text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class FlaxWav2Vec2ForCTCModule(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.final_dropout)
self.lm_head = nn.Dense(
self.config.vocab_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(
self,
input_values,
attention_mask=None,
mask_time_indices=None,
deterministic=True,
output_attentions=None,
output_hidden_states=None,
freeze_feature_encoder=False,
return_dict=None,
):
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
mask_time_indices=mask_time_indices,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
freeze_feature_encoder=freeze_feature_encoder,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.lm_head(hidden_states)
if not return_dict:
return (logits,) + outputs[2:]
return FlaxCausalLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
def _get_feat_extract_output_lengths(
self,
input_lengths: Union[jnp.ndarray, int],
add_adapter: Optional[bool] = None,
):
"""
Computes the output length of the convolutional layers
"""
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
if add_adapter:
for _ in range(self.config.num_adapter_layers):
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
return input_lengths
|
class_definition
| 45,525 | 48,007 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py
| null | 6,400 |
class FlaxWav2Vec2ForCTC(FlaxWav2Vec2PreTrainedModel):
module_class = FlaxWav2Vec2ForCTCModule
|
class_definition
| 48,178 | 48,276 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py
| null | 6,401 |
class FlaxWav2Vec2ForPreTrainingModule(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype)
self.dropout_features = nn.Dropout(self.config.feat_quantizer_dropout)
self.quantizer = FlaxWav2Vec2GumbelVectorQuantizer(self.config, dtype=self.dtype)
self.project_q = nn.Dense(
self.config.proj_codevector_dim,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.project_hid = nn.Dense(
self.config.proj_codevector_dim,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(
self,
input_values,
attention_mask=None,
mask_time_indices=None,
gumbel_temperature: int = 1,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
freeze_feature_encoder=False,
return_dict=None,
):
r"""
Returns:
Example:
```python
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
mask_time_indices=mask_time_indices,
deterministic=deterministic,
freeze_feature_encoder=freeze_feature_encoder,
return_dict=return_dict,
)
# project all transformed features (including masked) to final vq dim
transformer_features = self.project_hid(outputs[0])
# quantize all (unmasked) extracted features and project to final vq dim
extract_features = self.dropout_features(outputs[1], deterministic=deterministic)
quantized_features, codevector_perplexity = self.quantizer(
extract_features, mask_time_indices, deterministic=deterministic, temperature=gumbel_temperature
)
quantized_features = self.project_q(quantized_features)
if not return_dict:
return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return FlaxWav2Vec2ForPreTrainingOutput(
projected_states=transformer_features,
projected_quantized_states=quantized_features,
codevector_perplexity=codevector_perplexity,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _get_feat_extract_output_lengths(
self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None
):
"""
Computes the output length of the convolutional layers
"""
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
if add_adapter:
for _ in range(self.config.num_adapter_layers):
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
return input_lengths
|
class_definition
| 49,602 | 53,275 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py
| null | 6,402 |
class FlaxWav2Vec2ForPreTraining(FlaxWav2Vec2PreTrainedModel):
module_class = FlaxWav2Vec2ForPreTrainingModule
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
# overwrite since has `gumbel_temperature` input
def __call__(
self,
input_values,
attention_mask=None,
mask_time_indices=None,
gumbel_temperature: int = 1,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
gumbel_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
freeze_feature_encoder: bool = False,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
batch_size, sequence_length = input_values.shape
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
if gumbel_rng is not None:
rngs["gumbel"] = gumbel_rng
inputs = {"params": params or self.params}
return self.module.apply(
inputs,
jnp.array(input_values, dtype="f4"),
jnp.array(attention_mask, dtype="i4"),
mask_time_indices,
gumbel_temperature,
not train,
output_attentions,
output_hidden_states,
freeze_feature_encoder,
return_dict,
rngs=rngs,
)
|
class_definition
| 53,390 | 55,314 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py
| null | 6,403 |
class Wav2Vec2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Wav2Vec2Model`]. It is used to instantiate an
Wav2Vec2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Wav2Vec2
[facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32):
Vocabulary size of the Wav2Vec2 model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`Wav2Vec2Model`] or [`TFWav2Vec2Model`]. Vocabulary size of the
model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward
method of [`Wav2Vec2Model`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
final_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the final projection layer of [`Wav2Vec2ForCTC`].
layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
details.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
feat_extract_norm (`str`, *optional*, defaults to `"group"`):
The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
convolutional layers.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the feature encoder.
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for quantized feature encoder states.
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
conv_bias (`bool`, *optional*, defaults to `False`):
Whether the 1D convolutional layers have a bias.
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
embeddings layer.
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
Number of groups of 1D convolutional positional embeddings layer.
do_stable_layer_norm (`bool`, *optional*, defaults to `False`):
Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is
True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is
False` corresponds to applying layer norm after the attention layer.
apply_spec_augment (`bool`, *optional*, defaults to `True`):
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition](https://arxiv.org/abs/1904.08779).
mask_time_prob (`float`, *optional*, defaults to 0.05):
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2),:
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
mask_feature_prob (`float`, *optional*, defaults to 0.0):
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
step, irrespectively of `mask_feature_prob`. Only relevant if
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
num_codevectors_per_group (`int`, *optional*, defaults to 320):
Number of entries in each quantization codebook (group).
num_codevector_groups (`int`, *optional*, defaults to 2):
Number of codevector groups for product codevector quantization.
contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
The temperature *kappa* in the contrastive loss.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for the output of the feature encoder that's used by the quantizer.
num_negatives (`int`, *optional*, defaults to 100):
Number of negative samples for the contrastive loss.
codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the quantized feature vectors.
proj_codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the final projection of both the quantized and the transformer features.
diversity_loss_weight (`int`, *optional*, defaults to 0.1):
The weight of the codebook diversity loss component.
ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
instance of [`Wav2Vec2ForCTC`].
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
of [`Wav2Vec2ForCTC`].
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
instance of [`Wav2Vec2ForSequenceClassification`].
classifier_proj_size (`int`, *optional*, defaults to 256):
Dimensionality of the projection before token mean-pooling for classification.
tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
*XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
*XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
xvector_output_dim (`int`, *optional*, defaults to 512):
Dimensionality of the *XVector* embedding vectors.
add_adapter (`bool`, *optional*, defaults to `False`):
Whether a convolutional network should be stacked on top of the Wav2Vec2 Encoder. Can be very useful for
warm-starting Wav2Vec2 for SpeechEncoderDecoder models.
adapter_kernel_size (`int`, *optional*, defaults to 3):
Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
adapter_stride (`int`, *optional*, defaults to 2):
Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
num_adapter_layers (`int`, *optional*, defaults to 3):
Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
True`.
adapter_attn_dim (`int`, *optional*):
Dimension of the attention adapter weights to be used in each attention block. An example of a model using
attention adapters is [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all).
output_hidden_size (`int`, *optional*):
Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
if `add_adapter is True`.
Example:
```python
>>> from transformers import Wav2Vec2Config, Wav2Vec2Model
>>> # Initializing a Wav2Vec2 facebook/wav2vec2-base-960h style configuration
>>> configuration = Wav2Vec2Config()
>>> # Initializing a model (with random weights) from the facebook/wav2vec2-base-960h style configuration
>>> model = Wav2Vec2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "wav2vec2"
def __init__(
self,
vocab_size=32,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout=0.1,
activation_dropout=0.1,
attention_dropout=0.1,
feat_proj_dropout=0.0,
feat_quantizer_dropout=0.0,
final_dropout=0.1,
layerdrop=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
feat_extract_norm="group",
feat_extract_activation="gelu",
conv_dim=(512, 512, 512, 512, 512, 512, 512),
conv_stride=(5, 2, 2, 2, 2, 2, 2),
conv_kernel=(10, 3, 3, 3, 3, 2, 2),
conv_bias=False,
num_conv_pos_embeddings=128,
num_conv_pos_embedding_groups=16,
do_stable_layer_norm=False,
apply_spec_augment=True,
mask_time_prob=0.05,
mask_time_length=10,
mask_time_min_masks=2,
mask_feature_prob=0.0,
mask_feature_length=10,
mask_feature_min_masks=0,
num_codevectors_per_group=320,
num_codevector_groups=2,
contrastive_logits_temperature=0.1,
num_negatives=100,
codevector_dim=256,
proj_codevector_dim=256,
diversity_loss_weight=0.1,
ctc_loss_reduction="sum",
ctc_zero_infinity=False,
use_weighted_layer_sum=False,
classifier_proj_size=256,
tdnn_dim=(512, 512, 512, 512, 1500),
tdnn_kernel=(5, 3, 3, 1, 1),
tdnn_dilation=(1, 2, 3, 1, 1),
xvector_output_dim=512,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
add_adapter=False,
adapter_kernel_size=3,
adapter_stride=2,
num_adapter_layers=3,
output_hidden_size=None,
adapter_attn_dim=None,
**kwargs,
):
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_activation = feat_extract_activation
self.conv_dim = list(conv_dim)
self.conv_stride = list(conv_stride)
self.conv_kernel = list(conv_kernel)
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_feat_extract_layers = len(self.conv_dim)
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.num_attention_heads = num_attention_heads
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.feat_proj_dropout = feat_proj_dropout
self.final_dropout = final_dropout
self.layerdrop = layerdrop
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.use_weighted_layer_sum = use_weighted_layer_sum
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
)
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
self.apply_spec_augment = apply_spec_augment
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.mask_time_min_masks = mask_time_min_masks
self.mask_feature_prob = mask_feature_prob
self.mask_feature_length = mask_feature_length
self.mask_feature_min_masks = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
self.num_codevectors_per_group = num_codevectors_per_group
self.num_codevector_groups = num_codevector_groups
self.contrastive_logits_temperature = contrastive_logits_temperature
self.feat_quantizer_dropout = feat_quantizer_dropout
self.num_negatives = num_negatives
self.codevector_dim = codevector_dim
self.proj_codevector_dim = proj_codevector_dim
self.diversity_loss_weight = diversity_loss_weight
# ctc loss
self.ctc_loss_reduction = ctc_loss_reduction
self.ctc_zero_infinity = ctc_zero_infinity
# adapter
self.add_adapter = add_adapter
self.adapter_kernel_size = adapter_kernel_size
self.adapter_stride = adapter_stride
self.num_adapter_layers = num_adapter_layers
self.output_hidden_size = output_hidden_size or hidden_size
self.adapter_attn_dim = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
self.classifier_proj_size = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
self.tdnn_dim = list(tdnn_dim)
self.tdnn_kernel = list(tdnn_kernel)
self.tdnn_dilation = list(tdnn_dilation)
self.xvector_output_dim = xvector_output_dim
@property
def inputs_to_logits_ratio(self):
return functools.reduce(operator.mul, self.conv_stride, 1)
|
class_definition
| 843 | 20,044 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/configuration_wav2vec2.py
| null | 6,404 |
class Wav2Vec2CTCTokenizerOutput(ModelOutput):
"""
Output type of [` Wav2Vec2CTCTokenizer`], with transcription.
Args:
text (list of `str` or `str`):
Decoded logits in text from. Usually the speech transcription.
char_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`):
Offsets of the decoded characters. In combination with sampling rate and model downsampling rate char
offsets can be used to compute time stamps for each charater. Total logit score of the beam associated with
produced text.
word_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`):
Offsets of the decoded words. In combination with sampling rate and model downsampling rate word offsets
can be used to compute time stamps for each word.
"""
text: Union[List[str], str]
char_offsets: Union[List[ListOfDict], ListOfDict] = None
word_offsets: Union[List[ListOfDict], ListOfDict] = None
|
class_definition
| 3,621 | 4,679 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/tokenization_wav2vec2.py
| null | 6,405 |
class Wav2Vec2CTCTokenizer(PreTrainedTokenizer):
"""
Constructs a Wav2Vec2CTC tokenizer.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to
the superclass for more information regarding such methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sentence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sentence token.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
word_delimiter_token (`str`, *optional*, defaults to `"|"`):
The token used for defining the end of a word.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to accept lowercase input and lowercase the output when decoding.
target_lang (`str`, *optional*):
A target language the tokenizer should set by default. `target_lang` has to be defined for multi-lingual,
nested vocabulary such as [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all).
**kwargs
Additional keyword arguments passed along to [`PreTrainedTokenizer`]
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
word_delimiter_token="|",
replace_word_delimiter_char=" ",
do_lower_case=False,
target_lang=None,
**kwargs,
):
self._word_delimiter_token = word_delimiter_token
self.do_lower_case = do_lower_case
self.replace_word_delimiter_char = replace_word_delimiter_char
self.target_lang = target_lang
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.vocab = json.load(vocab_handle)
# if target lang is defined vocab must be a nested dict
# with each target lang being one vocabulary
if target_lang is not None:
self.encoder = self.vocab[target_lang]
else:
self.encoder = self.vocab
self.decoder = {v: k for k, v in self.encoder.items()}
super().__init__(
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
do_lower_case=do_lower_case,
word_delimiter_token=word_delimiter_token,
replace_word_delimiter_char=replace_word_delimiter_char,
target_lang=target_lang,
**kwargs,
)
# make sure that tokens made of several
# characters are not split at tokenization
for token in self.encoder.keys():
if len(token) > 1:
self.add_tokens(AddedToken(token, rstrip=True, lstrip=True, normalized=False))
def set_target_lang(self, target_lang: str):
"""
Set the target language of a nested multi-lingual dictionary
"""
if self.vocab == self.encoder:
raise ValueError(f"{self.vocab} is not a multi-lingual, nested tokenizer. Cannot set target language.")
if target_lang not in self.vocab:
raise ValueError(f"{target_lang} does not exist. Choose one of {', '.join(self.vocab.keys())}.")
self.target_lang = target_lang
self.init_kwargs["target_lang"] = target_lang
self.encoder = self.vocab[target_lang]
self.decoder = {v: k for k, v in self.encoder.items()}
# make sure that tokens made of several
# characters are not split at tokenization
for token in self.encoder.keys():
if len(token) > 1:
self.add_tokens(AddedToken(token, rstrip=True, lstrip=True, normalized=False))
@property
def word_delimiter_token(self) -> str:
"""
`str`: Word delimiter token. Log an error if used while not having been set.
"""
if self._word_delimiter_token is None and self.verbose:
logger.error("Using word_delimiter_token, but it is not set yet.")
return None
return str(self._word_delimiter_token)
@property
def word_delimiter_token_id(self) -> Optional[int]:
"""
`Optional[int]`: Id of the word_delimiter_token in the vocabulary. Returns `None` if the token has not been
set.
"""
if self._word_delimiter_token is None:
return None
return self.convert_tokens_to_ids(self.word_delimiter_token)
@word_delimiter_token.setter
def word_delimiter_token(self, value):
self._word_delimiter_token = value
@word_delimiter_token_id.setter
def word_delimiter_token_id(self, value):
self._word_delimiter_token = self.convert_tokens_to_ids(value)
@property
def vocab_size(self) -> int:
return len(self.decoder)
def get_vocab(self) -> Dict:
vocab = dict(self.encoder)
vocab.update(self.added_tokens_encoder)
return vocab
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
# Overwritten to never strip!
to_add = []
for token in new_tokens:
if isinstance(token, str):
to_add.append(AddedToken(token, rstrip=False, lstrip=False, normalized=False))
else:
to_add.append(token)
return super()._add_tokens(to_add, special_tokens)
def _tokenize(self, text, **kwargs):
"""
Converts a string into a sequence of tokens (string), using the tokenizer.
"""
if self.do_lower_case:
text = text.upper()
return list(text.replace(" ", self.word_delimiter_token))
def _convert_token_to_id(self, token: str) -> int:
"""Converts a token (str) in an index (integer) using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) in a token (str) using the vocab."""
result = self.decoder.get(index, self.unk_token)
return result
def convert_tokens_to_string(
self,
tokens: List[str],
group_tokens: bool = True,
spaces_between_special_tokens: bool = False,
output_char_offsets: bool = False,
output_word_offsets: bool = False,
) -> Dict[str, Union[str, float]]:
"""
Converts a connectionist-temporal-classification (CTC) output tokens into a single string.
"""
if len(tokens) == 0:
return {"text": "", "char_offsets": [], "word_offsets": []}
# group same tokens into non-repeating tokens in CTC style decoding
if group_tokens:
chars, char_repetitions = zip(*((token, len(list(group_iter))) for token, group_iter in groupby(tokens)))
else:
chars = tokens
char_repetitions = len(tokens) * [1]
# filter self.pad_token which is used as CTC-blank token
processed_chars = list(filter(lambda char: char != self.pad_token, chars))
# replace delimiter token
processed_chars = [
self.replace_word_delimiter_char if char == self.word_delimiter_token else char for char in processed_chars
]
# retrieve offsets
char_offsets = word_offsets = None
if output_char_offsets or output_word_offsets:
char_offsets = self._compute_offsets(char_repetitions, chars, self.pad_token)
if len(char_offsets) != len(processed_chars):
raise ValueError(
f"`char_offsets`: {char_offsets} and `processed_tokens`: {processed_chars}"
" have to be of the same length, but are: "
f"`len(offsets)`: {len(char_offsets)} and `len(processed_tokens)`:"
f" {len(processed_chars)}"
)
# set tokens to correct processed token
for i, char in enumerate(processed_chars):
char_offsets[i]["char"] = char
# retrieve word offsets from character offsets
word_offsets = None
if output_word_offsets:
word_offsets = self._get_word_offsets(char_offsets, self.replace_word_delimiter_char)
# don't output chars if not set to True
if not output_char_offsets:
char_offsets = None
# join to string
join_char = " " if spaces_between_special_tokens else ""
string = join_char.join(processed_chars).strip()
if self.do_lower_case:
string = string.lower()
return {"text": string, "char_offsets": char_offsets, "word_offsets": word_offsets}
@staticmethod
def _compute_offsets(
char_repetitions: List[int], chars: List[str], ctc_token: int
) -> List[Dict[str, Union[str, int]]]:
end_indices = np.asarray(char_repetitions).cumsum()
start_indices = np.concatenate(([0], end_indices[:-1]))
offsets = [
{"char": t, "start_offset": s, "end_offset": e} for t, s, e in zip(chars, start_indices, end_indices)
]
# filter out CTC token
offsets = list(filter(lambda offsets: offsets["char"] != ctc_token, offsets))
return offsets
@staticmethod
def _get_word_offsets(
offsets: Dict[str, Union[str, float]], word_delimiter_char: str = " "
) -> Dict[str, Union[str, float]]:
word_offsets = []
last_state = "SPACE"
word = ""
start_offset = 0
end_offset = 0
for i, offset in enumerate(offsets):
char = offset["char"]
state = "SPACE" if char == word_delimiter_char else "WORD"
if state == last_state:
# If we are in the same state as before, we simply repeat what we've done before
end_offset = offset["end_offset"]
word += char
else:
# Switching state
if state == "SPACE":
# Finishing a word
word_offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset})
else:
# Starting a new word
start_offset = offset["start_offset"]
end_offset = offset["end_offset"]
word = char
last_state = state
if last_state == "WORD":
word_offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset})
return word_offsets
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
if is_split_into_words:
text = " " + text
return (text, kwargs)
def _decode(
self,
token_ids: List[int],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None,
group_tokens: bool = True,
spaces_between_special_tokens: bool = False,
output_word_offsets: Optional[bool] = False,
output_char_offsets: Optional[bool] = False,
) -> str:
"""
special _decode function is needed for Wav2Vec2Tokenizer because added tokens should be treated exactly the
same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on
the whole token list and not individually on added tokens
"""
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
result = []
for token in filtered_tokens:
if skip_special_tokens and (
token in self.all_special_ids or (token != self.pad_token and token in self.all_special_tokens)
):
continue
result.append(token)
string_output = self.convert_tokens_to_string(
result,
group_tokens=group_tokens,
spaces_between_special_tokens=spaces_between_special_tokens,
output_word_offsets=output_word_offsets,
output_char_offsets=output_char_offsets,
)
text = string_output["text"]
clean_up_tokenization_spaces = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
text = self.clean_up_tokenization(text)
if output_word_offsets or output_char_offsets:
return Wav2Vec2CTCTokenizerOutput(
text=text,
char_offsets=string_output["char_offsets"],
word_offsets=string_output["word_offsets"],
)
else:
return text
# overwritten from `tokenization_utils_base.py` because tokenizer can output
# `ModelOutput` which should not be a list for batched output and
# because we need docs for `output_char_offsets` here
def batch_decode(
self,
sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None,
output_char_offsets: bool = False,
output_word_offsets: bool = False,
**kwargs,
) -> List[str]:
"""
Convert a list of lists of token ids into a list of strings by calling decode.
