source
stringclasses
470 values
url
stringlengths
49
167
file_type
stringclasses
1 value
chunk
stringlengths
1
512
chunk_id
stringlengths
5
9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotaudioclassificationpipeline
.md
``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This audio classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"zero-shot-audio-classification"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=zero-shot-audio-classification). Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]):
456_12_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotaudioclassificationpipeline
.md
Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. tokenizer ([`PreTrainedTokenizer`]): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from [`PreTrainedTokenizer`]. feature_extractor ([`SequenceFeatureExtractor`]):
456_12_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotaudioclassificationpipeline
.md
[`PreTrainedTokenizer`]. feature_extractor ([`SequenceFeatureExtractor`]): The feature extractor that will be used by the pipeline to encode data for the model. This object inherits from [`SequenceFeatureExtractor`]. modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed.
456_12_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotaudioclassificationpipeline
.md
The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8):
456_12_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotaudioclassificationpipeline
.md
provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with
456_12_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotaudioclassificationpipeline
.md
the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on
456_12_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotaudioclassificationpipeline
.md
Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`):
456_12_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotaudioclassificationpipeline
.md
(`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text. - __call__ - all
456_12_9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#computer-vision
.md
Pipelines available for computer vision tasks include the following.
456_13_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#depthestimationpipeline
.md
Depth estimation pipeline using any `AutoModelForDepthEstimation`. This pipeline predicts the depth of an image. Example: ```python >>> from transformers import pipeline
456_14_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#depthestimationpipeline
.md
>>> depth_estimator = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-base-hf") >>> output = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg") >>> # This is a tensor with the values being the depth expressed in meters for each pixel >>> output["predicted_depth"].shape torch.Size([1, 384, 384]) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
456_14_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#depthestimationpipeline
.md
``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This depth estimation pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"depth-estimation"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=depth-estimation). Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]):
456_14_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#depthestimationpipeline
.md
Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. image_processor ([`BaseImageProcessor`]): The image processor that will be used by the pipeline to encode data for the model. This object inherits from [`BaseImageProcessor`]. modelcard (`str` or [`ModelCard`], *optional*):
456_14_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#depthestimationpipeline
.md
[`BaseImageProcessor`]. modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided.
456_14_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#depthestimationpipeline
.md
both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1):
456_14_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#depthestimationpipeline
.md
workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters.
456_14_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#depthestimationpipeline
.md
Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model
456_14_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#depthestimationpipeline
.md
Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text. - __call__ - all
456_14_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imageclassificationpipeline
.md
Image classification pipeline using any `AutoModelForImageClassification`. This pipeline predicts the class of an image. Example: ```python >>> from transformers import pipeline
456_15_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imageclassificationpipeline
.md
>>> classifier = pipeline(model="microsoft/beit-base-patch16-224-pt22k-ft22k") >>> classifier("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") [{'score': 0.442, 'label': 'macaw'}, {'score': 0.088, 'label': 'popinjay'}, {'score': 0.075, 'label': 'parrot'}, {'score': 0.073, 'label': 'parodist, lampooner'}, {'score': 0.046, 'label': 'poll, poll_parrot'}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
456_15_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imageclassificationpipeline
.md
``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This image classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"image-classification"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=image-classification). Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]):
456_15_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imageclassificationpipeline
.md
Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. image_processor ([`BaseImageProcessor`]): The image processor that will be used by the pipeline to encode data for the model. This object inherits from [`BaseImageProcessor`]. modelcard (`str` or [`ModelCard`], *optional*):
456_15_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imageclassificationpipeline
.md
[`BaseImageProcessor`]. modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided.
456_15_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imageclassificationpipeline
.md
both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1):
456_15_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imageclassificationpipeline
.md
workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters.
456_15_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imageclassificationpipeline
.md
Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model
456_15_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imageclassificationpipeline
.md
Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text. function_to_apply (`str`, *optional*, defaults to `"default"`):
456_15_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imageclassificationpipeline
.md
the raw output data e.g. text. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output.
