text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class FlaxWav2Vec2ForCTCModule(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.final_dropout) self.lm_head = nn.Dense( self.config.vocab_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__( self, input_values, attention_mask=None, mask_time_indices=None, deterministic=True, output_attentions=None, output_hidden_states=None, freeze_feature_encoder=False, return_dict=None, ): outputs = self.wav2vec2( input_values, attention_mask=attention_mask, mask_time_indices=mask_time_indices, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, freeze_feature_encoder=freeze_feature_encoder, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.lm_head(hidden_states) if not return_dict: return (logits,) + outputs[2:] return FlaxCausalLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None, ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths
class_definition
45,525
48,007
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py
null
6,400
class FlaxWav2Vec2ForCTC(FlaxWav2Vec2PreTrainedModel): module_class = FlaxWav2Vec2ForCTCModule
class_definition
48,178
48,276
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py
null
6,401
class FlaxWav2Vec2ForPreTrainingModule(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype) self.dropout_features = nn.Dropout(self.config.feat_quantizer_dropout) self.quantizer = FlaxWav2Vec2GumbelVectorQuantizer(self.config, dtype=self.dtype) self.project_q = nn.Dense( self.config.proj_codevector_dim, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.project_hid = nn.Dense( self.config.proj_codevector_dim, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__( self, input_values, attention_mask=None, mask_time_indices=None, gumbel_temperature: int = 1, deterministic: bool = True, output_attentions=None, output_hidden_states=None, freeze_feature_encoder=False, return_dict=None, ): r""" Returns: Example: ```python ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, mask_time_indices=mask_time_indices, deterministic=deterministic, freeze_feature_encoder=freeze_feature_encoder, return_dict=return_dict, ) # project all transformed features (including masked) to final vq dim transformer_features = self.project_hid(outputs[0]) # quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1], deterministic=deterministic) quantized_features, codevector_perplexity = self.quantizer( extract_features, mask_time_indices, deterministic=deterministic, temperature=gumbel_temperature ) quantized_features = self.project_q(quantized_features) if not return_dict: return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return FlaxWav2Vec2ForPreTrainingOutput( projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths
class_definition
49,602
53,275
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py
null
6,402
class FlaxWav2Vec2ForPreTraining(FlaxWav2Vec2PreTrainedModel): module_class = FlaxWav2Vec2ForPreTrainingModule @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) # overwrite since has `gumbel_temperature` input def __call__( self, input_values, attention_mask=None, mask_time_indices=None, gumbel_temperature: int = 1, params: dict = None, dropout_rng: jax.random.PRNGKey = None, gumbel_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, freeze_feature_encoder: bool = False, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict batch_size, sequence_length = input_values.shape if attention_mask is None: attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng if gumbel_rng is not None: rngs["gumbel"] = gumbel_rng inputs = {"params": params or self.params} return self.module.apply( inputs, jnp.array(input_values, dtype="f4"), jnp.array(attention_mask, dtype="i4"), mask_time_indices, gumbel_temperature, not train, output_attentions, output_hidden_states, freeze_feature_encoder, return_dict, rngs=rngs, )
class_definition
53,390
55,314
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py
null
6,403
class Wav2Vec2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Wav2Vec2Model`]. It is used to instantiate an Wav2Vec2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2 [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32): Vocabulary size of the Wav2Vec2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Wav2Vec2Model`] or [`TFWav2Vec2Model`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`Wav2Vec2Model`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for activations inside the fully connected layer. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`Wav2Vec2ForCTC`]. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. feat_extract_norm (`str`, *optional*, defaults to `"group"`): The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D convolutional layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the feature encoder. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for quantized feature encoder states. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. do_stable_layer_norm (`bool`, *optional*, defaults to `False`): Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is False` corresponds to applying layer norm after the attention layer. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' num_codevectors_per_group (`int`, *optional*, defaults to 320): Number of entries in each quantization codebook (group). num_codevector_groups (`int`, *optional*, defaults to 2): Number of codevector groups for product codevector quantization. contrastive_logits_temperature (`float`, *optional*, defaults to 0.1): The temperature *kappa* in the contrastive loss. feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for the output of the feature encoder that's used by the quantizer. num_negatives (`int`, *optional*, defaults to 100): Number of negative samples for the contrastive loss. codevector_dim (`int`, *optional*, defaults to 256): Dimensionality of the quantized feature vectors. proj_codevector_dim (`int`, *optional*, defaults to 256): Dimensionality of the final projection of both the quantized and the transformer features. diversity_loss_weight (`int`, *optional*, defaults to 0.1): The weight of the codebook diversity loss component. ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`Wav2Vec2ForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`Wav2Vec2ForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`Wav2Vec2ForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`): A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers. tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*. tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`): A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*. xvector_output_dim (`int`, *optional*, defaults to 512): Dimensionality of the *XVector* embedding vectors. add_adapter (`bool`, *optional*, defaults to `False`): Whether a convolutional network should be stacked on top of the Wav2Vec2 Encoder. Can be very useful for warm-starting Wav2Vec2 for SpeechEncoderDecoder models. adapter_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. adapter_stride (`int`, *optional*, defaults to 2): Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. num_adapter_layers (`int`, *optional*, defaults to 3): Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is True`. adapter_attn_dim (`int`, *optional*): Dimension of the attention adapter weights to be used in each attention block. An example of a model using attention adapters is [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all). output_hidden_size (`int`, *optional*): Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant if `add_adapter is True`. Example: ```python >>> from transformers import Wav2Vec2Config, Wav2Vec2Model >>> # Initializing a Wav2Vec2 facebook/wav2vec2-base-960h style configuration >>> configuration = Wav2Vec2Config() >>> # Initializing a model (with random weights) from the facebook/wav2vec2-base-960h style configuration >>> model = Wav2Vec2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "wav2vec2" def __init__( self, vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, feat_quantizer_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-5, feat_extract_norm="group", feat_extract_activation="gelu", conv_dim=(512, 512, 512, 512, 512, 512, 512), conv_stride=(5, 2, 2, 2, 2, 2, 2), conv_kernel=(10, 3, 3, 3, 3, 2, 2), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, do_stable_layer_norm=False, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, num_codevectors_per_group=320, num_codevector_groups=2, contrastive_logits_temperature=0.1, num_negatives=100, codevector_dim=256, proj_codevector_dim=256, diversity_loss_weight=0.1, ctc_loss_reduction="sum", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, tdnn_dim=(512, 512, 512, 512, 1500), tdnn_kernel=(5, 3, 3, 1, 1), tdnn_dilation=(1, 2, 3, 1, 1), xvector_output_dim=512, pad_token_id=0, bos_token_id=1, eos_token_id=2, add_adapter=False, adapter_kernel_size=3, adapter_stride=2, num_adapter_layers=3, output_hidden_size=None, adapter_attn_dim=None, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_feat_extract_layers = len(self.conv_dim) self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layerdrop = layerdrop self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.use_weighted_layer_sum = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # parameters for pretraining with codevector quantized representations self.num_codevectors_per_group = num_codevectors_per_group self.num_codevector_groups = num_codevector_groups self.contrastive_logits_temperature = contrastive_logits_temperature self.feat_quantizer_dropout = feat_quantizer_dropout self.num_negatives = num_negatives self.codevector_dim = codevector_dim self.proj_codevector_dim = proj_codevector_dim self.diversity_loss_weight = diversity_loss_weight # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # adapter self.add_adapter = add_adapter self.adapter_kernel_size = adapter_kernel_size self.adapter_stride = adapter_stride self.num_adapter_layers = num_adapter_layers self.output_hidden_size = output_hidden_size or hidden_size self.adapter_attn_dim = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. self.classifier_proj_size = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. self.tdnn_dim = list(tdnn_dim) self.tdnn_kernel = list(tdnn_kernel) self.tdnn_dilation = list(tdnn_dilation) self.xvector_output_dim = xvector_output_dim @property def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1)
class_definition
843
20,044
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/configuration_wav2vec2.py
null
6,404
class Wav2Vec2CTCTokenizerOutput(ModelOutput): """ Output type of [` Wav2Vec2CTCTokenizer`], with transcription. Args: text (list of `str` or `str`): Decoded logits in text from. Usually the speech transcription. char_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`): Offsets of the decoded characters. In combination with sampling rate and model downsampling rate char offsets can be used to compute time stamps for each charater. Total logit score of the beam associated with produced text. word_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`): Offsets of the decoded words. In combination with sampling rate and model downsampling rate word offsets can be used to compute time stamps for each word. """ text: Union[List[str], str] char_offsets: Union[List[ListOfDict], ListOfDict] = None word_offsets: Union[List[ListOfDict], ListOfDict] = None
class_definition
3,621
4,679
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/tokenization_wav2vec2.py
null
6,405
class Wav2Vec2CTCTokenizer(PreTrainedTokenizer): """ Constructs a Wav2Vec2CTC tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to the superclass for more information regarding such methods. Args: vocab_file (`str`): File containing the vocabulary. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sentence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. word_delimiter_token (`str`, *optional*, defaults to `"|"`): The token used for defining the end of a word. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to accept lowercase input and lowercase the output when decoding. target_lang (`str`, *optional*): A target language the tokenizer should set by default. `target_lang` has to be defined for multi-lingual, nested vocabulary such as [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all). **kwargs Additional keyword arguments passed along to [`PreTrainedTokenizer`] """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", word_delimiter_token="|", replace_word_delimiter_char=" ", do_lower_case=False, target_lang=None, **kwargs, ): self._word_delimiter_token = word_delimiter_token self.do_lower_case = do_lower_case self.replace_word_delimiter_char = replace_word_delimiter_char self.target_lang = target_lang with open(vocab_file, encoding="utf-8") as vocab_handle: self.vocab = json.load(vocab_handle) # if target lang is defined vocab must be a nested dict # with each target lang being one vocabulary if target_lang is not None: self.encoder = self.vocab[target_lang] else: self.encoder = self.vocab self.decoder = {v: k for k, v in self.encoder.items()} super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, do_lower_case=do_lower_case, word_delimiter_token=word_delimiter_token, replace_word_delimiter_char=replace_word_delimiter_char, target_lang=target_lang, **kwargs, ) # make sure that tokens made of several # characters are not split at tokenization for token in self.encoder.keys(): if len(token) > 1: self.add_tokens(AddedToken(token, rstrip=True, lstrip=True, normalized=False)) def set_target_lang(self, target_lang: str): """ Set the target language of a nested multi-lingual dictionary """ if self.vocab == self.encoder: raise ValueError(f"{self.vocab} is not a multi-lingual, nested tokenizer. Cannot set target language.") if target_lang not in self.vocab: raise ValueError(f"{target_lang} does not exist. Choose one of {', '.join(self.vocab.keys())}.") self.target_lang = target_lang self.init_kwargs["target_lang"] = target_lang self.encoder = self.vocab[target_lang] self.decoder = {v: k for k, v in self.encoder.items()} # make sure that tokens made of several # characters are not split at tokenization for token in self.encoder.keys(): if len(token) > 1: self.add_tokens(AddedToken(token, rstrip=True, lstrip=True, normalized=False)) @property def word_delimiter_token(self) -> str: """ `str`: Word delimiter token. Log an error if used while not having been set. """ if self._word_delimiter_token is None and self.verbose: logger.error("Using word_delimiter_token, but it is not set yet.") return None return str(self._word_delimiter_token) @property def word_delimiter_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the word_delimiter_token in the vocabulary. Returns `None` if the token has not been set. """ if self._word_delimiter_token is None: return None return self.convert_tokens_to_ids(self.word_delimiter_token) @word_delimiter_token.setter def word_delimiter_token(self, value): self._word_delimiter_token = value @word_delimiter_token_id.setter def word_delimiter_token_id(self, value): self._word_delimiter_token = self.convert_tokens_to_ids(value) @property def vocab_size(self) -> int: return len(self.decoder) def get_vocab(self) -> Dict: vocab = dict(self.encoder) vocab.update(self.added_tokens_encoder) return vocab def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int: # Overwritten to never strip! to_add = [] for token in new_tokens: if isinstance(token, str): to_add.append(AddedToken(token, rstrip=False, lstrip=False, normalized=False)) else: to_add.append(token) return super()._add_tokens(to_add, special_tokens) def _tokenize(self, text, **kwargs): """ Converts a string into a sequence of tokens (string), using the tokenizer. """ if self.do_lower_case: text = text.upper() return list(text.replace(" ", self.word_delimiter_token)) def _convert_token_to_id(self, token: str) -> int: """Converts a token (str) in an index (integer) using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" result = self.decoder.get(index, self.unk_token) return result def convert_tokens_to_string( self, tokens: List[str], group_tokens: bool = True, spaces_between_special_tokens: bool = False, output_char_offsets: bool = False, output_word_offsets: bool = False, ) -> Dict[str, Union[str, float]]: """ Converts a connectionist-temporal-classification (CTC) output tokens into a single string. """ if len(tokens) == 0: return {"text": "", "char_offsets": [], "word_offsets": []} # group same tokens into non-repeating tokens in CTC style decoding if group_tokens: chars, char_repetitions = zip(*((token, len(list(group_iter))) for token, group_iter in groupby(tokens))) else: chars = tokens char_repetitions = len(tokens) * [1] # filter self.pad_token which is used as CTC-blank token processed_chars = list(filter(lambda char: char != self.pad_token, chars)) # replace delimiter token processed_chars = [ self.replace_word_delimiter_char if char == self.word_delimiter_token else char for char in processed_chars ] # retrieve offsets char_offsets = word_offsets = None if output_char_offsets or output_word_offsets: char_offsets = self._compute_offsets(char_repetitions, chars, self.pad_token) if len(char_offsets) != len(processed_chars): raise ValueError( f"`char_offsets`: {char_offsets} and `processed_tokens`: {processed_chars}" " have to be of the same length, but are: " f"`len(offsets)`: {len(char_offsets)} and `len(processed_tokens)`:" f" {len(processed_chars)}" ) # set tokens to correct processed token for i, char in enumerate(processed_chars): char_offsets[i]["char"] = char # retrieve word offsets from character offsets word_offsets = None if output_word_offsets: word_offsets = self._get_word_offsets(char_offsets, self.replace_word_delimiter_char) # don't output chars if not set to True if not output_char_offsets: char_offsets = None # join to string join_char = " " if spaces_between_special_tokens else "" string = join_char.join(processed_chars).strip() if self.do_lower_case: string = string.lower() return {"text": string, "char_offsets": char_offsets, "word_offsets": word_offsets} @staticmethod def _compute_offsets( char_repetitions: List[int], chars: List[str], ctc_token: int ) -> List[Dict[str, Union[str, int]]]: end_indices = np.asarray(char_repetitions).cumsum() start_indices = np.concatenate(([0], end_indices[:-1])) offsets = [ {"char": t, "start_offset": s, "end_offset": e} for t, s, e in zip(chars, start_indices, end_indices) ] # filter out CTC token offsets = list(filter(lambda offsets: offsets["char"] != ctc_token, offsets)) return offsets @staticmethod def _get_word_offsets( offsets: Dict[str, Union[str, float]], word_delimiter_char: str = " " ) -> Dict[str, Union[str, float]]: word_offsets = [] last_state = "SPACE" word = "" start_offset = 0 end_offset = 0 for i, offset in enumerate(offsets): char = offset["char"] state = "SPACE" if char == word_delimiter_char else "WORD" if state == last_state: # If we are in the same state as before, we simply repeat what we've done before end_offset = offset["end_offset"] word += char else: # Switching state if state == "SPACE": # Finishing a word word_offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset}) else: # Starting a new word start_offset = offset["start_offset"] end_offset = offset["end_offset"] word = char last_state = state if last_state == "WORD": word_offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset}) return word_offsets def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): if is_split_into_words: text = " " + text return (text, kwargs) def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, group_tokens: bool = True, spaces_between_special_tokens: bool = False, output_word_offsets: Optional[bool] = False, output_char_offsets: Optional[bool] = False, ) -> str: """ special _decode function is needed for Wav2Vec2Tokenizer because added tokens should be treated exactly the same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on the whole token list and not individually on added tokens """ filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) result = [] for token in filtered_tokens: if skip_special_tokens and ( token in self.all_special_ids or (token != self.pad_token and token in self.all_special_tokens) ): continue result.append(token) string_output = self.convert_tokens_to_string( result, group_tokens=group_tokens, spaces_between_special_tokens=spaces_between_special_tokens, output_word_offsets=output_word_offsets, output_char_offsets=output_char_offsets, ) text = string_output["text"] clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: text = self.clean_up_tokenization(text) if output_word_offsets or output_char_offsets: return Wav2Vec2CTCTokenizerOutput( text=text, char_offsets=string_output["char_offsets"], word_offsets=string_output["word_offsets"], ) else: return text # overwritten from `tokenization_utils_base.py` because tokenizer can output # `ModelOutput` which should not be a list for batched output and # because we need docs for `output_char_offsets` here def batch_decode( self, sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_char_offsets: bool = False, output_word_offsets: bool = False, **kwargs, ) -> List[str]: """ Convert a list of lists of token ids into a list of strings by calling decode. Args: sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. output_char_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output character offsets. Character offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed characters. <Tip> Please take a look at the Example of [`~Wav2Vec2CTCTokenizer.decode`] to better understand how to make use of `output_char_offsets`. [`~Wav2Vec2CTCTokenizer.batch_decode`] works the same way with batched output. </Tip> output_word_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed words. <Tip> Please take a look at the Example of [`~Wav2Vec2CTCTokenizer.decode`] to better understand how to make use of `output_word_offsets`. [`~Wav2Vec2CTCTokenizer.batch_decode`] works the same way with batched output. </Tip> kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `List[str]` or [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`]: The list of decoded sentences. Will be a [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`] when `output_char_offsets == True` or `output_word_offsets == True`. """ batch_decoded = [ self.decode( seq, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, output_char_offsets=output_char_offsets, output_word_offsets=output_word_offsets, **kwargs, ) for seq in sequences ] if output_char_offsets or output_word_offsets: # transform list of dicts to dict of lists return Wav2Vec2CTCTokenizerOutput({k: [d[k] for d in batch_decoded] for k in batch_decoded[0]}) return batch_decoded # overwritten from `tokenization_utils_base.py` because we need docs for `output_char_offsets` # and `output_word_offsets` here def decode( self, token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_char_offsets: bool = False, output_word_offsets: bool = False, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. output_char_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output character offsets. Character offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed characters. <Tip> Please take a look at the example below to better understand how to make use of `output_char_offsets`. </Tip> output_word_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed words. <Tip> Please take a look at the example below to better understand how to make use of `output_word_offsets`. </Tip> kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str` or [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`]: The list of decoded sentences. Will be a [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`] when `output_char_offsets == True` or `output_word_offsets == True`. Example: ```python >>> # Let's see how to retrieve time steps for a model >>> from transformers import AutoTokenizer, AutoFeatureExtractor, AutoModelForCTC >>> from datasets import load_dataset >>> import datasets >>> import torch >>> # import model, feature extractor, tokenizer >>> model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-base-960h") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") >>> # load first sample of English common_voice >>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True, trust_remote_code=True) >>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000)) >>> dataset_iter = iter(dataset) >>> sample = next(dataset_iter) >>> # forward sample through model to get greedily predicted transcription ids >>> input_values = feature_extractor(sample["audio"]["array"], return_tensors="pt").input_values >>> logits = model(input_values).logits[0] >>> pred_ids = torch.argmax(logits, axis=-1) >>> # retrieve word stamps (analogous commands for `output_char_offsets`) >>> outputs = tokenizer.decode(pred_ids, output_word_offsets=True) >>> # compute `time_offset` in seconds as product of downsampling ratio and sampling_rate >>> time_offset = model.config.inputs_to_logits_ratio / feature_extractor.sampling_rate >>> word_offsets = [ ... { ... "word": d["word"], ... "start_time": round(d["start_offset"] * time_offset, 2), ... "end_time": round(d["end_offset"] * time_offset, 2), ... } ... for d in outputs.word_offsets ... ] >>> # compare word offsets with audio `en_train_0/common_voice_en_19121553.mp3` online on the dataset viewer: >>> # https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/en >>> word_offsets[:3] [{'word': 'THE', 'start_time': 0.7, 'end_time': 0.78}, {'word': 'TRICK', 'start_time': 0.88, 'end_time': 1.08}, {'word': 'APPEARS', 'start_time': 1.2, 'end_time': 1.64}] ```""" # Convert inputs to python lists token_ids = to_py_obj(token_ids) return self._decode( token_ids=token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, output_char_offsets=output_char_offsets, output_word_offsets=output_word_offsets, **kwargs, ) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,)
class_definition
4,682
27,410
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/tokenization_wav2vec2.py
null
6,406
class Wav2Vec2Tokenizer(PreTrainedTokenizer): """ Constructs a Wav2Vec2 tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to the superclass for more information regarding such methods. Args: vocab_file (`str`): File containing the vocabulary. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sentence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. word_delimiter_token (`str`, *optional*, defaults to `"|"`): The token used for defining the end of a word. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to lowercase the output when decoding. do_normalize (`bool`, *optional*, defaults to `False`): Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly improve the performance for some models, *e.g.*, [wav2vec2-lv60](https://huggingface.co/models?search=lv60). return_attention_mask (`bool`, *optional*, defaults to `False`): Whether or not [`~Wav2Vec2Tokenizer.__call__`] should return `attention_mask`. <Tip> Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using `attention_mask`. For such models, `input_values` should simply be padded with 0 and no `attention_mask` should be passed. For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as [wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should be passed for batched inference. </Tip> **kwargs Additional keyword arguments passed along to [`PreTrainedTokenizer`] """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = { "vocab_file": { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/vocab.json" }, "tokenizer_config_file": { "facebook/wav2vec2-base-960h": ( "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/tokenizer.json" ), }, } model_input_names = ["input_values", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", word_delimiter_token="|", do_lower_case=False, do_normalize=False, return_attention_mask=False, **kwargs, ): warnings.warn( "The class `Wav2Vec2Tokenizer` is deprecated and will be removed in version 5 of Transformers. Please use" " `Wav2Vec2Processor` or `Wav2Vec2CTCTokenizer` instead.", FutureWarning, ) self._word_delimiter_token = word_delimiter_token self.do_lower_case = do_lower_case self.return_attention_mask = return_attention_mask self.do_normalize = do_normalize with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, do_lower_case=do_lower_case, do_normalize=do_normalize, return_attention_mask=return_attention_mask, word_delimiter_token=word_delimiter_token, **kwargs, ) @property def word_delimiter_token(self) -> str: """ `str`: Padding token. Log an error if used while not having been set. """ if self._word_delimiter_token is None and self.verbose: logger.error("Using word_delimiter_token, but it is not set yet.") return None return str(self._word_delimiter_token) @property def word_delimiter_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the word_delimiter_token in the vocabulary. Returns `None` if the token has not been set. """ if self._word_delimiter_token is None: return None return self.convert_tokens_to_ids(self.word_delimiter_token) @word_delimiter_token.setter def word_delimiter_token(self, value): self._word_delimiter_token = value @word_delimiter_token_id.setter def word_delimiter_token_id(self, value): self._word_delimiter_token = self.convert_tokens_to_ids(value) @add_end_docstrings(WAV2VEC2_KWARGS_DOCSTRING) def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences. Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy array or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. padding_side (`str`, *optional*): The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. """ is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) # make sure input is in list format if is_batched and not isinstance(raw_speech[0], np.ndarray): raw_speech = [np.asarray(speech) for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech) # always return batch if not is_batched: raw_speech = [raw_speech] # zero-mean and unit-variance normalization if self.do_normalize: raw_speech = [(x - np.mean(x)) / np.sqrt(np.var(x) + 1e-5) for x in raw_speech] # convert into correct format for padding encoded_inputs = BatchEncoding({"input_values": raw_speech}) padded_inputs = self.pad( encoded_inputs, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=self.return_attention_mask, return_tensors=return_tensors, verbose=verbose, ) return padded_inputs @property def vocab_size(self) -> int: return len(self.decoder) def get_vocab(self) -> Dict: return dict(self.encoder, **self.added_tokens_encoder) def _convert_token_to_id(self, token: str) -> int: """Converts a token (str) in an index (integer) using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" result = self.decoder.get(index, self.unk_token) return result def convert_tokens_to_string(self, tokens: List[str]) -> str: """ Converts a connectionist-temporal-classification (CTC) output tokens into a single string. """ # group same tokens into non-repeating tokens in CTC style decoding grouped_tokens = [token_group[0] for token_group in groupby(tokens)] # filter self.pad_token which is used as CTC-blank token filtered_tokens = list(filter(lambda token: token != self.pad_token, grouped_tokens)) # replace delimiter token string = "".join([" " if token == self.word_delimiter_token else token for token in filtered_tokens]).strip() if self.do_lower_case: string = string.lower() return string def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs, ) -> str: """ special _decode function is needed for Wav2Vec2Tokenizer because added tokens should be treated exactly the same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on the whole token list and not individually on added tokens """ filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) result = [] for token in filtered_tokens: if skip_special_tokens and ( token in self.all_special_ids or (token != self.pad_token and token in self.all_special_tokens) ): continue result.append(token) text = self.convert_tokens_to_string(result) clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: clean_text = self.clean_up_tokenization(text) return clean_text else: return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,)
class_definition
27,413
38,740
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2/tokenization_wav2vec2.py
null
6,407
class FastSpeech2ConformerTokenizer(PreTrainedTokenizer): """ Construct a FastSpeech2Conformer tokenizer. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<sos/eos>"`): The begin of sequence token. Note that for FastSpeech2, it is the same as the `eos_token`. eos_token (`str`, *optional*, defaults to `"<sos/eos>"`): The end of sequence token. Note that for FastSpeech2, it is the same as the `bos_token`. pad_token (`str`, *optional*, defaults to `"<blank>"`): The token used for padding, for example when batching sequences of different lengths. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. should_strip_spaces (`bool`, *optional*, defaults to `False`): Whether or not to strip the spaces from the list of tokens. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<sos/eos>", eos_token="<sos/eos>", pad_token="<blank>", unk_token="<unk>", should_strip_spaces=False, **kwargs, ): requires_backends(self, "g2p_en") with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) import g2p_en self.g2p = g2p_en.G2p() self.decoder = {v: k for k, v in self.encoder.items()} super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, should_strip_spaces=should_strip_spaces, **kwargs, ) self.should_strip_spaces = should_strip_spaces @property def vocab_size(self): return len(self.decoder) def get_vocab(self): "Returns vocab as a dict" return dict(self.encoder, **self.added_tokens_encoder) def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): # expand symbols text = regex.sub(";", ",", text) text = regex.sub(":", ",", text) text = regex.sub("-", " ", text) text = regex.sub("&", "and", text) # strip unnecessary symbols text = regex.sub(r"[\(\)\[\]\<\>\"]+", "", text) # strip whitespaces text = regex.sub(r"\s+", " ", text) text = text.upper() return text, kwargs def _tokenize(self, text): """Returns a tokenized string.""" # phonemize tokens = self.g2p(text) if self.should_strip_spaces: tokens = list(filter(lambda s: s != " ", tokens)) tokens.append(self.eos_token) return tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) # Override since phonemes cannot be converted back to strings def decode(self, token_ids, **kwargs): logger.warning( "Phonemes cannot be reliably converted to a string due to the one-many mapping, converting to tokens instead." ) return self.convert_ids_to_tokens(token_ids) # Override since phonemes cannot be converted back to strings def convert_tokens_to_string(self, tokens, **kwargs): logger.warning( "Phonemes cannot be reliably converted to a string due to the one-many mapping, returning the tokens." ) return tokens def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. Returns: `Tuple(str)`: Paths to the files saved. """ if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.get_vocab(), ensure_ascii=False)) return (vocab_file,) def __getstate__(self): state = self.__dict__.copy() state["g2p"] = None return state def __setstate__(self, d): self.__dict__ = d try: import g2p_en self.g2p = g2p_en.G2p() except ImportError: raise ImportError( "You need to install g2p-en to use FastSpeech2ConformerTokenizer. " "See https://pypi.org/project/g2p-en/ for installation." )
class_definition
971
6,218
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py
null
6,408
class FastSpeech2ConformerModelOutput(ModelOutput): """ Output type of [`FastSpeech2ConformerModel`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Spectrogram generation loss. spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`): The predicted spectrogram. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*): Outputs of the duration predictor. pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the pitch predictor. energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the energy predictor. """ loss: Optional[torch.FloatTensor] = None spectrogram: torch.FloatTensor = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None duration_outputs: torch.LongTensor = None pitch_outputs: torch.FloatTensor = None energy_outputs: torch.FloatTensor = None
class_definition
1,242
4,781
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,409
class FastSpeech2ConformerWithHifiGanOutput(FastSpeech2ConformerModelOutput): """ Output type of [`FastSpeech2ConformerWithHifiGan`]. Args: waveform (`torch.FloatTensor` of shape `(batch_size, audio_length)`): Speech output as a result of passing the predicted mel spectrogram through the vocoder. loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Spectrogram generation loss. spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`): The predicted spectrogram. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*): Outputs of the duration predictor. pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the pitch predictor. energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the energy predictor. """ waveform: torch.FloatTensor = None
class_definition
4,795
8,024
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,410