Args:
sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*):
Whether or not to clean up the tokenization spaces.
output_char_offsets (`bool`, *optional*, defaults to `False`):
Whether or not to output character offsets. Character offsets can be used in combination with the
sampling rate and model downsampling rate to compute the time-stamps of transcribed characters.
<Tip>
Please take a look at the Example of [`~Wav2Vec2CTCTokenizer.decode`] to better understand how to make
use of `output_char_offsets`. [`~Wav2Vec2CTCTokenizer.batch_decode`] works the same way with batched
output.
</Tip>
output_word_offsets (`bool`, *optional*, defaults to `False`):
Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate
and model downsampling rate to compute the time-stamps of transcribed words.
<Tip>
Please take a look at the Example of [`~Wav2Vec2CTCTokenizer.decode`] to better understand how to make
use of `output_word_offsets`. [`~Wav2Vec2CTCTokenizer.batch_decode`] works the same way with batched
output.
</Tip>
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`List[str]` or [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`]: The list of decoded
sentences. Will be a [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`] when
`output_char_offsets == True` or `output_word_offsets == True`.
"""
batch_decoded = [
self.decode(
seq,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
output_char_offsets=output_char_offsets,
output_word_offsets=output_word_offsets,
**kwargs,
)
for seq in sequences
]
if output_char_offsets or output_word_offsets:
# transform list of dicts to dict of lists
return Wav2Vec2CTCTokenizerOutput({k: [d[k] for d in batch_decoded] for k in batch_decoded[0]})
return batch_decoded
# overwritten from `tokenization_utils_base.py` because we need docs for `output_char_offsets`
# and `output_word_offsets` here
def decode(
self,
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None,
output_char_offsets: bool = False,
output_word_offsets: bool = False,
**kwargs,
) -> str:
"""
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
tokens and clean up tokenization spaces.
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*):
Whether or not to clean up the tokenization spaces.
output_char_offsets (`bool`, *optional*, defaults to `False`):
Whether or not to output character offsets. Character offsets can be used in combination with the
sampling rate and model downsampling rate to compute the time-stamps of transcribed characters.
<Tip>
Please take a look at the example below to better understand how to make use of `output_char_offsets`.
</Tip>
output_word_offsets (`bool`, *optional*, defaults to `False`):
Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate
and model downsampling rate to compute the time-stamps of transcribed words.
<Tip>
Please take a look at the example below to better understand how to make use of `output_word_offsets`.
</Tip>
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`str` or [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`]: The list of decoded
sentences. Will be a [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`] when
`output_char_offsets == True` or `output_word_offsets == True`.
Example:
```python
>>> # Let's see how to retrieve time steps for a model
>>> from transformers import AutoTokenizer, AutoFeatureExtractor, AutoModelForCTC
>>> from datasets import load_dataset
>>> import datasets
>>> import torch
>>> # import model, feature extractor, tokenizer
>>> model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-base-960h")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
>>> # load first sample of English common_voice
>>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True, trust_remote_code=True)
>>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000))
>>> dataset_iter = iter(dataset)
>>> sample = next(dataset_iter)
>>> # forward sample through model to get greedily predicted transcription ids
>>> input_values = feature_extractor(sample["audio"]["array"], return_tensors="pt").input_values
>>> logits = model(input_values).logits[0]
>>> pred_ids = torch.argmax(logits, axis=-1)
>>> # retrieve word stamps (analogous commands for `output_char_offsets`)
>>> outputs = tokenizer.decode(pred_ids, output_word_offsets=True)
>>> # compute `time_offset` in seconds as product of downsampling ratio and sampling_rate
>>> time_offset = model.config.inputs_to_logits_ratio / feature_extractor.sampling_rate
>>> word_offsets = [
... {
... "word": d["word"],
... "start_time": round(d["start_offset"] * time_offset, 2),
... "end_time": round(d["end_offset"] * time_offset, 2),
... }
... for d in outputs.word_offsets
... ]
>>> # compare word offsets with audio `en_train_0/common_voice_en_19121553.mp3` online on the dataset viewer:
>>> # https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/en
>>> word_offsets[:3]
[{'word': 'THE', 'start_time': 0.7, 'end_time': 0.78}, {'word': 'TRICK', 'start_time': 0.88, 'end_time': 1.08}, {'word': 'APPEARS', 'start_time': 1.2, 'end_time': 1.64}]
```"""
# Convert inputs to python lists
token_ids = to_py_obj(token_ids)
return self._decode(
token_ids=token_ids,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
output_char_offsets=output_char_offsets,
output_word_offsets=output_word_offsets,
**kwargs,
)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
return (vocab_file,)
|
class_definition
| 4,682 | 27,410 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/tokenization_wav2vec2.py
| null | 6,406 |
class Wav2Vec2Tokenizer(PreTrainedTokenizer):
"""
Constructs a Wav2Vec2 tokenizer.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to
the superclass for more information regarding such methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sentence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sentence token.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
word_delimiter_token (`str`, *optional*, defaults to `"|"`):
The token used for defining the end of a word.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the output when decoding.
do_normalize (`bool`, *optional*, defaults to `False`):
Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly
improve the performance for some models, *e.g.*,
[wav2vec2-lv60](https://huggingface.co/models?search=lv60).
return_attention_mask (`bool`, *optional*, defaults to `False`):
Whether or not [`~Wav2Vec2Tokenizer.__call__`] should return `attention_mask`.
<Tip>
Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as
[wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using
`attention_mask`. For such models, `input_values` should simply be padded with 0 and no `attention_mask`
should be passed.
For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as
[wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should be
passed for batched inference.
</Tip>
**kwargs
Additional keyword arguments passed along to [`PreTrainedTokenizer`]
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = {
"vocab_file": {
"facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/vocab.json"
},
"tokenizer_config_file": {
"facebook/wav2vec2-base-960h": (
"https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/tokenizer.json"
),
},
}
model_input_names = ["input_values", "attention_mask"]
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
word_delimiter_token="|",
do_lower_case=False,
do_normalize=False,
return_attention_mask=False,
**kwargs,
):
warnings.warn(
"The class `Wav2Vec2Tokenizer` is deprecated and will be removed in version 5 of Transformers. Please use"
" `Wav2Vec2Processor` or `Wav2Vec2CTCTokenizer` instead.",
FutureWarning,
)
self._word_delimiter_token = word_delimiter_token
self.do_lower_case = do_lower_case
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
super().__init__(
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
do_lower_case=do_lower_case,
do_normalize=do_normalize,
return_attention_mask=return_attention_mask,
word_delimiter_token=word_delimiter_token,
**kwargs,
)
@property
def word_delimiter_token(self) -> str:
"""
`str`: Padding token. Log an error if used while not having been set.
"""
if self._word_delimiter_token is None and self.verbose:
logger.error("Using word_delimiter_token, but it is not set yet.")
return None
return str(self._word_delimiter_token)
@property
def word_delimiter_token_id(self) -> Optional[int]:
"""
`Optional[int]`: Id of the word_delimiter_token in the vocabulary. Returns `None` if the token has not been
set.
"""
if self._word_delimiter_token is None:
return None
return self.convert_tokens_to_ids(self.word_delimiter_token)
@word_delimiter_token.setter
def word_delimiter_token(self, value):
self._word_delimiter_token = value
@word_delimiter_token_id.setter
def word_delimiter_token_id(self, value):
self._word_delimiter_token = self.convert_tokens_to_ids(value)
@add_end_docstrings(WAV2VEC2_KWARGS_DOCSTRING)
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
padding: Union[bool, str, PaddingStrategy] = False,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences.
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy array or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
padding_side (`str`, *optional*):
The side on which the model should have padding applied. Should be selected between ['right', 'left'].
Default value is picked from the class attribute of the same name.
"""
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
# make sure input is in list format
if is_batched and not isinstance(raw_speech[0], np.ndarray):
raw_speech = [np.asarray(speech) for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech)
# always return batch
if not is_batched:
raw_speech = [raw_speech]
# zero-mean and unit-variance normalization
if self.do_normalize:
raw_speech = [(x - np.mean(x)) / np.sqrt(np.var(x) + 1e-5) for x in raw_speech]
# convert into correct format for padding
encoded_inputs = BatchEncoding({"input_values": raw_speech})
padded_inputs = self.pad(
encoded_inputs,
padding=padding,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_attention_mask=self.return_attention_mask,
return_tensors=return_tensors,
verbose=verbose,
)
return padded_inputs
@property
def vocab_size(self) -> int:
return len(self.decoder)
def get_vocab(self) -> Dict:
return dict(self.encoder, **self.added_tokens_encoder)
def _convert_token_to_id(self, token: str) -> int:
"""Converts a token (str) in an index (integer) using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) in a token (str) using the vocab."""
result = self.decoder.get(index, self.unk_token)
return result
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""
Converts a connectionist-temporal-classification (CTC) output tokens into a single string.
"""
# group same tokens into non-repeating tokens in CTC style decoding
grouped_tokens = [token_group[0] for token_group in groupby(tokens)]
# filter self.pad_token which is used as CTC-blank token
filtered_tokens = list(filter(lambda token: token != self.pad_token, grouped_tokens))
# replace delimiter token
string = "".join([" " if token == self.word_delimiter_token else token for token in filtered_tokens]).strip()
if self.do_lower_case:
string = string.lower()
return string
def _decode(
self,
token_ids: List[int],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None,
**kwargs,
) -> str:
"""
special _decode function is needed for Wav2Vec2Tokenizer because added tokens should be treated exactly the
same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on
the whole token list and not individually on added tokens
"""
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
result = []
for token in filtered_tokens:
if skip_special_tokens and (
token in self.all_special_ids or (token != self.pad_token and token in self.all_special_tokens)
):
continue
result.append(token)
text = self.convert_tokens_to_string(result)
clean_up_tokenization_spaces = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
clean_text = self.clean_up_tokenization(text)
return clean_text
else:
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
return (vocab_file,)
|
class_definition
| 27,413 | 38,740 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/tokenization_wav2vec2.py
| null | 6,407 |
class FastSpeech2ConformerTokenizer(PreTrainedTokenizer):
"""
Construct a FastSpeech2Conformer tokenizer.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"<sos/eos>"`):
The begin of sequence token. Note that for FastSpeech2, it is the same as the `eos_token`.
eos_token (`str`, *optional*, defaults to `"<sos/eos>"`):
The end of sequence token. Note that for FastSpeech2, it is the same as the `bos_token`.
pad_token (`str`, *optional*, defaults to `"<blank>"`):
The token used for padding, for example when batching sequences of different lengths.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
should_strip_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to strip the spaces from the list of tokens.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
bos_token="<sos/eos>",
eos_token="<sos/eos>",
pad_token="<blank>",
unk_token="<unk>",
should_strip_spaces=False,
**kwargs,
):
requires_backends(self, "g2p_en")
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
import g2p_en
self.g2p = g2p_en.G2p()
self.decoder = {v: k for k, v in self.encoder.items()}
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
should_strip_spaces=should_strip_spaces,
**kwargs,
)
self.should_strip_spaces = should_strip_spaces
@property
def vocab_size(self):
return len(self.decoder)
def get_vocab(self):
"Returns vocab as a dict"
return dict(self.encoder, **self.added_tokens_encoder)
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
# expand symbols
text = regex.sub(";", ",", text)
text = regex.sub(":", ",", text)
text = regex.sub("-", " ", text)
text = regex.sub("&", "and", text)
# strip unnecessary symbols
text = regex.sub(r"[\(\)\[\]\<\>\"]+", "", text)
# strip whitespaces
text = regex.sub(r"\s+", " ", text)
text = text.upper()
return text, kwargs
def _tokenize(self, text):
"""Returns a tokenized string."""
# phonemize
tokens = self.g2p(text)
if self.should_strip_spaces:
tokens = list(filter(lambda s: s != " ", tokens))
tokens.append(self.eos_token)
return tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
# Override since phonemes cannot be converted back to strings
def decode(self, token_ids, **kwargs):
logger.warning(
"Phonemes cannot be reliably converted to a string due to the one-many mapping, converting to tokens instead."
)
return self.convert_ids_to_tokens(token_ids)
# Override since phonemes cannot be converted back to strings
def convert_tokens_to_string(self, tokens, **kwargs):
logger.warning(
"Phonemes cannot be reliably converted to a string due to the one-many mapping, returning the tokens."
)
return tokens
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.get_vocab(), ensure_ascii=False))
return (vocab_file,)
def __getstate__(self):
state = self.__dict__.copy()
state["g2p"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
try:
import g2p_en
self.g2p = g2p_en.G2p()
except ImportError:
raise ImportError(
"You need to install g2p-en to use FastSpeech2ConformerTokenizer. "
"See https://pypi.org/project/g2p-en/ for installation."
)
|
class_definition
| 971 | 6,218 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py
| null | 6,408 |
class FastSpeech2ConformerModelOutput(ModelOutput):
"""
Output type of [`FastSpeech2ConformerModel`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Spectrogram generation loss.
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`):
The predicted spectrogram.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*):
Outputs of the duration predictor.
pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the pitch predictor.
energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the energy predictor.
"""
loss: Optional[torch.FloatTensor] = None
spectrogram: torch.FloatTensor = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
duration_outputs: torch.LongTensor = None
pitch_outputs: torch.FloatTensor = None
energy_outputs: torch.FloatTensor = None
|
class_definition
| 1,242 | 4,781 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,409 |
class FastSpeech2ConformerWithHifiGanOutput(FastSpeech2ConformerModelOutput):
"""
Output type of [`FastSpeech2ConformerWithHifiGan`].
Args:
waveform (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Speech output as a result of passing the predicted mel spectrogram through the vocoder.
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Spectrogram generation loss.
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`):
The predicted spectrogram.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*):
Outputs of the duration predictor.
pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the pitch predictor.
energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the energy predictor.
"""
waveform: torch.FloatTensor = None
|
class_definition
| 4,795 | 8,024 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,410 |
class FastSpeech2ConformerDurationPredictor(nn.Module):
"""
Duration predictor module.
This is a module of duration predictor described in the paper 'FastSpeech: Fast, Robust and Controllable Text to
Speech' https://arxiv.org/pdf/1905.09263.pdf The duration predictor predicts a duration of each frame in log domain
from the hidden embeddings of encoder.
Note:
The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`, the
outputs are calculated in log domain but in `inference`, those are calculated in linear domain.
"""
def __init__(self, config: FastSpeech2ConformerConfig):
super().__init__()
self.conv_layers = nn.ModuleList()
self.log_domain_offset = 1.0
for layer_idx in range(config.duration_predictor_layers):
num_chans = config.duration_predictor_channels
input_channels = config.hidden_size if layer_idx == 0 else num_chans
layer = FastSpeech2ConformerPredictorLayer(
input_channels,
num_chans,
config.duration_predictor_kernel_size,
config.duration_predictor_dropout_rate,
)
self.conv_layers.append(layer)
self.linear = nn.Linear(config.duration_predictor_channels, 1)
def forward(self, encoder_hidden_states):
"""
Args:
hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`):
Batch of input sequences.
padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*):
Batch of masks indicating padded part.
Returns:
`torch.Tensor`: Batch of predicted durations in log domain `(batch_size, max_text_length)`.
"""
# (batch_size, input_dim, max_text_length)
hidden_states = encoder_hidden_states.transpose(1, -1)
for layer in self.conv_layers:
hidden_states = layer(hidden_states)
# NOTE: calculate in log domain, (batch_size, max_text_length)
hidden_states = self.linear(hidden_states.transpose(1, -1)).squeeze(-1)
if not self.training:
# NOTE: calculate in linear domain
hidden_states = torch.clamp(torch.round(hidden_states.exp() - self.log_domain_offset), min=0).long()
return hidden_states
|
class_definition
| 12,773 | 15,193 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,411 |
class FastSpeech2ConformerBatchNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
if layer_id == 0:
in_conv_dim = config.num_mel_bins
else:
in_conv_dim = config.speech_decoder_postnet_units
if layer_id == config.speech_decoder_postnet_layers - 1:
out_conv_dim = config.num_mel_bins
else:
out_conv_dim = config.speech_decoder_postnet_units
self.conv = nn.Conv1d(
in_conv_dim,
out_conv_dim,
kernel_size=config.speech_decoder_postnet_kernel,
stride=1,
padding=(config.speech_decoder_postnet_kernel - 1) // 2,
bias=False,
)
self.batch_norm = nn.BatchNorm1d(out_conv_dim)
if layer_id < config.speech_decoder_postnet_layers - 1:
self.activation = nn.Tanh()
else:
self.activation = None
self.dropout = nn.Dropout(config.speech_decoder_postnet_dropout)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.batch_norm(hidden_states)
if self.activation is not None:
hidden_states = self.activation(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
|
class_definition
| 15,284 | 16,626 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,412 |
class FastSpeech2ConformerSpeechDecoderPostnet(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.feat_out = nn.Linear(config.hidden_size, config.num_mel_bins * config.reduction_factor)
self.layers = nn.ModuleList(
[FastSpeech2ConformerBatchNormConvLayer(config, i) for i in range(config.speech_decoder_postnet_layers)]
)
def forward(self, hidden_states: torch.Tensor):
outputs_before_postnet = self.feat_out(hidden_states).view(hidden_states.size(0), -1, self.config.num_mel_bins)
layer_output = outputs_before_postnet.transpose(1, 2)
for layer in self.layers:
layer_output = layer(layer_output)
outputs_after_postnet = outputs_before_postnet + layer_output.transpose(1, 2)
return outputs_before_postnet, outputs_after_postnet
|
class_definition
| 16,629 | 17,503 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,413 |
class FastSpeech2ConformerPredictorLayer(nn.Module):
def __init__(self, input_channels, num_chans, kernel_size, dropout_rate):
super().__init__()
self.conv = nn.Conv1d(
input_channels,
num_chans,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
)
self.activation = nn.ReLU()
self.layer_norm = nn.LayerNorm(num_chans)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
# Perform layer norm on dimension 1
hidden_states = hidden_states.transpose(1, -1)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose(1, -1)
hidden_states = self.dropout(hidden_states)
return hidden_states
|
class_definition
| 17,506 | 18,416 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,414 |
class FastSpeech2ConformerVariancePredictor(nn.Module):
def __init__(
self,
config: FastSpeech2ConformerConfig,
num_layers=2,
num_chans=384,
kernel_size=3,
dropout_rate=0.5,
):
"""
Initilize variance predictor module.
Args:
input_dim (`int`): Input dimension.
num_layers (`int`, *optional*, defaults to 2): Number of convolutional layers.
num_chans (`int`, *optional*, defaults to 384): Number of channels of convolutional layers.
kernel_size (`int`, *optional*, defaults to 3): Kernel size of convolutional layers.
dropout_rate (`float`, *optional*, defaults to 0.5): Dropout rate.
"""
super().__init__()
self.conv_layers = nn.ModuleList()
for idx in range(num_layers):
input_channels = config.hidden_size if idx == 0 else num_chans
layer = FastSpeech2ConformerPredictorLayer(input_channels, num_chans, kernel_size, dropout_rate)
self.conv_layers.append(layer)
self.linear = nn.Linear(num_chans, 1)
def forward(self, encoder_hidden_states, padding_masks=None):
"""
Calculate forward propagation.
Args:
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`):
Batch of input sequences.
padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*):
Batch of masks indicating padded part.
Returns:
Tensor: Batch of predicted sequences `(batch_size, max_text_length, 1)`.