456_15_9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imageclassificationpipeline
.md
- `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. - __call__ - all
456_15_10
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagesegmentationpipeline
.md
Image segmentation pipeline using any `AutoModelForXXXSegmentation`. This pipeline predicts masks of objects and their classes. Example: ```python >>> from transformers import pipeline >>> segmenter = pipeline(model="facebook/detr-resnet-50-panoptic") >>> segments = segmenter("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") >>> len(segments) 2 >>> segments[0]["label"] 'bird' >>> segments[1]["label"] 'bird'
456_16_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagesegmentationpipeline
.md
>>> segments[0]["label"] 'bird' >>> segments[1]["label"] 'bird' >>> type(segments[0]["mask"]) # This is a black and white mask showing where is the bird on the original image. <class 'PIL.Image.Image'>
456_16_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagesegmentationpipeline
.md
>>> segments[0]["mask"].size (768, 512) ``` This image segmentation pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"image-segmentation"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=image-segmentation). Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
456_16_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagesegmentationpipeline
.md
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. image_processor ([`BaseImageProcessor`]): The image processor that will be used by the pipeline to encode data for the model. This object inherits from [`BaseImageProcessor`]. modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*):
456_16_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagesegmentationpipeline
.md
Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline.
456_16_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagesegmentationpipeline
.md
provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with
456_16_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagesegmentationpipeline
.md
the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on
456_16_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagesegmentationpipeline
.md
Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`):
456_16_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagesegmentationpipeline
.md
(`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text. - __call__ - all
456_16_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagetoimagepipeline
.md
Image to Image pipeline using any `AutoModelForImageToImage`. This pipeline generates an image based on a previous image input. Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import pipeline
456_17_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagetoimagepipeline
.md
>>> from transformers import pipeline >>> upscaler = pipeline("image-to-image", model="caidas/swin2SR-classical-sr-x2-64") >>> img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) >>> img = img.resize((64, 64)) >>> upscaled_img = upscaler(img) >>> img.size (64, 64)
456_17_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagetoimagepipeline
.md
>>> upscaled_img.size (144, 144) ``` This image to image pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"image-to-image"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=image-to-image). Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
456_17_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagetoimagepipeline
.md
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. image_processor ([`BaseImageProcessor`]): The image processor that will be used by the pipeline to encode data for the model. This object inherits from [`BaseImageProcessor`]. modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*):
456_17_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagetoimagepipeline
.md
Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline.
456_17_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagetoimagepipeline
.md
provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with
456_17_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagetoimagepipeline
.md
the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on
456_17_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagetoimagepipeline
.md
Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`):
456_17_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#imagetoimagepipeline
.md
(`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text. - __call__ - all
456_17_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#objectdetectionpipeline
.md
Object detection pipeline using any `AutoModelForObjectDetection`. This pipeline predicts bounding boxes of objects and their classes. Example: ```python >>> from transformers import pipeline
456_18_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#objectdetectionpipeline
.md
>>> detector = pipeline(model="facebook/detr-resnet-50") >>> detector("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") [{'score': 0.997, 'label': 'bird', 'box': {'xmin': 69, 'ymin': 171, 'xmax': 396, 'ymax': 507}}, {'score': 0.999, 'label': 'bird', 'box': {'xmin': 398, 'ymin': 105, 'xmax': 767, 'ymax': 507}}]
456_18_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#objectdetectionpipeline
.md
>>> # x, y are expressed relative to the top left hand corner. ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"object-detection"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=object-detection). Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]):
456_18_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#objectdetectionpipeline
.md
Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. image_processor ([`BaseImageProcessor`]): The image processor that will be used by the pipeline to encode data for the model. This object inherits from [`BaseImageProcessor`]. modelcard (`str` or [`ModelCard`], *optional*):
456_18_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#objectdetectionpipeline
.md
[`BaseImageProcessor`]. modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided.
