source
stringclasses
470 values
url
stringlengths
49
167
file_type
stringclasses
1 value
chunk
stringlengths
1
512
chunk_id
stringlengths
5
9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- [`DistilBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb).
409_7_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- [`TFDistilBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
409_7_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- [`FlaxDistilBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb). - [Text classification task guide](../tasks/sequence_classification) <PipelineTag pipeline="token-classification"/>
409_7_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- [Text classification task guide](../tasks/sequence_classification) <PipelineTag pipeline="token-classification"/> - [`DistilBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb).
409_7_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- [`TFDistilBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb). - [`FlaxDistilBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification).
409_7_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the πŸ€— Hugging Face Course. - [Token classification task guide](../tasks/token_classification) <PipelineTag pipeline="fill-mask"/>
409_7_9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- [Token classification task guide](../tasks/token_classification) <PipelineTag pipeline="fill-mask"/> - [`DistilBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
409_7_10
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- [`TFDistilBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
409_7_11
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- [`FlaxDistilBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb). - [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the πŸ€— Hugging Face Course. - [Masked language modeling task guide](../tasks/masked_language_modeling)
409_7_12
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- [Masked language modeling task guide](../tasks/masked_language_modeling) <PipelineTag pipeline="question-answering"/> - [`DistilBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb).
409_7_13
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- [`TFDistilBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb). - [`FlaxDistilBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering).
409_7_14
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the πŸ€— Hugging Face Course. - [Question answering task guide](../tasks/question_answering) **Multiple choice** - [`DistilBertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb).
409_7_15
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- [`TFDistilBertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb). - [Multiple choice task guide](../tasks/multiple_choice) βš—οΈ Optimization - A blog post on how to [quantize DistilBERT with πŸ€— Optimum and Intel](https://huggingface.co/blog/intel).
409_7_16
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
βš—οΈ Optimization - A blog post on how to [quantize DistilBERT with πŸ€— Optimum and Intel](https://huggingface.co/blog/intel). - A blog post on how [Optimizing Transformers for GPUs with πŸ€— Optimum](https://www.philschmid.de/optimizing-transformers-with-optimum-gpu). - A blog post on [Optimizing Transformers with Hugging Face Optimum](https://www.philschmid.de/optimizing-transformers-with-optimum). ⚑️ Inference
409_7_17
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
⚑️ Inference - A blog post on how to [Accelerate BERT inference with Hugging Face Transformers and AWS Inferentia](https://huggingface.co/blog/bert-inferentia-sagemaker) with DistilBERT. - A blog post on [Serverless Inference with Hugging Face's Transformers, DistilBERT and Amazon SageMaker](https://www.philschmid.de/sagemaker-serverless-huggingface-distilbert). πŸš€ Deploy - A blog post on how to [deploy DistilBERT on Google Cloud](https://huggingface.co/blog/how-to-deploy-a-pipeline-to-google-clouds).
409_7_18
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#resources
.md
- A blog post on how to [deploy DistilBERT with Amazon SageMaker](https://huggingface.co/blog/deploy-hugging-face-models-easily-with-amazon-sagemaker). - A blog post on how to [Deploy BERT with Hugging Face Transformers, Amazon SageMaker and Terraform module](https://www.philschmid.de/terraform-huggingface-amazon-sagemaker).
409_7_19
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#combining-distilbert-and-flash-attention-2
.md
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature. ```bash pip install -U flash-attn --no-build-isolation ``` Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16`) To load and run a model using Flash Attention 2, refer to the snippet below: ```python
409_8_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#combining-distilbert-and-flash-attention-2
.md
To load and run a model using Flash Attention 2, refer to the snippet below: ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModel
409_8_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#combining-distilbert-and-flash-attention-2
.md
>>> device = "cuda" # the device to load the model onto >>> tokenizer = AutoTokenizer.from_pretrained('distilbert/distilbert-base-uncased') >>> model = AutoModel.from_pretrained("distilbert/distilbert-base-uncased", torch_dtype=torch.float16, attn_implementation="flash_attention_2") >>> text = "Replace me by any text you'd like." >>> encoded_input = tokenizer(text, return_tensors='pt').to(device) >>> model.to(device) >>> output = model(**encoded_input) ```
409_8_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertconfig
.md
This is the configuration class to store the configuration of a [`DistilBertModel`] or a [`TFDistilBertModel`]. It is used to instantiate a DistilBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DistilBERT [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) architecture.