"""
# (batch_size, input_dim, max_text_length)
hidden_states = encoder_hidden_states.transpose(1, -1)
for layer in self.conv_layers:
hidden_states = layer(hidden_states)
hidden_states = self.linear(hidden_states.transpose(1, 2))
if padding_masks is not None:
hidden_states = hidden_states.masked_fill(padding_masks, 0.0)
return hidden_states
|
class_definition
| 18,419 | 20,498 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,415 |
class FastSpeech2ConformerVarianceEmbedding(nn.Module):
def __init__(
self,
in_channels=1,
out_channels=384,
kernel_size=1,
padding=0,
dropout_rate=0.0,
):
super().__init__()
self.conv = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding,
)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, hidden_states):
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.conv(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
|
class_definition
| 20,501 | 21,247 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,416 |
class FastSpeech2ConformerAttention(nn.Module):
"""
Multi-Head attention layer with relative position encoding. Details can be found in
https://github.com/espnet/espnet/pull/2816. Paper: https://arxiv.org/abs/1901.02860.
"""
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
"""Construct an FastSpeech2ConformerAttention object."""
super().__init__()
# We assume d_v always equals dim_key
self.num_heads = module_config["num_attention_heads"]
self.hidden_size = config.hidden_size
self.dim_key = self.hidden_size // self.num_heads
self.head_dim = self.hidden_size // self.num_heads
self.linear_q = nn.Linear(self.hidden_size, self.hidden_size)
self.linear_k = nn.Linear(self.hidden_size, self.hidden_size)
self.linear_v = nn.Linear(self.hidden_size, self.hidden_size)
self.linear_out = nn.Linear(self.hidden_size, self.hidden_size)
self.dropout = nn.Dropout(p=module_config["attention_dropout_rate"])
# linear transformation for positional encoding
self.linear_pos = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim))
self.pos_bias_v = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim))
def shift_relative_position_tensor(self, pos_tensor):
"""
Args:
pos_tensor (torch.Tensor of shape (batch_size, head, time1, 2*time1-1)): Input tensor.
"""
zero_pad = torch.zeros((*pos_tensor.size()[:3], 1), device=pos_tensor.device, dtype=pos_tensor.dtype)
pos_tensor_padded = torch.cat([zero_pad, pos_tensor], dim=-1)
pos_tensor_padded = pos_tensor_padded.view(*pos_tensor.size()[:2], pos_tensor.size(3) + 1, pos_tensor.size(2))
# only keep the positions from 0 to time2
pos_tensor = pos_tensor_padded[:, :, 1:].view_as(pos_tensor)[:, :, :, : pos_tensor.size(-1) // 2 + 1]
return pos_tensor
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
pos_emb: Optional[torch.Tensor] = None,
output_attentions: Optional[torch.Tensor] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
hidden_states (`torch.Tensor` of shape `(batch, time2, size)`): Values of the hidden states
attention_mask (`torch.Tensor` of shape `(batch, time1, time2)`): Mask tensor.
pos_emb (`torch.Tensor` of shape `(batch, 2*time1-1, size)`): Positional embedding tensor.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
Returns:
`torch.Tensor`: Output tensor of shape `(batch, time1, d_model)`.
"""
bsz, q_len, _ = hidden_states.size()
query_states = self.linear_q(hidden_states).view(bsz, -1, self.num_heads, self.head_dim)
key_states = self.linear_k(hidden_states).view(bsz, -1, self.num_heads, self.head_dim)
value_states = self.linear_v(hidden_states).view(bsz, -1, self.num_heads, self.head_dim)
bsz_pos = pos_emb.size(0)
pos_encoding = self.linear_pos(pos_emb).view(bsz_pos, -1, self.num_heads, self.head_dim)
# (batch_size, head, time1, dim_key)
query_with_bias_u = (query_states + self.pos_bias_u).transpose(1, 2)
# (batch_size, head, time1, dim_key)
query_with_bias_v = (query_states + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch_size, head, time1, time2)
matrix_ac = torch.matmul(query_with_bias_u, key_states.permute(0, 2, 3, 1))
# compute matrix b and matrix d
# (batch_size, head, time1, 2*time1-1)
matrix_bd = torch.matmul(query_with_bias_v, pos_encoding.permute(0, 2, 3, 1))
matrix_bd = self.shift_relative_position_tensor(matrix_bd)
# (batch_size, head, time1, time2)
scores = (matrix_ac + matrix_bd) / math.sqrt(self.dim_key)
# Forward attention
if attention_mask is not None:
expected_size = (bsz, 1, q_len)
if attention_mask.size() != expected_size:
raise ValueError(f"Attention mask should be of size {expected_size}, but is {attention_mask.size()}")
attention_mask = attention_mask.unsqueeze(1).eq(0)
min_value = float(torch.finfo(scores.dtype).min)
scores = scores.masked_fill(attention_mask, min_value)
attn_weights = torch.softmax(scores, dim=-1).masked_fill(attention_mask, 0.0)
else:
attn_weights = torch.softmax(scores, dim=-1)
attn_weights = self.dropout(attn_weights)
attn_output = torch.matmul(attn_weights, value_states.transpose(1, 2))
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, -1)
attn_output = self.linear_out(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
|
class_definition
| 21,250 | 26,773 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,417 |
class FastSpeech2ConformerConvolutionModule(nn.Module):
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
super().__init__()
# kernel_size should be an odd number for 'SAME' padding
channels = config.hidden_size
kernel_size = module_config["kernel_size"]
self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=True)
self.depthwise_conv = nn.Conv1d(
channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=True
)
self.norm = nn.BatchNorm1d(channels)
self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1, stride=1, padding=0, bias=True)
def forward(self, hidden_states):
"""
Compute convolution module.
Args:
hidden_states (`torch.Tensor` of shape `(batch, time, channels)`): Input tensor.
Returns:
`torch.Tensor`: Output tensor of shape `(batch, time, channels)`.
"""
# exchange the temporal dimension and the feature dimension
hidden_states = hidden_states.transpose(1, 2)
# GLU mechanism, (batch_size, 2*channel, dim)
hidden_states = self.pointwise_conv1(hidden_states)
# (batch_size, channel, dim)
hidden_states = nn.functional.glu(hidden_states, dim=1)
# 1D Depthwise Conv
hidden_states = self.depthwise_conv(hidden_states)
hidden_states = self.norm(hidden_states)
hidden_states = hidden_states * torch.sigmoid(hidden_states)
hidden_states = self.pointwise_conv2(hidden_states)
return hidden_states.transpose(1, 2)
|
class_definition
| 26,776 | 28,473 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,418 |
class FastSpeech2ConformerEncoderLayer(nn.Module):
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
super().__init__()
# self-attention module definition
self.self_attn = FastSpeech2ConformerAttention(config, module_config)
# feed-forward module definition
self.feed_forward = FastSpeech2ConformerMultiLayeredConv1d(config, module_config)
self.macaron_style = config.use_macaron_style_in_conformer
if self.macaron_style:
self.feed_forward_macaron = FastSpeech2ConformerMultiLayeredConv1d(config, module_config)
self.ff_macaron_layer_norm = nn.LayerNorm(config.hidden_size)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
# convolution module definition
self.use_cnn_module = config.use_cnn_in_conformer
if self.use_cnn_module:
self.conv_module = FastSpeech2ConformerConvolutionModule(config, module_config)
self.conv_layer_norm = nn.LayerNorm(config.hidden_size)
self.final_layer_norm = nn.LayerNorm(config.hidden_size)
self.ff_layer_norm = nn.LayerNorm(config.hidden_size)
self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size)
self.dropout = nn.Dropout(module_config["dropout_rate"])
self.size = config.hidden_size
self.normalize_before = module_config["normalize_before"]
self.concat_after = module_config["concat_after"]
if self.concat_after:
self.concat_linear = nn.Linear(config.hidden_size + config.hidden_size, config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
pos_emb: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[torch.Tensor] = False,
):
"""
Compute encoded features.
Args:
hidden_states (`torch.Tensor` of shape `(batch, time, size)`): Input tensor.
pos_emb (`torch.Tensor` of shape `(1, time, size)`): Positional embeddings tensor.
attention_mask (`torch.Tensor` of shape `(batch, time)`): Attention mask tensor for the input.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
Returns:
`torch.Tensor`: Output tensor of shape `(batch, time, size)`.
"""
# whether to use macaron style
if self.macaron_style:
residual = hidden_states
if self.normalize_before:
hidden_states = self.ff_macaron_layer_norm(hidden_states)
hidden_states = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(hidden_states))
if not self.normalize_before:
hidden_states = self.ff_macaron_layer_norm(hidden_states)
# multi-headed self-attention module
residual = hidden_states
if self.normalize_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
attention_output, attention_scores = self.self_attn(
hidden_states, attention_mask=attention_mask, pos_emb=pos_emb, output_attentions=output_attentions
)
if self.concat_after:
x_concat = torch.cat((hidden_states, attention_output), dim=-1)
hidden_states = self.concat_linear(x_concat)
hidden_states = residual + hidden_states
else:
hidden_states = self.dropout(attention_output)
hidden_states = residual + hidden_states
if not self.normalize_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# convolution module
if self.use_cnn_module:
residual = hidden_states
if self.normalize_before:
hidden_states = self.conv_layer_norm(hidden_states)
hidden_states = self.conv_module(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + hidden_states
if not self.normalize_before:
hidden_states = self.conv_layer_norm(hidden_states)
# feed forward module
residual = hidden_states
if self.normalize_before:
hidden_states = self.ff_layer_norm(hidden_states)
hidden_states = self.feed_forward(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + self.ff_scale * hidden_states
if not self.normalize_before:
hidden_states = self.ff_layer_norm(hidden_states)
if self.conv_module is not None:
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_scores,)
return outputs
|
class_definition
| 28,476 | 33,418 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,419 |
class FastSpeech2ConformerMultiLayeredConv1d(nn.Module):
"""
Multi-layered conv1d for Transformer block.
This is a module of multi-layered conv1d designed to replace positionwise feed-forward network in Transformer
block, which is introduced in 'FastSpeech: Fast, Robust and Controllable Text to Speech'
https://arxiv.org/pdf/1905.09263.pdf
"""
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
"""
Initialize FastSpeech2ConformerMultiLayeredConv1d module.
Args:
input_channels (`int`): Number of input channels.
hidden_channels (`int`): Number of hidden channels.
kernel_size (`int`): Kernel size of conv1d.
dropout_rate (`float`): Dropout rate.
"""
super().__init__()
input_channels = config.hidden_size
hidden_channels = module_config["linear_units"]
kernel_size = config.positionwise_conv_kernel_size
self.conv1 = nn.Conv1d(input_channels, hidden_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2)
self.conv2 = nn.Conv1d(hidden_channels, input_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2)
self.dropout = nn.Dropout(module_config["dropout_rate"])
def forward(self, hidden_states):
"""
Calculate forward propagation.
Args:
hidden_states (torch.Tensor): Batch of input tensors (batch_size, time, input_channels).
Returns:
torch.Tensor: Batch of output tensors (batch_size, time, hidden_channels).
"""
hidden_states = hidden_states.transpose(-1, 1)
hidden_states = self.conv1(hidden_states)
hidden_states = torch.relu(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = hidden_states.transpose(-1, 1)
return hidden_states
|
class_definition
| 33,421 | 35,356 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,420 |
class FastSpeech2ConformerRelPositionalEncoding(nn.Module):
"""
Args:
Relative positional encoding module (new implementation). Details can be found in
https://github.com/espnet/espnet/pull/2816. See : Appendix Batch in https://arxiv.org/abs/1901.02860
config (`FastSpeech2ConformerConfig`):
FastSpeech2ConformerConfig instance.
module_config (`dict`):
Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`.
"""
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
"""
Construct an PositionalEncoding object.
"""
super().__init__()
self.embed_dim = config.hidden_size
self.input_scale = math.sqrt(self.embed_dim)
self.dropout = nn.Dropout(p=module_config["positional_dropout_rate"])
self.pos_enc = None
self.max_len = 5000
self.extend_pos_enc(torch.tensor(0.0).expand(1, self.max_len))
def extend_pos_enc(self, x):
"""Reset the positional encodings."""
if self.pos_enc is not None:
# self.pos_enc contains both positive and negative parts
# the length of self.pos_enc is 2 * input_len - 1
if self.pos_enc.size(1) >= x.size(1) * 2 - 1:
if self.pos_enc.dtype != x.dtype or self.pos_enc.device != x.device:
self.pos_enc = self.pos_enc.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vector and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pos_enc_positive = torch.zeros(x.size(1), self.embed_dim)
pos_enc_negative = torch.zeros(x.size(1), self.embed_dim)
position = torch.arange(0, x.size(1), dtype=torch.int64).float().unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.embed_dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / self.embed_dim)
)
pos_enc_positive[:, 0::2] = torch.sin(position * div_term)
pos_enc_positive[:, 1::2] = torch.cos(position * div_term)
pos_enc_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pos_enc_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pos_enc_positive = torch.flip(pos_enc_positive, [0]).unsqueeze(0)
pos_enc_negative = pos_enc_negative[1:].unsqueeze(0)
pos_enc = torch.cat([pos_enc_positive, pos_enc_negative], dim=1)
self.pos_enc = pos_enc.to(device=x.device, dtype=x.dtype)
def forward(self, feature_representation):
"""
Args:
feature_representation (`torch.Tensor` of shape (batch_size, time, `*`)):
Input tensor.
Returns:
`torch.Tensor`: Encoded tensor (batch_size, time, `*`).
"""
self.extend_pos_enc(feature_representation)
hidden_states = feature_representation * self.input_scale
center_idx = self.pos_enc.size(1) // 2
pos_emb = self.pos_enc[:, center_idx - hidden_states.size(1) + 1 : center_idx + hidden_states.size(1)]
return self.dropout(hidden_states), self.dropout(pos_emb)
|
class_definition
| 35,359 | 38,844 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,421 |
class FastSpeech2ConformerEncoder(nn.Module):
"""
FastSpeech2ConformerEncoder encoder module.
Args:
config (`FastSpeech2ConformerConfig`):
FastSpeech2ConformerConfig instance.
module_config (`dict`):
Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`.
use_encoder_input_layer (`bool`, *optional*, defaults to `False`):
Input layer type.
"""
def __init__(
self,
config: FastSpeech2ConformerConfig,
module_config,
use_encoder_input_layer=False,
):
super().__init__()
self.embed = None
if use_encoder_input_layer:
self.embed = nn.Embedding(
num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, padding_idx=0
)
self.pos_enc = FastSpeech2ConformerRelPositionalEncoding(config, module_config)
self.conformer_layers = nn.ModuleList(
[FastSpeech2ConformerEncoderLayer(config, module_config) for _ in range(module_config["layers"])]
)
def forward(
self,
input_tensor: torch.LongTensor,
attention_mask: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = False,
return_dict: Optional[bool] = None,
):
"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
`torch.Tensor`:
Output tensor of shape `(batch, time, attention_dim)`.
"""
feature_representation = input_tensor
if self.embed is not None:
feature_representation = self.embed(feature_representation)
hidden_states, pos_emb = self.pos_enc(feature_representation)
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for conformer_layer in self.conformer_layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = conformer_layer(hidden_states, pos_emb, attention_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
)
|
class_definition
| 38,847 | 42,994 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,422 |
class FastSpeech2ConformerLoss(nn.Module):
def __init__(self, config: FastSpeech2ConformerConfig):
super().__init__()
use_masking = config.use_masking
use_weighted_masking = config.use_weighted_masking
if use_masking and use_weighted_masking:
raise ValueError("Either use_masking or use_weighted_masking can be True, but not both.")
self.use_masking = use_masking
self.use_weighted_masking = use_weighted_masking
# define criterions
reduction = "none" if self.use_weighted_masking else "mean"
self.l1_criterion = nn.L1Loss(reduction=reduction)
self.mse_criterion = nn.MSELoss(reduction=reduction)
self.duration_criterion = nn.MSELoss(reduction=reduction)
self.log_domain_offset = 1.0
def forward(
self,
outputs_after_postnet,
outputs_before_postnet,
duration_outputs,
pitch_outputs,
energy_outputs,
spectrogram_labels,
duration_labels,
pitch_labels,
energy_labels,
duration_mask,
spectrogram_mask,
):
"""
Args:
outputs_after_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`):
Batch of outputs after postnet.
outputs_before_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`):
Batch of outputs before postnet.
duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length)`):
Batch of outputs of duration predictor.
pitch_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`):
Batch of outputs of pitch predictor.
energy_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`):
Batch of outputs of energy predictor.
spectrogram_labels (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`):
Batch of target features.
duration_labels (`torch.LongTensor` of shape `(batch_size, max_text_length)`): Batch of durations.
pitch_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`):
Batch of target token-averaged pitch.
energy_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`):
Batch of target token-averaged energy.
duration_mask (`torch.LongTensor`):
Mask used to discern which values the duration loss should be calculated for.
spectrogram_mask (`torch.LongTensor`):
Mask used to discern which values the spectrogam loss should be calculated for.
Returns:
`tuple(torch.FloatTensor)`: Tuple of tensors containing, in order, the L1 loss value, duration predictor
loss value, pitch predictor loss value, and energy predictor loss value.
"""
pitch_and_energy_masks = duration_mask.unsqueeze(-1)
# apply mask to remove padded part
if self.use_masking:
outputs_before_postnet = outputs_before_postnet.masked_select(spectrogram_mask)
if outputs_after_postnet is not None:
outputs_after_postnet = outputs_after_postnet.masked_select(spectrogram_mask)
spectrogram_labels = spectrogram_labels.masked_select(spectrogram_mask)
duration_outputs = duration_outputs.masked_select(duration_mask)
duration_labels = duration_labels.masked_select(duration_mask)
pitch_outputs = pitch_outputs.masked_select(pitch_and_energy_masks)
energy_outputs = energy_outputs.masked_select(pitch_and_energy_masks)
pitch_labels = pitch_labels.masked_select(pitch_and_energy_masks)
energy_labels = energy_labels.masked_select(pitch_and_energy_masks)
# calculate loss
l1_loss = self.l1_criterion(outputs_before_postnet, spectrogram_labels)
if outputs_after_postnet is not None:
l1_loss = l1_loss + self.l1_criterion(outputs_after_postnet, spectrogram_labels)
duration_labels = torch.log(duration_labels.float() + self.log_domain_offset)
duration_loss = self.duration_criterion(duration_outputs, duration_labels)
pitch_loss = self.mse_criterion(pitch_outputs, pitch_labels)
energy_loss = self.mse_criterion(energy_outputs, energy_labels)
# make weighted mask and apply it
if self.use_weighted_masking:
spectrogram_mask = nn.functional.pad(
spectrogram_mask.transpose(1, 2),
[0, spectrogram_labels.size(1) - spectrogram_mask.size(1), 0, 0, 0, 0],
value=False,
).transpose(1, 2)
out_weights = spectrogram_mask.float() / spectrogram_mask.sum(dim=1, keepdim=True).float()
out_weights /= spectrogram_labels.size(0) * spectrogram_labels.size(2)
duration_weights = duration_mask.float() / duration_mask.sum(dim=1, keepdim=True).float()
duration_weights /= duration_labels.size(0)
# apply weight
l1_loss = l1_loss.mul(out_weights).masked_select(spectrogram_mask).sum()
duration_loss = duration_loss.mul(duration_weights).masked_select(duration_mask).sum()
pitch_weights = duration_weights.unsqueeze(-1)
pitch_loss = pitch_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum()
energy_loss = energy_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum()
return l1_loss + duration_loss + pitch_loss + energy_loss
|
class_definition
| 42,997 | 48,664 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,423 |
class FastSpeech2ConformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FastSpeech2ConformerConfig
base_model_prefix = "fastspeech2_conformer"
main_input_name = "input_ids"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.LayerNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
key = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-key, b=key)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_()
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, FastSpeech2ConformerAttention):
nn.init.xavier_uniform_(module.pos_bias_u)
nn.init.xavier_uniform_(module.pos_bias_v)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, FastSpeech2ConformerEncoder):
module.gradient_checkpointing = value
|
class_definition
| 48,667 | 50,039 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,424 |
class FastSpeech2ConformerModel(FastSpeech2ConformerPreTrainedModel):
"""
FastSpeech 2 module.
This is a module of FastSpeech 2 described in 'FastSpeech 2: Fast and High-Quality End-to-End Text to Speech'
https://arxiv.org/abs/2006.04558. Instead of quantized pitch and energy, we use token-averaged value introduced in
FastPitch: Parallel Text-to-speech with Pitch Prediction. The encoder and decoder are Conformers instead of regular
Transformers.
