source
stringclasses
470 values
url
stringlengths
49
167
file_type
stringclasses
1 value
chunk
stringlengths
1
512
chunk_id
stringlengths
5
9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#lomo-optimizer
.md
trainer = trl.SFTTrainer( model=model, args=args, train_dataset=train_dataset, dataset_text_field='text', max_seq_length=1024, ) trainer.train() ```
24_11_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#grokadamw-optimizer
.md
The GrokAdamW optimizer is designed to enhance training performance and stability, particularly for models that benefit from grokking signal functions. To use GrokAdamW, first install the optimizer package with `pip install grokadamw`. <Tip> GrokAdamW is particularly useful for models that require advanced optimization techniques to achieve better performance and stability. </Tip>
24_12_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#grokadamw-optimizer
.md
</Tip> Below is a simple script to demonstrate how to fine-tune [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the IMDB dataset using the GrokAdamW optimizer: ```python import torch import datasets from transformers import TrainingArguments, AutoTokenizer, AutoModelForCausalLM, Trainer
24_12_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#grokadamw-optimizer
.md
# Load the IMDB dataset train_dataset = datasets.load_dataset('imdb', split='train') # Define the training arguments args = TrainingArguments( output_dir="./test-grokadamw", max_steps=1000, per_device_train_batch_size=4, optim="grokadamw", logging_strategy="steps", logging_steps=1, learning_rate=2e-5, save_strategy="no", run_name="grokadamw-imdb", )
24_12_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#grokadamw-optimizer
.md
# Load the model and tokenizer model_id = "google/gemma-2b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(0) # Initialize the Trainer trainer = Trainer( model=model, args=args, train_dataset=train_dataset, )
24_12_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#grokadamw-optimizer
.md
# Initialize the Trainer trainer = Trainer( model=model, args=args, train_dataset=train_dataset, ) # Train the model trainer.train() ``` This script demonstrates how to fine-tune the `google/gemma-2b` model on the IMDB dataset using the GrokAdamW optimizer. The `TrainingArguments` are configured to use GrokAdamW, and the dataset is passed to the `Trainer` for training.
24_12_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#schedule-free-optimizer
.md
The Schedule Free optimizers have been introduced in [The Road Less Scheduled](https://hf.co/papers/2405.15682). Schedule-Free learning replaces the momentum of the base optimizer with a combination of averaging and interpolation, to completely remove the need to anneal the learning rate with a traditional schedule. Supported optimizers for SFO are `"schedule_free_adamw"` and `"schedule_free_sgd"`. First install schedulefree from pypi `pip install schedulefree`.
24_13_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#schedule-free-optimizer
.md
Below is a simple script to demonstrate how to fine-tune [google/gemma-2b](https://huggingface.co/google/gemma-2b) on IMDB dataset in full precision: ```python import torch import datasets from transformers import TrainingArguments, AutoTokenizer, AutoModelForCausalLM import trl
24_13_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#schedule-free-optimizer
.md
train_dataset = datasets.load_dataset('imdb', split='train') args = TrainingArguments( output_dir="./test-schedulefree", max_steps=1000, per_device_train_batch_size=4, optim="schedule_free_adamw", gradient_checkpointing=True, logging_strategy="steps", logging_steps=1, learning_rate=2e-6, save_strategy="no", run_name="sfo-imdb", ) model_id = "google/gemma-2b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(0)
24_13_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#schedule-free-optimizer
.md
trainer = trl.SFTTrainer( model=model, args=args, train_dataset=train_dataset, dataset_text_field='text', max_seq_length=1024, ) trainer.train() ```
24_13_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#accelerate-and-trainer
.md