409_9_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertconfig
.md
[distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the DistilBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`DistilBertModel`] or [`TFDistilBertModel`].
409_9_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertconfig
.md
the `inputs_ids` passed when calling [`DistilBertModel`] or [`TFDistilBertModel`]. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). sinusoidal_pos_embds (`boolean`, *optional*, defaults to `False`): Whether to use sinusoidal positional embeddings. n_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder.
409_9_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertconfig
.md
n_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. n_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. dim (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. hidden_dim (`int`, *optional*, defaults to 3072): The size of the "intermediate" (often named feed-forward) layer in the Transformer encoder. dropout (`float`, *optional*, defaults to 0.1):
409_9_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertconfig
.md
dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. activation (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported.
409_9_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertconfig
.md
`"relu"`, `"silu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. qa_dropout (`float`, *optional*, defaults to 0.1): The dropout probabilities used in the question answering model [`DistilBertForQuestionAnswering`]. seq_classif_dropout (`float`, *optional*, defaults to 0.2): The dropout probabilities used in the sequence classification and the multiple choice model
409_9_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertconfig
.md
The dropout probabilities used in the sequence classification and the multiple choice model [`DistilBertForSequenceClassification`]. Examples: ```python >>> from transformers import DistilBertConfig, DistilBertModel
409_9_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertconfig
.md
>>> # Initializing a DistilBERT configuration >>> configuration = DistilBertConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = DistilBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```
409_9_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilberttokenizer
.md
Construct a DistilBERT tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`):
409_10_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilberttokenizer
.md
Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
409_10_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilberttokenizer
.md
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`):
409_10_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilberttokenizer
.md
token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
409_10_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilberttokenizer
.md
instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this
409_10_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilberttokenizer
.md
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
409_10_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilberttokenizer
.md
value for `lowercase` (as in the original BERT). clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces.
409_10_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilberttokenizerfast
.md
Construct a "fast" DistilBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing.
409_11_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilberttokenizerfast
.md
do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
409_11_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilberttokenizerfast
.md
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`):
409_11_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilberttokenizerfast
.md
cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
409_11_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilberttokenizerfast
.md
modeling. This is the token which the model will try to predict. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)).
409_11_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilberttokenizerfast
.md
issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. <frameworkcontent> <pt>
409_11_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertmodel
.md
The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
409_12_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertmodel
.md
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the
409_12_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertmodel
.md
Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
409_12_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertformaskedlm
.md
DistilBert Model with a `masked language modeling` head on top. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
409_13_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertformaskedlm
.md
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the
409_13_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertformaskedlm
.md
Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
409_13_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertforsequenceclassification
.md
DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
409_14_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertforsequenceclassification
.md
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the
409_14_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertforsequenceclassification
.md
Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
409_14_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertformultiplechoice
.md
DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
409_15_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertformultiplechoice
.md
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the
409_15_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertformultiplechoice
.md
Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
409_15_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertfortokenclassification
.md
DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
409_16_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertfortokenclassification
.md
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the
409_16_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertfortokenclassification
.md
Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward
409_16_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertforquestionanswering
.md
DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
409_17_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertforquestionanswering
.md
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model.