"""
def __init__(self, config: FastSpeech2ConformerConfig):
super().__init__(config)
self.config = config
# store hyperparameters
self.vocab_size = config.vocab_size
self.num_mel_bins = config.num_mel_bins
self.hidden_size = config.hidden_size
self.reduction_factor = config.reduction_factor
self.stop_gradient_from_pitch_predictor = config.stop_gradient_from_pitch_predictor
self.stop_gradient_from_energy_predictor = config.stop_gradient_from_energy_predictor
self.multilingual_model = config.num_languages is not None and config.num_languages > 1
if self.multilingual_model:
self.language_id_embedding = torch.nn.Embedding(config.num_languages, self.hidden_size)
self.multispeaker_model = config.num_speakers is not None and config.num_speakers > 1
if self.multispeaker_model:
self.speaker_id_embedding = torch.nn.Embedding(config.num_speakers, config.hidden_size)
self.speaker_embed_dim = config.speaker_embed_dim
if self.speaker_embed_dim:
self.projection = nn.Linear(config.hidden_size + self.speaker_embed_dim, config.hidden_size)
self.encoder = FastSpeech2ConformerEncoder(config, config.encoder_config, use_encoder_input_layer=True)
self.duration_predictor = FastSpeech2ConformerDurationPredictor(config)
self.pitch_predictor = FastSpeech2ConformerVariancePredictor(
config,
num_layers=config.pitch_predictor_layers,
num_chans=config.pitch_predictor_channels,
kernel_size=config.pitch_predictor_kernel_size,
dropout_rate=config.pitch_predictor_dropout,
)
# continuous pitch + FastPitch style avg
self.pitch_embed = FastSpeech2ConformerVarianceEmbedding(
out_channels=self.hidden_size,
kernel_size=config.pitch_embed_kernel_size,
padding=(config.pitch_embed_kernel_size - 1) // 2,
dropout_rate=config.pitch_embed_dropout,
)
self.energy_predictor = FastSpeech2ConformerVariancePredictor(
config,
num_layers=config.energy_predictor_layers,
num_chans=config.energy_predictor_channels,
kernel_size=config.energy_predictor_kernel_size,
dropout_rate=config.energy_predictor_dropout,
)
# continuous energy + FastPitch style avg
self.energy_embed = FastSpeech2ConformerVarianceEmbedding(
out_channels=self.hidden_size,
kernel_size=config.energy_embed_kernel_size,
padding=(config.energy_embed_kernel_size - 1) // 2,
dropout_rate=config.energy_embed_dropout,
)
# The decoder is an encoder
self.decoder = FastSpeech2ConformerEncoder(config, config.decoder_config, use_encoder_input_layer=False)
self.speech_decoder_postnet = FastSpeech2ConformerSpeechDecoderPostnet(config)
self.criterion = FastSpeech2ConformerLoss(config)
self.post_init()
@replace_return_docstrings(output_type=FastSpeech2ConformerModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.LongTensor] = None,
spectrogram_labels: Optional[torch.FloatTensor] = None,
duration_labels: Optional[torch.LongTensor] = None,
pitch_labels: Optional[torch.FloatTensor] = None,
energy_labels: Optional[torch.FloatTensor] = None,
speaker_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
speaker_embedding: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Union[Tuple, FastSpeech2ConformerModelOutput]:
"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Input sequence of text vectors.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
`[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**.
spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`):
Batch of padded target features.
duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`):
Batch of padded durations.
pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`):
Batch of padded token-averaged pitch.
energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`):
Batch of padded token-averaged energy.
speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`):
Speaker ids used to condition features of speech output by the model.
lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`):
Language ids used to condition features of speech output by the model.
speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`):
Embedding containing conditioning signals for the features of the speech.
return_dict (`bool`, *optional*, defaults to `None`):
Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple.
output_attentions (`bool`, *optional*, defaults to `None`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*, defaults to `None`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
Returns:
Example:
```python
>>> from transformers import (
... FastSpeech2ConformerTokenizer,
... FastSpeech2ConformerModel,
... FastSpeech2ConformerHifiGan,
... )
>>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer")
>>> inputs = tokenizer("some text to convert to speech", return_tensors="pt")
>>> input_ids = inputs["input_ids"]
>>> model = FastSpeech2ConformerModel.from_pretrained("espnet/fastspeech2_conformer")
>>> output_dict = model(input_ids, return_dict=True)
>>> spectrogram = output_dict["spectrogram"]
>>> vocoder = FastSpeech2ConformerHifiGan.from_pretrained("espnet/fastspeech2_conformer_hifigan")
>>> waveform = vocoder(spectrogram)
>>> print(waveform.shape)
torch.Size([1, 49664])
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if attention_mask is None:
attention_mask = torch.ones(input_ids.shape, device=input_ids.device)
has_missing_labels = (
spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None
)
if self.training and has_missing_labels:
raise ValueError("All labels must be provided to run in training mode.")
# forward encoder
text_masks = attention_mask.unsqueeze(-2)
encoder_outputs = self.encoder(
input_ids,
text_masks,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
# Integrate with language id, speaker id, and speaker embedding
if self.multispeaker_model and speaker_ids is not None:
speaker_id_embeddings = self.speaker_id_embedding(speaker_ids.view(-1))
hidden_states = hidden_states + speaker_id_embeddings.unsqueeze(1)
if self.multilingual_model and lang_ids is not None:
language_id_embbedings = self.language_id_embedding(lang_ids.view(-1))
hidden_states = hidden_states + language_id_embbedings.unsqueeze(1)
if self.speaker_embed_dim is not None and speaker_embedding is not None:
embeddings_expanded = (
nn.functional.normalize(speaker_embedding).unsqueeze(1).expand(-1, hidden_states.size(1), -1)
)
hidden_states = self.projection(torch.cat([hidden_states, embeddings_expanded], dim=-1))
# forward duration predictor and variance predictors
duration_mask = ~attention_mask.bool()
if self.stop_gradient_from_pitch_predictor:
pitch_predictions = self.pitch_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1))
else:
pitch_predictions = self.pitch_predictor(hidden_states, duration_mask.unsqueeze(-1))
if self.stop_gradient_from_energy_predictor:
energy_predictions = self.energy_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1))
else:
energy_predictions = self.energy_predictor(hidden_states, duration_mask.unsqueeze(-1))
duration_predictions = self.duration_predictor(hidden_states)
duration_predictions = duration_predictions.masked_fill(duration_mask, 0.0)
if not self.training:
# use prediction in inference
embedded_pitch_curve = self.pitch_embed(pitch_predictions)
embedded_energy_curve = self.energy_embed(energy_predictions)
hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve
hidden_states = length_regulator(hidden_states, duration_predictions, self.config.speaking_speed)
else:
# use groundtruth in training
embedded_pitch_curve = self.pitch_embed(pitch_labels)
embedded_energy_curve = self.energy_embed(energy_labels)
hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve
hidden_states = length_regulator(hidden_states, duration_labels)
# forward decoder
if not self.training:
hidden_mask = None
else:
spectrogram_mask = (spectrogram_labels != -100).any(dim=-1)
spectrogram_mask = spectrogram_mask.int()
if self.reduction_factor > 1:
length_dim = spectrogram_mask.shape[1] - spectrogram_mask.shape[1] % self.reduction_factor
spectrogram_mask = spectrogram_mask[:, :, :length_dim]
hidden_mask = spectrogram_mask.unsqueeze(-2)
decoder_outputs = self.decoder(
hidden_states,
hidden_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
outputs_before_postnet, outputs_after_postnet = self.speech_decoder_postnet(decoder_outputs[0])
loss = None
if self.training:
# calculate loss
loss_duration_mask = ~duration_mask
loss_spectrogram_mask = spectrogram_mask.unsqueeze(-1).bool()
loss = self.criterion(
outputs_after_postnet=outputs_after_postnet,
outputs_before_postnet=outputs_before_postnet,
duration_outputs=duration_predictions,
pitch_outputs=pitch_predictions,
energy_outputs=energy_predictions,
spectrogram_labels=spectrogram_labels,
duration_labels=duration_labels,
pitch_labels=pitch_labels,
energy_labels=energy_labels,
duration_mask=loss_duration_mask,
spectrogram_mask=loss_spectrogram_mask,
)
if not return_dict:
postnet_outputs = (outputs_after_postnet,)
audio_feature_predictions = (
duration_predictions,
pitch_predictions,
energy_predictions,
)
outputs = postnet_outputs + encoder_outputs + decoder_outputs[1:] + audio_feature_predictions
return ((loss,) + outputs) if loss is not None else outputs
return FastSpeech2ConformerModelOutput(
loss=loss,
spectrogram=outputs_after_postnet,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
duration_outputs=duration_predictions,
pitch_outputs=pitch_predictions,
energy_outputs=energy_predictions,
)
|
class_definition
| 50,149 | 64,194 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,425 |
class HifiGanResidualBlock(nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
super().__init__()
self.leaky_relu_slope = leaky_relu_slope
self.convs1 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=dilation[i],
padding=self.get_padding(kernel_size, dilation[i]),
)
for i in range(len(dilation))
]
)
self.convs2 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
for _ in range(len(dilation))
]
)
def get_padding(self, kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
for layer in self.convs1:
weight_norm(layer)
for layer in self.convs2:
weight_norm(layer)
def remove_weight_norm(self):
for layer in self.convs1:
nn.utils.remove_weight_norm(layer)
for layer in self.convs2:
nn.utils.remove_weight_norm(layer)
def forward(self, hidden_states):
for conv1, conv2 in zip(self.convs1, self.convs2):
residual = hidden_states
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv1(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv2(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
|
class_definition
| 64,279 | 66,408 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,426 |
class FastSpeech2ConformerHifiGan(PreTrainedModel):
config_class = FastSpeech2ConformerHifiGanConfig
main_input_name = "spectrogram"
def __init__(self, config: FastSpeech2ConformerHifiGanConfig):
super().__init__(config)
self.num_kernels = len(config.resblock_kernel_sizes)
self.num_upsamples = len(config.upsample_rates)
self.conv_pre = nn.Conv1d(
config.model_in_dim,
config.upsample_initial_channel,
kernel_size=7,
stride=1,
padding=3,
)
self.upsampler = nn.ModuleList()
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
self.upsampler.append(
nn.ConvTranspose1d(
config.upsample_initial_channel // (2**i),
config.upsample_initial_channel // (2 ** (i + 1)),
kernel_size=kernel_size,
stride=upsample_rate,
padding=(kernel_size - upsample_rate) // 2,
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.upsampler)):
channels = config.upsample_initial_channel // (2 ** (i + 1))
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3)
self.register_buffer("mean", torch.zeros(config.model_in_dim))
self.register_buffer("scale", torch.ones(config.model_in_dim))
# Initialize weights and apply final processing
self.post_init()
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
weight_norm(self.conv_pre)
for layer in self.upsampler:
weight_norm(layer)
for layer in self.resblocks:
layer.apply_weight_norm()
weight_norm(self.conv_post)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv_pre)
for layer in self.upsampler:
nn.utils.remove_weight_norm(layer)
for layer in self.resblocks:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.conv_post)
def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor:
r"""
Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch
of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech
waveform.
Args:
spectrogram (`torch.FloatTensor`):
Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length,
config.model_in_dim)`, or un-batched and of shape `(sequence_length, config.model_in_dim)`.
Returns:
`torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of
shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`.
"""
if self.config.normalize_before:
spectrogram = (spectrogram - self.mean) / self.scale
is_batched = spectrogram.dim() == 3
if not is_batched:
spectrogram = spectrogram.unsqueeze(0)
hidden_states = spectrogram.transpose(2, 1)
hidden_states = self.conv_pre(hidden_states)
for i in range(self.num_upsamples):
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope)
hidden_states = self.upsampler[i](hidden_states)
res_state = self.resblocks[i * self.num_kernels](hidden_states)
for j in range(1, self.num_kernels):
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
hidden_states = res_state / self.num_kernels
hidden_states = nn.functional.leaky_relu(hidden_states)
hidden_states = self.conv_post(hidden_states)
hidden_states = torch.tanh(hidden_states)
if not is_batched:
# remove batch dim and collapse tensor to 1-d audio waveform
waveform = hidden_states.squeeze(0).transpose(1, 0).view(-1)
else:
# remove seq-len dim since this collapses to 1
waveform = hidden_states.squeeze(1)
return waveform
|
class_definition
| 66,607 | 71,586 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,427 |
class FastSpeech2ConformerWithHifiGan(PreTrainedModel):
config_class = FastSpeech2ConformerWithHifiGanConfig
def __init__(self, config: FastSpeech2ConformerWithHifiGanConfig):
super().__init__(config)
self.model = FastSpeech2ConformerModel(config.model_config)
self.vocoder = FastSpeech2ConformerHifiGan(config.vocoder_config)
self.config = config
@replace_return_docstrings(
output_type=FastSpeech2ConformerWithHifiGanOutput, config_class=FastSpeech2ConformerWithHifiGanConfig
)
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.LongTensor] = None,
spectrogram_labels: Optional[torch.FloatTensor] = None,
duration_labels: Optional[torch.LongTensor] = None,
pitch_labels: Optional[torch.FloatTensor] = None,
energy_labels: Optional[torch.FloatTensor] = None,
speaker_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
speaker_embedding: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Union[Tuple, FastSpeech2ConformerModelOutput]:
"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Input sequence of text vectors.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
`[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**.
spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`):
Batch of padded target features.
duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`):
Batch of padded durations.
pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`):
Batch of padded token-averaged pitch.
energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`):
Batch of padded token-averaged energy.
speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`):
Speaker ids used to condition features of speech output by the model.
lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`):
Language ids used to condition features of speech output by the model.
speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`):
Embedding containing conditioning signals for the features of the speech.
return_dict (`bool`, *optional*, defaults to `None`):
Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple.
output_attentions (`bool`, *optional*, defaults to `None`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*, defaults to `None`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
Returns:
Example:
```python
>>> from transformers import (
... FastSpeech2ConformerTokenizer,
... FastSpeech2ConformerWithHifiGan,
... )
>>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer")
>>> inputs = tokenizer("some text to convert to speech", return_tensors="pt")
>>> input_ids = inputs["input_ids"]
>>> model = FastSpeech2ConformerWithHifiGan.from_pretrained("espnet/fastspeech2_conformer_with_hifigan")
>>> output_dict = model(input_ids, return_dict=True)
>>> waveform = output_dict["waveform"]
>>> print(waveform.shape)
torch.Size([1, 49664])
```
"""
return_dict = return_dict if return_dict is not None else self.config.model_config.use_return_dict
output_attentions = (
output_attentions if output_attentions is not None else self.config.model_config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.model_config.output_hidden_states
)
model_outputs = self.model(
input_ids,
attention_mask,
spectrogram_labels=spectrogram_labels,
duration_labels=duration_labels,
pitch_labels=pitch_labels,
energy_labels=energy_labels,
speaker_ids=speaker_ids,
lang_ids=lang_ids,
speaker_embedding=speaker_embedding,
return_dict=return_dict,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if not return_dict:
has_missing_labels = (
spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None
)
if has_missing_labels:
spectrogram = model_outputs[0]
else:
spectrogram = model_outputs[1]
else:
spectrogram = model_outputs["spectrogram"]
waveform = self.vocoder(spectrogram)
if not return_dict:
return model_outputs + (waveform,)
return FastSpeech2ConformerWithHifiGanOutput(waveform=waveform, **model_outputs)
|
class_definition
| 71,796 | 77,856 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
| null | 6,428 |
class FastSpeech2ConformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FastSpeech2ConformerModel`]. It is used to
instantiate a FastSpeech2Conformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the
FastSpeech2Conformer [espnet/fastspeech2_conformer](https://huggingface.co/espnet/fastspeech2_conformer)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 384):
The dimensionality of the hidden layers.
vocab_size (`int`, *optional*, defaults to 78):
The size of the vocabulary.
num_mel_bins (`int`, *optional*, defaults to 80):
The number of mel filters used in the filter bank.
encoder_num_attention_heads (`int`, *optional*, defaults to 2):
The number of attention heads in the encoder.
encoder_layers (`int`, *optional*, defaults to 4):
The number of layers in the encoder.
encoder_linear_units (`int`, *optional*, defaults to 1536):
The number of units in the linear layer of the encoder.
decoder_layers (`int`, *optional*, defaults to 4):
The number of layers in the decoder.
decoder_num_attention_heads (`int`, *optional*, defaults to 2):
The number of attention heads in the decoder.
decoder_linear_units (`int`, *optional*, defaults to 1536):
The number of units in the linear layer of the decoder.
speech_decoder_postnet_layers (`int`, *optional*, defaults to 5):
The number of layers in the post-net of the speech decoder.
speech_decoder_postnet_units (`int`, *optional*, defaults to 256):
The number of units in the post-net layers of the speech decoder.
speech_decoder_postnet_kernel (`int`, *optional*, defaults to 5):
The kernel size in the post-net of the speech decoder.
positionwise_conv_kernel_size (`int`, *optional*, defaults to 3):
The size of the convolution kernel used in the position-wise layer.
encoder_normalize_before (`bool`, *optional*, defaults to `False`):
Specifies whether to normalize before encoder layers.
decoder_normalize_before (`bool`, *optional*, defaults to `False`):
Specifies whether to normalize before decoder layers.
encoder_concat_after (`bool`, *optional*, defaults to `False`):
Specifies whether to concatenate after encoder layers.
decoder_concat_after (`bool`, *optional*, defaults to `False`):
Specifies whether to concatenate after decoder layers.
reduction_factor (`int`, *optional*, defaults to 1):
The factor by which the speech frame rate is reduced.
speaking_speed (`float`, *optional*, defaults to 1.0):
The speed of the speech produced.
use_macaron_style_in_conformer (`bool`, *optional*, defaults to `True`):
Specifies whether to use macaron style in the conformer.
use_cnn_in_conformer (`bool`, *optional*, defaults to `True`):
Specifies whether to use convolutional neural networks in the conformer.
encoder_kernel_size (`int`, *optional*, defaults to 7):
The kernel size used in the encoder.
decoder_kernel_size (`int`, *optional*, defaults to 31):
The kernel size used in the decoder.
duration_predictor_layers (`int`, *optional*, defaults to 2):
The number of layers in the duration predictor.
duration_predictor_channels (`int`, *optional*, defaults to 256):
The number of channels in the duration predictor.
duration_predictor_kernel_size (`int`, *optional*, defaults to 3):
The kernel size used in the duration predictor.
energy_predictor_layers (`int`, *optional*, defaults to 2):
The number of layers in the energy predictor.
energy_predictor_channels (`int`, *optional*, defaults to 256):
The number of channels in the energy predictor.
energy_predictor_kernel_size (`int`, *optional*, defaults to 3):
The kernel size used in the energy predictor.
energy_predictor_dropout (`float`, *optional*, defaults to 0.5):
The dropout rate in the energy predictor.
energy_embed_kernel_size (`int`, *optional*, defaults to 1):
The kernel size used in the energy embed layer.
energy_embed_dropout (`float`, *optional*, defaults to 0.0):
The dropout rate in the energy embed layer.
stop_gradient_from_energy_predictor (`bool`, *optional*, defaults to `False`):
Specifies whether to stop gradients from the energy predictor.
pitch_predictor_layers (`int`, *optional*, defaults to 5):
The number of layers in the pitch predictor.
pitch_predictor_channels (`int`, *optional*, defaults to 256):
The number of channels in the pitch predictor.
pitch_predictor_kernel_size (`int`, *optional*, defaults to 5):
The kernel size used in the pitch predictor.
pitch_predictor_dropout (`float`, *optional*, defaults to 0.5):
The dropout rate in the pitch predictor.
pitch_embed_kernel_size (`int`, *optional*, defaults to 1):
The kernel size used in the pitch embed layer.
pitch_embed_dropout (`float`, *optional*, defaults to 0.0):
The dropout rate in the pitch embed layer.
stop_gradient_from_pitch_predictor (`bool`, *optional*, defaults to `True`):
Specifies whether to stop gradients from the pitch predictor.
encoder_dropout_rate (`float`, *optional*, defaults to 0.2):
The dropout rate in the encoder.
encoder_positional_dropout_rate (`float`, *optional*, defaults to 0.2):
The positional dropout rate in the encoder.
encoder_attention_dropout_rate (`float`, *optional*, defaults to 0.2):
The attention dropout rate in the encoder.
decoder_dropout_rate (`float`, *optional*, defaults to 0.2):
The dropout rate in the decoder.
decoder_positional_dropout_rate (`float`, *optional*, defaults to 0.2):
The positional dropout rate in the decoder.
decoder_attention_dropout_rate (`float`, *optional*, defaults to 0.2):
The attention dropout rate in the decoder.
duration_predictor_dropout_rate (`float`, *optional*, defaults to 0.2):
The dropout rate in the duration predictor.
speech_decoder_postnet_dropout (`float`, *optional*, defaults to 0.5):
The dropout rate in the speech decoder postnet.
max_source_positions (`int`, *optional*, defaults to 5000):
if `"relative"` position embeddings are used, defines the maximum source input positions.
use_masking (`bool`, *optional*, defaults to `True`):
Specifies whether to use masking in the model.
use_weighted_masking (`bool`, *optional*, defaults to `False`):
Specifies whether to use weighted masking in the model.
num_speakers (`int`, *optional*):
Number of speakers. If set to > 1, assume that the speaker ids will be provided as the input and use
speaker id embedding layer.
num_languages (`int`, *optional*):
Number of languages. If set to > 1, assume that the language ids will be provided as the input and use the
languge id embedding layer.
speaker_embed_dim (`int`, *optional*):
Speaker embedding dimension. If set to > 0, assume that speaker_embedding will be provided as the input.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Specifies whether the model is an encoder-decoder.