456_18_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#objectdetectionpipeline
.md
both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1):
456_18_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#objectdetectionpipeline
.md
workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters.
456_18_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#objectdetectionpipeline
.md
Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model
456_18_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#objectdetectionpipeline
.md
Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text. - __call__ - all
456_18_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#videoclassificationpipeline
.md
Video classification pipeline using any `AutoModelForVideoClassification`. This pipeline predicts the class of a video. This video classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"video-classification"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=video-classification). Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]):
456_19_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#videoclassificationpipeline
.md
Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. image_processor ([`BaseImageProcessor`]): The image processor that will be used by the pipeline to encode data for the model. This object inherits from [`BaseImageProcessor`]. modelcard (`str` or [`ModelCard`], *optional*):
456_19_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#videoclassificationpipeline
.md
[`BaseImageProcessor`]. modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided.
456_19_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#videoclassificationpipeline
.md
both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1):
456_19_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#videoclassificationpipeline
.md
workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters.
456_19_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#videoclassificationpipeline
.md
Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model
456_19_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#videoclassificationpipeline
.md
Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text. - __call__ - all
456_19_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotimageclassificationpipeline
.md
Zero shot image classification pipeline using `CLIPModel`. This pipeline predicts the class of an image when you provide an image and a set of `candidate_labels`. Example: ```python >>> from transformers import pipeline
456_20_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotimageclassificationpipeline
.md
>>> classifier = pipeline(model="google/siglip-so400m-patch14-384") >>> classifier( ... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", ... candidate_labels=["animals", "humans", "landscape"], ... ) [{'score': 0.965, 'label': 'animals'}, {'score': 0.03, 'label': 'humans'}, {'score': 0.005, 'label': 'landscape'}]
456_20_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotimageclassificationpipeline
.md
>>> classifier( ... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", ... candidate_labels=["black and white", "photorealist", "painting"], ... ) [{'score': 0.996, 'label': 'black and white'}, {'score': 0.003, 'label': 'photorealist'}, {'score': 0.0, 'label': 'painting'}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
456_20_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotimageclassificationpipeline
.md
``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This image classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"zero-shot-image-classification"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=zero-shot-image-classification). Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]):
456_20_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotimageclassificationpipeline
.md
Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. image_processor ([`BaseImageProcessor`]): The image processor that will be used by the pipeline to encode data for the model. This object inherits from [`BaseImageProcessor`]. modelcard (`str` or [`ModelCard`], *optional*):
456_20_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotimageclassificationpipeline
.md
[`BaseImageProcessor`]. modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided.
456_20_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotimageclassificationpipeline
.md
both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1):
456_20_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotimageclassificationpipeline
.md
workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters.
456_20_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotimageclassificationpipeline
.md
Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model
456_20_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotimageclassificationpipeline
.md
Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text. - __call__ - all
456_20_9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotobjectdetectionpipeline
.md
Zero shot object detection pipeline using `OwlViTForObjectDetection`. This pipeline predicts bounding boxes of objects when you provide an image and a set of `candidate_labels`. Example: ```python >>> from transformers import pipeline
456_21_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotobjectdetectionpipeline
.md
>>> detector = pipeline(model="google/owlvit-base-patch32", task="zero-shot-object-detection") >>> detector( ... "http://images.cocodataset.org/val2017/000000039769.jpg", ... candidate_labels=["cat", "couch"], ... ) [{'score': 0.287, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.254, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.121, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}]
456_21_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotobjectdetectionpipeline
.md
>>> detector( ... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", ... candidate_labels=["head", "bird"], ... ) [{'score': 0.119, 'label': 'bird', 'box': {'xmin': 71, 'ymin': 170, 'xmax': 410, 'ymax': 508}}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"zero-shot-object-detection"`.
456_21_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotobjectdetectionpipeline
.md
`"zero-shot-object-detection"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=zero-shot-object-detection). Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. image_processor ([`BaseImageProcessor`]):
456_21_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotobjectdetectionpipeline
.md
[`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. image_processor ([`BaseImageProcessor`]): The image processor that will be used by the pipeline to encode data for the model. This object inherits from [`BaseImageProcessor`]. modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed.