The [`Trainer`] class is powered by [Accelerate](https://hf.co/docs/accelerate), a library for easily training PyTorch models in distributed environments with support for integrations such as [FullyShardedDataParallel (FSDP)](https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/) and [DeepSpeed](https://www.deepspeed.ai/). <Tip> Learn more about FSDP sharding strategies, CPU offloading, and more with the [`Trainer`] in the [Fully Sharded Data Parallel](fsdp) guide. </Tip>
24_14_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#accelerate-and-trainer
.md
</Tip> To use Accelerate with [`Trainer`], run the [`accelerate.config`](https://huggingface.co/docs/accelerate/package_reference/cli#accelerate-config) command to set up training for your training environment. This command creates a `config_file.yaml` that'll be used when you launch your training script. For example, some example configurations you can setup are: <hfoptions id="config"> <hfoption id="DistributedDataParallel"> ```yml compute_environment: LOCAL_MACHINE distributed_type: MULTI_GPU
24_14_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#accelerate-and-trainer
.md
<hfoption id="DistributedDataParallel"> ```yml compute_environment: LOCAL_MACHINE distributed_type: MULTI_GPU downcast_bf16: 'no' gpu_ids: all machine_rank: 0 #change rank as per the node main_process_ip: 192.168.20.1 main_process_port: 9898 main_training_function: main mixed_precision: fp16 num_machines: 2 num_processes: 8 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` </hfoption> <hfoption id="FSDP"> ```yml
24_14_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#accelerate-and-trainer
.md
tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` </hfoption> <hfoption id="FSDP"> ```yml compute_environment: LOCAL_MACHINE distributed_type: FSDP downcast_bf16: 'no' fsdp_config: fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_backward_prefetch_policy: BACKWARD_PRE fsdp_forward_prefetch: true fsdp_offload_params: false fsdp_sharding_strategy: 1 fsdp_state_dict_type: FULL_STATE_DICT fsdp_sync_module_states: true fsdp_transformer_layer_cls_to_wrap: BertLayer
24_14_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#accelerate-and-trainer
.md
fsdp_state_dict_type: FULL_STATE_DICT fsdp_sync_module_states: true fsdp_transformer_layer_cls_to_wrap: BertLayer fsdp_use_orig_params: true machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 2 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` </hfoption> <hfoption id="DeepSpeed"> ```yml compute_environment: LOCAL_MACHINE deepspeed_config:
24_14_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#accelerate-and-trainer
.md
use_cpu: false ``` </hfoption> <hfoption id="DeepSpeed"> ```yml compute_environment: LOCAL_MACHINE deepspeed_config: deepspeed_config_file: /home/user/configs/ds_zero3_config.json zero3_init_flag: true distributed_type: DEEPSPEED downcast_bf16: 'no' machine_rank: 0 main_training_function: main num_machines: 1 num_processes: 4 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` </hfoption> <hfoption id="DeepSpeed with Accelerate plugin">
24_14_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#accelerate-and-trainer
.md
tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` </hfoption> <hfoption id="DeepSpeed with Accelerate plugin"> ```yml compute_environment: LOCAL_MACHINE deepspeed_config: gradient_accumulation_steps: 1 gradient_clipping: 0.7 offload_optimizer_device: cpu offload_param_device: cpu zero3_init_flag: true zero_stage: 2 distributed_type: DEEPSPEED downcast_bf16: 'no' machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 4 rdzv_backend: static
24_14_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#accelerate-and-trainer
.md
machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 4 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` </hfoption> </hfoptions>
24_14_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#accelerate-and-trainer
.md
same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` </hfoption> </hfoptions> The [`accelerate_launch`](https://huggingface.co/docs/accelerate/package_reference/cli#accelerate-launch) command is the recommended way to launch your training script on a distributed system with Accelerate and [`Trainer`] with the parameters specified in `config_file.yaml`. This file is saved to the Accelerate cache folder and automatically loaded when you run `accelerate_launch`.
