source
stringclasses 470
values | url
stringlengths 49
167
| file_type
stringclasses 1
value | chunk
stringlengths 1
512
| chunk_id
stringlengths 5
9
|
---|---|---|---|---|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#overview
|
.md
|
The XLM-ProphetNet model was proposed in [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training,](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei
Zhang, Ming Zhou on 13 Jan, 2020.
XLM-ProphetNet is an encoder-decoder model and can predict n-future tokens for "ngram" language modeling instead of
just the next token. Its architecture is identical to ProhpetNet, but the model was trained on the multi-lingual
|
209_2_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#overview
|
.md
|
just the next token. Its architecture is identical to ProhpetNet, but the model was trained on the multi-lingual
"wiki100" Wikipedia dump. XLM-ProphetNet's model architecture and pretraining objective is same as ProphetNet, but XLM-ProphetNet was pre-trained on the cross-lingual dataset XGLUE.
The abstract from the paper is the following:
*In this paper, we present a new sequence-to-sequence pretraining model called ProphetNet, which introduces a novel
|
209_2_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#overview
|
.md
|
*In this paper, we present a new sequence-to-sequence pretraining model called ProphetNet, which introduces a novel
self-supervised objective named future n-gram prediction and the proposed n-stream self-attention mechanism. Instead of
the optimization of one-step ahead prediction in traditional sequence-to-sequence model, the ProphetNet is optimized by
n-step ahead prediction which predicts the next n tokens simultaneously based on previous context tokens at each time
|
209_2_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#overview
|
.md
|
n-step ahead prediction which predicts the next n tokens simultaneously based on previous context tokens at each time
step. The future n-gram prediction explicitly encourages the model to plan for the future tokens and prevent
overfitting on strong local correlations. We pre-train ProphetNet using a base scale dataset (16GB) and a large scale
dataset (160GB) respectively. Then we conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for
|
209_2_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#overview
|
.md
|
dataset (160GB) respectively. Then we conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for
abstractive summarization and question generation tasks. Experimental results show that ProphetNet achieves new
state-of-the-art results on all these datasets compared to the models using the same scale pretraining corpus.*
The Authors' code can be found [here](https://github.com/microsoft/ProphetNet).
|
209_2_4
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#resources
|
.md
|
- [Causal language modeling task guide](../tasks/language_modeling)
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
|
209_3_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetconfig
|
.md
|
This is the configuration class to store the configuration of a [`XLMProphetNetModel`]. It is used to instantiate a
XLMProphetNet model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the XLMProphetNet
[microsoft/xprophetnet-large-wiki100-cased](https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased)
architecture.
|
209_4_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetconfig
|
.md
|
[microsoft/xprophetnet-large-wiki100-cased](https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
209_4_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetconfig
|
.md
|
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`XLMProphetNetModel`].
hidden_size (`int`, *optional*, defaults to 1024):
|
209_4_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetconfig
|
.md
|
the `inputs_ids` passed when calling [`XLMProphetNetModel`].
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
num_encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
num_encoder_attention_heads (`int`, *optional*, defaults to 16):
|
209_4_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetconfig
|
.md
|
Number of encoder layers.
num_encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the `intermediate` (often named feed-forward) layer in decoder.
num_decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
num_decoder_attention_heads (`int`, *optional*, defaults to 16):
|
209_4_4
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetconfig
|
.md
|
Number of decoder layers.
num_decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
max_position_embeddings (`int`, *optional*, defaults to 512):
|
209_4_5
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetconfig
|
.md
|
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
add_cross_attention (`bool`, *optional*, defaults to `True`):
Whether cross-attention layers should be added to the model.
|
209_4_6
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetconfig
|
.md
|
add_cross_attention (`bool`, *optional*, defaults to `True`):
Whether cross-attention layers should be added to the model.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether this is an encoder/decoder model.
pad_token_id (`int`, *optional*, defaults to 1)
Padding token id.
bos_token_id (`int`, *optional*, defaults to 0)
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2)
End of stream token id.
ngram (`int`, *optional*, defaults to 2)
|
209_4_7
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetconfig
|
.md
|
eos_token_id (`int`, *optional*, defaults to 2)
End of stream token id.