Example:
```python
>>> from transformers import FastSpeech2ConformerModel, FastSpeech2ConformerConfig
>>> # Initializing a FastSpeech2Conformer style configuration
>>> configuration = FastSpeech2ConformerConfig()
>>> # Initializing a model from the FastSpeech2Conformer style configuration
>>> model = FastSpeech2ConformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "fastspeech2_conformer"
base_config_key = "model_config"
attribute_map = {"num_hidden_layers": "encoder_layers", "num_attention_heads": "encoder_num_attention_heads"}
def __init__(
self,
hidden_size=384,
vocab_size=78,
num_mel_bins=80,
encoder_num_attention_heads=2,
encoder_layers=4,
encoder_linear_units=1536,
decoder_layers=4,
decoder_num_attention_heads=2,
decoder_linear_units=1536,
speech_decoder_postnet_layers=5,
speech_decoder_postnet_units=256,
speech_decoder_postnet_kernel=5,
positionwise_conv_kernel_size=3,
encoder_normalize_before=False,
decoder_normalize_before=False,
encoder_concat_after=False,
decoder_concat_after=False,
reduction_factor=1,
speaking_speed=1.0,
use_macaron_style_in_conformer=True,
use_cnn_in_conformer=True,
encoder_kernel_size=7,
decoder_kernel_size=31,
duration_predictor_layers=2,
duration_predictor_channels=256,
duration_predictor_kernel_size=3,
energy_predictor_layers=2,
energy_predictor_channels=256,
energy_predictor_kernel_size=3,
energy_predictor_dropout=0.5,
energy_embed_kernel_size=1,
energy_embed_dropout=0.0,
stop_gradient_from_energy_predictor=False,
pitch_predictor_layers=5,
pitch_predictor_channels=256,
pitch_predictor_kernel_size=5,
pitch_predictor_dropout=0.5,
pitch_embed_kernel_size=1,
pitch_embed_dropout=0.0,
stop_gradient_from_pitch_predictor=True,
encoder_dropout_rate=0.2,
encoder_positional_dropout_rate=0.2,
encoder_attention_dropout_rate=0.2,
decoder_dropout_rate=0.2,
decoder_positional_dropout_rate=0.2,
decoder_attention_dropout_rate=0.2,
duration_predictor_dropout_rate=0.2,
speech_decoder_postnet_dropout=0.5,
max_source_positions=5000,
use_masking=True,
use_weighted_masking=False,
num_speakers=None,
num_languages=None,
speaker_embed_dim=None,
is_encoder_decoder=True,
**kwargs,
):
if positionwise_conv_kernel_size % 2 == 0:
raise ValueError(
f"positionwise_conv_kernel_size must be odd, but got {positionwise_conv_kernel_size} instead."
)
if encoder_kernel_size % 2 == 0:
raise ValueError(f"encoder_kernel_size must be odd, but got {encoder_kernel_size} instead.")
if decoder_kernel_size % 2 == 0:
raise ValueError(f"decoder_kernel_size must be odd, but got {decoder_kernel_size} instead.")
if duration_predictor_kernel_size % 2 == 0:
raise ValueError(
f"duration_predictor_kernel_size must be odd, but got {duration_predictor_kernel_size} instead."
)
if energy_predictor_kernel_size % 2 == 0:
raise ValueError(
f"energy_predictor_kernel_size must be odd, but got {energy_predictor_kernel_size} instead."
)
if energy_embed_kernel_size % 2 == 0:
raise ValueError(f"energy_embed_kernel_size must be odd, but got {energy_embed_kernel_size} instead.")
if pitch_predictor_kernel_size % 2 == 0:
raise ValueError(
f"pitch_predictor_kernel_size must be odd, but got {pitch_predictor_kernel_size} instead."
)
if pitch_embed_kernel_size % 2 == 0:
raise ValueError(f"pitch_embed_kernel_size must be odd, but got {pitch_embed_kernel_size} instead.")
if hidden_size % encoder_num_attention_heads != 0:
raise ValueError("The hidden_size must be evenly divisible by encoder_num_attention_heads.")
if hidden_size % decoder_num_attention_heads != 0:
raise ValueError("The hidden_size must be evenly divisible by decoder_num_attention_heads.")
if use_masking and use_weighted_masking:
raise ValueError("Either use_masking or use_weighted_masking can be True, but not both.")
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.num_mel_bins = num_mel_bins
self.encoder_config = {
"num_attention_heads": encoder_num_attention_heads,
"layers": encoder_layers,
"kernel_size": encoder_kernel_size,
"attention_dropout_rate": encoder_attention_dropout_rate,
"dropout_rate": encoder_dropout_rate,
"positional_dropout_rate": encoder_positional_dropout_rate,
"linear_units": encoder_linear_units,
"normalize_before": encoder_normalize_before,
"concat_after": encoder_concat_after,
}
self.decoder_config = {
"num_attention_heads": decoder_num_attention_heads,
"layers": decoder_layers,
"kernel_size": decoder_kernel_size,
"attention_dropout_rate": decoder_attention_dropout_rate,
"dropout_rate": decoder_dropout_rate,
"positional_dropout_rate": decoder_positional_dropout_rate,
"linear_units": decoder_linear_units,
"normalize_before": decoder_normalize_before,
"concat_after": decoder_concat_after,
}
self.encoder_num_attention_heads = encoder_num_attention_heads
self.encoder_layers = encoder_layers
self.duration_predictor_channels = duration_predictor_channels
self.duration_predictor_kernel_size = duration_predictor_kernel_size
self.duration_predictor_layers = duration_predictor_layers
self.energy_embed_dropout = energy_embed_dropout
self.energy_embed_kernel_size = energy_embed_kernel_size
self.energy_predictor_channels = energy_predictor_channels
self.energy_predictor_dropout = energy_predictor_dropout
self.energy_predictor_kernel_size = energy_predictor_kernel_size
self.energy_predictor_layers = energy_predictor_layers
self.pitch_embed_dropout = pitch_embed_dropout
self.pitch_embed_kernel_size = pitch_embed_kernel_size
self.pitch_predictor_channels = pitch_predictor_channels
self.pitch_predictor_dropout = pitch_predictor_dropout
self.pitch_predictor_kernel_size = pitch_predictor_kernel_size
self.pitch_predictor_layers = pitch_predictor_layers
self.positionwise_conv_kernel_size = positionwise_conv_kernel_size
self.speech_decoder_postnet_units = speech_decoder_postnet_units
self.speech_decoder_postnet_dropout = speech_decoder_postnet_dropout
self.speech_decoder_postnet_kernel = speech_decoder_postnet_kernel
self.speech_decoder_postnet_layers = speech_decoder_postnet_layers
self.reduction_factor = reduction_factor
self.speaking_speed = speaking_speed
self.stop_gradient_from_energy_predictor = stop_gradient_from_energy_predictor
self.stop_gradient_from_pitch_predictor = stop_gradient_from_pitch_predictor
self.max_source_positions = max_source_positions
self.use_cnn_in_conformer = use_cnn_in_conformer
self.use_macaron_style_in_conformer = use_macaron_style_in_conformer
self.use_masking = use_masking
self.use_weighted_masking = use_weighted_masking
self.num_speakers = num_speakers
self.num_languages = num_languages
self.speaker_embed_dim = speaker_embed_dim
self.duration_predictor_dropout_rate = duration_predictor_dropout_rate
self.is_encoder_decoder = is_encoder_decoder
super().__init__(
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)
|
class_definition
| 822 | 17,183 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py
| null | 6,429 |
class FastSpeech2ConformerHifiGanConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FastSpeech2ConformerHifiGanModel`]. It is used to
instantiate a FastSpeech2Conformer HiFi-GAN vocoder model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
FastSpeech2Conformer
[espnet/fastspeech2_conformer_hifigan](https://huggingface.co/espnet/fastspeech2_conformer_hifigan) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
model_in_dim (`int`, *optional*, defaults to 80):
The number of frequency bins in the input log-mel spectrogram.
upsample_initial_channel (`int`, *optional*, defaults to 512):
The number of input channels into the upsampling network.
upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 2, 2]`):
A tuple of integers defining the stride of each 1D convolutional layer in the upsampling network. The
length of *upsample_rates* defines the number of convolutional layers and has to match the length of
*upsample_kernel_sizes*.
upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[16, 16, 4, 4]`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the upsampling network. The
length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of
*upsample_rates*.
resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`):
A tuple of integers defining the kernel sizes of the 1D convolutional layers in the multi-receptive field
fusion (MRF) module.
resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`):
A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the
multi-receptive field fusion (MRF) module.
initializer_range (`float`, *optional*, defaults to 0.01):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
leaky_relu_slope (`float`, *optional*, defaults to 0.1):
The angle of the negative slope used by the leaky ReLU activation.
normalize_before (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the spectrogram before vocoding using the vocoder's learned mean and variance.
Example:
```python
>>> from transformers import FastSpeech2ConformerHifiGan, FastSpeech2ConformerHifiGanConfig
>>> # Initializing a FastSpeech2ConformerHifiGan configuration
>>> configuration = FastSpeech2ConformerHifiGanConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = FastSpeech2ConformerHifiGan(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "hifigan"
base_config_key = "vocoder_config"
def __init__(
self,
model_in_dim=80,
upsample_initial_channel=512,
upsample_rates=[8, 8, 2, 2],
upsample_kernel_sizes=[16, 16, 4, 4],
resblock_kernel_sizes=[3, 7, 11],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
initializer_range=0.01,
leaky_relu_slope=0.1,
normalize_before=True,
**kwargs,
):
self.model_in_dim = model_in_dim
self.upsample_initial_channel = upsample_initial_channel
self.upsample_rates = upsample_rates
self.upsample_kernel_sizes = upsample_kernel_sizes
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.initializer_range = initializer_range
self.leaky_relu_slope = leaky_relu_slope
self.normalize_before = normalize_before
super().__init__(**kwargs)
|
class_definition
| 17,186 | 21,480 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py
| null | 6,430 |
class FastSpeech2ConformerWithHifiGanConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`FastSpeech2ConformerWithHifiGan`]. It is used to
instantiate a `FastSpeech2ConformerWithHifiGanModel` model according to the specified sub-models configurations,
defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the
FastSpeech2ConformerModel [espnet/fastspeech2_conformer](https://huggingface.co/espnet/fastspeech2_conformer) and
FastSpeech2ConformerHifiGan
[espnet/fastspeech2_conformer_hifigan](https://huggingface.co/espnet/fastspeech2_conformer_hifigan) architectures.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
model_config (`typing.Dict`, *optional*):
Configuration of the text-to-speech model.
vocoder_config (`typing.Dict`, *optional*):
Configuration of the vocoder model.
model_config ([`FastSpeech2ConformerConfig`], *optional*):
Configuration of the text-to-speech model.
vocoder_config ([`FastSpeech2ConformerHiFiGanConfig`], *optional*):
Configuration of the vocoder model.
Example:
```python
>>> from transformers import (
... FastSpeech2ConformerConfig,
... FastSpeech2ConformerHifiGanConfig,
... FastSpeech2ConformerWithHifiGanConfig,
... FastSpeech2ConformerWithHifiGan,
... )
>>> # Initializing FastSpeech2ConformerWithHifiGan sub-modules configurations.
>>> model_config = FastSpeech2ConformerConfig()
>>> vocoder_config = FastSpeech2ConformerHifiGanConfig()
>>> # Initializing a FastSpeech2ConformerWithHifiGan module style configuration
>>> configuration = FastSpeech2ConformerWithHifiGanConfig(model_config.to_dict(), vocoder_config.to_dict())
>>> # Initializing a model (with random weights)
>>> model = FastSpeech2ConformerWithHifiGan(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "fastspeech2_conformer_with_hifigan"
sub_configs = {"model_config": FastSpeech2ConformerConfig, "vocoder_config": FastSpeech2ConformerHifiGanConfig}
def __init__(
self,
model_config: Dict = None,
vocoder_config: Dict = None,
**kwargs,
):
if model_config is None:
model_config = {}
logger.info("model_config is None. initializing the model with default values.")
if vocoder_config is None:
vocoder_config = {}
logger.info("vocoder_config is None. initializing the coarse model with default values.")
self.model_config = FastSpeech2ConformerConfig(**model_config)
self.vocoder_config = FastSpeech2ConformerHifiGanConfig(**vocoder_config)
super().__init__(**kwargs)
|
class_definition
| 21,483 | 24,509 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py
| null | 6,431 |
class SiglipTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a
Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`SiglipModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 64):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
pad_token_id (`int`, *optional*, defaults to 1):
The id of the padding token in the vocabulary.
bos_token_id (`int`, *optional*, defaults to 49406):
The id of the beginning-of-sequence token in the vocabulary.
eos_token_id (`int`, *optional*, defaults to 49407):
The id of the end-of-sequence token in the vocabulary.
Example:
```python
>>> from transformers import SiglipTextConfig, SiglipTextModel
>>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = SiglipTextConfig()
>>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = SiglipTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "siglip_text_model"
base_config_key = "text_config"
def __init__(
self,
vocab_size=32000,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
max_position_embeddings=64,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
# This differs from `CLIPTokenizer`'s default and from openai/siglip
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
pad_token_id=1,
bos_token_id=49406,
eos_token_id=49407,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.attention_dropout = attention_dropout
|
class_definition
| 783 | 5,171 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/configuration_siglip.py
| null | 6,432 |
class SiglipVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
Example:
```python
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = SiglipVisionConfig()
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = SiglipVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "siglip_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=16,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
|
class_definition
| 5,174 | 8,734 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/configuration_siglip.py
| null | 6,433 |
class SiglipConfig(PretrainedConfig):
r"""
[`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to
instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import SiglipConfig, SiglipModel
>>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = SiglipConfig()
>>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = SiglipModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig
>>> from transformers import SiglipTextConfig, SiglipVisionConfig
>>> # Initializing a SiglipText and SiglipVision configuration
>>> config_text = SiglipTextConfig()
>>> config_vision = SiglipVisionConfig()
>>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "siglip"
sub_configs = {"text_config": SiglipTextConfig, "vision_config": SiglipVisionConfig}
def __init__(self, text_config=None, vision_config=None, **kwargs):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.")
self.text_config = SiglipTextConfig(**text_config)
self.vision_config = SiglipVisionConfig(**vision_config)
self.initializer_factor = 1.0
@classmethod
def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs):
r"""
Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision
model configuration.
Returns:
[`SiglipConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
class_definition
| 8,737 | 11,875 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/configuration_siglip.py
| null | 6,434 |
class SiglipVisionModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
class_definition
| 5,443 | 7,229 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,435 |
class SiglipTextModelOutput(ModelOutput):
"""
Base class for text model's outputs that also contains a pooling of the last hidden states.
Args:
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The text embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
text_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
class_definition
| 7,334 | 9,091 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,436 |
class SiglipOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`].
text_model_output (`BaseModelOutputWithPooling`):
The output of the [`SiglipTextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`SiglipVisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_image: torch.FloatTensor = None
logits_per_text: torch.FloatTensor = None
text_embeds: torch.FloatTensor = None
image_embeds: torch.FloatTensor = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
|
class_definition
| 9,187 | 11,059 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,437 |
class SiglipVisionEmbeddings(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing and no class embeddings.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1]
num_positions = self.position_embedding.weight.shape[0]
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embedding(self.position_ids)
patch_pos_embed = self.position_embedding.weight.unsqueeze(0)
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return patch_pos_embed
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor:
_, _, height, width = pixel_values.shape
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
embeddings = patch_embeds.flatten(2).transpose(1, 2)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
|
class_definition
| 11,062 | 14,290 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,438 |
class SiglipTextEmbeddings(nn.Module):
def __init__(self, config: SiglipTextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
max_position_embedding = self.position_embedding.weight.shape[0]
if seq_length > max_position_embedding:
raise ValueError(
f"Sequence length must be less than max_position_embeddings (got `sequence length`: "
f"{seq_length} and max_position_embeddings: {max_position_embedding}"
)
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
|
class_definition
| 14,383 | 15,965 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,439 |
class SiglipAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
k_v_seq_len = key_states.shape[-2]
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
raise ValueError(
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
|
class_definition
| 15,968 | 19,395 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,440 |
class SiglipFlashAttention2(SiglipAttention):
"""
SiglipAttention flash attention module. This module inherits from `SiglipAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
is_causal = False
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
output_attentions = False
batch_size, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous()
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
|
class_definition
| 19,398 | 23,947 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,441 |
class SiglipSdpaAttention(SiglipAttention):
"""
Siglip attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`SiglipAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
is_causal = False
# Adapted from SiglipAttention.forward and transformers.models.llama.modeling_llama.LlamaSdpaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"SiglipModel is using SiglipSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
batch_size, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if self.is_causal and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, q_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None
|
class_definition
| 23,950 | 27,283 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,442 |
class SiglipMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
|
class_definition
| 27,509 | 28,081 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,443 |
class SiglipEncoderLayer(nn.Module):
def __init__(self, config: SiglipConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = SIGLIP_ATTENTION_CLASSES[config._attn_implementation](config=config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = SiglipMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
# Ignore copy
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 28,084 | 29,986 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,444 |
class SiglipPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SiglipConfig
base_model_prefix = "siglip"
supports_gradient_checkpointing = True
_no_split_modules = [
"SiglipTextEmbeddings",
"SiglipEncoderLayer",
"SiglipVisionEmbeddings",
"SiglipEncoderLayer",
"SiglipMultiheadAttentionPoolingHead",
]
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, SiglipVisionEmbeddings):
width = (
self.config.vision_config.hidden_size
if isinstance(self.config, SiglipConfig)
else self.config.hidden_size
)
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
elif isinstance(module, nn.Embedding):
default_flax_embed_init(module.weight)
elif isinstance(module, SiglipAttention):
nn.init.xavier_uniform_(module.q_proj.weight)
nn.init.xavier_uniform_(module.k_proj.weight)
nn.init.xavier_uniform_(module.v_proj.weight)
nn.init.xavier_uniform_(module.out_proj.weight)
nn.init.zeros_(module.q_proj.bias)
nn.init.zeros_(module.k_proj.bias)
nn.init.zeros_(module.v_proj.bias)
nn.init.zeros_(module.out_proj.bias)
elif isinstance(module, SiglipMLP):
nn.init.xavier_uniform_(module.fc1.weight)
nn.init.xavier_uniform_(module.fc2.weight)
nn.init.normal_(module.fc1.bias, std=1e-6)
nn.init.normal_(module.fc2.bias, std=1e-6)
elif isinstance(module, SiglipMultiheadAttentionPoolingHead):
nn.init.xavier_uniform_(module.probe.data)
nn.init.xavier_uniform_(module.attention.in_proj_weight.data)
nn.init.zeros_(module.attention.in_proj_bias.data)
elif isinstance(module, SiglipModel):
logit_scale_init = torch.log(torch.tensor(1.0))
module.logit_scale.data.fill_(logit_scale_init)
module.logit_bias.data.zero_()
elif isinstance(module, SiglipForImageClassification):
nn.init.normal_(
module.classifier.weight,
std=self.config.vision_config.hidden_size**-0.5 * self.config.initializer_factor,
)
elif isinstance(module, (nn.Linear, nn.Conv2d)):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 29,989 | 32,823 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,445 |
class SiglipEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`SiglipEncoderLayer`].