24_14_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#accelerate-and-trainer
.md
For example, to run the [run_glue.py](https://github.com/huggingface/transformers/blob/f4db565b695582891e43a5e042e5d318e28f20b8/examples/pytorch/text-classification/run_glue.py#L4) training script with the FSDP configuration: ```bash accelerate launch \ ./examples/pytorch/text-classification/run_glue.py \ --model_name_or_path google-bert/bert-base-cased \ --task_name $TASK_NAME \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 16 \ --learning_rate 5e-5 \
24_14_9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#accelerate-and-trainer
.md
--do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 16 \ --learning_rate 5e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ \ --overwrite_output_dir ``` You could also specify the parameters from the `config_file.yaml` file directly in the command line: ```bash accelerate launch --num_processes=2 \ --use_fsdp \ --mixed_precision=bf16 \ --fsdp_auto_wrap_policy=TRANSFORMER_BASED_WRAP \ --fsdp_transformer_layer_cls_to_wrap="BertLayer" \ --fsdp_sharding_strategy=1 \
24_14_10
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#accelerate-and-trainer
.md
--fsdp_transformer_layer_cls_to_wrap="BertLayer" \ --fsdp_sharding_strategy=1 \ --fsdp_state_dict_type=FULL_STATE_DICT \ ./examples/pytorch/text-classification/run_glue.py --model_name_or_path google-bert/bert-base-cased \ --task_name $TASK_NAME \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 16 \ --learning_rate 5e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ \ --overwrite_output_dir ```
24_14_11
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/trainer.md
https://huggingface.co/docs/transformers/en/trainer/#accelerate-and-trainer
.md
--learning_rate 5e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ \ --overwrite_output_dir ``` Check out the [Launching your Accelerate scripts](https://huggingface.co/docs/accelerate/basic_tutorials/launch) tutorial to learn more about `accelerate_launch` and custom configurations.
24_14_12
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/
.md
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
25_0_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/
.md
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
25_0_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#train-with-a-script
.md
Along with the πŸ€— Transformers [notebooks](./notebooks), there are also example scripts demonstrating how to train a model for a task with [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch), [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow), or [JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax).
25_1_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#train-with-a-script
.md
You will also find scripts we've used in our [research projects](https://github.com/huggingface/transformers/tree/main/examples/research_projects) and [legacy examples](https://github.com/huggingface/transformers/tree/main/examples/legacy) which are mostly community contributed. These scripts are not actively maintained and require a specific version of πŸ€— Transformers that will most likely be incompatible with the latest version of the library.
25_1_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#train-with-a-script
.md
The example scripts are not expected to work out-of-the-box on every problem, and you may need to adapt the script to the problem you're trying to solve. To help you with this, most of the scripts fully expose how data is preprocessed, allowing you to edit it as necessary for your use case.
25_1_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#train-with-a-script
.md
For any feature you'd like to implement in an example script, please discuss it on the [forum](https://discuss.huggingface.co/) or in an [issue](https://github.com/huggingface/transformers/issues) before submitting a Pull Request. While we welcome bug fixes, it is unlikely we will merge a Pull Request that adds more functionality at the cost of readability.
25_1_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#train-with-a-script
.md
This guide will show you how to run an example summarization training script in [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) and [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization). All examples are expected to work with both frameworks unless otherwise specified.