ngram (`int`, *optional*, defaults to 2)
Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first
token.
num_buckets (`int`, *optional*, defaults to 32)
The number of buckets to use for each attention layer. This is for relative position calculation. See the
[T5 paper](see https://arxiv.org/abs/1910.10683) for more details.
relative_max_distance (`int`, *optional*, defaults to 128)
|
209_4_8
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetconfig
|
.md
|
[T5 paper](see https://arxiv.org/abs/1910.10683) for more details.
relative_max_distance (`int`, *optional*, defaults to 128)
Relative distances greater than this number will be put into the last same bucket. This is for relative
position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details.
disable_ngram_loss (`bool`, *optional*, defaults to `False`):
Whether be trained predicting only the next first token.
eps (`float`, *optional*, defaults to 0.0):
|
209_4_9
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetconfig
|
.md
|
Whether be trained predicting only the next first token.
eps (`float`, *optional*, defaults to 0.0):
Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label
smoothing is performed.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
|
209_4_10
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnettokenizer
|
.md
|
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
[SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"[SEP]"`):
|
209_5_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnettokenizer
|
.md
|
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"[SEP]"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
The end of sequence token.
<Tip>
|
209_5_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnettokenizer
|
.md
|
</Tip>
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
209_5_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnettokenizer
|
.md
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
209_5_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnettokenizer
|
.md
|
token instead.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
209_5_4
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnettokenizer
|
.md
|
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
|
209_5_5
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnettokenizer
|
.md
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
209_5_6
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnettokenizer
|
.md
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
209_5_7
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetmodel
|
.md
|
The bare XLMProphetNet Model outputting raw hidden-states without any specific head on top.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted
|
209_6_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetmodel
|
.md
|
etc.)
Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted
from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the
file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`.
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
209_6_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetmodel
|
.md
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and
behavior.
Parameters:
config ([`XLMProphetNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
|
209_6_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetmodel
|
.md
|
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
209_6_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetencoder
|
.md
|
The standalone encoder part of the XLMProphetNetModel.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted
from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the
|
209_7_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetencoder
|
.md
|
from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the
file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`.
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and
behavior.
Parameters:
|
209_7_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetencoder
|
.md
|
behavior.
Parameters:
config ([`XLMProphetNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*):
|
209_7_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetencoder
|
.md
|
word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*):
The word embedding parameters. This can be used to initialize [`XLMProphetNetEncoder`] with pre-defined word
embeddings instead of randomly initialized word embeddings.
|
209_7_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetdecoder
|
.md
|
The standalone decoder part of the XLMProphetNetModel.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted
from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the
|
209_8_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetdecoder
|
.md
|
from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the
file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`.
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and
behavior.
Parameters:
|
209_8_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetdecoder
|
.md
|
behavior.
Parameters:
config ([`XLMProphetNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*):
|
209_8_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetdecoder
|
.md
|
word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*):
The word embedding parameters. This can be used to initialize [`XLMProphetNetEncoder`] with pre-defined word
embeddings instead of randomly initialized word embeddings.
|
209_8_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetforconditionalgeneration
|
.md
|
The XLMProphetNet Model with a language modeling head. Can be used for sequence generation tasks.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted
|
209_9_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetforconditionalgeneration
|
.md
|
etc.)
Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted
from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the
file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`.
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
209_9_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetforconditionalgeneration
|
.md
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and
behavior.
Parameters:
config ([`XLMProphetNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
|
209_9_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetforconditionalgeneration
|
.md
|
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
209_9_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetforcausallm
|
.md
|
The standalone decoder part of the XLMProphetNetModel with a lm head on top. The model can be used for causal language modeling.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted
|
209_10_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetforcausallm
|
.md
|
etc.)
Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted
from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the
file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`.
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
209_10_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetforcausallm
|
.md
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and
behavior.
Parameters:
config ([`XLMProphetNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
|
209_10_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/xlm-prophetnet.md
|
https://huggingface.co/docs/transformers/en/model_doc/xlm-prophetnet/#xlmprophetnetforcausallm
|
.md
|
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
209_10_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/
|
.md
|
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
210_0_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/
|
.md
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
|
210_0_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#open-llama
|
.md
|
<Tip warning={true}>
This model is in maintenance mode only, we don't accept any new PRs changing its code.