Args:
config: SiglipConfig
"""
def __init__(self, config: SiglipConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
# Ignore copy
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
|
class_definition
| 38,771 | 42,654 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,446 |
class SiglipTextTransformer(nn.Module):
def __init__(self, config: SiglipTextConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipTextEmbeddings(config)
self.encoder = SiglipEncoder(config)
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.head = nn.Linear(embed_dim, embed_dim)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify input_ids")
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
# note: SigLIP's text model does not use a causal mask, unlike the original CLIP model.
# expand attention_mask
if attention_mask is not None and not self._use_flash_attention_2:
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.final_layer_norm(last_hidden_state)
# Assuming "sticky" EOS tokenization, last token is always EOS.
pooled_output = last_hidden_state[:, -1, :]
pooled_output = self.head(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 42,657 | 45,710 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,447 |
class SiglipTextModel(SiglipPreTrainedModel):
config_class = SiglipTextConfig
def __init__(self, config: SiglipTextConfig):
super().__init__(config)
self.text_model = SiglipTextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, value):
self.text_model.embeddings.token_embedding = value
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, SiglipTextModel
>>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
>>> # important: make sure to set padding="max_length" as that's how the model was trained
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
|
class_definition
| 45,843 | 48,030 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,448 |
class SiglipVisionTransformer(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipVisionEmbeddings(config)
self.encoder = SiglipEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.use_head = True if not hasattr(config, "vision_use_head") else config.vision_use_head
if self.use_head:
self.head = SiglipMultiheadAttentionPoolingHead(config)
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
def forward(
self,
pixel_values,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = False,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.post_layernorm(last_hidden_state)
pooler_output = self.head(last_hidden_state) if self.use_head else None
if not return_dict:
return (last_hidden_state, pooler_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooler_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 48,033 | 50,379 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,449 |
class SiglipMultiheadAttentionPoolingHead(nn.Module):
"""Multihead Attention Pooling."""
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp = SiglipMLP(config)
def forward(self, hidden_state):
batch_size = hidden_state.shape[0]
probe = self.probe.repeat(batch_size, 1, 1)
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
residual = hidden_state
hidden_state = self.layernorm(hidden_state)
hidden_state = residual + self.mlp(hidden_state)
return hidden_state[:, 0]
|
class_definition
| 50,382 | 51,256 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,450 |
class SiglipVisionModel(SiglipPreTrainedModel):
config_class = SiglipVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: SiglipVisionConfig):
super().__init__(config)
self.vision_model = SiglipVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
def forward(
self,
pixel_values,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, SiglipVisionModel
>>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled features
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
)
|
class_definition
| 51,391 | 53,481 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,451 |
class SiglipModel(SiglipPreTrainedModel):
config_class = SiglipConfig
def __init__(self, config: SiglipConfig):
super().__init__(config)
if not isinstance(config.text_config, SiglipTextConfig):
raise TypeError(
"config.text_config is expected to be of type SiglipTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, SiglipVisionConfig):
raise TypeError(
"config.vision_config is expected to be of type SiglipVisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
# First, initialize the text and vision models with proper attention implementation
text_model = SiglipTextModel._from_config(text_config)
vision_model = SiglipVisionModel._from_config(vision_config)
# Second, get the text and vision submodules (for backward compatibility)
self.text_model = text_model.text_model
self.vision_model = vision_model.vision_model
self.logit_scale = nn.Parameter(torch.randn(1))
self.logit_bias = nn.Parameter(torch.randn(1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`SiglipTextModel`].
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> import torch
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
>>> # important: make sure to set padding="max_length" as that's how the model was trained
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
>>> with torch.no_grad():
... text_features = model.get_text_features(**inputs)
```"""
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[1]
return pooled_output
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`SiglipVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AutoModel
>>> import torch
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... image_features = model.get_image_features(**inputs)
```"""
# Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
)
pooled_output = vision_outputs[1]
return pooled_output
@add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> Union[Tuple, SiglipOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AutoModel
>>> import torch
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"]
>>> # important: we pass `padding=max_length` since the model was trained with this
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
31.9% that image 0 is 'a photo of 2 cats'
```"""
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[1]
text_embeds = text_outputs[1]
# normalized features
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logits_per_text = (
torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)) * self.logit_scale.exp()
+ self.logit_bias
)
logits_per_image = logits_per_text.t()
loss = None
if return_loss:
# Adapted from https://github.com/google-research/big_vision/blob/01edb81a4716f93a48be43b3a4af14e29cdb3a7f/big_vision/trainers/proj/image_text/siglip.py#L287
eye = torch.eye(logits_per_text.size(0), device=logits_per_text.device)
m1_diag1 = -torch.ones_like(logits_per_text) + 2 * eye
loglik = torch.nn.functional.logsigmoid(m1_diag1 * logits_per_text)
nll = -torch.sum(loglik, dim=-1)
loss = nll.mean()
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return SiglipOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
|
class_definition
| 53,530 | 63,688 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,452 |
class SiglipForImageClassification(SiglipPreTrainedModel):
main_input_name = "pixel_values"
def __init__(self, config: SiglipConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
# Create the vision model with proper attention
# and take only vision_model submodule (for backward compatibility)
vision_model = SiglipVisionModel._from_config(config.vision_config)
self.vision_model = vision_model.vision_model
# Classifier head
self.classifier = (
nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, SiglipForImageClassification
>>> import torch
>>> from PIL import Image
>>> import requests
>>> torch.manual_seed(3) # doctest: +IGNORE_RESULT
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # note: we are loading a `SiglipModel` from the hub here,
>>> # so the head will be randomly initialized, hence the predictions will be random if seed is not set above.
>>> image_processor = AutoImageProcessor.from_pretrained("google/siglip-base-patch16-224")
>>> model = SiglipForImageClassification.from_pretrained("google/siglip-base-patch16-224")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the two classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: LABEL_1
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.vision_model(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
)
sequence_output = outputs[0]
# average pool the patch tokens
sequence_output = torch.mean(sequence_output, dim=1)
# apply classifier
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 63,929 | 69,273 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
| null | 6,453 |
class SiglipProcessor(ProcessorMixin):
r"""
Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.
[`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
[`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.
Args:
image_processor ([`SiglipImageProcessor`]):
The image processor is a required input.
tokenizer ([`SiglipTokenizer`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "SiglipImageProcessor"
tokenizer_class = "SiglipTokenizer"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: int = None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` argument to
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
encoding = self.tokenizer(
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
)
if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchFeature(data=dict(**image_features), tensor_type=return_tensors)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
class_definition
| 972 | 7,301 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/processing_siglip.py
| null | 6,454 |
class SiglipImageProcessor(BaseImageProcessor):
r"""
Constructs a SigLIP image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image by the specified mean and standard deviation. Can be overridden by
`do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
do_convert_rgb: bool = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, param_name="size", default_to_square=False)
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
height, width = size["height"], size["width"]
images = [
resize(image=image, size=(height, width), resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
|
class_definition
| 1,385 | 11,915 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/image_processing_siglip.py
| null | 6,455 |
class SiglipTokenizer(PreTrainedTokenizer):
"""
Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"</s>"`):
The token used for padding, for example when batching sequences of different lengths.
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
model_max_length (`int`, *optional*, defaults to 64):
The maximum length (in number of tokens) for model inputs.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
eos_token="</s>",
unk_token="<unk>",
pad_token="</s>",
additional_special_tokens=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
model_max_length=64,
do_lower_case=True,
**kwargs,
) -> None:
requires_backends(self, "protobuf")
pad_token = (
AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True)
if isinstance(pad_token, str)
else pad_token
)
unk_token = (
AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True)
if isinstance(unk_token, str)
else unk_token
)
eos_token = (
AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True)
if isinstance(eos_token, str)
else eos_token
)
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.do_lower_case = do_lower_case
self.vocab_file = vocab_file
self.sp_model = self.get_spm_processor()
self.vocab_file = vocab_file
super().__init__(
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
additional_special_tokens=additional_special_tokens,
sp_model_kwargs=self.sp_model_kwargs,
model_max_length=model_max_length,
do_lower_case=do_lower_case,
**kwargs,
)
def get_spm_processor(self):
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
with open(self.vocab_file, "rb") as f:
sp_model = f.read()
model_pb2 = import_protobuf()
model = model_pb2.ModelProto.FromString(sp_model)
normalizer_spec = model_pb2.NormalizerSpec()
normalizer_spec.add_dummy_prefix = False
model.normalizer_spec.MergeFrom(normalizer_spec)
sp_model = model.SerializeToString()
tokenizer.LoadFromSerializedProto(sp_model)
return tokenizer
@property
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size
def vocab_size(self):
return self.sp_model.get_piece_size()
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
# normal case: some special tokens
if token_ids_1 is None:
return ([0] * len(token_ids_0)) + [1]
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
"""Do not add eos again if user already added it."""
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
" eos tokens being added."
)
return token_ids
else:
return token_ids + [self.eos_token_id]
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
eos = [self.eos_token_id]
if token_ids_1 is None:
return len(token_ids_0 + eos) * [0]
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A sequence has the following format:
- single sequence: `X </s>`
- pair of sequences: `A </s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
if token_ids_1 is None:
return token_ids_0
else:
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
return token_ids_0 + token_ids_1
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def remove_punctuation(self, text: str) -> str:
return text.translate(str.maketrans("", "", string.punctuation))
# source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
def canonicalize_text(self, text, *, keep_punctuation_exact_string=None):
"""Returns canonicalized `text` (puncuation removed).
Args:
text (`str`):
String to be canonicalized.
keep_punctuation_exact_string (`str`, *optional*):
If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}'
(but will still remove '{' and '}' that appear separately).
"""
if keep_punctuation_exact_string:
text = keep_punctuation_exact_string.join(
self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string)
)
else:
text = self.remove_punctuation(text)
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
"""
Converts a string to a list of tokens.
"""
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
tokens = tokens[1:]
return tokens
@property
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length
def unk_token_length(self):
return len(self.sp_model.encode(str(self.unk_token)))
def _tokenize(self, text, **kwargs):
"""
Returns a tokenized string.
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
SPIECE_UNDERLINE.
For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`.
Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
"""
text = self.canonicalize_text(text, keep_punctuation_exact_string=None)
tokens = self.sp_model.encode(text, out_type=str)
# 1. Encode string + prefix ex: "<unk> Hey"
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
|
class_definition
| 1,224 | 15,951 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/tokenization_siglip.py
| null | 6,456 |
class MoonshineEncoderMLP(nn.Module):
def __init__(self, config, hidden_act):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
|
class_definition
| 2,446 | 3,033 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
| null | 6,457 |
class MoonshineDecoderMLP(nn.Module):
def __init__(self, config, hidden_act):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size * 2)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states, gate = hidden_states.chunk(2, dim=-1)
hidden_states = self.activation_fn(gate) * hidden_states
hidden_states = self.fc2(hidden_states)
return hidden_states
|
class_definition
| 3,036 | 3,695 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
| null | 6,458 |
class MoonshineAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
config: MoonshineConfig,
layer_idx: int,
is_causal: bool,
num_attention_heads: int,
num_key_value_heads: int,
):
super().__init__()
config.update({"num_attention_heads": num_attention_heads, "num_key_value_heads": num_key_value_heads})
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = is_causal
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
key_value_states: Optional[torch.Tensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len = hidden_states.shape[:-1]
query_states = (
self.q_proj(hidden_states).view(bsz, q_len, self.config.num_key_value_heads, self.head_dim).transpose(1, 2)
)
is_cross_attention = key_value_states is not None
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
past_key_value.is_updated[self.layer_idx] = True
past_key_value = past_key_value.cross_attention_cache
else:
past_key_value = past_key_value.self_attention_cache
# use key_value_states if cross attention
current_states = key_value_states if key_value_states is not None else hidden_states
if is_cross_attention and past_key_value and is_updated:
key_states = past_key_value.key_cache[self.layer_idx]
value_states = past_key_value.value_cache[self.layer_idx]
else:
key_states = (
self.k_proj(current_states)
.view(bsz, -1, self.config.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
value_states = (
self.v_proj(current_states)
.view(bsz, -1, self.config.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
if is_cross_attention and past_key_value is not None:
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
if not is_cross_attention:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
is_causal = True if self.is_causal and attention_mask is None and q_len > 1 else False
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
is_causal=is_causal,
**kwargs,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
|
class_definition
| 7,575 | 12,934 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
| null | 6,459 |
class MoonshineRotaryEmbedding(nn.Module):
def __init__(self, config: MoonshineConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
class_definition
| 12,937 | 16,140 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
| null | 6,460 |
class MoonshineEncoderLayer(nn.Module):
def __init__(self, config: MoonshineConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=False,
num_attention_heads=config.encoder_num_attention_heads,
num_key_value_heads=config.encoder_num_key_value_heads,
)
self.mlp = MoonshineEncoderMLP(config, config.encoder_hidden_act)
self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
|
class_definition
| 16,143 | 18,437 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
| null | 6,461 |
class MoonshineDecoderLayer(nn.Module):
def __init__(self, config: MoonshineConfig, layer_idx: int = None):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=True,
num_attention_heads=config.decoder_num_attention_heads,
num_key_value_heads=config.decoder_num_key_value_heads,
)
self.encoder_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=False,
num_attention_heads=config.decoder_num_attention_heads,
num_key_value_heads=config.decoder_num_key_value_heads,
)
self.mlp = MoonshineDecoderMLP(config, config.decoder_hidden_act)
self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.final_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
encoder_position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
encoder_position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
|
class_definition
| 18,440 | 22,008 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
| null | 6,462 |
class MoonshinePreTrainedModel(PreTrainedModel):
config_class = MoonshineConfig
base_model_prefix = "model"
main_input_name = "input_values"
supports_gradient_checkpointing = True
_no_split_modules = ["MoonshineEncoderLayer", "MoonshineDecoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
output_conv1_length = int((input_lengths - 127) / 64 + 1)
output_conv2_length = int((output_conv1_length - 7) / 3 + 1)
output_conv3_length = int((output_conv2_length - 3) / 2 + 1)
return output_conv3_length
|
class_definition
| 23,046 | 24,343 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
| null | 6,463 |
class MoonshineEncoder(MoonshinePreTrainedModel):
"""
Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoonshineEncoderLayer`]
Args:
config: MoonshineConfig
"""
main_input_name = "input_values"
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.config = config
embed_dim = config.hidden_size
self.conv1 = nn.Conv1d(1, embed_dim, kernel_size=127, stride=64, bias=False)
self.conv2 = nn.Conv1d(embed_dim, 2 * embed_dim, kernel_size=7, stride=3)
self.conv3 = nn.Conv1d(2 * embed_dim, embed_dim, kernel_size=3, stride=2)
self.groupnorm = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=1e-5)
self.rotary_emb = MoonshineRotaryEmbedding(config=config)
self.layers = nn.ModuleList(
[MoonshineEncoderLayer(config, idx) for idx in range(config.encoder_num_hidden_layers)]
)
self.layer_norm = nn.LayerNorm(embed_dim, bias=False)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.conv1
def set_input_embeddings(self, value: nn.Module):
self.conv1 = value
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Float values of the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
and conversion into a tensor of type `torch.FloatTensor`.
attention_mask (`torch.Tensor`)`, *optional*):
Moonshine does not support masking of the `input_values`, this argument is preserved for compatibility,
but it is not used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_values is None:
raise ValueError("You must specify input_values.")
# conv downsampling
input_values = input_values.unsqueeze(1)
hidden_states = nn.functional.tanh(self.conv1(input_values))
hidden_states = self.groupnorm(hidden_states)
hidden_states = nn.functional.gelu(self.conv2(hidden_states))
hidden_states = nn.functional.gelu(self.conv3(hidden_states))
hidden_states = hidden_states.permute(0, 2, 1)
position_ids = torch.arange(0, hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# encoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
None,
position_ids,
None,
output_attentions,
False,
None,
position_embeddings,
)
else:
layer_outputs = encoder_layer(
hidden_states,
position_ids=position_ids,
output_attentions=output_attentions,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last encoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
|
class_definition
| 24,346 | 30,104 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
| null | 6,464 |
class MoonshineDecoder(MoonshinePreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoonshineDecoderLayer`]
Args:
config: MoonshineConfig
"""
main_input_name = "input_ids"
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[MoonshineDecoderLayer(config, idx) for idx in range(config.decoder_num_hidden_layers)]
)
self.norm = nn.LayerNorm(config.hidden_size, bias=False)
self.rotary_emb = MoonshineRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(MOONSHINE_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
"""
Args:
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
self_attention_cache = DynamicCache()
cross_attention_cache = DynamicCache()
past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
encoder_hidden_states,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
encoder_hidden_states=encoder_hidden_states,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
return output if return_dict else output.to_tuple()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
|
class_definition
| 34,920 | 47,102 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
| null | 6,465 |
class MoonshineModel(MoonshinePreTrainedModel):
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.encoder = MoonshineEncoder(config)
self.decoder = MoonshineDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def freeze_encoder(self):
"""
Calling this function will disable the gradient computation for the Moonshine encoder so that its parameters will
not be updated during training.
"""
self.encoder._freeze_parameters()
def _mask_input_features(
self,
input_features: torch.FloatTensor,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return input_features
# generate indices & apply SpecAugment along time axis
batch_size, hidden_size, sequence_length = input_features.size()
if self.config.mask_time_prob > 0 and self.training:
# generate indices & apply SpecAugment along time axis
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool)
mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1)
input_features[mask_time_indices] = 0
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool)
input_features[mask_feature_indices] = 0
return input_features
@add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoFeatureExtractor, MoonshineModel
>>> from datasets import load_dataset
>>> model = MoonshineModel.from_pretrained("UsefulSensors/moonshine-tiny")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("UsefulSensors/moonshine-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_values, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 288]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
position_ids=decoder_position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
|
class_definition
| 58,286 | 65,556 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
| null | 6,466 |
class MoonshineForConditionalGeneration(MoonshinePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["proj_out.weight"]
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.model = MoonshineModel(config)
self.proj_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.proj_out
def set_output_embeddings(self, new_embeddings):
self.proj_out = new_embeddings
def get_input_embeddings(self) -> nn.Module:
return self.model.get_input_embeddings()
@add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoProcessor, MoonshineForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("UsefulSensors/moonshine-tiny")
>>> model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> generated_ids = model.generate(input_values, max_new_tokens=100)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
'Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_values,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
decoder_position_ids=decoder_position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
logits = self.proj_out(outputs[0])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def generate(self, *args, **kwargs):
# TODO: @eustlb do it rather with a custom logits processor
token_limit_factor = 6.5 / 16000.0 # Maximum of 6.5 tokens per second
if kwargs.get("max_new_tokens") is None and kwargs.get("max_length") is None:
if kwargs.get("attention_mask") is not None:
seq_lens = kwargs["attention_mask"].sum(dim=-1)
else:
seq_lens = kwargs["input_values"].shape[-1]
max_length = int(seq_lens.max().item() * token_limit_factor)
logger.warning_once(
f"Based on the input length, Moonshine will generate up to {max_length} tokens (ratio of 6.5 tokens/second). "
"To specify a different length, set either `max_new_tokens` or `max_length`."