class FastSpeech2ConformerDurationPredictor(nn.Module): """ Duration predictor module. This is a module of duration predictor described in the paper 'FastSpeech: Fast, Robust and Controllable Text to Speech' https://arxiv.org/pdf/1905.09263.pdf The duration predictor predicts a duration of each frame in log domain from the hidden embeddings of encoder. Note: The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`, the outputs are calculated in log domain but in `inference`, those are calculated in linear domain. """ def __init__(self, config: FastSpeech2ConformerConfig): super().__init__() self.conv_layers = nn.ModuleList() self.log_domain_offset = 1.0 for layer_idx in range(config.duration_predictor_layers): num_chans = config.duration_predictor_channels input_channels = config.hidden_size if layer_idx == 0 else num_chans layer = FastSpeech2ConformerPredictorLayer( input_channels, num_chans, config.duration_predictor_kernel_size, config.duration_predictor_dropout_rate, ) self.conv_layers.append(layer) self.linear = nn.Linear(config.duration_predictor_channels, 1) def forward(self, encoder_hidden_states): """ Args: hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`): Batch of input sequences. padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*): Batch of masks indicating padded part. Returns: `torch.Tensor`: Batch of predicted durations in log domain `(batch_size, max_text_length)`. """ # (batch_size, input_dim, max_text_length) hidden_states = encoder_hidden_states.transpose(1, -1) for layer in self.conv_layers: hidden_states = layer(hidden_states) # NOTE: calculate in log domain, (batch_size, max_text_length) hidden_states = self.linear(hidden_states.transpose(1, -1)).squeeze(-1) if not self.training: # NOTE: calculate in linear domain hidden_states = torch.clamp(torch.round(hidden_states.exp() - self.log_domain_offset), min=0).long() return hidden_states
class_definition
12,773
15,193
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,411
class FastSpeech2ConformerBatchNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() if layer_id == 0: in_conv_dim = config.num_mel_bins else: in_conv_dim = config.speech_decoder_postnet_units if layer_id == config.speech_decoder_postnet_layers - 1: out_conv_dim = config.num_mel_bins else: out_conv_dim = config.speech_decoder_postnet_units self.conv = nn.Conv1d( in_conv_dim, out_conv_dim, kernel_size=config.speech_decoder_postnet_kernel, stride=1, padding=(config.speech_decoder_postnet_kernel - 1) // 2, bias=False, ) self.batch_norm = nn.BatchNorm1d(out_conv_dim) if layer_id < config.speech_decoder_postnet_layers - 1: self.activation = nn.Tanh() else: self.activation = None self.dropout = nn.Dropout(config.speech_decoder_postnet_dropout) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.batch_norm(hidden_states) if self.activation is not None: hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
15,284
16,626
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,412
class FastSpeech2ConformerSpeechDecoderPostnet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.feat_out = nn.Linear(config.hidden_size, config.num_mel_bins * config.reduction_factor) self.layers = nn.ModuleList( [FastSpeech2ConformerBatchNormConvLayer(config, i) for i in range(config.speech_decoder_postnet_layers)] ) def forward(self, hidden_states: torch.Tensor): outputs_before_postnet = self.feat_out(hidden_states).view(hidden_states.size(0), -1, self.config.num_mel_bins) layer_output = outputs_before_postnet.transpose(1, 2) for layer in self.layers: layer_output = layer(layer_output) outputs_after_postnet = outputs_before_postnet + layer_output.transpose(1, 2) return outputs_before_postnet, outputs_after_postnet
class_definition
16,629
17,503
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,413
class FastSpeech2ConformerPredictorLayer(nn.Module): def __init__(self, input_channels, num_chans, kernel_size, dropout_rate): super().__init__() self.conv = nn.Conv1d( input_channels, num_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) self.activation = nn.ReLU() self.layer_norm = nn.LayerNorm(num_chans) self.dropout = nn.Dropout(dropout_rate) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) # Perform layer norm on dimension 1 hidden_states = hidden_states.transpose(1, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, -1) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
17,506
18,416
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,414
class FastSpeech2ConformerVariancePredictor(nn.Module): def __init__( self, config: FastSpeech2ConformerConfig, num_layers=2, num_chans=384, kernel_size=3, dropout_rate=0.5, ): """ Initilize variance predictor module. Args: input_dim (`int`): Input dimension. num_layers (`int`, *optional*, defaults to 2): Number of convolutional layers. num_chans (`int`, *optional*, defaults to 384): Number of channels of convolutional layers. kernel_size (`int`, *optional*, defaults to 3): Kernel size of convolutional layers. dropout_rate (`float`, *optional*, defaults to 0.5): Dropout rate. """ super().__init__() self.conv_layers = nn.ModuleList() for idx in range(num_layers): input_channels = config.hidden_size if idx == 0 else num_chans layer = FastSpeech2ConformerPredictorLayer(input_channels, num_chans, kernel_size, dropout_rate) self.conv_layers.append(layer) self.linear = nn.Linear(num_chans, 1) def forward(self, encoder_hidden_states, padding_masks=None): """ Calculate forward propagation. Args: encoder_hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`): Batch of input sequences. padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*): Batch of masks indicating padded part. Returns: Tensor: Batch of predicted sequences `(batch_size, max_text_length, 1)`. """ # (batch_size, input_dim, max_text_length) hidden_states = encoder_hidden_states.transpose(1, -1) for layer in self.conv_layers: hidden_states = layer(hidden_states) hidden_states = self.linear(hidden_states.transpose(1, 2)) if padding_masks is not None: hidden_states = hidden_states.masked_fill(padding_masks, 0.0) return hidden_states
class_definition
18,419
20,498
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,415
class FastSpeech2ConformerVarianceEmbedding(nn.Module): def __init__( self, in_channels=1, out_channels=384, kernel_size=1, padding=0, dropout_rate=0.0, ): super().__init__() self.conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding, ) self.dropout = nn.Dropout(dropout_rate) def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states
class_definition
20,501
21,247
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,416
class FastSpeech2ConformerAttention(nn.Module): """ Multi-Head attention layer with relative position encoding. Details can be found in https://github.com/espnet/espnet/pull/2816. Paper: https://arxiv.org/abs/1901.02860. """ def __init__(self, config: FastSpeech2ConformerConfig, module_config): """Construct an FastSpeech2ConformerAttention object.""" super().__init__() # We assume d_v always equals dim_key self.num_heads = module_config["num_attention_heads"] self.hidden_size = config.hidden_size self.dim_key = self.hidden_size // self.num_heads self.head_dim = self.hidden_size // self.num_heads self.linear_q = nn.Linear(self.hidden_size, self.hidden_size) self.linear_k = nn.Linear(self.hidden_size, self.hidden_size) self.linear_v = nn.Linear(self.hidden_size, self.hidden_size) self.linear_out = nn.Linear(self.hidden_size, self.hidden_size) self.dropout = nn.Dropout(p=module_config["attention_dropout_rate"]) # linear transformation for positional encoding self.linear_pos = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim)) self.pos_bias_v = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim)) def shift_relative_position_tensor(self, pos_tensor): """ Args: pos_tensor (torch.Tensor of shape (batch_size, head, time1, 2*time1-1)): Input tensor. """ zero_pad = torch.zeros((*pos_tensor.size()[:3], 1), device=pos_tensor.device, dtype=pos_tensor.dtype) pos_tensor_padded = torch.cat([zero_pad, pos_tensor], dim=-1) pos_tensor_padded = pos_tensor_padded.view(*pos_tensor.size()[:2], pos_tensor.size(3) + 1, pos_tensor.size(2)) # only keep the positions from 0 to time2 pos_tensor = pos_tensor_padded[:, :, 1:].view_as(pos_tensor)[:, :, :, : pos_tensor.size(-1) // 2 + 1] return pos_tensor def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, pos_emb: Optional[torch.Tensor] = None, output_attentions: Optional[torch.Tensor] = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Compute 'Scaled Dot Product Attention' with rel. positional encoding. Args: hidden_states (`torch.Tensor` of shape `(batch, time2, size)`): Values of the hidden states attention_mask (`torch.Tensor` of shape `(batch, time1, time2)`): Mask tensor. pos_emb (`torch.Tensor` of shape `(batch, 2*time1-1, size)`): Positional embedding tensor. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. Returns: `torch.Tensor`: Output tensor of shape `(batch, time1, d_model)`. """ bsz, q_len, _ = hidden_states.size() query_states = self.linear_q(hidden_states).view(bsz, -1, self.num_heads, self.head_dim) key_states = self.linear_k(hidden_states).view(bsz, -1, self.num_heads, self.head_dim) value_states = self.linear_v(hidden_states).view(bsz, -1, self.num_heads, self.head_dim) bsz_pos = pos_emb.size(0) pos_encoding = self.linear_pos(pos_emb).view(bsz_pos, -1, self.num_heads, self.head_dim) # (batch_size, head, time1, dim_key) query_with_bias_u = (query_states + self.pos_bias_u).transpose(1, 2) # (batch_size, head, time1, dim_key) query_with_bias_v = (query_states + self.pos_bias_v).transpose(1, 2) # compute attention score # first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # (batch_size, head, time1, time2) matrix_ac = torch.matmul(query_with_bias_u, key_states.permute(0, 2, 3, 1)) # compute matrix b and matrix d # (batch_size, head, time1, 2*time1-1) matrix_bd = torch.matmul(query_with_bias_v, pos_encoding.permute(0, 2, 3, 1)) matrix_bd = self.shift_relative_position_tensor(matrix_bd) # (batch_size, head, time1, time2) scores = (matrix_ac + matrix_bd) / math.sqrt(self.dim_key) # Forward attention if attention_mask is not None: expected_size = (bsz, 1, q_len) if attention_mask.size() != expected_size: raise ValueError(f"Attention mask should be of size {expected_size}, but is {attention_mask.size()}") attention_mask = attention_mask.unsqueeze(1).eq(0) min_value = float(torch.finfo(scores.dtype).min) scores = scores.masked_fill(attention_mask, min_value) attn_weights = torch.softmax(scores, dim=-1).masked_fill(attention_mask, 0.0) else: attn_weights = torch.softmax(scores, dim=-1) attn_weights = self.dropout(attn_weights) attn_output = torch.matmul(attn_weights, value_states.transpose(1, 2)) attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, -1) attn_output = self.linear_out(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights
class_definition
21,250
26,773
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,417
class FastSpeech2ConformerConvolutionModule(nn.Module): def __init__(self, config: FastSpeech2ConformerConfig, module_config): super().__init__() # kernel_size should be an odd number for 'SAME' padding channels = config.hidden_size kernel_size = module_config["kernel_size"] self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=True) self.depthwise_conv = nn.Conv1d( channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=True ) self.norm = nn.BatchNorm1d(channels) self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1, stride=1, padding=0, bias=True) def forward(self, hidden_states): """ Compute convolution module. Args: hidden_states (`torch.Tensor` of shape `(batch, time, channels)`): Input tensor. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, channels)`. """ # exchange the temporal dimension and the feature dimension hidden_states = hidden_states.transpose(1, 2) # GLU mechanism, (batch_size, 2*channel, dim) hidden_states = self.pointwise_conv1(hidden_states) # (batch_size, channel, dim) hidden_states = nn.functional.glu(hidden_states, dim=1) # 1D Depthwise Conv hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.norm(hidden_states) hidden_states = hidden_states * torch.sigmoid(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) return hidden_states.transpose(1, 2)
class_definition
26,776
28,473
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,418
class FastSpeech2ConformerEncoderLayer(nn.Module): def __init__(self, config: FastSpeech2ConformerConfig, module_config): super().__init__() # self-attention module definition self.self_attn = FastSpeech2ConformerAttention(config, module_config) # feed-forward module definition self.feed_forward = FastSpeech2ConformerMultiLayeredConv1d(config, module_config) self.macaron_style = config.use_macaron_style_in_conformer if self.macaron_style: self.feed_forward_macaron = FastSpeech2ConformerMultiLayeredConv1d(config, module_config) self.ff_macaron_layer_norm = nn.LayerNorm(config.hidden_size) self.ff_scale = 0.5 else: self.ff_scale = 1.0 # convolution module definition self.use_cnn_module = config.use_cnn_in_conformer if self.use_cnn_module: self.conv_module = FastSpeech2ConformerConvolutionModule(config, module_config) self.conv_layer_norm = nn.LayerNorm(config.hidden_size) self.final_layer_norm = nn.LayerNorm(config.hidden_size) self.ff_layer_norm = nn.LayerNorm(config.hidden_size) self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size) self.dropout = nn.Dropout(module_config["dropout_rate"]) self.size = config.hidden_size self.normalize_before = module_config["normalize_before"] self.concat_after = module_config["concat_after"] if self.concat_after: self.concat_linear = nn.Linear(config.hidden_size + config.hidden_size, config.hidden_size) def forward( self, hidden_states: torch.Tensor, pos_emb: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[torch.Tensor] = False, ): """ Compute encoded features. Args: hidden_states (`torch.Tensor` of shape `(batch, time, size)`): Input tensor. pos_emb (`torch.Tensor` of shape `(1, time, size)`): Positional embeddings tensor. attention_mask (`torch.Tensor` of shape `(batch, time)`): Attention mask tensor for the input. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, size)`. """ # whether to use macaron style if self.macaron_style: residual = hidden_states if self.normalize_before: hidden_states = self.ff_macaron_layer_norm(hidden_states) hidden_states = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(hidden_states)) if not self.normalize_before: hidden_states = self.ff_macaron_layer_norm(hidden_states) # multi-headed self-attention module residual = hidden_states if self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) attention_output, attention_scores = self.self_attn( hidden_states, attention_mask=attention_mask, pos_emb=pos_emb, output_attentions=output_attentions ) if self.concat_after: x_concat = torch.cat((hidden_states, attention_output), dim=-1) hidden_states = self.concat_linear(x_concat) hidden_states = residual + hidden_states else: hidden_states = self.dropout(attention_output) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) # convolution module if self.use_cnn_module: residual = hidden_states if self.normalize_before: hidden_states = self.conv_layer_norm(hidden_states) hidden_states = self.conv_module(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.conv_layer_norm(hidden_states) # feed forward module residual = hidden_states if self.normalize_before: hidden_states = self.ff_layer_norm(hidden_states) hidden_states = self.feed_forward(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = residual + self.ff_scale * hidden_states if not self.normalize_before: hidden_states = self.ff_layer_norm(hidden_states) if self.conv_module is not None: hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attention_scores,) return outputs
class_definition
28,476
33,418
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,419
class FastSpeech2ConformerMultiLayeredConv1d(nn.Module): """ Multi-layered conv1d for Transformer block. This is a module of multi-layered conv1d designed to replace positionwise feed-forward network in Transformer block, which is introduced in 'FastSpeech: Fast, Robust and Controllable Text to Speech' https://arxiv.org/pdf/1905.09263.pdf """ def __init__(self, config: FastSpeech2ConformerConfig, module_config): """ Initialize FastSpeech2ConformerMultiLayeredConv1d module. Args: input_channels (`int`): Number of input channels. hidden_channels (`int`): Number of hidden channels. kernel_size (`int`): Kernel size of conv1d. dropout_rate (`float`): Dropout rate. """ super().__init__() input_channels = config.hidden_size hidden_channels = module_config["linear_units"] kernel_size = config.positionwise_conv_kernel_size self.conv1 = nn.Conv1d(input_channels, hidden_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2) self.conv2 = nn.Conv1d(hidden_channels, input_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2) self.dropout = nn.Dropout(module_config["dropout_rate"]) def forward(self, hidden_states): """ Calculate forward propagation. Args: hidden_states (torch.Tensor): Batch of input tensors (batch_size, time, input_channels). Returns: torch.Tensor: Batch of output tensors (batch_size, time, hidden_channels). """ hidden_states = hidden_states.transpose(-1, 1) hidden_states = self.conv1(hidden_states) hidden_states = torch.relu(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = hidden_states.transpose(-1, 1) return hidden_states
class_definition
33,421
35,356
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,420
class FastSpeech2ConformerRelPositionalEncoding(nn.Module): """ Args: Relative positional encoding module (new implementation). Details can be found in https://github.com/espnet/espnet/pull/2816. See : Appendix Batch in https://arxiv.org/abs/1901.02860 config (`FastSpeech2ConformerConfig`): FastSpeech2ConformerConfig instance. module_config (`dict`): Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`. """ def __init__(self, config: FastSpeech2ConformerConfig, module_config): """ Construct an PositionalEncoding object. """ super().__init__() self.embed_dim = config.hidden_size self.input_scale = math.sqrt(self.embed_dim) self.dropout = nn.Dropout(p=module_config["positional_dropout_rate"]) self.pos_enc = None self.max_len = 5000 self.extend_pos_enc(torch.tensor(0.0).expand(1, self.max_len)) def extend_pos_enc(self, x): """Reset the positional encodings.""" if self.pos_enc is not None: # self.pos_enc contains both positive and negative parts # the length of self.pos_enc is 2 * input_len - 1 if self.pos_enc.size(1) >= x.size(1) * 2 - 1: if self.pos_enc.dtype != x.dtype or self.pos_enc.device != x.device: self.pos_enc = self.pos_enc.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the # position of key vector. We use position relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i<j). pos_enc_positive = torch.zeros(x.size(1), self.embed_dim) pos_enc_negative = torch.zeros(x.size(1), self.embed_dim) position = torch.arange(0, x.size(1), dtype=torch.int64).float().unsqueeze(1) div_term = torch.exp( torch.arange(0, self.embed_dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / self.embed_dim) ) pos_enc_positive[:, 0::2] = torch.sin(position * div_term) pos_enc_positive[:, 1::2] = torch.cos(position * div_term) pos_enc_negative[:, 0::2] = torch.sin(-1 * position * div_term) pos_enc_negative[:, 1::2] = torch.cos(-1 * position * div_term) # Reserve the order of positive indices and concat both positive and # negative indices. This is used to support the shifting trick # as in https://arxiv.org/abs/1901.02860 pos_enc_positive = torch.flip(pos_enc_positive, [0]).unsqueeze(0) pos_enc_negative = pos_enc_negative[1:].unsqueeze(0) pos_enc = torch.cat([pos_enc_positive, pos_enc_negative], dim=1) self.pos_enc = pos_enc.to(device=x.device, dtype=x.dtype) def forward(self, feature_representation): """ Args: feature_representation (`torch.Tensor` of shape (batch_size, time, `*`)): Input tensor. Returns: `torch.Tensor`: Encoded tensor (batch_size, time, `*`). """ self.extend_pos_enc(feature_representation) hidden_states = feature_representation * self.input_scale center_idx = self.pos_enc.size(1) // 2 pos_emb = self.pos_enc[:, center_idx - hidden_states.size(1) + 1 : center_idx + hidden_states.size(1)] return self.dropout(hidden_states), self.dropout(pos_emb)