25_1_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#setup
.md
To successfully run the latest version of the example scripts, you have to **install πŸ€— Transformers from source** in a new virtual environment: ```bash git clone https://github.com/huggingface/transformers cd transformers pip install . ``` For older versions of the example scripts, click on the toggle below: <details> <summary>Examples for older versions of πŸ€— Transformers</summary> <ul> <li><a href="https://github.com/huggingface/transformers/tree/v4.5.1/examples">v4.5.1</a></li>
25_2_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#setup
.md
<ul> <li><a href="https://github.com/huggingface/transformers/tree/v4.5.1/examples">v4.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.4.2/examples">v4.4.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.3.3/examples">v4.3.3</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.2.2/examples">v4.2.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.1.1/examples">v4.1.1</a></li>
25_2_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#setup
.md
<li><a href="https://github.com/huggingface/transformers/tree/v4.1.1/examples">v4.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.0.1/examples">v4.0.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.5.1/examples">v3.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.4.0/examples">v3.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.3.1/examples">v3.3.1</a></li>
25_2_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#setup
.md
<li><a href="https://github.com/huggingface/transformers/tree/v3.3.1/examples">v3.3.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.2.0/examples">v3.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.1.0/examples">v3.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.0.2/examples">v3.0.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.11.0/examples">v2.11.0</a></li>
25_2_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#setup
.md
<li><a href="https://github.com/huggingface/transformers/tree/v2.11.0/examples">v2.11.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.10.0/examples">v2.10.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.9.1/examples">v2.9.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.8.0/examples">v2.8.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.7.0/examples">v2.7.0</a></li>
25_2_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#setup
.md
<li><a href="https://github.com/huggingface/transformers/tree/v2.7.0/examples">v2.7.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.6.0/examples">v2.6.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.5.1/examples">v2.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.4.0/examples">v2.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.3.0/examples">v2.3.0</a></li>
25_2_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#setup
.md
<li><a href="https://github.com/huggingface/transformers/tree/v2.3.0/examples">v2.3.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.2.0/examples">v2.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.1.0/examples">v2.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.0.0/examples">v2.0.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.2.0/examples">v1.2.0</a></li>
25_2_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#setup
.md
<li><a href="https://github.com/huggingface/transformers/tree/v1.2.0/examples">v1.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.1.0/examples">v1.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.0.0/examples">v1.0.0</a></li> </ul> </details> Then switch your current clone of πŸ€— Transformers to a specific version, like v3.5.1 for example: ```bash git checkout tags/v3.5.1 ```
25_2_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#setup
.md
```bash git checkout tags/v3.5.1 ``` After you've setup the correct library version, navigate to the example folder of your choice and install the example specific requirements: ```bash pip install -r requirements.txt ```
25_2_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script
.md
<frameworkcontent> <pt>
25_3_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script
.md
The example script downloads and preprocesses a dataset from the πŸ€— [Datasets](https://huggingface.co/docs/datasets/) library. Then the script fine-tunes a dataset with the [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) on an architecture that supports summarization. The following example shows how to fine-tune [T5-small](https://huggingface.co/google-t5/t5-small) on the [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) dataset. The T5 model requires an additional
25_3_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script
.md
on the [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) dataset. The T5 model requires an additional `source_prefix` argument due to how it was trained. This prompt lets T5 know this is a summarization task.
25_3_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script
.md
```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` </pt> <tf>
25_3_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script
.md
The example script downloads and preprocesses a dataset from the πŸ€— [Datasets](https://huggingface.co/docs/datasets/) library. Then the script fine-tunes a dataset using Keras on an architecture that supports summarization. The following example shows how to fine-tune [T5-small](https://huggingface.co/google-t5/t5-small) on the [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) dataset. The T5 model requires an additional `source_prefix` argument due to how it was trained. This prompt lets T5
25_3_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script
.md
dataset. The T5 model requires an additional `source_prefix` argument due to how it was trained. This prompt lets T5 know this is a summarization task.
25_3_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script
.md
```bash python examples/tensorflow/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 16 \ --num_train_epochs 3 \ --do_train \ --do_eval ``` </tf> </frameworkcontent>
25_3_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#distributed-training-and-mixed-precision
.md
The [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) supports distributed training and mixed precision, which means you can also use it in a script. To enable both of these features: - Add the `fp16` or `bf16` argument to enable mixed precision. XPU devices only supports `bf16` for mixed precision training. - Set the number of GPUs to use with the `nproc_per_node` argument. ```bash torchrun \ --nproc_per_node 8 pytorch/summarization/run_summarization.py \ --fp16 \
25_4_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#distributed-training-and-mixed-precision
.md
```bash torchrun \ --nproc_per_node 8 pytorch/summarization/run_summarization.py \ --fp16 \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ```
25_4_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#distributed-training-and-mixed-precision
.md
--per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` TensorFlow scripts utilize a [`MirroredStrategy`](https://www.tensorflow.org/guide/distributed_training#mirroredstrategy) for distributed training, and you don't need to add any additional arguments to the training script. The TensorFlow script will use multiple GPUs by default if they are available.