)
kwargs["max_length"] = max_length
return super().generate(*args, **kwargs)
|
class_definition
| 66,326 | 72,363 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
| null | 6,467 |
class MoonshineConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MoonshineModel`]. It is used to instantiate a Moonshine
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Moonshine
[UsefulSensors/moonshine-tiny](https://huggingface.co/UsefulSensors/moonshine-tiny).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32768):
Vocabulary size of the Moonshine model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MoonshineModel`].
hidden_size (`int`, *optional*, defaults to 288):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 1152):
Dimension of the MLP representations.
encoder_num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
decoder_num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer decoder.
encoder_num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
encoder_num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`encoder_num_key_value_heads=encoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if
`encoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
decoder_num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`decoder_num_key_value_heads=decoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if
`decoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`decoder_num_attention_heads`.
encoder_hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder.
decoder_hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
decoder_start_token_id (`int`, *optional*, defaults to 1):
Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
are provided to the `generate` function. It is used to guide the model`s generation process depending on
the task.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
partial_rotary_factor (`float`, *optional*, defaults to 0.9):
Percentage of the query and keys which will have rotary embedding.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as an encoder/decoder or not.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
bos_token_id (`int`, *optional*, defaults to 1):
Denotes beginning of sequences token id.
eos_token_id (`int`, *optional*, defaults to 2):
Denotes end of sequences token id.
Example:
```python
>>> from transformers import MoonshineModel, MoonshineConfig
>>> # Initializing a Moonshine style configuration
>>> configuration = MoonshineConfig().from_pretrained("UsefulSensors/moonshine-tiny")
>>> # Initializing a model from the configuration
>>> model = MoonshineModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "moonshine"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_key_value_heads": "encoder_num_key_value_heads",
"num_attention_heads": "encoder_num_attention_heads",
"num_hidden_layers": "encoder_num_hidden_layers",
}
def __init__(
self,
vocab_size=32768,
hidden_size=288,
intermediate_size=1152,
encoder_num_hidden_layers=6,
decoder_num_hidden_layers=6,
encoder_num_attention_heads=8,
decoder_num_attention_heads=8,
encoder_num_key_value_heads=None,
decoder_num_key_value_heads=None,
encoder_hidden_act="gelu",
decoder_hidden_act="silu",
max_position_embeddings=512,
initializer_range=0.02,
decoder_start_token_id=1,
use_cache=True,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=0.9,
is_encoder_decoder=True,
attention_bias=False,
attention_dropout=0.0,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.encoder_num_hidden_layers = encoder_num_hidden_layers
self.decoder_num_hidden_layers = decoder_num_hidden_layers
self.encoder_num_attention_heads = encoder_num_attention_heads
self.decoder_num_attention_heads = decoder_num_attention_heads
if encoder_num_key_value_heads is None:
encoder_num_key_value_heads = encoder_num_attention_heads
self.encoder_num_key_value_heads = encoder_num_key_value_heads
if decoder_num_key_value_heads is None:
decoder_num_key_value_heads = decoder_num_attention_heads
self.decoder_num_key_value_heads = decoder_num_key_value_heads
self.encoder_hidden_act = encoder_hidden_act
self.decoder_hidden_act = decoder_hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self.is_encoder_decoder = is_encoder_decoder
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
rope_config_validation(self)
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
|
class_definition
| 1,550 | 13,141 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/configuration_moonshine.py
| null | 6,468 |
class MoonshineConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MoonshineModel`]. It is used to instantiate a Moonshine
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Moonshine
[UsefulSensors/moonshine-tiny](https://huggingface.co/UsefulSensors/moonshine-tiny).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32768):
Vocabulary size of the Moonshine model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MoonshineModel`].
hidden_size (`int`, *optional*, defaults to 288):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 1152):
Dimension of the MLP representations.
encoder_num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
decoder_num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer decoder.
encoder_num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
encoder_num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`encoder_num_key_value_heads=encoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if
`encoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
decoder_num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`decoder_num_key_value_heads=decoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if
`decoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`decoder_num_attention_heads`.
encoder_hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder.
decoder_hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
decoder_start_token_id (`int`, *optional*, defaults to 1):
Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
are provided to the `generate` function. It is used to guide the model`s generation process depending on
the task.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
partial_rotary_factor (`float`, *optional*, defaults to 0.9):
Percentage of the query and keys which will have rotary embedding.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as an encoder/decoder or not.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
bos_token_id (`int`, *optional*, defaults to 1):
Denotes beginning of sequences token id.
eos_token_id (`int`, *optional*, defaults to 2):
Denotes end of sequences token id.
Example:
```python
>>> from transformers import MoonshineModel, MoonshineConfig
>>> # Initializing a Moonshine style configuration
>>> configuration = MoonshineConfig().from_pretrained("UsefulSensors/moonshine-tiny")
>>> # Initializing a model from the configuration
>>> model = MoonshineModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "moonshine"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_key_value_heads": "encoder_num_key_value_heads",
"num_attention_heads": "encoder_num_attention_heads",
"num_hidden_layers": "encoder_num_hidden_layers",
}
def __init__(
self,
vocab_size=32768,
hidden_size=288,
intermediate_size=1152,
encoder_num_hidden_layers=6,
decoder_num_hidden_layers=6,
encoder_num_attention_heads=8,
decoder_num_attention_heads=8,
encoder_num_key_value_heads=None,
decoder_num_key_value_heads=None,
encoder_hidden_act="gelu",
decoder_hidden_act="silu",
max_position_embeddings=512,
initializer_range=0.02,
decoder_start_token_id=1,
use_cache=True,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=0.9,
is_encoder_decoder=True,
attention_bias=False,
attention_dropout=0.0,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.encoder_num_hidden_layers = encoder_num_hidden_layers
self.decoder_num_hidden_layers = decoder_num_hidden_layers
self.encoder_num_attention_heads = encoder_num_attention_heads
self.decoder_num_attention_heads = decoder_num_attention_heads
if encoder_num_key_value_heads is None:
encoder_num_key_value_heads = encoder_num_attention_heads
self.encoder_num_key_value_heads = encoder_num_key_value_heads
if decoder_num_key_value_heads is None:
decoder_num_key_value_heads = decoder_num_attention_heads
self.decoder_num_key_value_heads = decoder_num_key_value_heads
self.encoder_hidden_act = encoder_hidden_act
self.decoder_hidden_act = decoder_hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self.is_encoder_decoder = is_encoder_decoder
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
rope_config_validation(self)
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
|
class_definition
| 1,828 | 13,419 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
| null | 6,469 |
class MoonshineEncoderMLP(nn.Module):
def __init__(self, config, hidden_act):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
|
class_definition
| 13,422 | 14,009 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
| null | 6,470 |
class MoonshineDecoderMLP(nn.Module):
def __init__(self, config, hidden_act):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size * 2)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states, gate = hidden_states.chunk(2, dim=-1)
hidden_states = self.activation_fn(gate) * hidden_states
hidden_states = self.fc2(hidden_states)
return hidden_states
|
class_definition
| 14,012 | 14,671 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
| null | 6,471 |
class MoonshineAttention(GlmAttention):
def __init__(
self,
config: MoonshineConfig,
layer_idx: int,
is_causal: bool,
num_attention_heads: int,
num_key_value_heads: int,
):
config.update({"num_attention_heads": num_attention_heads, "num_key_value_heads": num_key_value_heads})
super().__init__(config, layer_idx)
self.is_causal = is_causal
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
key_value_states: Optional[torch.Tensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len = hidden_states.shape[:-1]
query_states = (
self.q_proj(hidden_states).view(bsz, q_len, self.config.num_key_value_heads, self.head_dim).transpose(1, 2)
)
is_cross_attention = key_value_states is not None
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
past_key_value.is_updated[self.layer_idx] = True
past_key_value = past_key_value.cross_attention_cache
else:
past_key_value = past_key_value.self_attention_cache
# use key_value_states if cross attention
current_states = key_value_states if key_value_states is not None else hidden_states
if is_cross_attention and past_key_value and is_updated:
key_states = past_key_value.key_cache[self.layer_idx]
value_states = past_key_value.value_cache[self.layer_idx]
else:
key_states = (
self.k_proj(current_states)
.view(bsz, -1, self.config.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
value_states = (
self.v_proj(current_states)
.view(bsz, -1, self.config.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
if is_cross_attention and past_key_value is not None:
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
if not is_cross_attention:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
is_causal = True if self.is_causal and attention_mask is None and q_len > 1 else False
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
is_causal=is_causal,
**kwargs,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
|
class_definition
| 14,674 | 19,073 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
| null | 6,472 |
class MoonshineRotaryEmbedding(GlmRotaryEmbedding):
pass
|
class_definition
| 19,076 | 19,136 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
| null | 6,473 |
class MoonshineEncoderLayer(LlamaDecoderLayer):
def __init__(self, config: MoonshineConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.self_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=False,
num_attention_heads=config.encoder_num_attention_heads,
num_key_value_heads=config.encoder_num_key_value_heads,
)
self.mlp = MoonshineEncoderMLP(config, config.encoder_hidden_act)
self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
|
class_definition
| 19,139 | 19,812 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
| null | 6,474 |
class MoonshineDecoderLayer(nn.Module):
def __init__(self, config: MoonshineConfig, layer_idx: int = None):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=True,
num_attention_heads=config.decoder_num_attention_heads,
num_key_value_heads=config.decoder_num_key_value_heads,
)
self.encoder_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=False,
num_attention_heads=config.decoder_num_attention_heads,
num_key_value_heads=config.decoder_num_key_value_heads,
)
self.mlp = MoonshineDecoderMLP(config, config.decoder_hidden_act)
self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.final_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
encoder_position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
encoder_position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
|
class_definition
| 19,815 | 23,383 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
| null | 6,475 |
class MoonshinePreTrainedModel(PreTrainedModel):
config_class = MoonshineConfig
base_model_prefix = "model"
main_input_name = "input_values"
supports_gradient_checkpointing = True
_no_split_modules = ["MoonshineEncoderLayer", "MoonshineDecoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
output_conv1_length = int((input_lengths - 127) / 64 + 1)
output_conv2_length = int((output_conv1_length - 7) / 3 + 1)
output_conv3_length = int((output_conv2_length - 3) / 2 + 1)
return output_conv3_length
|
class_definition
| 24,421 | 25,718 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
| null | 6,476 |
class MoonshineEncoder(MoonshinePreTrainedModel):
"""
Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoonshineEncoderLayer`]
Args:
config: MoonshineConfig
"""
main_input_name = "input_values"
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.config = config
embed_dim = config.hidden_size
self.conv1 = nn.Conv1d(1, embed_dim, kernel_size=127, stride=64, bias=False)
self.conv2 = nn.Conv1d(embed_dim, 2 * embed_dim, kernel_size=7, stride=3)
self.conv3 = nn.Conv1d(2 * embed_dim, embed_dim, kernel_size=3, stride=2)
self.groupnorm = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=1e-5)
self.rotary_emb = MoonshineRotaryEmbedding(config=config)
self.layers = nn.ModuleList(
[MoonshineEncoderLayer(config, idx) for idx in range(config.encoder_num_hidden_layers)]
)
self.layer_norm = nn.LayerNorm(embed_dim, bias=False)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.conv1
def set_input_embeddings(self, value: nn.Module):
self.conv1 = value
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Float values of the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
and conversion into a tensor of type `torch.FloatTensor`.
attention_mask (`torch.Tensor`)`, *optional*):
Moonshine does not support masking of the `input_values`, this argument is preserved for compatibility,
but it is not used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_values is None:
raise ValueError("You must specify input_values.")
# conv downsampling
input_values = input_values.unsqueeze(1)
hidden_states = nn.functional.tanh(self.conv1(input_values))
hidden_states = self.groupnorm(hidden_states)
hidden_states = nn.functional.gelu(self.conv2(hidden_states))
hidden_states = nn.functional.gelu(self.conv3(hidden_states))
hidden_states = hidden_states.permute(0, 2, 1)
position_ids = torch.arange(0, hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# encoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
None,
position_ids,
None,
output_attentions,
False,
None,
position_embeddings,
)
else:
layer_outputs = encoder_layer(
hidden_states,
position_ids=position_ids,
output_attentions=output_attentions,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last encoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
|
class_definition
| 25,721 | 31,479 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
| null | 6,477 |
class MoonshineDecoder(LlamaModel):
main_input_name = "input_ids"
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.norm = nn.LayerNorm(config.hidden_size, bias=False)
self.layers = nn.ModuleList(
[MoonshineDecoderLayer(config, idx) for idx in range(config.decoder_num_hidden_layers)]
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
"""
Args:
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
self_attention_cache = DynamicCache()
cross_attention_cache = DynamicCache()
past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
encoder_hidden_states,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
encoder_hidden_states=encoder_hidden_states,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
return output if return_dict else output.to_tuple()
|
class_definition
| 31,482 | 37,120 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
| null | 6,478 |
class MoonshineModel(WhisperModel):
@add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
r"""
```python
>>> import torch
>>> from transformers import AutoFeatureExtractor, MoonshineModel
>>> from datasets import load_dataset
>>> model = MoonshineModel.from_pretrained("UsefulSensors/moonshine-tiny")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("UsefulSensors/moonshine-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_values, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 288]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
position_ids=decoder_position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
|
class_definition
| 43,173 | 47,632 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
| null | 6,479 |
class MoonshineForConditionalGeneration(MoonshinePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["proj_out.weight"]
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.model = MoonshineModel(config)
self.proj_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.proj_out
def set_output_embeddings(self, new_embeddings):
self.proj_out = new_embeddings
def get_input_embeddings(self) -> nn.Module:
return self.model.get_input_embeddings()
@add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoProcessor, MoonshineForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("UsefulSensors/moonshine-tiny")
>>> model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> generated_ids = model.generate(input_values, max_new_tokens=100)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
'Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_values,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
decoder_position_ids=decoder_position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
logits = self.proj_out(outputs[0])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def generate(self, *args, **kwargs):
# TODO: @eustlb do it rather with a custom logits processor
token_limit_factor = 6.5 / 16000.0 # Maximum of 6.5 tokens per second
if kwargs.get("max_new_tokens") is None and kwargs.get("max_length") is None:
if kwargs.get("attention_mask") is not None:
seq_lens = kwargs["attention_mask"].sum(dim=-1)
else:
seq_lens = kwargs["input_values"].shape[-1]
max_length = int(seq_lens.max().item() * token_limit_factor)
logger.warning_once(
f"Based on the input length, Moonshine will generate up to {max_length} tokens (ratio of 6.5 tokens/second). "
"To specify a different length, set either `max_new_tokens` or `max_length`."
)
kwargs["max_length"] = max_length
return super().generate(*args, **kwargs)
|
class_definition
| 47,795 | 53,832 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
| null | 6,480 |
class ColPaliProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": "longest",
},
"images_kwargs": {
"data_format": "channels_first",
"do_convert_rgb": True,
},
"common_kwargs": {"return_tensors": "pt"},
}
|
class_definition
| 1,228 | 1,552 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/modular_colpali.py
| null | 6,481 |
class ColPaliProcessor(PaliGemmaProcessor):
r"""
Constructs a ColPali processor which wraps a PaliGemmaProcessor and special methods to process images and queries, as
well as to compute the late-interaction retrieval score.
[`ColPaliProcessor`] offers all the functionalities of [`PaliGemmaProcessor`]. See the [`~PaliGemmaProcessor.__call__`]
for more information.
Args:
image_processor ([`SiglipImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
visual_prompt_prefix: ClassVar[str] = "Describe the image."
query_prefix: ClassVar[str] = "Question: "
@property
def query_augmentation_token(self) -> str:
"""
Return the query augmentation token.
Query augmentation buffers are used as reasoning buffers during inference.
"""
return self.tokenizer.pad_token
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[ColPaliProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model either (1) one or several texts, either (2) one or several image(s). This method is custom
wrapper around the PaliGemmaProcessor's [`~PaliGemmaProcessor.__call__`] method adapted for the ColPali model. It cannot process
both text and images at the same time.
When preparing the the text(s), this method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's
[`~LlamaTokenizerFast.__call__`].
When preparing the the image(s), this method forwards the `images` and `kwargs` arguments to SiglipImageProcessor's
[`~SiglipImageProcessor.__call__`].
Please refer to the doctsring of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
ColPaliProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
suffix = output_kwargs["text_kwargs"].pop("suffix", None)
return_token_type_ids = True if suffix is not None else False
if text is None and images is None:
raise ValueError("Either text or images must be provided")
if text is not None and images is not None:
raise ValueError("Only one of text or images can be processed at a time")
if images is not None:
if is_valid_image(images):
images = [images]
elif isinstance(images, list) and is_valid_image(images[0]):
pass
elif not (isinstance(images, list) and isinstance(images[0], list) and is_valid_image(images[0][0])):
raise ValueError("images must be an image, list of images or list of list of images")
texts_doc = [self.visual_prompt_prefix] * len(images)
images = [image.convert("RGB") for image in images]
input_strings = [
build_string_from_input(
prompt=prompt,
bos_token=self.tokenizer.bos_token,
image_seq_len=self.image_seq_length,
image_token=IMAGE_TOKEN,
num_images=len(image_list) if isinstance(image_list, list) else 1,
)
for prompt, image_list in zip(texts_doc, images)
]
images = make_batched_images(images)
pixel_values = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"]
# max_length has to account for the image tokens
if output_kwargs["text_kwargs"].get("max_length", None) is not None:
output_kwargs["text_kwargs"]["max_length"] += self.image_seq_length
inputs = self.tokenizer(
input_strings,
return_token_type_ids=False,
**output_kwargs["text_kwargs"],
)
return_data = {**inputs, "pixel_values": pixel_values}
if return_token_type_ids:
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
return_data.update({"labels": labels})
return BatchFeature(data=return_data)
elif text is not None:
if isinstance(text, str):
text = [text]
elif not (isinstance(text, list) and isinstance(text[0], str)):
raise ValueError("Text must be a string or a list of strings")
if suffix is None:
suffix = self.query_augmentation_token * 10
texts_query: List[str] = []
for query in text:
query = self.tokenizer.bos_token + self.query_prefix + query
query += suffix # add suffix (pad tokens)
query += "\n" # make input ISO to PaliGemma's processor
texts_query.append(query)
output_kwargs["text_kwargs"]["max_length"] = output_kwargs["text_kwargs"].get("max_length", 50)
batch_query = self.tokenizer(
texts_query,
return_token_type_ids=False,
**output_kwargs["text_kwargs"],
)
return batch_query
def process_images(
self,
images: ImageInput = None,
**kwargs: Unpack[ColPaliProcessorKwargs],
) -> BatchFeature:
"""
Prepare for the model one or several image(s). This method is a wrapper around the `__call__` method of the ColPaliProcessor's
[`ColPaliProcessor.__call__`].
This method forwards the `images` and `kwargs` arguments to SiglipImageProcessor's [`~SiglipImageProcessor.__call__`].
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
return self.__call__(images=images, **kwargs)
def process_queries(
self,
text: Union[TextInput, List[TextInput]],
**kwargs: Unpack[ColPaliProcessorKwargs],
) -> BatchFeature:
"""
Prepare for the model one or several texts. This method is a wrapper around the `__call__` method of the ColPaliProcessor's
[`ColPaliProcessor.__call__`].
This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`].
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
"""
return self.__call__(text=text, **kwargs)
def score_retrieval(
self,
query_embeddings: Union["torch.Tensor", List["torch.Tensor"]],
passage_embeddings: Union["torch.Tensor", List["torch.Tensor"]],
batch_size: int = 128,
output_dtype: Optional["torch.dtype"] = None,
output_device: Union["torch.device", str] = "cpu",
) -> "torch.Tensor":
"""
Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector
query embeddings (`qs`) and passage embeddings (`ps`). For ColPali, a passage is the
image of a document page.
Because the embedding tensors are multi-vector and can thus have different shapes, they
should be fed as:
(1) a list of tensors, where the i-th tensor is of shape (sequence_length_i, embedding_dim)
(2) a single tensor of shape (n_passages, max_sequence_length, embedding_dim) -> usually
obtained by padding the list of tensors.
Args:
query_embeddings (`Union[torch.Tensor, List[torch.Tensor]`): Query embeddings.
passage_embeddings (`Union[torch.Tensor, List[torch.Tensor]`): Passage embeddings.
batch_size (`int`, *optional*, defaults to 128): Batch size for computing scores.
output_dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): The dtype of the output tensor.
If `None`, the dtype of the input embeddings is used.
output_device (`torch.device` or `str`, *optional*, defaults to "cpu"): The device of the output tensor.