456_21_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotobjectdetectionpipeline
.md
The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8):
456_21_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotobjectdetectionpipeline
.md
provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with
456_21_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotobjectdetectionpipeline
.md
the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on
456_21_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotobjectdetectionpipeline
.md
Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`):
456_21_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#zeroshotobjectdetectionpipeline
.md
(`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text. - __call__ - all
456_21_9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#natural-language-processing
.md
Pipelines available for natural language processing tasks include the following.
456_22_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
Masked language modeling prediction pipeline using any `ModelWithLMHead`. See the [masked language modeling examples](../task_summary#masked-language-modeling) for more information. Example: ```python >>> from transformers import pipeline
456_23_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
>>> fill_masker = pipeline(model="google-bert/bert-base-uncased") >>> fill_masker("This is a simple [MASK].")
456_23_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
[{'score': 0.042, 'token': 3291, 'token_str': 'problem', 'sequence': 'this is a simple problem.'}, {'score': 0.031, 'token': 3160, 'token_str': 'question', 'sequence': 'this is a simple question.'}, {'score': 0.03, 'token': 8522, 'token_str': 'equation', 'sequence': 'this is a simple equation.'}, {'score': 0.027, 'token': 2028, 'token_str': 'one', 'sequence': 'this is a simple one.'}, {'score': 0.024, 'token': 3627, 'token_str': 'rule', 'sequence': 'this is a simple rule.'}] ```
456_23_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This mask filling pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"fill-mask"`. The models that this pipeline can use are models that have been trained with a masked language modeling objective, which includes the bi-directional models in the library. See the up-to-date list of available models on
456_23_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
which includes the bi-directional models in the library. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=fill-mask). <Tip> This pipeline only works for inputs with exactly one token masked. Experimental: We added support for multiple masks. The returned values are raw model output, and correspond to disjoint probabilities where one might expect joint probabilities (See [discussion](https://github.com/huggingface/transformers/pull/10222)).
456_23_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
joint probabilities (See [discussion](https://github.com/huggingface/transformers/pull/10222)). </Tip> <Tip> This pipeline now supports tokenizer_kwargs. For example try: ```python >>> from transformers import pipeline
456_23_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
>>> fill_masker = pipeline(model="google-bert/bert-base-uncased") >>> tokenizer_kwargs = {"truncation": True} >>> fill_masker( ... "This is a simple [MASK]. " + "...with a large amount of repeated text appended. " * 100, ... tokenizer_kwargs=tokenizer_kwargs, ... ) ``` </Tip> Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
456_23_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. tokenizer ([`PreTrainedTokenizer`]): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from [`PreTrainedTokenizer`]. modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*):
456_23_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline.
456_23_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with
456_23_9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on
456_23_10
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`):
456_23_11
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
(`torch.float16`, `torch.bfloat16`, ... or `"auto"`) binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text. top_k (`int`, *optional*, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole
456_23_12
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#fillmaskpipeline
.md
When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). tokenizer_kwargs (`dict`, *optional*): Additional dictionary of keyword arguments passed along to the tokenizer. - __call__ - all
456_23_13
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#questionansweringpipeline
.md
Question Answering pipeline using any `ModelForQuestionAnswering`. See the [question answering examples](../task_summary#question-answering) for more information. Example: ```python >>> from transformers import pipeline
456_24_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/pipelines.md
https://huggingface.co/docs/transformers/en/main_classes/pipelines/#questionansweringpipeline
.md
>>> oracle = pipeline(model="deepset/roberta-base-squad2") >>> oracle(question="Where do I live?", context="My name is Wolfgang and I live in Berlin") {'score': 0.9191, 'start': 34, 'end': 40, 'answer': 'Berlin'} ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This question answering pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"question-answering"`.
456_24_1