25_4_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script-on-a-tpu
.md
<frameworkcontent> <pt> Tensor Processing Units (TPUs) are specifically designed to accelerate performance. PyTorch supports TPUs with the [XLA](https://www.tensorflow.org/xla) deep learning compiler (see [here](https://github.com/pytorch/xla/blob/master/README.md) for more details). To use a TPU, launch the `xla_spawn.py` script and use the `num_cores` argument to set the number of TPU cores you want to use. ```bash python xla_spawn.py --num_cores 8 \ summarization/run_summarization.py \
25_5_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script-on-a-tpu
.md
```bash python xla_spawn.py --num_cores 8 \ summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` </pt> <tf>
25_5_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script-on-a-tpu
.md
--per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` </pt> <tf> Tensor Processing Units (TPUs) are specifically designed to accelerate performance. TensorFlow scripts utilize a [`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy) for training on TPUs. To use a TPU, pass the name of the TPU resource to the `tpu` argument. ```bash python run_summarization.py \ --tpu name_of_tpu_resource \ --model_name_or_path google-t5/t5-small \
25_5_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script-on-a-tpu
.md
```bash python run_summarization.py \ --tpu name_of_tpu_resource \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 16 \ --num_train_epochs 3 \ --do_train \ --do_eval ``` </tf> </frameworkcontent>
25_5_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script-with--accelerate
.md
πŸ€— [Accelerate](https://huggingface.co/docs/accelerate) is a PyTorch-only library that offers a unified method for training a model on several types of setups (CPU-only, multiple GPUs, TPUs) while maintaining complete visibility into the PyTorch training loop. Make sure you have πŸ€— Accelerate installed if you don't already have it: > Note: As Accelerate is rapidly developing, the git version of accelerate must be installed to run the scripts ```bash pip install git+https://github.com/huggingface/accelerate
25_6_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script-with--accelerate
.md
```bash pip install git+https://github.com/huggingface/accelerate ``` Instead of the `run_summarization.py` script, you need to use the `run_summarization_no_trainer.py` script. πŸ€— Accelerate supported scripts will have a `task_no_trainer.py` file in the folder. Begin by running the following command to create and save a configuration file: ```bash accelerate config ``` Test your setup to make sure it is configured correctly: ```bash accelerate test ``` Now you are ready to launch the training:
25_6_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#run-a-script-with--accelerate
.md
```bash accelerate test ``` Now you are ready to launch the training: ```bash accelerate launch run_summarization_no_trainer.py \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir ~/tmp/tst-summarization ```
25_6_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#use-a-custom-dataset
.md
The summarization script supports custom datasets as long as they are a CSV or JSON Line file. When you use your own dataset, you need to specify several additional arguments: - `train_file` and `validation_file` specify the path to your training and validation files. - `text_column` is the input text to summarize. - `summary_column` is the target text to output. A summarization script using a custom dataset would look like this: ```bash python examples/pytorch/summarization/run_summarization.py \
25_7_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#use-a-custom-dataset
.md
```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --train_file path_to_csv_or_jsonlines_file \ --validation_file path_to_csv_or_jsonlines_file \ --text_column text_column_name \ --summary_column summary_column_name \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --overwrite_output_dir \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --predict_with_generate ```
25_7_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#test-a-script
.md
It is often a good idea to run your script on a smaller number of dataset examples to ensure everything works as expected before committing to an entire dataset which may take hours to complete. Use the following arguments to truncate the dataset to a maximum number of samples: - `max_train_samples` - `max_eval_samples` - `max_predict_samples` ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --max_train_samples 50 \ --max_eval_samples 50 \
25_8_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#test-a-script
.md
--model_name_or_path google-t5/t5-small \ --max_train_samples 50 \ --max_eval_samples 50 \ --max_predict_samples 50 \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ```
25_8_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#test-a-script
.md
--per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` Not all example scripts support the `max_predict_samples` argument. If you aren't sure whether your script supports this argument, add the `-h` argument to check: ```bash examples/pytorch/summarization/run_summarization.py -h ```