class_definition
35,359
38,844
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,421
class FastSpeech2ConformerEncoder(nn.Module): """ FastSpeech2ConformerEncoder encoder module. Args: config (`FastSpeech2ConformerConfig`): FastSpeech2ConformerConfig instance. module_config (`dict`): Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`. use_encoder_input_layer (`bool`, *optional*, defaults to `False`): Input layer type. """ def __init__( self, config: FastSpeech2ConformerConfig, module_config, use_encoder_input_layer=False, ): super().__init__() self.embed = None if use_encoder_input_layer: self.embed = nn.Embedding( num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, padding_idx=0 ) self.pos_enc = FastSpeech2ConformerRelPositionalEncoding(config, module_config) self.conformer_layers = nn.ModuleList( [FastSpeech2ConformerEncoderLayer(config, module_config) for _ in range(module_config["layers"])] ) def forward( self, input_tensor: torch.LongTensor, attention_mask: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = False, return_dict: Optional[bool] = None, ): """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, attention_dim)`. """ feature_representation = input_tensor if self.embed is not None: feature_representation = self.embed(feature_representation) hidden_states, pos_emb = self.pos_enc(feature_representation) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for conformer_layer in self.conformer_layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = conformer_layer(hidden_states, pos_emb, attention_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions )
class_definition
38,847
42,994
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,422
class FastSpeech2ConformerLoss(nn.Module): def __init__(self, config: FastSpeech2ConformerConfig): super().__init__() use_masking = config.use_masking use_weighted_masking = config.use_weighted_masking if use_masking and use_weighted_masking: raise ValueError("Either use_masking or use_weighted_masking can be True, but not both.") self.use_masking = use_masking self.use_weighted_masking = use_weighted_masking # define criterions reduction = "none" if self.use_weighted_masking else "mean" self.l1_criterion = nn.L1Loss(reduction=reduction) self.mse_criterion = nn.MSELoss(reduction=reduction) self.duration_criterion = nn.MSELoss(reduction=reduction) self.log_domain_offset = 1.0 def forward( self, outputs_after_postnet, outputs_before_postnet, duration_outputs, pitch_outputs, energy_outputs, spectrogram_labels, duration_labels, pitch_labels, energy_labels, duration_mask, spectrogram_mask, ): """ Args: outputs_after_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`): Batch of outputs after postnet. outputs_before_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`): Batch of outputs before postnet. duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length)`): Batch of outputs of duration predictor. pitch_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of outputs of pitch predictor. energy_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of outputs of energy predictor. spectrogram_labels (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`): Batch of target features. duration_labels (`torch.LongTensor` of shape `(batch_size, max_text_length)`): Batch of durations. pitch_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of target token-averaged pitch. energy_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of target token-averaged energy. duration_mask (`torch.LongTensor`): Mask used to discern which values the duration loss should be calculated for. spectrogram_mask (`torch.LongTensor`): Mask used to discern which values the spectrogam loss should be calculated for. Returns: `tuple(torch.FloatTensor)`: Tuple of tensors containing, in order, the L1 loss value, duration predictor loss value, pitch predictor loss value, and energy predictor loss value. """ pitch_and_energy_masks = duration_mask.unsqueeze(-1) # apply mask to remove padded part if self.use_masking: outputs_before_postnet = outputs_before_postnet.masked_select(spectrogram_mask) if outputs_after_postnet is not None: outputs_after_postnet = outputs_after_postnet.masked_select(spectrogram_mask) spectrogram_labels = spectrogram_labels.masked_select(spectrogram_mask) duration_outputs = duration_outputs.masked_select(duration_mask) duration_labels = duration_labels.masked_select(duration_mask) pitch_outputs = pitch_outputs.masked_select(pitch_and_energy_masks) energy_outputs = energy_outputs.masked_select(pitch_and_energy_masks) pitch_labels = pitch_labels.masked_select(pitch_and_energy_masks) energy_labels = energy_labels.masked_select(pitch_and_energy_masks) # calculate loss l1_loss = self.l1_criterion(outputs_before_postnet, spectrogram_labels) if outputs_after_postnet is not None: l1_loss = l1_loss + self.l1_criterion(outputs_after_postnet, spectrogram_labels) duration_labels = torch.log(duration_labels.float() + self.log_domain_offset) duration_loss = self.duration_criterion(duration_outputs, duration_labels) pitch_loss = self.mse_criterion(pitch_outputs, pitch_labels) energy_loss = self.mse_criterion(energy_outputs, energy_labels) # make weighted mask and apply it if self.use_weighted_masking: spectrogram_mask = nn.functional.pad( spectrogram_mask.transpose(1, 2), [0, spectrogram_labels.size(1) - spectrogram_mask.size(1), 0, 0, 0, 0], value=False, ).transpose(1, 2) out_weights = spectrogram_mask.float() / spectrogram_mask.sum(dim=1, keepdim=True).float() out_weights /= spectrogram_labels.size(0) * spectrogram_labels.size(2) duration_weights = duration_mask.float() / duration_mask.sum(dim=1, keepdim=True).float() duration_weights /= duration_labels.size(0) # apply weight l1_loss = l1_loss.mul(out_weights).masked_select(spectrogram_mask).sum() duration_loss = duration_loss.mul(duration_weights).masked_select(duration_mask).sum() pitch_weights = duration_weights.unsqueeze(-1) pitch_loss = pitch_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum() energy_loss = energy_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum() return l1_loss + duration_loss + pitch_loss + energy_loss
class_definition
42,997
48,664
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,423
class FastSpeech2ConformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FastSpeech2ConformerConfig base_model_prefix = "fastspeech2_conformer" main_input_name = "input_ids" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.LayerNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: key = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-key, b=key) elif isinstance(module, nn.Embedding): module.weight.data.normal_() if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, FastSpeech2ConformerAttention): nn.init.xavier_uniform_(module.pos_bias_u) nn.init.xavier_uniform_(module.pos_bias_v) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, FastSpeech2ConformerEncoder): module.gradient_checkpointing = value
class_definition
48,667
50,039
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,424
class FastSpeech2ConformerModel(FastSpeech2ConformerPreTrainedModel): """ FastSpeech 2 module. This is a module of FastSpeech 2 described in 'FastSpeech 2: Fast and High-Quality End-to-End Text to Speech' https://arxiv.org/abs/2006.04558. Instead of quantized pitch and energy, we use token-averaged value introduced in FastPitch: Parallel Text-to-speech with Pitch Prediction. The encoder and decoder are Conformers instead of regular Transformers. """ def __init__(self, config: FastSpeech2ConformerConfig): super().__init__(config) self.config = config # store hyperparameters self.vocab_size = config.vocab_size self.num_mel_bins = config.num_mel_bins self.hidden_size = config.hidden_size self.reduction_factor = config.reduction_factor self.stop_gradient_from_pitch_predictor = config.stop_gradient_from_pitch_predictor self.stop_gradient_from_energy_predictor = config.stop_gradient_from_energy_predictor self.multilingual_model = config.num_languages is not None and config.num_languages > 1 if self.multilingual_model: self.language_id_embedding = torch.nn.Embedding(config.num_languages, self.hidden_size) self.multispeaker_model = config.num_speakers is not None and config.num_speakers > 1 if self.multispeaker_model: self.speaker_id_embedding = torch.nn.Embedding(config.num_speakers, config.hidden_size) self.speaker_embed_dim = config.speaker_embed_dim if self.speaker_embed_dim: self.projection = nn.Linear(config.hidden_size + self.speaker_embed_dim, config.hidden_size) self.encoder = FastSpeech2ConformerEncoder(config, config.encoder_config, use_encoder_input_layer=True) self.duration_predictor = FastSpeech2ConformerDurationPredictor(config) self.pitch_predictor = FastSpeech2ConformerVariancePredictor( config, num_layers=config.pitch_predictor_layers, num_chans=config.pitch_predictor_channels, kernel_size=config.pitch_predictor_kernel_size, dropout_rate=config.pitch_predictor_dropout, ) # continuous pitch + FastPitch style avg self.pitch_embed = FastSpeech2ConformerVarianceEmbedding( out_channels=self.hidden_size, kernel_size=config.pitch_embed_kernel_size, padding=(config.pitch_embed_kernel_size - 1) // 2, dropout_rate=config.pitch_embed_dropout, ) self.energy_predictor = FastSpeech2ConformerVariancePredictor( config, num_layers=config.energy_predictor_layers, num_chans=config.energy_predictor_channels, kernel_size=config.energy_predictor_kernel_size, dropout_rate=config.energy_predictor_dropout, ) # continuous energy + FastPitch style avg self.energy_embed = FastSpeech2ConformerVarianceEmbedding( out_channels=self.hidden_size, kernel_size=config.energy_embed_kernel_size, padding=(config.energy_embed_kernel_size - 1) // 2, dropout_rate=config.energy_embed_dropout, ) # The decoder is an encoder self.decoder = FastSpeech2ConformerEncoder(config, config.decoder_config, use_encoder_input_layer=False) self.speech_decoder_postnet = FastSpeech2ConformerSpeechDecoderPostnet(config) self.criterion = FastSpeech2ConformerLoss(config) self.post_init() @replace_return_docstrings(output_type=FastSpeech2ConformerModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, spectrogram_labels: Optional[torch.FloatTensor] = None, duration_labels: Optional[torch.LongTensor] = None, pitch_labels: Optional[torch.FloatTensor] = None, energy_labels: Optional[torch.FloatTensor] = None, speaker_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, speaker_embedding: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[Tuple, FastSpeech2ConformerModelOutput]: """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Input sequence of text vectors. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**. spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`): Batch of padded target features. duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`): Batch of padded durations. pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged pitch. energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged energy. speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Speaker ids used to condition features of speech output by the model. lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Language ids used to condition features of speech output by the model. speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`): Embedding containing conditioning signals for the features of the speech. return_dict (`bool`, *optional*, defaults to `None`): Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple. output_attentions (`bool`, *optional*, defaults to `None`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*, defaults to `None`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. Returns: Example: ```python >>> from transformers import ( ... FastSpeech2ConformerTokenizer, ... FastSpeech2ConformerModel, ... FastSpeech2ConformerHifiGan, ... ) >>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer") >>> inputs = tokenizer("some text to convert to speech", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> model = FastSpeech2ConformerModel.from_pretrained("espnet/fastspeech2_conformer") >>> output_dict = model(input_ids, return_dict=True) >>> spectrogram = output_dict["spectrogram"] >>> vocoder = FastSpeech2ConformerHifiGan.from_pretrained("espnet/fastspeech2_conformer_hifigan") >>> waveform = vocoder(spectrogram) >>> print(waveform.shape) torch.Size([1, 49664]) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if attention_mask is None: attention_mask = torch.ones(input_ids.shape, device=input_ids.device) has_missing_labels = ( spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None ) if self.training and has_missing_labels: raise ValueError("All labels must be provided to run in training mode.") # forward encoder text_masks = attention_mask.unsqueeze(-2) encoder_outputs = self.encoder( input_ids, text_masks, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) hidden_states = encoder_outputs[0] # Integrate with language id, speaker id, and speaker embedding if self.multispeaker_model and speaker_ids is not None: speaker_id_embeddings = self.speaker_id_embedding(speaker_ids.view(-1)) hidden_states = hidden_states + speaker_id_embeddings.unsqueeze(1) if self.multilingual_model and lang_ids is not None: language_id_embbedings = self.language_id_embedding(lang_ids.view(-1)) hidden_states = hidden_states + language_id_embbedings.unsqueeze(1) if self.speaker_embed_dim is not None and speaker_embedding is not None: embeddings_expanded = ( nn.functional.normalize(speaker_embedding).unsqueeze(1).expand(-1, hidden_states.size(1), -1) ) hidden_states = self.projection(torch.cat([hidden_states, embeddings_expanded], dim=-1)) # forward duration predictor and variance predictors duration_mask = ~attention_mask.bool() if self.stop_gradient_from_pitch_predictor: pitch_predictions = self.pitch_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1)) else: pitch_predictions = self.pitch_predictor(hidden_states, duration_mask.unsqueeze(-1)) if self.stop_gradient_from_energy_predictor: energy_predictions = self.energy_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1)) else: energy_predictions = self.energy_predictor(hidden_states, duration_mask.unsqueeze(-1)) duration_predictions = self.duration_predictor(hidden_states) duration_predictions = duration_predictions.masked_fill(duration_mask, 0.0) if not self.training: # use prediction in inference embedded_pitch_curve = self.pitch_embed(pitch_predictions) embedded_energy_curve = self.energy_embed(energy_predictions) hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve hidden_states = length_regulator(hidden_states, duration_predictions, self.config.speaking_speed) else: # use groundtruth in training embedded_pitch_curve = self.pitch_embed(pitch_labels) embedded_energy_curve = self.energy_embed(energy_labels) hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve hidden_states = length_regulator(hidden_states, duration_labels) # forward decoder if not self.training: hidden_mask = None else: spectrogram_mask = (spectrogram_labels != -100).any(dim=-1) spectrogram_mask = spectrogram_mask.int() if self.reduction_factor > 1: length_dim = spectrogram_mask.shape[1] - spectrogram_mask.shape[1] % self.reduction_factor spectrogram_mask = spectrogram_mask[:, :, :length_dim] hidden_mask = spectrogram_mask.unsqueeze(-2) decoder_outputs = self.decoder( hidden_states, hidden_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) outputs_before_postnet, outputs_after_postnet = self.speech_decoder_postnet(decoder_outputs[0]) loss = None if self.training: # calculate loss loss_duration_mask = ~duration_mask loss_spectrogram_mask = spectrogram_mask.unsqueeze(-1).bool() loss = self.criterion( outputs_after_postnet=outputs_after_postnet, outputs_before_postnet=outputs_before_postnet, duration_outputs=duration_predictions, pitch_outputs=pitch_predictions, energy_outputs=energy_predictions, spectrogram_labels=spectrogram_labels, duration_labels=duration_labels, pitch_labels=pitch_labels, energy_labels=energy_labels, duration_mask=loss_duration_mask, spectrogram_mask=loss_spectrogram_mask, ) if not return_dict: postnet_outputs = (outputs_after_postnet,) audio_feature_predictions = ( duration_predictions, pitch_predictions, energy_predictions, ) outputs = postnet_outputs + encoder_outputs + decoder_outputs[1:] + audio_feature_predictions return ((loss,) + outputs) if loss is not None else outputs return FastSpeech2ConformerModelOutput( loss=loss, spectrogram=outputs_after_postnet, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, duration_outputs=duration_predictions, pitch_outputs=pitch_predictions, energy_outputs=energy_predictions, )
class_definition
50,149
64,194
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,425
class HifiGanResidualBlock(nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): super().__init__() self.leaky_relu_slope = leaky_relu_slope self.convs1 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=dilation[i], padding=self.get_padding(kernel_size, dilation[i]), ) for i in range(len(dilation)) ] ) self.convs2 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=1, padding=self.get_padding(kernel_size, 1), ) for _ in range(len(dilation)) ] ) def get_padding(self, kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm for layer in self.convs1: weight_norm(layer) for layer in self.convs2: weight_norm(layer) def remove_weight_norm(self): for layer in self.convs1: nn.utils.remove_weight_norm(layer) for layer in self.convs2: nn.utils.remove_weight_norm(layer) def forward(self, hidden_states): for conv1, conv2 in zip(self.convs1, self.convs2): residual = hidden_states hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv1(hidden_states) hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv2(hidden_states) hidden_states = hidden_states + residual return hidden_states