Returns:
`torch.Tensor`: A tensor of shape `(n_queries, n_passages)` containing the scores. The score
tensor is saved on the "cpu" device.
"""
if len(query_embeddings) == 0:
raise ValueError("No queries provided")
if len(passage_embeddings) == 0:
raise ValueError("No passages provided")
if query_embeddings[0].device != passage_embeddings[0].device:
raise ValueError("Queries and passages must be on the same device")
if query_embeddings[0].dtype != passage_embeddings[0].dtype:
raise ValueError("Queries and passages must have the same dtype")
if output_dtype is None:
output_dtype = query_embeddings[0].dtype
scores: List[torch.Tensor] = []
for i in range(0, len(query_embeddings), batch_size):
batch_scores: List[torch.Tensor] = []
batch_queries = torch.nn.utils.rnn.pad_sequence(
query_embeddings[i : i + batch_size], batch_first=True, padding_value=0
)
for j in range(0, len(passage_embeddings), batch_size):
batch_passages = torch.nn.utils.rnn.pad_sequence(
passage_embeddings[j : j + batch_size], batch_first=True, padding_value=0
)
batch_scores.append(
torch.einsum("bnd,csd->bcns", batch_queries, batch_passages).max(dim=3)[0].sum(dim=2)
)
scores.append(torch.cat(batch_scores, dim=1).to(output_dtype).to(output_device))
return torch.cat(scores, dim=0)
|
class_definition
| 1,555 | 15,846 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/modular_colpali.py
| null | 6,482 |
class ColPaliConfig(PretrainedConfig):
r"""
Configuration class to store the configuration of a [`ColPaliForRetrieval`]. It is used to instantiate an instance
of `ColPaliForRetrieval` according to the specified arguments, defining the model architecture following the methodology
from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
Creating a configuration with the default settings will result in a configuration where the VLM backbone is set to the
default PaliGemma configuration, i.e the one from [vidore/colpali-v1.2](https://huggingface.co/vidore/colpali-v1.2).
The ColPali config is very similar to [`PaligemmaConfig`], but with an extra attribute defining the embedding dimension.
Note that contrarily to what the class name suggests (actually the name refers to the ColPali **methodology**), you can
use a different VLM backbone model than PaliGemma by passing the corresponding VLM configuration to the class constructor.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vlm_config (`PretrainedConfig`, *optional*):
Configuration of the VLM backbone model.
text_config (`PretrainedConfig`, *optional*):
Configuration of the text backbone model. Overrides the `text_config` attribute of the `vlm_config` if provided.
embedding_dim (`int`, *optional*, defaults to 128):
Dimension of the multi-vector embeddings produced by the model.
Example:
```python
from transformers.models.colpali import ColPaliConfig, ColPaliForRetrieval
config = ColPaliConfig()
model = ColPaliForRetrieval(config)
```
"""
model_type = "colpali"
sub_configs = {"vlm_config": PretrainedConfig, "text_config": AutoConfig}
def __init__(
self,
vlm_config=None,
text_config=None,
embedding_dim: int = 128,
**kwargs,
):
if vlm_config is None:
vlm_config = CONFIG_MAPPING["paligemma"]()
logger.info(
"`vlm_config` is `None`. Initializing `vlm_config` with the `PaliGemmaConfig` with default values."
)
elif isinstance(vlm_config, dict):
vlm_config = deepcopy(vlm_config)
if "model_type" not in vlm_config:
raise KeyError(
"The `model_type` key is missing in the `vlm_config` dictionary. Please provide the model type."
)
elif vlm_config["model_type"] not in CONFIG_MAPPING:
raise ValueError(
f"The model type `{vlm_config['model_type']}` is not supported. Please provide a valid model type."
)
vlm_config = CONFIG_MAPPING[vlm_config["model_type"]](**vlm_config)
elif isinstance(vlm_config, PretrainedConfig):
vlm_config = vlm_config
else:
raise TypeError(
f"Invalid type for `vlm_config`. Expected `PretrainedConfig`, `dict`, or `None`, but got {type(vlm_config)}."
)
self.vlm_config = vlm_config
self.text_config = text_config = text_config if text_config is not None else vlm_config.text_config
if isinstance(self.text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gemma"
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
self.embedding_dim = embedding_dim
super().__init__(**kwargs)
|
class_definition
| 821 | 4,486 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/configuration_colpali.py
| null | 6,483 |
class ColPaliProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": "longest",
},
"images_kwargs": {
"data_format": "channels_first",
"do_convert_rgb": True,
},
"common_kwargs": {"return_tensors": "pt"},
}
|
class_definition
| 1,825 | 2,149 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/processing_colpali.py
| null | 6,484 |
class ColPaliProcessor(ProcessorMixin):
r"""
Constructs a ColPali processor which wraps a PaliGemmaProcessor and special methods to process images and queries, as
well as to compute the late-interaction retrieval score.
[`ColPaliProcessor`] offers all the functionalities of [`PaliGemmaProcessor`]. See the [`~PaliGemmaProcessor.__call__`]
for more information.
Args:
image_processor ([`SiglipImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
image_processor_class = "SiglipImageProcessor"
tokenizer_class = ("GemmaTokenizer", "GemmaTokenizerFast")
visual_prompt_prefix: ClassVar[str] = "Describe the image."
query_prefix: ClassVar[str] = "Question: "
def __init__(
self,
image_processor=None,
tokenizer=None,
chat_template=None,
**kwargs,
):
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
if not hasattr(image_processor, "image_seq_length"):
raise ValueError("Image processor is missing an `image_seq_length` attribute.")
self.image_seq_length = image_processor.image_seq_length
if not hasattr(tokenizer, "image_token"):
image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True)
tokens_to_add = {"additional_special_tokens": [image_token]}
tokenizer.add_special_tokens(tokens_to_add)
self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
else:
self.image_token_id = tokenizer.image_token_id
tokenizer.add_tokens(EXTRA_TOKENS)
tokenizer.add_bos_token = False
tokenizer.add_eos_token = False
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[ColPaliProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model either (1) one or several texts, either (2) one or several image(s). This method is custom
wrapper around the PaliGemmaProcessor's [`~PaliGemmaProcessor.__call__`] method adapted for the ColPali model. It cannot process
both text and images at the same time.
When preparing the the text(s), this method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's
[`~LlamaTokenizerFast.__call__`].
When preparing the the image(s), this method forwards the `images` and `kwargs` arguments to SiglipImageProcessor's
[`~SiglipImageProcessor.__call__`].
Please refer to the doctsring of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
ColPaliProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
suffix = output_kwargs["text_kwargs"].pop("suffix", None)
return_token_type_ids = True if suffix is not None else False
if text is None and images is None:
raise ValueError("Either text or images must be provided")
if text is not None and images is not None:
raise ValueError("Only one of text or images can be processed at a time")
if images is not None:
if is_valid_image(images):
images = [images]
elif isinstance(images, list) and is_valid_image(images[0]):
pass
elif not (isinstance(images, list) and isinstance(images[0], list) and is_valid_image(images[0][0])):
raise ValueError("images must be an image, list of images or list of list of images")
texts_doc = [self.visual_prompt_prefix] * len(images)
images = [image.convert("RGB") for image in images]
input_strings = [
build_string_from_input(
prompt=prompt,
bos_token=self.tokenizer.bos_token,
image_seq_len=self.image_seq_length,
image_token=IMAGE_TOKEN,
num_images=len(image_list) if isinstance(image_list, list) else 1,
)
for prompt, image_list in zip(texts_doc, images)
]
images = make_batched_images(images)
pixel_values = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"]
# max_length has to account for the image tokens
if output_kwargs["text_kwargs"].get("max_length", None) is not None:
output_kwargs["text_kwargs"]["max_length"] += self.image_seq_length
inputs = self.tokenizer(
input_strings,
return_token_type_ids=False,
**output_kwargs["text_kwargs"],
)
return_data = {**inputs, "pixel_values": pixel_values}
if return_token_type_ids:
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
return_data.update({"labels": labels})
return BatchFeature(data=return_data)
elif text is not None:
if isinstance(text, str):
text = [text]
elif not (isinstance(text, list) and isinstance(text[0], str)):
raise ValueError("Text must be a string or a list of strings")
if suffix is None:
suffix = self.query_augmentation_token * 10
texts_query: List[str] = []
for query in text:
query = self.tokenizer.bos_token + self.query_prefix + query
query += suffix # add suffix (pad tokens)
query += "\n" # make input ISO to PaliGemma's processor
texts_query.append(query)
output_kwargs["text_kwargs"]["max_length"] = output_kwargs["text_kwargs"].get("max_length", 50)
batch_query = self.tokenizer(
texts_query,
return_token_type_ids=False,
**output_kwargs["text_kwargs"],
)
return batch_query
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def query_augmentation_token(self) -> str:
"""
Return the query augmentation token.
Query augmentation buffers are used as reasoning buffers during inference.
"""
return self.tokenizer.pad_token
def process_images(
self,
images: ImageInput = None,
**kwargs: Unpack[ColPaliProcessorKwargs],
) -> BatchFeature:
"""
Prepare for the model one or several image(s). This method is a wrapper around the `__call__` method of the ColPaliProcessor's
[`ColPaliProcessor.__call__`].
This method forwards the `images` and `kwargs` arguments to SiglipImageProcessor's [`~SiglipImageProcessor.__call__`].
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
return self.__call__(images=images, **kwargs)
def process_queries(
self,
text: Union[TextInput, List[TextInput]],
**kwargs: Unpack[ColPaliProcessorKwargs],
) -> BatchFeature:
"""
Prepare for the model one or several texts. This method is a wrapper around the `__call__` method of the ColPaliProcessor's
[`ColPaliProcessor.__call__`].
This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`].
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
"""
return self.__call__(text=text, **kwargs)
def score_retrieval(
self,
query_embeddings: Union["torch.Tensor", List["torch.Tensor"]],
passage_embeddings: Union["torch.Tensor", List["torch.Tensor"]],
batch_size: int = 128,
output_dtype: Optional["torch.dtype"] = None,
output_device: Union["torch.device", str] = "cpu",
) -> "torch.Tensor":
"""
Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector
query embeddings (`qs`) and passage embeddings (`ps`). For ColPali, a passage is the
image of a document page.
Because the embedding tensors are multi-vector and can thus have different shapes, they
should be fed as:
(1) a list of tensors, where the i-th tensor is of shape (sequence_length_i, embedding_dim)
(2) a single tensor of shape (n_passages, max_sequence_length, embedding_dim) -> usually
obtained by padding the list of tensors.
Args:
query_embeddings (`Union[torch.Tensor, List[torch.Tensor]`): Query embeddings.
passage_embeddings (`Union[torch.Tensor, List[torch.Tensor]`): Passage embeddings.
batch_size (`int`, *optional*, defaults to 128): Batch size for computing scores.
output_dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): The dtype of the output tensor.
If `None`, the dtype of the input embeddings is used.
output_device (`torch.device` or `str`, *optional*, defaults to "cpu"): The device of the output tensor.
Returns:
`torch.Tensor`: A tensor of shape `(n_queries, n_passages)` containing the scores. The score
tensor is saved on the "cpu" device.
"""
if len(query_embeddings) == 0:
raise ValueError("No queries provided")
if len(passage_embeddings) == 0:
raise ValueError("No passages provided")
if query_embeddings[0].device != passage_embeddings[0].device:
raise ValueError("Queries and passages must be on the same device")
if query_embeddings[0].dtype != passage_embeddings[0].dtype:
raise ValueError("Queries and passages must have the same dtype")
if output_dtype is None:
output_dtype = query_embeddings[0].dtype
scores: List[torch.Tensor] = []
for i in range(0, len(query_embeddings), batch_size):
batch_scores: List[torch.Tensor] = []
batch_queries = torch.nn.utils.rnn.pad_sequence(
query_embeddings[i : i + batch_size], batch_first=True, padding_value=0
)
for j in range(0, len(passage_embeddings), batch_size):
batch_passages = torch.nn.utils.rnn.pad_sequence(
passage_embeddings[j : j + batch_size], batch_first=True, padding_value=0
)
batch_scores.append(
torch.einsum("bnd,csd->bcns", batch_queries, batch_passages).max(dim=3)[0].sum(dim=2)
)
scores.append(torch.cat(batch_scores, dim=1).to(output_dtype).to(output_device))
return torch.cat(scores, dim=0)
|
class_definition
| 3,796 | 20,362 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/processing_colpali.py
| null | 6,485 |
class ColPaliPreTrainedModel(PreTrainedModel):
config_class = ColPaliConfig
base_model_prefix = "model"
_no_split_modules = []
def _init_weights(self, module):
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.vlm_config.text_config.initializer_range
)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 2,140 | 2,921 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/modeling_colpali.py
| null | 6,486 |
class ColPaliForRetrievalOutput(ModelOutput):
"""
Base class for ColPali embeddings output.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The embeddings of the model.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder after projecting last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
embeddings: torch.Tensor = None
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
|
class_definition
| 2,935 | 5,423 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/modeling_colpali.py
| null | 6,487 |
class ColPaliForRetrieval(ColPaliPreTrainedModel):
def __init__(self, config: ColPaliConfig):
super().__init__(config)
self.config = config
self.vocab_size = config.vlm_config.text_config.vocab_size
vlm = AutoModelForImageTextToText.from_config(config.vlm_config)
if vlm.language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"vlm.language_model.{k}" for k in vlm.language_model._tied_weights_keys]
self.vlm = vlm
self.embedding_dim = self.config.embedding_dim
self.embedding_proj_layer = nn.Linear(
self.config.vlm_config.text_config.hidden_size,
self.embedding_dim,
)
self.post_init()
@add_start_docstrings_to_model_forward(COLPALI_FOR_RETRIEVAL_INPUT_DOCSTRING)
@replace_return_docstrings(output_type=ColPaliForRetrievalOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, ColPaliForRetrievalOutput]:
r"""
Returns:
"""
if "pixel_values" in kwargs:
kwargs["pixel_values"] = kwargs["pixel_values"].to(dtype=self.dtype)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.vlm(
input_ids=input_ids,
attention_mask=attention_mask,
pixel_values=pixel_values,
output_hidden_states=True,
return_dict=return_dict,
output_attentions=output_attentions,
**kwargs,
)
last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size)
embeddings = self.embedding_proj_layer(last_hidden_states) # (batch_size, sequence_length, dim)
# L2 normalization
embeddings = embeddings / embeddings.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
loss = None
if not return_dict:
output = (embeddings,) + outputs[2:]
output[2] = output[2] if output_hidden_states is not None else None
output[-1] = (outputs.image_hidden_states if pixel_values is not None else None,)
return (loss,) + output if loss is not None else output
return ColPaliForRetrievalOutput(
loss=loss,
embeddings=embeddings,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
image_hidden_states=outputs.image_hidden_states if pixel_values is not None else None,
)
def get_input_embeddings(self):
return self.vlm.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.vlm.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.vlm.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.vlm.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.vlm.language_model.set_decoder(decoder)
def get_decoder(self):
return self.vlm.language_model.get_decoder()
def tie_weights(self):
return self.vlm.language_model.tie_weights()
def resize_token_embeddings(
self,
new_num_tokens: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
mean_resizing: bool = True,
) -> nn.Embedding:
model_embeds = self.vlm.language_model.resize_token_embeddings(
new_num_tokens=new_num_tokens,
pad_to_multiple_of=pad_to_multiple_of,
mean_resizing=mean_resizing,
)
self.config.vlm_config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vlm_config.vocab_size = model_embeds.num_embeddings
self.vlm.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
|
class_definition
| 8,695 | 13,394 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/modeling_colpali.py
| null | 6,488 |
class FlaxPegasusAttention(nn.Module):
config: PegasusConfig
embed_dim: int
num_heads: int
dropout: float = 0.0
causal: bool = False
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
else:
# self_attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
|
class_definition
| 12,327 | 19,726 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
| null | 6,489 |
class FlaxPegasusEncoderLayer(nn.Module):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxPegasusAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.encoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.fc1 = nn.Dense(
self.config.encoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 19,831 | 22,121 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
| null | 6,490 |
class FlaxPegasusEncoderLayerCollection(nn.Module):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxPegasusEncoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.encoder_layers)
]
self.layerdrop = self.config.encoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions,
deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
|
class_definition
| 22,232 | 24,192 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
| null | 6,491 |
class FlaxPegasusDecoderLayer(nn.Module):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxPegasusAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
causal=True,
dtype=self.dtype,
)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.encoder_attn = FlaxPegasusAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.fc1 = nn.Dense(
self.config.decoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
|
class_definition
| 24,297 | 27,855 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
| null | 6,492 |
class FlaxPegasusDecoderLayerCollection(nn.Module):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxPegasusDecoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.decoder_layers)
]
self.layerdrop = self.config.decoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
|
class_definition
| 27,966 | 30,692 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
| null | 6,493 |
class FlaxPegasusEncoder(nn.Module):
config: PegasusConfig
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_source_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim)
self.layers = FlaxPegasusEncoderLayerCollection(self.config, self.dtype)
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# embed positions
embed_pos = jnp.take(self.embed_positions, position_ids, axis=0)
# explicitly cast the positions here, since self.embed_positions are not registered as parameters
embed_pos = embed_pos.astype(inputs_embeds.dtype)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
last_hidden_state = self.layer_norm(last_hidden_state)
# update the last element in `hidden_states` after applying `layernorm` above
hidden_states = None
if output_hidden_states:
hidden_states = outputs[1]
hidden_states = hidden_states[:-1] + (last_hidden_state,)
if not return_dict:
outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=last_hidden_state,
hidden_states=hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 30,695 | 33,308 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
| null | 6,494 |
class FlaxPegasusDecoder(nn.Module):
config: PegasusConfig
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim)
self.layers = FlaxPegasusDecoderLayerCollection(self.config, self.dtype)
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# embed positions
positions = jnp.take(self.embed_positions, position_ids, axis=0)
# explicitly cast the positions here, since self.embed_positions are not registered as parameters
positions = positions.astype(inputs_embeds.dtype)
hidden_states = inputs_embeds + positions
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
last_hidden_state = self.layer_norm(last_hidden_state)
# update the last element in `hidden_states` after applying `layernorm` above
hidden_states = None
if output_hidden_states:
hidden_states = outputs[1]
hidden_states = hidden_states[:-1] + (last_hidden_state,)
if not return_dict:
outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=last_hidden_state,
hidden_states=hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
|
class_definition
| 33,311 | 36,279 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
| null | 6,495 |
class FlaxPegasusModule(nn.Module):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
self.encoder = FlaxPegasusEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
self.decoder = FlaxPegasusDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return FlaxSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
|
class_definition
| 36,374 | 38,823 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
| null | 6,496 |
class FlaxPegasusPreTrainedModel(FlaxPreTrainedModel):
config_class = PegasusConfig
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: PegasusConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
decoder_input_ids = input_ids
decoder_attention_mask = jnp.ones_like(input_ids)
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length, encoder_outputs):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
"""
# init input variables to retrieve cache
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
)
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
init_variables = self.module.init(
jax.random.PRNGKey(0),
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
init_cache=True,
method=_decoder_forward, # we only need to call the decoder to init the cache
)
return unfreeze(init_variables["cache"])
@add_start_docstrings(PEGASUS_ENCODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=PegasusConfig)
def encode(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
encode_module = module._get_encoder_module()
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
method=_encoder_forward,
)
@add_start_docstrings(PEGASUS_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=PegasusConfig)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxPegasusAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
@add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
decoder_input_ids: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# prepare decoder inputs
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
)
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
if decoder_position_ids is None:
batch_size, sequence_length = decoder_input_ids.shape
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
|
class_definition
| 38,826 | 53,173 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
| null | 6,497 |
class FlaxPegasusModel(FlaxPegasusPreTrainedModel):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
module_class = FlaxPegasusModule
|
class_definition
| 53,335 | 53,516 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
| null | 6,498 |
class FlaxPegasusForConditionalGenerationModule(nn.Module):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.model = FlaxPegasusModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.model.shared.num_embeddings,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
def _get_encoder_module(self):
return self.model.encoder
def _get_decoder_module(self):
return self.model.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
position_ids=position_ids,
decoder_position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return output
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
|
class_definition
| 53,746 | 56,342 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
| null | 6,499 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.