25_8_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#resume-training-from-checkpoint
.md
Another helpful option to enable is resuming training from a previous checkpoint. This will ensure you can pick up where you left off without starting over if your training gets interrupted. There are two methods to resume training from a checkpoint. The first method uses the `output_dir previous_output_dir` argument to resume training from the latest checkpoint stored in `output_dir`. In this case, you should remove `overwrite_output_dir`: ```bash
25_9_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#resume-training-from-checkpoint
.md
```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --output_dir previous_output_dir \ --predict_with_generate ```
25_9_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#resume-training-from-checkpoint
.md
--per_device_eval_batch_size=4 \ --output_dir previous_output_dir \ --predict_with_generate ``` The second method uses the `resume_from_checkpoint path_to_specific_checkpoint` argument to resume training from a specific checkpoint folder. ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \
25_9_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#resume-training-from-checkpoint
.md
--dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --resume_from_checkpoint path_to_specific_checkpoint \ --predict_with_generate ```
25_9_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#share-your-model
.md
All scripts can upload your final model to the [Model Hub](https://huggingface.co/models). Make sure you are logged into Hugging Face before you begin: ```bash huggingface-cli login ``` Then add the `push_to_hub` argument to the script. This argument will create a repository with your Hugging Face username and the folder name specified in `output_dir`.
25_10_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#share-your-model
.md
To give your repository a specific name, use the `push_to_hub_model_id` argument to add it. The repository will be automatically listed under your namespace. The following example shows how to upload a model with a specific repository name: ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --push_to_hub \
25_10_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/run_scripts.md
https://huggingface.co/docs/transformers/en/run_scripts/#share-your-model
.md
--do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --push_to_hub \ --push_to_hub_model_id finetuned-t5-cnn_dailymail \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ```
25_10_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/
.md
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
26_0_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/
.md
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
26_0_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#building-custom-models
.md
The πŸ€— Transformers library is designed to be easily extensible. Every model is fully coded in a given subfolder of the repository with no abstraction, so you can easily copy a modeling file and tweak it to your needs. If you are writing a brand new model, it might be easier to start from scratch. In this tutorial, we will show you how to write a custom model and its configuration so it can be used inside Transformers, and how you can share it
26_1_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#building-custom-models
.md
how to write a custom model and its configuration so it can be used inside Transformers, and how you can share it with the community (with the code it relies on) so that anyone can use it, even if it's not present in the πŸ€— Transformers library. We'll see how to build upon transformers and extend the framework with your hooks and custom code. We will illustrate all of this on a ResNet model, by wrapping the ResNet class of the
26_1_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#building-custom-models
.md
custom code. We will illustrate all of this on a ResNet model, by wrapping the ResNet class of the [timm library](https://github.com/rwightman/pytorch-image-models) into a [`PreTrainedModel`].
26_1_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-configuration
.md
Before we dive into the model, let's first write its configuration. The configuration of a model is an object that will contain all the necessary information to build the model. As we will see in the next section, the model can only take a `config` to be initialized, so we really need that object to be as complete as possible. <Tip> Models in the `transformers` library itself generally follow the convention that they accept a `config` object
26_2_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-configuration
.md
<Tip> Models in the `transformers` library itself generally follow the convention that they accept a `config` object in their `__init__` method, and then pass the whole `config` to sub-layers in the model, rather than breaking the config object into multiple arguments that are all passed individually to sub-layers. Writing your model in this style results in simpler code with a clear "source of truth" for any hyperparameters, and also makes it easier to reuse code from other models in `transformers`.