class_definition
64,279
66,408
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,426
class FastSpeech2ConformerHifiGan(PreTrainedModel): config_class = FastSpeech2ConformerHifiGanConfig main_input_name = "spectrogram" def __init__(self, config: FastSpeech2ConformerHifiGanConfig): super().__init__(config) self.num_kernels = len(config.resblock_kernel_sizes) self.num_upsamples = len(config.upsample_rates) self.conv_pre = nn.Conv1d( config.model_in_dim, config.upsample_initial_channel, kernel_size=7, stride=1, padding=3, ) self.upsampler = nn.ModuleList() for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): self.upsampler.append( nn.ConvTranspose1d( config.upsample_initial_channel // (2**i), config.upsample_initial_channel // (2 ** (i + 1)), kernel_size=kernel_size, stride=upsample_rate, padding=(kernel_size - upsample_rate) // 2, ) ) self.resblocks = nn.ModuleList() for i in range(len(self.upsampler)): channels = config.upsample_initial_channel // (2 ** (i + 1)) for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3) self.register_buffer("mean", torch.zeros(config.model_in_dim)) self.register_buffer("scale", torch.ones(config.model_in_dim)) # Initialize weights and apply final processing self.post_init() def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm weight_norm(self.conv_pre) for layer in self.upsampler: weight_norm(layer) for layer in self.resblocks: layer.apply_weight_norm() weight_norm(self.conv_post) def remove_weight_norm(self): nn.utils.remove_weight_norm(self.conv_pre) for layer in self.upsampler: nn.utils.remove_weight_norm(layer) for layer in self.resblocks: layer.remove_weight_norm() nn.utils.remove_weight_norm(self.conv_post) def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor: r""" Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech waveform. Args: spectrogram (`torch.FloatTensor`): Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length, config.model_in_dim)`, or un-batched and of shape `(sequence_length, config.model_in_dim)`. Returns: `torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`. """ if self.config.normalize_before: spectrogram = (spectrogram - self.mean) / self.scale is_batched = spectrogram.dim() == 3 if not is_batched: spectrogram = spectrogram.unsqueeze(0) hidden_states = spectrogram.transpose(2, 1) hidden_states = self.conv_pre(hidden_states) for i in range(self.num_upsamples): hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope) hidden_states = self.upsampler[i](hidden_states) res_state = self.resblocks[i * self.num_kernels](hidden_states) for j in range(1, self.num_kernels): res_state += self.resblocks[i * self.num_kernels + j](hidden_states) hidden_states = res_state / self.num_kernels hidden_states = nn.functional.leaky_relu(hidden_states) hidden_states = self.conv_post(hidden_states) hidden_states = torch.tanh(hidden_states) if not is_batched: # remove batch dim and collapse tensor to 1-d audio waveform waveform = hidden_states.squeeze(0).transpose(1, 0).view(-1) else: # remove seq-len dim since this collapses to 1 waveform = hidden_states.squeeze(1) return waveform
class_definition
66,607
71,586
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,427
class FastSpeech2ConformerWithHifiGan(PreTrainedModel): config_class = FastSpeech2ConformerWithHifiGanConfig def __init__(self, config: FastSpeech2ConformerWithHifiGanConfig): super().__init__(config) self.model = FastSpeech2ConformerModel(config.model_config) self.vocoder = FastSpeech2ConformerHifiGan(config.vocoder_config) self.config = config @replace_return_docstrings( output_type=FastSpeech2ConformerWithHifiGanOutput, config_class=FastSpeech2ConformerWithHifiGanConfig ) def forward( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, spectrogram_labels: Optional[torch.FloatTensor] = None, duration_labels: Optional[torch.LongTensor] = None, pitch_labels: Optional[torch.FloatTensor] = None, energy_labels: Optional[torch.FloatTensor] = None, speaker_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, speaker_embedding: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[Tuple, FastSpeech2ConformerModelOutput]: """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Input sequence of text vectors. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**. spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`): Batch of padded target features. duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`): Batch of padded durations. pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged pitch. energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged energy. speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Speaker ids used to condition features of speech output by the model. lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Language ids used to condition features of speech output by the model. speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`): Embedding containing conditioning signals for the features of the speech. return_dict (`bool`, *optional*, defaults to `None`): Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple. output_attentions (`bool`, *optional*, defaults to `None`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*, defaults to `None`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. Returns: Example: ```python >>> from transformers import ( ... FastSpeech2ConformerTokenizer, ... FastSpeech2ConformerWithHifiGan, ... ) >>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer") >>> inputs = tokenizer("some text to convert to speech", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> model = FastSpeech2ConformerWithHifiGan.from_pretrained("espnet/fastspeech2_conformer_with_hifigan") >>> output_dict = model(input_ids, return_dict=True) >>> waveform = output_dict["waveform"] >>> print(waveform.shape) torch.Size([1, 49664]) ``` """ return_dict = return_dict if return_dict is not None else self.config.model_config.use_return_dict output_attentions = ( output_attentions if output_attentions is not None else self.config.model_config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.model_config.output_hidden_states ) model_outputs = self.model( input_ids, attention_mask, spectrogram_labels=spectrogram_labels, duration_labels=duration_labels, pitch_labels=pitch_labels, energy_labels=energy_labels, speaker_ids=speaker_ids, lang_ids=lang_ids, speaker_embedding=speaker_embedding, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) if not return_dict: has_missing_labels = ( spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None ) if has_missing_labels: spectrogram = model_outputs[0] else: spectrogram = model_outputs[1] else: spectrogram = model_outputs["spectrogram"] waveform = self.vocoder(spectrogram) if not return_dict: return model_outputs + (waveform,) return FastSpeech2ConformerWithHifiGanOutput(waveform=waveform, **model_outputs)
class_definition
71,796
77,856
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
null
6,428
class FastSpeech2ConformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FastSpeech2ConformerModel`]. It is used to instantiate a FastSpeech2Conformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FastSpeech2Conformer [espnet/fastspeech2_conformer](https://huggingface.co/espnet/fastspeech2_conformer) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 384): The dimensionality of the hidden layers. vocab_size (`int`, *optional*, defaults to 78): The size of the vocabulary. num_mel_bins (`int`, *optional*, defaults to 80): The number of mel filters used in the filter bank. encoder_num_attention_heads (`int`, *optional*, defaults to 2): The number of attention heads in the encoder. encoder_layers (`int`, *optional*, defaults to 4): The number of layers in the encoder. encoder_linear_units (`int`, *optional*, defaults to 1536): The number of units in the linear layer of the encoder. decoder_layers (`int`, *optional*, defaults to 4): The number of layers in the decoder. decoder_num_attention_heads (`int`, *optional*, defaults to 2): The number of attention heads in the decoder. decoder_linear_units (`int`, *optional*, defaults to 1536): The number of units in the linear layer of the decoder. speech_decoder_postnet_layers (`int`, *optional*, defaults to 5): The number of layers in the post-net of the speech decoder. speech_decoder_postnet_units (`int`, *optional*, defaults to 256): The number of units in the post-net layers of the speech decoder. speech_decoder_postnet_kernel (`int`, *optional*, defaults to 5): The kernel size in the post-net of the speech decoder. positionwise_conv_kernel_size (`int`, *optional*, defaults to 3): The size of the convolution kernel used in the position-wise layer. encoder_normalize_before (`bool`, *optional*, defaults to `False`): Specifies whether to normalize before encoder layers. decoder_normalize_before (`bool`, *optional*, defaults to `False`): Specifies whether to normalize before decoder layers. encoder_concat_after (`bool`, *optional*, defaults to `False`): Specifies whether to concatenate after encoder layers. decoder_concat_after (`bool`, *optional*, defaults to `False`): Specifies whether to concatenate after decoder layers. reduction_factor (`int`, *optional*, defaults to 1): The factor by which the speech frame rate is reduced. speaking_speed (`float`, *optional*, defaults to 1.0): The speed of the speech produced. use_macaron_style_in_conformer (`bool`, *optional*, defaults to `True`): Specifies whether to use macaron style in the conformer. use_cnn_in_conformer (`bool`, *optional*, defaults to `True`): Specifies whether to use convolutional neural networks in the conformer. encoder_kernel_size (`int`, *optional*, defaults to 7): The kernel size used in the encoder. decoder_kernel_size (`int`, *optional*, defaults to 31): The kernel size used in the decoder. duration_predictor_layers (`int`, *optional*, defaults to 2): The number of layers in the duration predictor. duration_predictor_channels (`int`, *optional*, defaults to 256): The number of channels in the duration predictor. duration_predictor_kernel_size (`int`, *optional*, defaults to 3): The kernel size used in the duration predictor. energy_predictor_layers (`int`, *optional*, defaults to 2): The number of layers in the energy predictor. energy_predictor_channels (`int`, *optional*, defaults to 256): The number of channels in the energy predictor. energy_predictor_kernel_size (`int`, *optional*, defaults to 3): The kernel size used in the energy predictor. energy_predictor_dropout (`float`, *optional*, defaults to 0.5): The dropout rate in the energy predictor. energy_embed_kernel_size (`int`, *optional*, defaults to 1): The kernel size used in the energy embed layer. energy_embed_dropout (`float`, *optional*, defaults to 0.0): The dropout rate in the energy embed layer. stop_gradient_from_energy_predictor (`bool`, *optional*, defaults to `False`): Specifies whether to stop gradients from the energy predictor. pitch_predictor_layers (`int`, *optional*, defaults to 5): The number of layers in the pitch predictor. pitch_predictor_channels (`int`, *optional*, defaults to 256): The number of channels in the pitch predictor. pitch_predictor_kernel_size (`int`, *optional*, defaults to 5): The kernel size used in the pitch predictor. pitch_predictor_dropout (`float`, *optional*, defaults to 0.5): The dropout rate in the pitch predictor. pitch_embed_kernel_size (`int`, *optional*, defaults to 1): The kernel size used in the pitch embed layer. pitch_embed_dropout (`float`, *optional*, defaults to 0.0): The dropout rate in the pitch embed layer. stop_gradient_from_pitch_predictor (`bool`, *optional*, defaults to `True`): Specifies whether to stop gradients from the pitch predictor. encoder_dropout_rate (`float`, *optional*, defaults to 0.2): The dropout rate in the encoder. encoder_positional_dropout_rate (`float`, *optional*, defaults to 0.2): The positional dropout rate in the encoder. encoder_attention_dropout_rate (`float`, *optional*, defaults to 0.2): The attention dropout rate in the encoder. decoder_dropout_rate (`float`, *optional*, defaults to 0.2): The dropout rate in the decoder. decoder_positional_dropout_rate (`float`, *optional*, defaults to 0.2): The positional dropout rate in the decoder. decoder_attention_dropout_rate (`float`, *optional*, defaults to 0.2): The attention dropout rate in the decoder. duration_predictor_dropout_rate (`float`, *optional*, defaults to 0.2): The dropout rate in the duration predictor. speech_decoder_postnet_dropout (`float`, *optional*, defaults to 0.5): The dropout rate in the speech decoder postnet. max_source_positions (`int`, *optional*, defaults to 5000): if `"relative"` position embeddings are used, defines the maximum source input positions. use_masking (`bool`, *optional*, defaults to `True`): Specifies whether to use masking in the model. use_weighted_masking (`bool`, *optional*, defaults to `False`): Specifies whether to use weighted masking in the model. num_speakers (`int`, *optional*): Number of speakers. If set to > 1, assume that the speaker ids will be provided as the input and use speaker id embedding layer. num_languages (`int`, *optional*): Number of languages. If set to > 1, assume that the language ids will be provided as the input and use the languge id embedding layer. speaker_embed_dim (`int`, *optional*): Speaker embedding dimension. If set to > 0, assume that speaker_embedding will be provided as the input. is_encoder_decoder (`bool`, *optional*, defaults to `True`): Specifies whether the model is an encoder-decoder. Example: ```python >>> from transformers import FastSpeech2ConformerModel, FastSpeech2ConformerConfig >>> # Initializing a FastSpeech2Conformer style configuration >>> configuration = FastSpeech2ConformerConfig() >>> # Initializing a model from the FastSpeech2Conformer style configuration >>> model = FastSpeech2ConformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "fastspeech2_conformer" base_config_key = "model_config" attribute_map = {"num_hidden_layers": "encoder_layers", "num_attention_heads": "encoder_num_attention_heads"} def __init__( self, hidden_size=384, vocab_size=78, num_mel_bins=80, encoder_num_attention_heads=2, encoder_layers=4, encoder_linear_units=1536, decoder_layers=4, decoder_num_attention_heads=2, decoder_linear_units=1536, speech_decoder_postnet_layers=5, speech_decoder_postnet_units=256, speech_decoder_postnet_kernel=5, positionwise_conv_kernel_size=3, encoder_normalize_before=False, decoder_normalize_before=False, encoder_concat_after=False, decoder_concat_after=False, reduction_factor=1, speaking_speed=1.0, use_macaron_style_in_conformer=True, use_cnn_in_conformer=True, encoder_kernel_size=7, decoder_kernel_size=31, duration_predictor_layers=2, duration_predictor_channels=256, duration_predictor_kernel_size=3, energy_predictor_layers=2, energy_predictor_channels=256, energy_predictor_kernel_size=3, energy_predictor_dropout=0.5, energy_embed_kernel_size=1, energy_embed_dropout=0.0, stop_gradient_from_energy_predictor=False, pitch_predictor_layers=5, pitch_predictor_channels=256, pitch_predictor_kernel_size=5, pitch_predictor_dropout=0.5, pitch_embed_kernel_size=1, pitch_embed_dropout=0.0, stop_gradient_from_pitch_predictor=True, encoder_dropout_rate=0.2, encoder_positional_dropout_rate=0.2, encoder_attention_dropout_rate=0.2, decoder_dropout_rate=0.2, decoder_positional_dropout_rate=0.2, decoder_attention_dropout_rate=0.2, duration_predictor_dropout_rate=0.2, speech_decoder_postnet_dropout=0.5, max_source_positions=5000, use_masking=True, use_weighted_masking=False, num_speakers=None, num_languages=None, speaker_embed_dim=None, is_encoder_decoder=True, **kwargs, ): if positionwise_conv_kernel_size % 2 == 0: raise ValueError( f"positionwise_conv_kernel_size must be odd, but got {positionwise_conv_kernel_size} instead." ) if encoder_kernel_size % 2 == 0: raise ValueError(f"encoder_kernel_size must be odd, but got {encoder_kernel_size} instead.") if decoder_kernel_size % 2 == 0: raise ValueError(f"decoder_kernel_size must be odd, but got {decoder_kernel_size} instead.") if duration_predictor_kernel_size % 2 == 0: raise ValueError( f"duration_predictor_kernel_size must be odd, but got {duration_predictor_kernel_size} instead." ) if energy_predictor_kernel_size % 2 == 0: raise ValueError( f"energy_predictor_kernel_size must be odd, but got {energy_predictor_kernel_size} instead." ) if energy_embed_kernel_size % 2 == 0: raise ValueError(f"energy_embed_kernel_size must be odd, but got {energy_embed_kernel_size} instead.") if pitch_predictor_kernel_size % 2 == 0: raise ValueError( f"pitch_predictor_kernel_size must be odd, but got {pitch_predictor_kernel_size} instead." ) if pitch_embed_kernel_size % 2 == 0: raise ValueError(f"pitch_embed_kernel_size must be odd, but got {pitch_embed_kernel_size} instead.") if hidden_size % encoder_num_attention_heads != 0: raise ValueError("The hidden_size must be evenly divisible by encoder_num_attention_heads.") if hidden_size % decoder_num_attention_heads != 0: raise ValueError("The hidden_size must be evenly divisible by decoder_num_attention_heads.") if use_masking and use_weighted_masking: raise ValueError("Either use_masking or use_weighted_masking can be True, but not both.") self.hidden_size = hidden_size self.vocab_size = vocab_size self.num_mel_bins = num_mel_bins self.encoder_config = { "num_attention_heads": encoder_num_attention_heads, "layers": encoder_layers, "kernel_size": encoder_kernel_size, "attention_dropout_rate": encoder_attention_dropout_rate, "dropout_rate": encoder_dropout_rate, "positional_dropout_rate": encoder_positional_dropout_rate, "linear_units": encoder_linear_units, "normalize_before": encoder_normalize_before, "concat_after": encoder_concat_after, } self.decoder_config = { "num_attention_heads": decoder_num_attention_heads, "layers": decoder_layers, "kernel_size": decoder_kernel_size, "attention_dropout_rate": decoder_attention_dropout_rate, "dropout_rate": decoder_dropout_rate, "positional_dropout_rate": decoder_positional_dropout_rate, "linear_units": decoder_linear_units, "normalize_before": decoder_normalize_before, "concat_after": decoder_concat_after, } self.encoder_num_attention_heads = encoder_num_attention_heads self.encoder_layers = encoder_layers self.duration_predictor_channels = duration_predictor_channels self.duration_predictor_kernel_size = duration_predictor_kernel_size self.duration_predictor_layers = duration_predictor_layers self.energy_embed_dropout = energy_embed_dropout self.energy_embed_kernel_size = energy_embed_kernel_size self.energy_predictor_channels = energy_predictor_channels self.energy_predictor_dropout = energy_predictor_dropout self.energy_predictor_kernel_size = energy_predictor_kernel_size self.energy_predictor_layers = energy_predictor_layers self.pitch_embed_dropout = pitch_embed_dropout self.pitch_embed_kernel_size = pitch_embed_kernel_size self.pitch_predictor_channels = pitch_predictor_channels self.pitch_predictor_dropout = pitch_predictor_dropout self.pitch_predictor_kernel_size = pitch_predictor_kernel_size self.pitch_predictor_layers = pitch_predictor_layers self.positionwise_conv_kernel_size = positionwise_conv_kernel_size self.speech_decoder_postnet_units = speech_decoder_postnet_units self.speech_decoder_postnet_dropout = speech_decoder_postnet_dropout self.speech_decoder_postnet_kernel = speech_decoder_postnet_kernel self.speech_decoder_postnet_layers = speech_decoder_postnet_layers self.reduction_factor = reduction_factor self.speaking_speed = speaking_speed self.stop_gradient_from_energy_predictor = stop_gradient_from_energy_predictor self.stop_gradient_from_pitch_predictor = stop_gradient_from_pitch_predictor self.max_source_positions = max_source_positions self.use_cnn_in_conformer = use_cnn_in_conformer self.use_macaron_style_in_conformer = use_macaron_style_in_conformer self.use_masking = use_masking self.use_weighted_masking = use_weighted_masking self.num_speakers = num_speakers self.num_languages = num_languages self.speaker_embed_dim = speaker_embed_dim self.duration_predictor_dropout_rate = duration_predictor_dropout_rate self.is_encoder_decoder = is_encoder_decoder super().__init__( is_encoder_decoder=is_encoder_decoder, **kwargs, )