If you run into any issues running this model, please reinstall the last version that supported this model: v4.31.0.
You can do so by running the following command: `pip install -U transformers==4.31.0`.
</Tip>
<Tip warning={true}>
|
210_1_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#open-llama
|
.md
|
You can do so by running the following command: `pip install -U transformers==4.31.0`.
</Tip>
<Tip warning={true}>
This model differs from the [OpenLLaMA models](https://huggingface.co/models?search=openllama) on the Hugging Face Hub, which primarily use the [LLaMA](llama) architecture.
</Tip>
|
210_1_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#overview
|
.md
|
The Open-Llama model was proposed in the open source Open-Llama project by community developer s-JoL.
The model is mainly based on LLaMA with some modifications, incorporating memory-efficient attention from Xformers, stable embedding from Bloom, and shared input-output embedding from PaLM.
And the model is pre-trained on both Chinese and English, which gives it better performance on Chinese language tasks.
This model was contributed by [s-JoL](https://huggingface.co/s-JoL).
|
210_2_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#overview
|
.md
|
This model was contributed by [s-JoL](https://huggingface.co/s-JoL).
The original code was released on GitHub by [s-JoL](https://github.com/s-JoL), but is now removed.
|
210_2_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaconfig
|
.md
|
This is the configuration class to store the configuration of a [`OpenLlamaModel`]. It is used to instantiate an
Open-Llama model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the
[s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
210_3_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaconfig
|
.md
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Open-Llama model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`OpenLlamaModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
|
210_3_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaconfig
|
.md
|
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
210_3_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaconfig
|
.md
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
210_3_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaconfig
|
.md
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
|
210_3_4
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaconfig
|
.md
|
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
210_3_5
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaconfig
|
.md
|
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
210_3_6
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaconfig
|
.md
|
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
Example:
```python
>>> from transformers import OpenLlamaModel, OpenLlamaConfig
|
210_3_7
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaconfig
|
.md
|
>>> # Initializing a Open-Llama open_llama-7b style configuration
>>> configuration = OpenLlamaConfig()
>>> # Initializing a model from the open_llama-7b style configuration
>>> model = OpenLlamaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
|
210_3_8
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamamodel
|
.md
|
The bare Open-Llama Model outputting raw hidden-states without any specific head on top.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
210_4_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamamodel
|
.md
|
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`OpenLlamaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
|
210_4_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamamodel
|
.md
|
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OpenLlamaDecoderLayer`]
Args:
config: OpenLlamaConfig
Methods: forward
|
210_4_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaforcausallm
|
.md
|
No docstring available for OpenLlamaForCausalLM
Methods: forward
|
210_5_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaforsequenceclassification
|
.md
|
The LLaMa Model transformer with a sequence classification head on top (linear layer).
[`OpenLlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal
models (e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
210_6_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaforsequenceclassification
|
.md
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
210_6_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaforsequenceclassification
|
.md
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
|
210_6_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/open-llama.md
|
https://huggingface.co/docs/transformers/en/model_doc/open-llama/#openllamaforsequenceclassification
|
.md
|
and behavior.
Parameters:
config ([`OpenLlamaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
Methods: forward
|
210_6_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/
|
.md
|
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
211_0_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/
|
.md
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
|
211_0_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#overview
|
.md
|
The Phi-1 model was proposed in [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li.
|
211_1_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#overview
|
.md
|
The Phi-1.5 model was proposed in [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
|
211_1_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#summary
|
.md
|
In Phi-1 and Phi-1.5 papers, the authors showed how important the quality of the data is in training relative to the model size.
They selected high quality "textbook" data alongside with synthetically generated data for training their small sized Transformer
based model Phi-1 with 1.3B parameters. Despite this small scale, phi-1 attains pass@1 accuracy 50.6% on HumanEval and 55.5% on MBPP.
|
211_2_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#summary
|
.md
|
They follow the same strategy for Phi-1.5 and created another 1.3B parameter model with performance on natural language tasks comparable
to models 5x larger, and surpassing most non-frontier LLMs. Phi-1.5 exhibits many of the traits of much larger LLMs such as the ability
to “think step by step” or perform some rudimentary in-context learning.