26_2_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-configuration
.md
to reuse code from other models in `transformers`. </Tip> In our example, we will take a couple of arguments of the ResNet class that we might want to tweak. Different configurations will then give us the different types of ResNets that are possible. We then just store those arguments, after checking the validity of a few of them. ```python from transformers import PretrainedConfig from typing import List
26_2_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-configuration
.md
class ResnetConfig(PretrainedConfig): model_type = "resnet"
26_2_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-configuration
.md
def __init__( self, block_type="bottleneck", layers: List[int] = [3, 4, 6, 3], num_classes: int = 1000, input_channels: int = 3, cardinality: int = 1, base_width: int = 64, stem_width: int = 64, stem_type: str = "", avg_down: bool = False, **kwargs, ): if block_type not in ["basic", "bottleneck"]: raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.") if stem_type not in ["", "deep", "deep-tiered"]:
26_2_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-configuration
.md
if stem_type not in ["", "deep", "deep-tiered"]: raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.")
26_2_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-configuration
.md
self.block_type = block_type self.layers = layers self.num_classes = num_classes self.input_channels = input_channels self.cardinality = cardinality self.base_width = base_width self.stem_width = stem_width self.stem_type = stem_type self.avg_down = avg_down super().__init__(**kwargs) ``` The three important things to remember when writing you own configuration are the following: - you have to inherit from `PretrainedConfig`, - the `__init__` of your `PretrainedConfig` must accept any kwargs,
26_2_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-configuration
.md
- you have to inherit from `PretrainedConfig`, - the `__init__` of your `PretrainedConfig` must accept any kwargs, - those `kwargs` need to be passed to the superclass `__init__`. The inheritance is to make sure you get all the functionality from the πŸ€— Transformers library, while the two other constraints come from the fact a `PretrainedConfig` has more fields than the ones you are setting. When reloading a
26_2_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-configuration
.md
constraints come from the fact a `PretrainedConfig` has more fields than the ones you are setting. When reloading a config with the `from_pretrained` method, those fields need to be accepted by your config and then sent to the superclass. Defining a `model_type` for your configuration (here `model_type="resnet"`) is not mandatory, unless you want to register your model with the auto classes (see last section).
26_2_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-configuration
.md
register your model with the auto classes (see last section). With this done, you can easily create and save your configuration like you would do with any other model config of the library. Here is how we can create a resnet50d config and save it: ```py resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True) resnet50d_config.save_pretrained("custom-resnet") ```
26_2_9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-configuration
.md
resnet50d_config.save_pretrained("custom-resnet") ``` This will save a file named `config.json` inside the folder `custom-resnet`. You can then reload your config with the `from_pretrained` method: ```py resnet50d_config = ResnetConfig.from_pretrained("custom-resnet") ``` You can also use any other method of the [`PretrainedConfig`] class, like [`~PretrainedConfig.push_to_hub`] to directly upload your config to the Hub.
26_2_10
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-model
.md
Now that we have our ResNet configuration, we can go on writing the model. We will actually write two: one that extracts the hidden features from a batch of images (like [`BertModel`]) and one that is suitable for image classification (like [`BertForSequenceClassification`]). As we mentioned before, we'll only write a loose wrapper of the model to keep it simple for this example. The only thing we need to do before writing this class is a map between the block types and actual block classes. Then the
26_3_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-model
.md
thing we need to do before writing this class is a map between the block types and actual block classes. Then the model is defined from the configuration by passing everything to the `ResNet` class: ```py from transformers import PreTrainedModel from timm.models.resnet import BasicBlock, Bottleneck, ResNet from .configuration_resnet import ResnetConfig
26_3_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-model
.md
BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck} class ResnetModel(PreTrainedModel): config_class = ResnetConfig def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, )
26_3_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-model
.md
def forward(self, tensor): return self.model.forward_features(tensor) ``` For the model that will classify images, we just change the forward method: ```py import torch class ResnetModelForImageClassification(PreTrainedModel): config_class = ResnetConfig
26_3_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-model
.md
class ResnetModelForImageClassification(PreTrainedModel): config_class = ResnetConfig def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, )