class_definition
822
17,183
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py
null
6,429
class FastSpeech2ConformerHifiGanConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FastSpeech2ConformerHifiGanModel`]. It is used to instantiate a FastSpeech2Conformer HiFi-GAN vocoder model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FastSpeech2Conformer [espnet/fastspeech2_conformer_hifigan](https://huggingface.co/espnet/fastspeech2_conformer_hifigan) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: model_in_dim (`int`, *optional*, defaults to 80): The number of frequency bins in the input log-mel spectrogram. upsample_initial_channel (`int`, *optional*, defaults to 512): The number of input channels into the upsampling network. upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 2, 2]`): A tuple of integers defining the stride of each 1D convolutional layer in the upsampling network. The length of *upsample_rates* defines the number of convolutional layers and has to match the length of *upsample_kernel_sizes*. upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[16, 16, 4, 4]`): A tuple of integers defining the kernel size of each 1D convolutional layer in the upsampling network. The length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of *upsample_rates*. resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): A tuple of integers defining the kernel sizes of the 1D convolutional layers in the multi-receptive field fusion (MRF) module. resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the multi-receptive field fusion (MRF) module. initializer_range (`float`, *optional*, defaults to 0.01): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. leaky_relu_slope (`float`, *optional*, defaults to 0.1): The angle of the negative slope used by the leaky ReLU activation. normalize_before (`bool`, *optional*, defaults to `True`): Whether or not to normalize the spectrogram before vocoding using the vocoder's learned mean and variance. Example: ```python >>> from transformers import FastSpeech2ConformerHifiGan, FastSpeech2ConformerHifiGanConfig >>> # Initializing a FastSpeech2ConformerHifiGan configuration >>> configuration = FastSpeech2ConformerHifiGanConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = FastSpeech2ConformerHifiGan(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "hifigan" base_config_key = "vocoder_config" def __init__( self, model_in_dim=80, upsample_initial_channel=512, upsample_rates=[8, 8, 2, 2], upsample_kernel_sizes=[16, 16, 4, 4], resblock_kernel_sizes=[3, 7, 11], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], initializer_range=0.01, leaky_relu_slope=0.1, normalize_before=True, **kwargs, ): self.model_in_dim = model_in_dim self.upsample_initial_channel = upsample_initial_channel self.upsample_rates = upsample_rates self.upsample_kernel_sizes = upsample_kernel_sizes self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.initializer_range = initializer_range self.leaky_relu_slope = leaky_relu_slope self.normalize_before = normalize_before super().__init__(**kwargs)
class_definition
17,186
21,480
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py
null
6,430
class FastSpeech2ConformerWithHifiGanConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`FastSpeech2ConformerWithHifiGan`]. It is used to instantiate a `FastSpeech2ConformerWithHifiGanModel` model according to the specified sub-models configurations, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FastSpeech2ConformerModel [espnet/fastspeech2_conformer](https://huggingface.co/espnet/fastspeech2_conformer) and FastSpeech2ConformerHifiGan [espnet/fastspeech2_conformer_hifigan](https://huggingface.co/espnet/fastspeech2_conformer_hifigan) architectures. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: model_config (`typing.Dict`, *optional*): Configuration of the text-to-speech model. vocoder_config (`typing.Dict`, *optional*): Configuration of the vocoder model. model_config ([`FastSpeech2ConformerConfig`], *optional*): Configuration of the text-to-speech model. vocoder_config ([`FastSpeech2ConformerHiFiGanConfig`], *optional*): Configuration of the vocoder model. Example: ```python >>> from transformers import ( ... FastSpeech2ConformerConfig, ... FastSpeech2ConformerHifiGanConfig, ... FastSpeech2ConformerWithHifiGanConfig, ... FastSpeech2ConformerWithHifiGan, ... ) >>> # Initializing FastSpeech2ConformerWithHifiGan sub-modules configurations. >>> model_config = FastSpeech2ConformerConfig() >>> vocoder_config = FastSpeech2ConformerHifiGanConfig() >>> # Initializing a FastSpeech2ConformerWithHifiGan module style configuration >>> configuration = FastSpeech2ConformerWithHifiGanConfig(model_config.to_dict(), vocoder_config.to_dict()) >>> # Initializing a model (with random weights) >>> model = FastSpeech2ConformerWithHifiGan(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "fastspeech2_conformer_with_hifigan" sub_configs = {"model_config": FastSpeech2ConformerConfig, "vocoder_config": FastSpeech2ConformerHifiGanConfig} def __init__( self, model_config: Dict = None, vocoder_config: Dict = None, **kwargs, ): if model_config is None: model_config = {} logger.info("model_config is None. initializing the model with default values.") if vocoder_config is None: vocoder_config = {} logger.info("vocoder_config is None. initializing the coarse model with default values.") self.model_config = FastSpeech2ConformerConfig(**model_config) self.vocoder_config = FastSpeech2ConformerHifiGanConfig(**vocoder_config) super().__init__(**kwargs)
class_definition
21,483
24,509
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py
null
6,431
class SiglipTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`SiglipModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 64): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. pad_token_id (`int`, *optional*, defaults to 1): The id of the padding token in the vocabulary. bos_token_id (`int`, *optional*, defaults to 49406): The id of the beginning-of-sequence token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 49407): The id of the end-of-sequence token in the vocabulary. Example: ```python >>> from transformers import SiglipTextConfig, SiglipTextModel >>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration >>> configuration = SiglipTextConfig() >>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration >>> model = SiglipTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "siglip_text_model" base_config_key = "text_config" def __init__( self, vocab_size=32000, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, max_position_embeddings=64, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, # This differs from `CLIPTokenizer`'s default and from openai/siglip # See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538 pad_token_id=1, bos_token_id=49406, eos_token_id=49407, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.attention_dropout = attention_dropout
class_definition
783
5,171
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/configuration_siglip.py
null
6,432
class SiglipVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. Example: ```python >>> from transformers import SiglipVisionConfig, SiglipVisionModel >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration >>> configuration = SiglipVisionConfig() >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration >>> model = SiglipVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "siglip_vision_model" base_config_key = "vision_config" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=224, patch_size=16, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act
class_definition
5,174
8,734
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/configuration_siglip.py
null
6,433
class SiglipConfig(PretrainedConfig): r""" [`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`SiglipTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`SiglipVisionConfig`]. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import SiglipConfig, SiglipModel >>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration >>> configuration = SiglipConfig() >>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration >>> model = SiglipModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig >>> from transformers import SiglipTextConfig, SiglipVisionConfig >>> # Initializing a SiglipText and SiglipVision configuration >>> config_text = SiglipTextConfig() >>> config_vision = SiglipVisionConfig() >>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision) ```""" model_type = "siglip" sub_configs = {"text_config": SiglipTextConfig, "vision_config": SiglipVisionConfig} def __init__(self, text_config=None, vision_config=None, **kwargs): super().__init__(**kwargs) if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.") if vision_config is None: vision_config = {} logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.") self.text_config = SiglipTextConfig(**text_config) self.vision_config = SiglipVisionConfig(**vision_config) self.initializer_factor = 1.0 @classmethod def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs): r""" Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision model configuration. Returns: [`SiglipConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
class_definition
8,737
11,875
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/configuration_siglip.py
null
6,434
class SiglipVisionModelOutput(ModelOutput): """ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. Args: image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class_definition
5,443
7,229
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,435
class SiglipTextModelOutput(ModelOutput): """ Base class for text model's outputs that also contains a pooling of the last hidden states. Args: text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The text embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ text_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class_definition
7,334
9,091
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,436
class SiglipOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`]. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`]. text_model_output (`BaseModelOutputWithPooling`): The output of the [`SiglipTextModel`]. vision_model_output (`BaseModelOutputWithPooling`): The output of the [`SiglipVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() )
class_definition
9,187
11,059
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,437
class SiglipVisionEmbeddings(nn.Module): def __init__(self, config: SiglipVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, padding="valid", ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing and no class embeddings. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] num_positions = self.position_embedding.weight.shape[0] # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embedding(self.position_ids) patch_pos_embed = self.position_embedding.weight.unsqueeze(0) dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return patch_pos_embed def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor: _, _, height, width = pixel_values.shape target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] embeddings = patch_embeds.flatten(2).transpose(1, 2) if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings
class_definition
11,062
14,290
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,438
class SiglipTextEmbeddings(nn.Module): def __init__(self, config: SiglipTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] max_position_embedding = self.position_embedding.weight.shape[0] if seq_length > max_position_embedding: raise ValueError( f"Sequence length must be less than max_position_embeddings (got `sequence length`: " f"{seq_length} and max_position_embeddings: {max_position_embedding}" ) if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings
class_definition
14,383
15,965
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,439
class SiglipAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" batch_size, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) k_v_seq_len = key_states.shape[-2] attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): raise ValueError( f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): raise ValueError( f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights
class_definition
15,968
19,395
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,440
class SiglipFlashAttention2(SiglipAttention): """ SiglipAttention flash attention module. This module inherits from `SiglipAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ is_causal = False def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() # Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: output_attentions = False batch_size, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous() attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights
class_definition
19,398
23,947
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,441
class SiglipSdpaAttention(SiglipAttention): """ Siglip attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `SiglipAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ is_causal = False # Adapted from SiglipAttention.forward and transformers.models.llama.modeling_llama.LlamaSdpaAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "SiglipModel is using SiglipSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) batch_size, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. is_causal = True if self.is_causal and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.dropout if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(batch_size, q_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, None
class_definition
23,950
27,283
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,442
class SiglipMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states
class_definition
27,509
28,081
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,443
class SiglipEncoderLayer(nn.Module): def __init__(self, config: SiglipConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = SIGLIP_ATTENTION_CLASSES[config._attn_implementation](config=config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = SiglipMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) # Ignore copy def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): Input to the layer of shape `(batch, seq_len, embed_dim)`. attention_mask (`torch.FloatTensor`): Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
28,084
29,986
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,444
class SiglipPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SiglipConfig base_model_prefix = "siglip" supports_gradient_checkpointing = True _no_split_modules = [ "SiglipTextEmbeddings", "SiglipEncoderLayer", "SiglipVisionEmbeddings", "SiglipEncoderLayer", "SiglipMultiheadAttentionPoolingHead", ] _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, SiglipVisionEmbeddings): width = ( self.config.vision_config.hidden_size if isinstance(self.config, SiglipConfig) else self.config.hidden_size ) nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) elif isinstance(module, nn.Embedding): default_flax_embed_init(module.weight) elif isinstance(module, SiglipAttention): nn.init.xavier_uniform_(module.q_proj.weight) nn.init.xavier_uniform_(module.k_proj.weight) nn.init.xavier_uniform_(module.v_proj.weight) nn.init.xavier_uniform_(module.out_proj.weight) nn.init.zeros_(module.q_proj.bias) nn.init.zeros_(module.k_proj.bias) nn.init.zeros_(module.v_proj.bias) nn.init.zeros_(module.out_proj.bias) elif isinstance(module, SiglipMLP): nn.init.xavier_uniform_(module.fc1.weight) nn.init.xavier_uniform_(module.fc2.weight) nn.init.normal_(module.fc1.bias, std=1e-6) nn.init.normal_(module.fc2.bias, std=1e-6) elif isinstance(module, SiglipMultiheadAttentionPoolingHead): nn.init.xavier_uniform_(module.probe.data) nn.init.xavier_uniform_(module.attention.in_proj_weight.data) nn.init.zeros_(module.attention.in_proj_bias.data) elif isinstance(module, SiglipModel): logit_scale_init = torch.log(torch.tensor(1.0)) module.logit_scale.data.fill_(logit_scale_init) module.logit_bias.data.zero_() elif isinstance(module, SiglipForImageClassification): nn.init.normal_( module.classifier.weight, std=self.config.vision_config.hidden_size**-0.5 * self.config.initializer_factor, ) elif isinstance(module, (nn.Linear, nn.Conv2d)): lecun_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
29,989
32,823
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,445
class SiglipEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`SiglipEncoderLayer`]. Args: config: SiglipConfig """ def __init__(self, config: SiglipConfig): super().__init__() self.config = config self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False # Ignore copy def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions )
class_definition
38,771
42,654
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,446
class SiglipTextTransformer(nn.Module): def __init__(self, config: SiglipTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = SiglipTextEmbeddings(config) self.encoder = SiglipEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.head = nn.Linear(embed_dim, embed_dim) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # note: SigLIP's text model does not use a causal mask, unlike the original CLIP model. # expand attention_mask if attention_mask is not None and not self._use_flash_attention_2: # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) # Assuming "sticky" EOS tokenization, last token is always EOS. pooled_output = last_hidden_state[:, -1, :] pooled_output = self.head(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