409_17_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#distilbertforquestionanswering
.md
and behavior. Parameters: config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Methods: forward </pt> <tf>
409_17_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#tfdistilbertmodel
.md
No docstring available for TFDistilBertModel Methods: call
409_18_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#tfdistilbertformaskedlm
.md
No docstring available for TFDistilBertForMaskedLM Methods: call
409_19_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#tfdistilbertforsequenceclassification
.md
No docstring available for TFDistilBertForSequenceClassification Methods: call
409_20_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#tfdistilbertformultiplechoice
.md
No docstring available for TFDistilBertForMultipleChoice Methods: call
409_21_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#tfdistilbertfortokenclassification
.md
No docstring available for TFDistilBertForTokenClassification Methods: call
409_22_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#tfdistilbertforquestionanswering
.md
No docstring available for TFDistilBertForQuestionAnswering Methods: call </tf> <jax>
409_23_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#flaxdistilbertmodel
.md
No docstring available for FlaxDistilBertModel Methods: __call__
409_24_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#flaxdistilbertformaskedlm
.md
No docstring available for FlaxDistilBertForMaskedLM Methods: __call__
409_25_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#flaxdistilbertforsequenceclassification
.md
No docstring available for FlaxDistilBertForSequenceClassification Methods: __call__
409_26_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#flaxdistilbertformultiplechoice
.md
No docstring available for FlaxDistilBertForMultipleChoice Methods: __call__
409_27_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#flaxdistilbertfortokenclassification
.md
No docstring available for FlaxDistilBertForTokenClassification Methods: __call__
409_28_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/distilbert.md
https://huggingface.co/docs/transformers/en/model_doc/distilbert/#flaxdistilbertforquestionanswering
.md
No docstring available for FlaxDistilBertForQuestionAnswering Methods: __call__ </jax> </frameworkcontent>
409_29_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/
.md
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
410_0_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/
.md
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
410_0_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#openai-gpt
.md
<div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=openai-gpt"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-openai--gpt-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/openai-gpt"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div>
410_1_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#overview
.md
OpenAI GPT model was proposed in [Improving Language Understanding by Generative Pre-Training](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. It's a causal (unidirectional) transformer pre-trained using language modeling on a large corpus with long range dependencies, the Toronto Book Corpus. The abstract from the paper is the following:
410_2_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#overview
.md
The abstract from the paper is the following: *Natural language understanding comprises a wide range of diverse tasks such as textual entailment, question answering, semantic similarity assessment, and document classification. Although large unlabeled text corpora are abundant, labeled data for learning these specific tasks is scarce, making it challenging for discriminatively trained models to
410_2_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#overview
.md
labeled data for learning these specific tasks is scarce, making it challenging for discriminatively trained models to perform adequately. We demonstrate that large gains on these tasks can be realized by generative pretraining of a language model on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each specific task. In contrast to previous approaches, we make use of task-aware input transformations during fine-tuning to achieve
410_2_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#overview
.md
contrast to previous approaches, we make use of task-aware input transformations during fine-tuning to achieve effective transfer while requiring minimal changes to the model architecture. We demonstrate the effectiveness of our approach on a wide range of benchmarks for natural language understanding. Our general task-agnostic model outperforms discriminatively trained models that use architectures specifically crafted for each task, significantly improving upon
410_2_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#overview
.md
discriminatively trained models that use architectures specifically crafted for each task, significantly improving upon the state of the art in 9 out of the 12 tasks studied.* [Write With Transformer](https://transformer.huggingface.co/doc/gpt) is a webapp created and hosted by Hugging Face showcasing the generative capabilities of several models. GPT is one of them.
410_2_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#overview
.md
showcasing the generative capabilities of several models. GPT is one of them. This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://github.com/openai/finetune-transformer-lm).
410_2_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#usage-tips
.md
- GPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. - GPT was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows GPT-2 to generate syntactically coherent text as it can be observed in the *run_generation.py* example script. Note:
410_3_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#usage-tips
.md
observed in the *run_generation.py* example script. Note: If you want to reproduce the original tokenization process of the *OpenAI GPT* paper, you will need to install `ftfy` and `SpaCy`: ```bash pip install spacy ftfy==4.4.3 python -m spacy download en ``` If you don't install `ftfy` and `SpaCy`, the [`OpenAIGPTTokenizer`] will default to tokenize using BERT's `BasicTokenizer` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry).
410_3_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#resources
.md
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with OpenAI GPT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="text-classification"/>
410_4_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#resources
.md
<PipelineTag pipeline="text-classification"/> - A blog post on [outperforming OpenAI GPT-3 with SetFit for text-classification](https://www.philschmid.de/getting-started-setfit). - See also: [Text classification task guide](../tasks/sequence_classification) <PipelineTag pipeline="text-generation"/> - A blog on how to [Finetune a non-English GPT-2 Model with Hugging Face](https://www.philschmid.de/fine-tune-a-non-english-gpt-2-model-with-huggingface).