With these two experiments the authors successfully showed the huge impact of quality of training data when training machine learning models.
|
211_2_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#summary
|
.md
|
The abstract from the Phi-1 paper is the following:
*We introduce phi-1, a new large language model for code, with significantly smaller size than
competing models: phi-1 is a Transformer-based model with 1.3B parameters, trained for 4 days on
8 A100s, using a selection of “textbook quality” data from the web (6B tokens) and synthetically
generated textbooks and exercises with GPT-3.5 (1B tokens). Despite this small scale, phi-1 attains
|
211_2_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#summary
|
.md
|
generated textbooks and exercises with GPT-3.5 (1B tokens). Despite this small scale, phi-1 attains
pass@1 accuracy 50.6% on HumanEval and 55.5% on MBPP. It also displays surprising emergent
properties compared to phi-1-base, our model before our finetuning stage on a dataset of coding
exercises, and phi-1-small, a smaller model with 350M parameters trained with the same pipeline as
phi-1 that still achieves 45% on HumanEval.*
The abstract from the Phi-1.5 paper is the following:
|
211_2_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#summary
|
.md
|
phi-1 that still achieves 45% on HumanEval.*
The abstract from the Phi-1.5 paper is the following:
*We continue the investigation into the power of smaller Transformer-based language models as
initiated by TinyStories – a 10 million parameter model that can produce coherent English – and
the follow-up work on phi-1, a 1.3 billion parameter model with Python coding performance close
to the state-of-the-art. The latter work proposed to use existing Large Language Models (LLMs) to
|
211_2_4
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#summary
|
.md
|
to the state-of-the-art. The latter work proposed to use existing Large Language Models (LLMs) to
generate “textbook quality” data as a way to enhance the learning process compared to traditional
web data. We follow the “Textbooks Are All You Need” approach, focusing this time on common
sense reasoning in natural language, and create a new 1.3 billion parameter model named phi-1.5,
with performance on natural language tasks comparable to models 5x larger, and surpassing most
|
211_2_5
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#summary
|
.md
|
with performance on natural language tasks comparable to models 5x larger, and surpassing most
non-frontier LLMs on more complex reasoning tasks such as grade-school mathematics and basic
coding. More generally, phi-1.5 exhibits many of the traits of much larger LLMs, both good –such
as the ability to “think step by step” or perform some rudimentary in-context learning– and bad,
including hallucinations and the potential for toxic and biased generations –encouragingly though, we
|
211_2_6
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#summary
|
.md
|
including hallucinations and the potential for toxic and biased generations –encouragingly though, we
are seeing improvement on that front thanks to the absence of web data. We open-source phi-1.5 to
promote further research on these urgent topics.*
This model was contributed by [Susnato Dhar](https://huggingface.co/susnato).
|
211_2_7
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#summary
|
.md
|
This model was contributed by [Susnato Dhar](https://huggingface.co/susnato).
The original code for Phi-1, Phi-1.5 and Phi-2 can be found [here](https://huggingface.co/microsoft/phi-1), [here](https://huggingface.co/microsoft/phi-1_5) and [here](https://huggingface.co/microsoft/phi-2), respectively.
|
211_2_8
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#usage-tips
|
.md
|
- This model is quite similar to `Llama` with the main difference in [`PhiDecoderLayer`], where they used [`PhiAttention`] and [`PhiMLP`] layers in parallel configuration.
- The tokenizer used for this model is identical to the [`CodeGenTokenizer`].
|
211_3_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#how-to-use-phi-2
|
.md
|
<Tip warning={true}>
Phi-2 has been integrated in the development version (4.37.0.dev) of `transformers`. Until the official version is released through `pip`, ensure that you are doing one of the following:
* When loading the model, ensure that `trust_remote_code=True` is passed as an argument of the `from_pretrained()` function.
|
211_4_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#how-to-use-phi-2
|
.md
|
* When loading the model, ensure that `trust_remote_code=True` is passed as an argument of the `from_pretrained()` function.
