212_67
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForCTC
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforctc
#automodelforctc
.md
212_68
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForSpeechSeq2Seq
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforspeechseq2seq
#automodelforspeechseq2seq
.md
212_69
No docstring available for TFAutoModelForSpeechSeq2Seq
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelforspeechseq2seq
#tfautomodelforspeechseq2seq
.md
212_70
No docstring available for FlaxAutoModelForSpeechSeq2Seq
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#flaxautomodelforspeechseq2seq
#flaxautomodelforspeechseq2seq
.md
212_71
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForAudioXVector
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelforaudioxvector
#automodelforaudioxvector
.md
212_72
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForTextToSpectrogram
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelfortexttospectrogram
#automodelfortexttospectrogram
.md
212_73
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForTextToWaveform
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelfortexttowaveform
#automodelfortexttowaveform
.md
212_74
The following auto classes are available for the following multimodal tasks.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#multimodal
#multimodal
.md
212_75
AutoModel This is a generic model class that will be instantiated as one of the base model classes of the library when created with the [`~AutoModel.from_pretrained`] class method or the [`~AutoModel.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). ForTableQuestionAnswering
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#automodelfortablequestionanswering
#automodelfortablequestionanswering
.md
212_76
No docstring available for TFAutoModelForTableQuestionAnswering
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/auto.md
https://huggingface.co/docs/transformers/en/model_doc/auto/#tfautomodelfortablequestionanswering
#tfautomodelfortablequestionanswering
.md
212_77