410_4_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#resources
.md
- A blog on [How to generate text: using different decoding methods for language generation with Transformers](https://huggingface.co/blog/how-to-generate) with GPT-2. - A blog on [Training CodeParrot 🦜 from Scratch](https://huggingface.co/blog/codeparrot), a large GPT-2 model. - A blog on [Faster Text Generation with TensorFlow and XLA](https://huggingface.co/blog/tf-xla-generate) with GPT-2.
410_4_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#resources
.md
- A blog on [Faster Text Generation with TensorFlow and XLA](https://huggingface.co/blog/tf-xla-generate) with GPT-2. - A blog on [How to train a Language Model with Megatron-LM](https://huggingface.co/blog/megatron-training) with a GPT-2 model. - A notebook on how to [finetune GPT2 to generate lyrics in the style of your favorite artist](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb). 🌎
410_4_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#resources
.md
- A notebook on how to [finetune GPT2 to generate tweets in the style of your favorite Twitter user](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb). 🌎 - [Causal language modeling](https://huggingface.co/course/en/chapter7/6?fw=pt#training-a-causal-language-model-from-scratch) chapter of the πŸ€— Hugging Face Course.
410_4_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#resources
.md
- [`OpenAIGPTLMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#gpt-2gpt-and-causal-language-modeling), [text generation example script](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-generation/run_generation.py) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
410_4_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#resources
.md
- [`TFOpenAIGPTLMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_clmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb). - See also: [Causal language modeling task guide](../tasks/language_modeling) <PipelineTag pipeline="token-classification"/>
410_4_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#resources
.md
<PipelineTag pipeline="token-classification"/> - A course material on [Byte-Pair Encoding tokenization](https://huggingface.co/course/en/chapter6/5).
410_4_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#openaigptconfig
.md
This is the configuration class to store the configuration of a [`OpenAIGPTModel`] or a [`TFOpenAIGPTModel`]. It is used to instantiate a GPT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT [openai-community/openai-gpt](https://huggingface.co/openai-community/openai-gpt) architecture from OpenAI.
410_5_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#openaigptconfig
.md
[openai-community/openai-gpt](https://huggingface.co/openai-community/openai-gpt) architecture from OpenAI. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 40478): Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
410_5_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#openaigptconfig
.md
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`OpenAIGPTModel`] or [`TFOpenAIGPTModel`]. n_positions (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_embd (`int`, *optional*, defaults to 768): Dimensionality of the embeddings and hidden states.
410_5_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#openaigptconfig
.md
n_embd (`int`, *optional*, defaults to 768): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. afn (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
410_5_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#openaigptconfig
.md
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`int`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention.
410_5_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#openaigptconfig
.md
The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): The epsilon to use in the layer normalization layers initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. summary_type (`str`, *optional*, defaults to `"cls_index"`):
410_5_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#openaigptconfig
.md
summary_type (`str`, *optional*, defaults to `"cls_index"`): Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and [`OpenAIGPTDoubleHeadsModel`]. Has to be one of the following options: - `"last"`: Take the last token hidden state (like XLNet). - `"first"`: Take the first token hidden state (like BERT). - `"mean"`: Take the mean of all tokens hidden states. - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
410_5_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#openaigptconfig
.md
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - `"attn"`: Not implemented now, use multi-head attention. summary_use_proj (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and [`OpenAIGPTDoubleHeadsModel`]. Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*):
410_5_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#openaigptconfig
.md
Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*): Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and [`OpenAIGPTDoubleHeadsModel`]. Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. summary_proj_to_labels (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
410_5_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#openaigptconfig
.md
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and [`OpenAIGPTDoubleHeadsModel`]. Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. summary_first_dropout (`float`, *optional*, defaults to 0.1): Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and [`OpenAIGPTDoubleHeadsModel`]. The dropout ratio to be used after the projection and activation. Examples: ```python
410_5_9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_doc/openai-gpt.md
https://huggingface.co/docs/transformers/en/model_doc/openai-gpt/#openaigptconfig
.md
[`OpenAIGPTDoubleHeadsModel`]. The dropout ratio to be used after the projection and activation. Examples: ```python >>> from transformers import OpenAIGPTConfig, OpenAIGPTModel
410_5_10