26_3_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-model
.md
def forward(self, tensor, labels=None): logits = self.model(tensor) if labels is not None: loss = torch.nn.functional.cross_entropy(logits, labels) return {"loss": loss, "logits": logits} return {"logits": logits} ``` In both cases, notice how we inherit from `PreTrainedModel` and call the superclass initialization with the `config` (a bit like when you write a regular `torch.nn.Module`). The line that sets the `config_class` is not mandatory, unless
26_3_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-model
.md
(a bit like when you write a regular `torch.nn.Module`). The line that sets the `config_class` is not mandatory, unless you want to register your model with the auto classes (see last section). <Tip> If your model is very similar to a model inside the library, you can re-use the same configuration as this model. </Tip> You can have your model return anything you want, but returning a dictionary like we did for
26_3_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-model
.md
</Tip> You can have your model return anything you want, but returning a dictionary like we did for `ResnetModelForImageClassification`, with the loss included when labels are passed, will make your model directly usable inside the [`Trainer`] class. Using another output format is fine as long as you are planning on using your own training loop or another library for training. Now that we have our model class, let's create one: ```py resnet50d = ResnetModelForImageClassification(resnet50d_config)
26_3_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-model
.md
Now that we have our model class, let's create one: ```py resnet50d = ResnetModelForImageClassification(resnet50d_config) ``` Again, you can use any of the methods of [`PreTrainedModel`], like [`~PreTrainedModel.save_pretrained`] or [`~PreTrainedModel.push_to_hub`]. We will use the second in the next section, and see how to push the model weights with the code of our model. But first, let's load some pretrained weights inside our model.
26_3_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-model
.md
with the code of our model. But first, let's load some pretrained weights inside our model. In your own use case, you will probably be training your custom model on your own data. To go fast for this tutorial, we will use the pretrained version of the resnet50d. Since our model is just a wrapper around it, it's going to be easy to transfer those weights: ```py import timm
26_3_9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#writing-a-custom-model
.md
pretrained_model = timm.create_model("resnet50d", pretrained=True) resnet50d.model.load_state_dict(pretrained_model.state_dict()) ``` Now let's see how to make sure that when we do [`~PreTrainedModel.save_pretrained`] or [`~PreTrainedModel.push_to_hub`], the code of the model is saved.
26_3_10
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#registering-a-model-with-custom-code-to-the-auto-classes
.md
If you are writing a library that extends πŸ€— Transformers, you may want to extend the auto classes to include your own model. This is different from pushing the code to the Hub in the sense that users will need to import your library to get the custom models (contrarily to automatically downloading the model code from the Hub). As long as your config has a `model_type` attribute that is different from existing model types, and that your model
26_4_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#registering-a-model-with-custom-code-to-the-auto-classes
.md
As long as your config has a `model_type` attribute that is different from existing model types, and that your model classes have the right `config_class` attributes, you can just add them to the auto classes like this: ```py from transformers import AutoConfig, AutoModel, AutoModelForImageClassification
26_4_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#registering-a-model-with-custom-code-to-the-auto-classes
.md
AutoConfig.register("resnet", ResnetConfig) AutoModel.register(ResnetConfig, ResnetModel) AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassification) ``` Note that the first argument used when registering your custom config to [`AutoConfig`] needs to match the `model_type` of your custom config, and the first argument used when registering your custom models to any auto model class needs to match the `config_class` of those models.
26_4_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#sending-the-code-to-the-hub
.md
<Tip warning={true}> This API is experimental and may have some slight breaking changes in the next releases. </Tip> First, make sure your model is fully defined in a `.py` file. It can rely on relative imports to some other files as long as all the files are in the same directory (we don't support submodules for this feature yet). For our example, we'll define a `modeling_resnet.py` file and a `configuration_resnet.py` file in a folder of the current working
26_5_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/custom_models.md
https://huggingface.co/docs/transformers/en/custom_models/#sending-the-code-to-the-hub
.md
we'll define a `modeling_resnet.py` file and a `configuration_resnet.py` file in a folder of the current working directory named `resnet_model`. The configuration file contains the code for `ResnetConfig` and the modeling file contains the code of `ResnetModel` and `ResnetModelForImageClassification`. ``` . └── resnet_model β”œβ”€β”€ __init__.py β”œβ”€β”€ configuration_resnet.py └── modeling_resnet.py ```
26_5_1