* Update your local `transformers` to the development version: `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers`. The previous command is an alternative to cloning and installing from the source.
</Tip>
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
211_4_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#how-to-use-phi-2
|
.md
|
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2")
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
>>> inputs = tokenizer('Can you help me write a formal email to a potential business partner proposing a joint venture?', return_tensors="pt", return_attention_mask=False)
|
211_4_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#how-to-use-phi-2
|
.md
|
>>> outputs = model.generate(**inputs, max_length=30)
>>> text = tokenizer.batch_decode(outputs)[0]
>>> print(text)
Can you help me write a formal email to a potential business partner proposing a joint venture?
Input: Company A: ABC Inc.
Company B
```
|
211_4_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#example-
|
.md
|
```python
>>> from transformers import PhiForCausalLM, AutoTokenizer
>>> # define the model and tokenizer.
>>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1_5")
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5")
>>> # feel free to change the prompt to your liking.
>>> prompt = "If I were an AI that had just achieved"
>>> # apply the tokenizer.
>>> tokens = tokenizer(prompt, return_tensors="pt")
|
211_5_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#example-
|
.md
|
>>> # apply the tokenizer.
>>> tokens = tokenizer(prompt, return_tensors="pt")
>>> # use the model to generate new tokens.
>>> generated_output = model.generate(**tokens, use_cache=True, max_new_tokens=10)
>>> tokenizer.batch_decode(generated_output)[0]
'If I were an AI that had just achieved a breakthrough in machine learning, I would be thrilled'
```
|
211_5_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#combining-phi-and-flash-attention-2
|
.md
|
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.
```bash
pip install -U flash-attn --no-build-isolation
```
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16``)
To load and run a model using Flash Attention 2, refer to the snippet below:
```python
|
211_6_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#combining-phi-and-flash-attention-2
|
.md
|
To load and run a model using Flash Attention 2, refer to the snippet below:
```python
>>> import torch
>>> from transformers import PhiForCausalLM, AutoTokenizer
|
211_6_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#combining-phi-and-flash-attention-2
|
.md
|
>>> # define the model and tokenizer and push the model and tokens to the GPU.
>>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1_5", torch_dtype=torch.float16, attn_implementation="flash_attention_2").to("cuda") # doctest: +SKIP
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5")
>>> # feel free to change the prompt to your liking.
>>> prompt = "If I were an AI that had just achieved"
>>> # apply the tokenizer.
>>> tokens = tokenizer(prompt, return_tensors="pt").to("cuda")
|
211_6_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#combining-phi-and-flash-attention-2
|
.md
|
>>> # apply the tokenizer.
>>> tokens = tokenizer(prompt, return_tensors="pt").to("cuda")
>>> # use the model to generate new tokens.
>>> generated_output = model.generate(**tokens, use_cache=True, max_new_tokens=10) # doctest: +SKIP
>>> tokenizer.batch_decode(generated_output)[0] # doctest: +SKIP
'If I were an AI that had just achieved a breakthrough in machine learning, I would be thrilled'
```
|
211_6_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#expected-speedups
|
.md
|
Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `microsoft/phi-1` checkpoint and the Flash Attention 2 version of the model using a sequence length of 2048.
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/phi_1_speedup_plot.jpg">
</div>
|
211_7_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#phiconfig
|
.md
|
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Phi
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
211_8_0
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#phiconfig
|
.md
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 51200):
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`PhiModel`].
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
|
211_8_1
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#phiconfig
|
.md
|
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
|
211_8_2
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#phiconfig
|
.md
|
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
211_8_3
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#phiconfig
|
.md
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
resid_pdrop (`float`, *optional*, defaults to 0.0):
Dropout probability for mlp outputs.
|
211_8_4
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#phiconfig
|
.md
|
`num_attention_heads`.
resid_pdrop (`float`, *optional*, defaults to 0.0):
Dropout probability for mlp outputs.
embd_pdrop (`int`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after computing the attention scores.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the decoder.
|
211_8_5
|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/phi.md
|
https://huggingface.co/docs/transformers/en/model_doc/phi/#phiconfig
|
.md
|
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
211_8_6
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.