42,657
45,710
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,447
class SiglipTextModel(SiglipPreTrainedModel): config_class = SiglipTextConfig def __init__(self, config: SiglipTextConfig): super().__init__(config) self.text_model = SiglipTextTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, SiglipTextModel >>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224") >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") >>> # important: make sure to set padding="max_length" as that's how the model was trained >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, )
class_definition
45,843
48,030
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,448
class SiglipVisionTransformer(nn.Module): def __init__(self, config: SiglipVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = SiglipVisionEmbeddings(config) self.encoder = SiglipEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.use_head = True if not hasattr(config, "vision_use_head") else config.vision_use_head if self.use_head: self.head = SiglipMultiheadAttentionPoolingHead(config) @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig) def forward( self, pixel_values, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = False, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) pooler_output = self.head(last_hidden_state) if self.use_head else None if not return_dict: return (last_hidden_state, pooler_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooler_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
48,033
50,379
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,449
class SiglipMultiheadAttentionPoolingHead(nn.Module): """Multihead Attention Pooling.""" def __init__(self, config: SiglipVisionConfig): super().__init__() self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp = SiglipMLP(config) def forward(self, hidden_state): batch_size = hidden_state.shape[0] probe = self.probe.repeat(batch_size, 1, 1) hidden_state = self.attention(probe, hidden_state, hidden_state)[0] residual = hidden_state hidden_state = self.layernorm(hidden_state) hidden_state = residual + self.mlp(hidden_state) return hidden_state[:, 0]
class_definition
50,382
51,256
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,450
class SiglipVisionModel(SiglipPreTrainedModel): config_class = SiglipVisionConfig main_input_name = "pixel_values" def __init__(self, config: SiglipVisionConfig): super().__init__(config) self.vision_model = SiglipVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig) def forward( self, pixel_values, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, SiglipVisionModel >>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224") >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled features ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, interpolate_pos_encoding=interpolate_pos_encoding, )
class_definition
51,391
53,481
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,451
class SiglipModel(SiglipPreTrainedModel): config_class = SiglipConfig def __init__(self, config: SiglipConfig): super().__init__(config) if not isinstance(config.text_config, SiglipTextConfig): raise TypeError( "config.text_config is expected to be of type SiglipTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, SiglipVisionConfig): raise TypeError( "config.vision_config is expected to be of type SiglipVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config # First, initialize the text and vision models with proper attention implementation text_model = SiglipTextModel._from_config(text_config) vision_model = SiglipVisionModel._from_config(vision_config) # Second, get the text and vision submodules (for backward compatibility) self.text_model = text_model.text_model self.vision_model = vision_model.vision_model self.logit_scale = nn.Parameter(torch.randn(1)) self.logit_bias = nn.Parameter(torch.randn(1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, AutoModel >>> import torch >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") >>> # important: make sure to set padding="max_length" as that's how the model was trained >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") >>> with torch.no_grad(): ... text_features = model.get_text_features(**inputs) ```""" # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] return pooled_output @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, AutoModel >>> import torch >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... image_features = model.get_image_features(**inputs) ```""" # Use SiglipModel's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, interpolate_pos_encoding=interpolate_pos_encoding, ) pooled_output = vision_outputs[1] return pooled_output @add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> Union[Tuple, SiglipOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, AutoModel >>> import torch >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> texts = ["a photo of 2 cats", "a photo of 2 dogs"] >>> # important: we pass `padding=max_length` since the model was trained with this >>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image >>> probs = torch.sigmoid(logits_per_image) # these are the probabilities >>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'") 31.9% that image 0 is 'a photo of 2 cats' ```""" # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, interpolate_pos_encoding=interpolate_pos_encoding, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] text_embeds = text_outputs[1] # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logits_per_text = ( torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)) * self.logit_scale.exp() + self.logit_bias ) logits_per_image = logits_per_text.t() loss = None if return_loss: # Adapted from https://github.com/google-research/big_vision/blob/01edb81a4716f93a48be43b3a4af14e29cdb3a7f/big_vision/trainers/proj/image_text/siglip.py#L287 eye = torch.eye(logits_per_text.size(0), device=logits_per_text.device) m1_diag1 = -torch.ones_like(logits_per_text) + 2 * eye loglik = torch.nn.functional.logsigmoid(m1_diag1 * logits_per_text) nll = -torch.sum(loglik, dim=-1) loss = nll.mean() if not return_dict: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return SiglipOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, )
class_definition
53,530
63,688
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,452
class SiglipForImageClassification(SiglipPreTrainedModel): main_input_name = "pixel_values" def __init__(self, config: SiglipConfig) -> None: super().__init__(config) self.num_labels = config.num_labels # Create the vision model with proper attention # and take only vision_model submodule (for backward compatibility) vision_model = SiglipVisionModel._from_config(config.vision_config) self.vision_model = vision_model.vision_model # Classifier head self.classifier = ( nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, SiglipForImageClassification >>> import torch >>> from PIL import Image >>> import requests >>> torch.manual_seed(3) # doctest: +IGNORE_RESULT >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> # note: we are loading a `SiglipModel` from the hub here, >>> # so the head will be randomly initialized, hence the predictions will be random if seed is not set above. >>> image_processor = AutoImageProcessor.from_pretrained("google/siglip-base-patch16-224") >>> model = SiglipForImageClassification.from_pretrained("google/siglip-base-patch16-224") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the two classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: LABEL_1 ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vision_model( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, interpolate_pos_encoding=interpolate_pos_encoding, ) sequence_output = outputs[0] # average pool the patch tokens sequence_output = torch.mean(sequence_output, dim=1) # apply classifier logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
63,929
69,273
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/modeling_siglip.py
null
6,453
class SiglipProcessor(ProcessorMixin): r""" Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor. [`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the [`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information. Args: image_processor ([`SiglipImageProcessor`]): The image processor is a required input. tokenizer ([`SiglipTokenizer`]): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "SiglipImageProcessor" tokenizer_class = "SiglipTokenizer" def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, images: ImageInput = None, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: int = None, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` argument to SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: encoding = self.tokenizer( text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length ) if images is not None: image_features = self.image_processor(images, return_tensors=return_tensors) if text is not None and images is not None: encoding["pixel_values"] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchFeature(data=dict(**image_features), tensor_type=return_tensors) def decode(self, *args, **kwargs): """ This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
class_definition
972
7,301
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/processing_siglip.py
null
6,454
class SiglipImageProcessor(BaseImageProcessor): r""" Constructs a SigLIP image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`): Size of the image after resizing. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image by the specified mean and standard deviation. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 224, "width": 224} image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_convert_rgb = do_convert_rgb @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, do_convert_rgb: bool = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, param_name="size", default_to_square=False) resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: height, width = size["height"], size["width"] images = [ resize(image=image, size=(height, width), resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
class_definition
1,385
11,915
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/image_processing_siglip.py
null
6,455
class SiglipTokenizer(PreTrainedTokenizer): """ Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"</s>"`): The token used for padding, for example when batching sequences of different lengths. additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. model_max_length (`int`, *optional*, defaults to 64): The maximum length (in number of tokens) for model inputs. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, eos_token="</s>", unk_token="<unk>", pad_token="</s>", additional_special_tokens=None, sp_model_kwargs: Optional[Dict[str, Any]] = None, model_max_length=64, do_lower_case=True, **kwargs, ) -> None: requires_backends(self, "protobuf") pad_token = ( AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True) if isinstance(pad_token, str) else pad_token ) unk_token = ( AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True) if isinstance(unk_token, str) else unk_token ) eos_token = ( AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True) if isinstance(eos_token, str) else eos_token ) self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.do_lower_case = do_lower_case self.vocab_file = vocab_file self.sp_model = self.get_spm_processor() self.vocab_file = vocab_file super().__init__( eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, model_max_length=model_max_length, do_lower_case=do_lower_case, **kwargs, ) def get_spm_processor(self): tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) with open(self.vocab_file, "rb") as f: sp_model = f.read() model_pb2 = import_protobuf() model = model_pb2.ModelProto.FromString(sp_model) normalizer_spec = model_pb2.NormalizerSpec() normalizer_spec.add_dummy_prefix = False model.normalizer_spec.MergeFrom(normalizer_spec) sp_model = model.SerializeToString() tokenizer.LoadFromSerializedProto(sp_model) return tokenizer @property # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size def vocab_size(self): return self.sp_model.get_piece_size() # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) # normal case: some special tokens if token_ids_1 is None: return ([0] * len(token_ids_0)) + [1] return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: """Do not add eos again if user already added it.""" if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ eos = [self.eos_token_id] if token_ids_1 is None: return len(token_ids_0 + eos) * [0] return len(token_ids_0 + eos + token_ids_1 + eos) * [0] # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format: - single sequence: `X </s>` - pair of sequences: `A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ token_ids_0 = self._add_eos_if_not_present(token_ids_0) if token_ids_1 is None: return token_ids_0 else: token_ids_1 = self._add_eos_if_not_present(token_ids_1) return token_ids_0 + token_ids_1 # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__ def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__ def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def remove_punctuation(self, text: str) -> str: return text.translate(str.maketrans("", "", string.punctuation)) # source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94 def canonicalize_text(self, text, *, keep_punctuation_exact_string=None): """Returns canonicalized `text` (puncuation removed). Args: text (`str`): String to be canonicalized. keep_punctuation_exact_string (`str`, *optional*): If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}' (but will still remove '{' and '}' that appear separately). """ if keep_punctuation_exact_string: text = keep_punctuation_exact_string.join( self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string) ) else: text = self.remove_punctuation(text) text = re.sub(r"\s+", " ", text) text = text.strip() return text def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]: """ Converts a string to a list of tokens. """ tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs) if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: tokens = tokens[1:] return tokens @property # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length def unk_token_length(self): return len(self.sp_model.encode(str(self.unk_token))) def _tokenize(self, text, **kwargs): """ Returns a tokenized string. We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. `self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. """ text = self.canonicalize_text(text, keep_punctuation_exact_string=None) tokens = self.sp_model.encode(text, out_type=str) # 1. Encode string + prefix ex: "<unk> Hey" tokens = self.sp_model.encode(self.unk_token + text, out_type=str) # 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
class_definition
1,224
15,951
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/siglip/tokenization_siglip.py
null
6,456
class MoonshineEncoderMLP(nn.Module): def __init__(self, config, hidden_act): super().__init__() self.config = config self.activation_fn = ACT2FN[hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states
class_definition
2,446
3,033
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
null
6,457
class MoonshineDecoderMLP(nn.Module): def __init__(self, config, hidden_act): super().__init__() self.config = config self.activation_fn = ACT2FN[hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size * 2) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states, gate = hidden_states.chunk(2, dim=-1) hidden_states = self.activation_fn(gate) * hidden_states hidden_states = self.fc2(hidden_states) return hidden_states
class_definition
3,036
3,695
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
null
6,458
class MoonshineAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, config: MoonshineConfig, layer_idx: int, is_causal: bool, num_attention_heads: int, num_key_value_heads: int, ): super().__init__() config.update({"num_attention_heads": num_attention_heads, "num_key_value_heads": num_key_value_heads}) self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = is_causal self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, key_value_states: Optional[torch.Tensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len = hidden_states.shape[:-1] query_states = ( self.q_proj(hidden_states).view(bsz, q_len, self.config.num_key_value_heads, self.head_dim).transpose(1, 2) ) is_cross_attention = key_value_states is not None if past_key_value is not None: is_updated = past_key_value.is_updated.get(self.layer_idx) if is_cross_attention: # after the first generated id, we can subsequently re-use all key/value_states from cache past_key_value.is_updated[self.layer_idx] = True past_key_value = past_key_value.cross_attention_cache else: past_key_value = past_key_value.self_attention_cache # use key_value_states if cross attention current_states = key_value_states if key_value_states is not None else hidden_states if is_cross_attention and past_key_value and is_updated: key_states = past_key_value.key_cache[self.layer_idx] value_states = past_key_value.value_cache[self.layer_idx] else: key_states = ( self.k_proj(current_states) .view(bsz, -1, self.config.num_key_value_heads, self.head_dim) .transpose(1, 2) ) value_states = ( self.v_proj(current_states) .view(bsz, -1, self.config.num_key_value_heads, self.head_dim) .transpose(1, 2) ) if is_cross_attention and past_key_value is not None: key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) if not is_cross_attention: cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, cache_kwargs ) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] is_causal = True if self.is_causal and attention_mask is None and q_len > 1 else False attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, is_causal=is_causal, **kwargs, ) attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights
class_definition
7,575
12,934
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
null
6,459
class MoonshineRotaryEmbedding(nn.Module): def __init__(self, config: MoonshineConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class_definition
12,937
16,140
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
null
6,460
class MoonshineEncoderLayer(nn.Module): def __init__(self, config: MoonshineConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = MoonshineAttention( config=config, layer_idx=layer_idx, is_causal=False, num_attention_heads=config.encoder_num_attention_heads, num_key_value_heads=config.encoder_num_key_value_heads, ) self.mlp = MoonshineEncoderMLP(config, config.encoder_hidden_act) self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs
class_definition
16,143
18,437
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
null
6,461
class MoonshineDecoderLayer(nn.Module): def __init__(self, config: MoonshineConfig, layer_idx: int = None): super().__init__() self.hidden_size = config.hidden_size self.self_attn = MoonshineAttention( config=config, layer_idx=layer_idx, is_causal=True, num_attention_heads=config.decoder_num_attention_heads, num_key_value_heads=config.decoder_num_key_value_heads, ) self.encoder_attn = MoonshineAttention( config=config, layer_idx=layer_idx, is_causal=False, num_attention_heads=config.decoder_num_attention_heads, num_key_value_heads=config.decoder_num_key_value_heads, ) self.mlp = MoonshineDecoderMLP(config, config.decoder_hidden_act) self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False) self.final_layernorm = nn.LayerNorm(config.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, encoder_position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 encoder_position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs
class_definition
18,440
22,008
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
null
6,462
class MoonshinePreTrainedModel(PreTrainedModel): config_class = MoonshineConfig base_model_prefix = "model" main_input_name = "input_values" supports_gradient_checkpointing = True _no_split_modules = ["MoonshineEncoderLayer", "MoonshineDecoderLayer"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True _supports_static_cache = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ output_conv1_length = int((input_lengths - 127) / 64 + 1) output_conv2_length = int((output_conv1_length - 7) / 3 + 1) output_conv3_length = int((output_conv2_length - 3) / 2 + 1) return output_conv3_length
class_definition
23,046
24,343
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
null
6,463
class MoonshineEncoder(MoonshinePreTrainedModel): """ Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoonshineEncoderLayer`] Args: config: MoonshineConfig """ main_input_name = "input_values" def __init__(self, config: MoonshineConfig): super().__init__(config) self.config = config embed_dim = config.hidden_size self.conv1 = nn.Conv1d(1, embed_dim, kernel_size=127, stride=64, bias=False) self.conv2 = nn.Conv1d(embed_dim, 2 * embed_dim, kernel_size=7, stride=3) self.conv3 = nn.Conv1d(2 * embed_dim, embed_dim, kernel_size=3, stride=2) self.groupnorm = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=1e-5) self.rotary_emb = MoonshineRotaryEmbedding(config=config) self.layers = nn.ModuleList( [MoonshineEncoderLayer(config, idx) for idx in range(config.encoder_num_hidden_layers)] ) self.layer_norm = nn.LayerNorm(embed_dim, bias=False) self.gradient_checkpointing = False self.post_init() def get_input_embeddings(self) -> nn.Module: return self.conv1 def set_input_embeddings(self, value: nn.Module): self.conv1 = value def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`): Float values of the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoFeatureExtractor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. attention_mask (`torch.Tensor`)`, *optional*): Moonshine does not support masking of the `input_values`, this argument is preserved for compatibility, but it is not used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_values is None: raise ValueError("You must specify input_values.") # conv downsampling input_values = input_values.unsqueeze(1) hidden_states = nn.functional.tanh(self.conv1(input_values)) hidden_states = self.groupnorm(hidden_states) hidden_states = nn.functional.gelu(self.conv2(hidden_states)) hidden_states = nn.functional.gelu(self.conv3(hidden_states)) hidden_states = hidden_states.permute(0, 2, 1) position_ids = torch.arange(0, hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # encoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, None, position_ids, None, output_attentions, False, None, position_embeddings, ) else: layer_outputs = encoder_layer( hidden_states, position_ids=position_ids, output_attentions=output_attentions, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last encoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple()
class_definition
24,346
30,104
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
null
6,464
class MoonshineDecoder(MoonshinePreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoonshineDecoderLayer`] Args: config: MoonshineConfig """ main_input_name = "input_ids" def __init__(self, config: MoonshineConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [MoonshineDecoderLayer(config, idx) for idx in range(config.decoder_num_hidden_layers)] ) self.norm = nn.LayerNorm(config.hidden_size, bias=False) self.rotary_emb = MoonshineRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(MOONSHINE_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: """ Args: encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: self_attention_cache = DynamicCache() cross_attention_cache = DynamicCache() past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, encoder_hidden_states, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, encoder_hidden_states=encoder_hidden_states, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) return output if return_dict else output.to_tuple() def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask
class_definition
34,920
47,102
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
null
6,465
class MoonshineModel(MoonshinePreTrainedModel): def __init__(self, config: MoonshineConfig): super().__init__(config) self.encoder = MoonshineEncoder(config) self.decoder = MoonshineDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def freeze_encoder(self): """ Calling this function will disable the gradient computation for the Moonshine encoder so that its parameters will not be updated during training. """ self.encoder._freeze_parameters() def _mask_input_features( self, input_features: torch.FloatTensor, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return input_features # generate indices & apply SpecAugment along time axis batch_size, hidden_size, sequence_length = input_features.size() if self.config.mask_time_prob > 0 and self.training: # generate indices & apply SpecAugment along time axis mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool) mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1) input_features[mask_time_indices] = 0 if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool) input_features[mask_feature_indices] = 0 return input_features @add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: r""" Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, MoonshineModel >>> from datasets import load_dataset >>> model = MoonshineModel.from_pretrained("UsefulSensors/moonshine-tiny") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("UsefulSensors/moonshine-tiny") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") >>> input_values = inputs.input_values >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_values, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 288] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, position_ids=decoder_position_ids, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
class_definition
58,286
65,556
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
null
6,466
class MoonshineForConditionalGeneration(MoonshinePreTrainedModel, GenerationMixin): _tied_weights_keys = ["proj_out.weight"] def __init__(self, config: MoonshineConfig): super().__init__(config) self.model = MoonshineModel(config) self.proj_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def get_output_embeddings(self): return self.proj_out def set_output_embeddings(self, new_embeddings): self.proj_out = new_embeddings def get_input_embeddings(self) -> nn.Module: return self.model.get_input_embeddings() @add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import torch >>> from transformers import AutoProcessor, MoonshineForConditionalGeneration >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("UsefulSensors/moonshine-tiny") >>> model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") >>> input_values = inputs.input_values >>> generated_ids = model.generate(input_values, max_new_tokens=100) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> transcription 'Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_values, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, decoder_position_ids=decoder_position_ids, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) logits = self.proj_out(outputs[0]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def generate(self, *args, **kwargs): # TODO: @eustlb do it rather with a custom logits processor token_limit_factor = 6.5 / 16000.0 # Maximum of 6.5 tokens per second if kwargs.get("max_new_tokens") is None and kwargs.get("max_length") is None: if kwargs.get("attention_mask") is not None: seq_lens = kwargs["attention_mask"].sum(dim=-1) else: seq_lens = kwargs["input_values"].shape[-1] max_length = int(seq_lens.max().item() * token_limit_factor) logger.warning_once( f"Based on the input length, Moonshine will generate up to {max_length} tokens (ratio of 6.5 tokens/second). " "To specify a different length, set either `max_new_tokens` or `max_length`." ) kwargs["max_length"] = max_length return super().generate(*args, **kwargs)
class_definition
66,326
72,363
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modeling_moonshine.py
null
6,467
class MoonshineConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MoonshineModel`]. It is used to instantiate a Moonshine model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Moonshine [UsefulSensors/moonshine-tiny](https://huggingface.co/UsefulSensors/moonshine-tiny). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32768): Vocabulary size of the Moonshine model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MoonshineModel`]. hidden_size (`int`, *optional*, defaults to 288): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 1152): Dimension of the MLP representations. encoder_num_hidden_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. decoder_num_hidden_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer decoder. encoder_num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. decoder_num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer decoder. encoder_num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `encoder_num_key_value_heads=encoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if `encoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. decoder_num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `decoder_num_key_value_heads=decoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if `decoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `decoder_num_attention_heads`. encoder_hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder. decoder_hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. decoder_start_token_id (`int`, *optional*, defaults to 1): Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids` are provided to the `generate` function. It is used to guide the model`s generation process depending on the task. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE partial_rotary_factor (`float`, *optional*, defaults to 0.9): Percentage of the query and keys which will have rotary embedding. is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the model is used as an encoder/decoder or not. attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. bos_token_id (`int`, *optional*, defaults to 1): Denotes beginning of sequences token id. eos_token_id (`int`, *optional*, defaults to 2): Denotes end of sequences token id. Example: ```python >>> from transformers import MoonshineModel, MoonshineConfig >>> # Initializing a Moonshine style configuration >>> configuration = MoonshineConfig().from_pretrained("UsefulSensors/moonshine-tiny") >>> # Initializing a model from the configuration >>> model = MoonshineModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "moonshine" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_key_value_heads": "encoder_num_key_value_heads", "num_attention_heads": "encoder_num_attention_heads", "num_hidden_layers": "encoder_num_hidden_layers", } def __init__( self, vocab_size=32768, hidden_size=288, intermediate_size=1152, encoder_num_hidden_layers=6, decoder_num_hidden_layers=6, encoder_num_attention_heads=8, decoder_num_attention_heads=8, encoder_num_key_value_heads=None, decoder_num_key_value_heads=None, encoder_hidden_act="gelu", decoder_hidden_act="silu", max_position_embeddings=512, initializer_range=0.02, decoder_start_token_id=1, use_cache=True, rope_theta=10000.0, rope_scaling=None, partial_rotary_factor=0.9, is_encoder_decoder=True, attention_bias=False, attention_dropout=0.0, bos_token_id=1, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.encoder_num_hidden_layers = encoder_num_hidden_layers self.decoder_num_hidden_layers = decoder_num_hidden_layers self.encoder_num_attention_heads = encoder_num_attention_heads self.decoder_num_attention_heads = decoder_num_attention_heads if encoder_num_key_value_heads is None: encoder_num_key_value_heads = encoder_num_attention_heads self.encoder_num_key_value_heads = encoder_num_key_value_heads if decoder_num_key_value_heads is None: decoder_num_key_value_heads = decoder_num_attention_heads self.decoder_num_key_value_heads = decoder_num_key_value_heads self.encoder_hidden_act = encoder_hidden_act self.decoder_hidden_act = decoder_hidden_act self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.partial_rotary_factor = partial_rotary_factor self.is_encoder_decoder = is_encoder_decoder self.attention_bias = attention_bias self.attention_dropout = attention_dropout # Validate the correctness of rotary position embeddings parameters rope_config_validation(self) super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, **kwargs, )
class_definition
1,550
13,141
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/configuration_moonshine.py
null
6,468
class MoonshineConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MoonshineModel`]. It is used to instantiate a Moonshine model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Moonshine [UsefulSensors/moonshine-tiny](https://huggingface.co/UsefulSensors/moonshine-tiny). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32768): Vocabulary size of the Moonshine model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MoonshineModel`]. hidden_size (`int`, *optional*, defaults to 288): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 1152): Dimension of the MLP representations. encoder_num_hidden_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. decoder_num_hidden_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer decoder. encoder_num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. decoder_num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer decoder. encoder_num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `encoder_num_key_value_heads=encoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if `encoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. decoder_num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `decoder_num_key_value_heads=decoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if `decoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `decoder_num_attention_heads`. encoder_hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder. decoder_hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. decoder_start_token_id (`int`, *optional*, defaults to 1): Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids` are provided to the `generate` function. It is used to guide the model`s generation process depending on the task. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE partial_rotary_factor (`float`, *optional*, defaults to 0.9): Percentage of the query and keys which will have rotary embedding. is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the model is used as an encoder/decoder or not. attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. bos_token_id (`int`, *optional*, defaults to 1): Denotes beginning of sequences token id. eos_token_id (`int`, *optional*, defaults to 2): Denotes end of sequences token id. Example: ```python >>> from transformers import MoonshineModel, MoonshineConfig >>> # Initializing a Moonshine style configuration >>> configuration = MoonshineConfig().from_pretrained("UsefulSensors/moonshine-tiny") >>> # Initializing a model from the configuration >>> model = MoonshineModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "moonshine" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_key_value_heads": "encoder_num_key_value_heads", "num_attention_heads": "encoder_num_attention_heads", "num_hidden_layers": "encoder_num_hidden_layers", } def __init__( self, vocab_size=32768, hidden_size=288, intermediate_size=1152, encoder_num_hidden_layers=6, decoder_num_hidden_layers=6, encoder_num_attention_heads=8, decoder_num_attention_heads=8, encoder_num_key_value_heads=None, decoder_num_key_value_heads=None, encoder_hidden_act="gelu", decoder_hidden_act="silu", max_position_embeddings=512, initializer_range=0.02, decoder_start_token_id=1, use_cache=True, rope_theta=10000.0, rope_scaling=None, partial_rotary_factor=0.9, is_encoder_decoder=True, attention_bias=False, attention_dropout=0.0, bos_token_id=1, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.encoder_num_hidden_layers = encoder_num_hidden_layers self.decoder_num_hidden_layers = decoder_num_hidden_layers self.encoder_num_attention_heads = encoder_num_attention_heads self.decoder_num_attention_heads = decoder_num_attention_heads if encoder_num_key_value_heads is None: encoder_num_key_value_heads = encoder_num_attention_heads self.encoder_num_key_value_heads = encoder_num_key_value_heads if decoder_num_key_value_heads is None: decoder_num_key_value_heads = decoder_num_attention_heads self.decoder_num_key_value_heads = decoder_num_key_value_heads self.encoder_hidden_act = encoder_hidden_act self.decoder_hidden_act = decoder_hidden_act self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.partial_rotary_factor = partial_rotary_factor self.is_encoder_decoder = is_encoder_decoder self.attention_bias = attention_bias self.attention_dropout = attention_dropout # Validate the correctness of rotary position embeddings parameters rope_config_validation(self) super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, **kwargs, )
class_definition
1,828
13,419
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
null
6,469
class MoonshineEncoderMLP(nn.Module): def __init__(self, config, hidden_act): super().__init__() self.config = config self.activation_fn = ACT2FN[hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states
class_definition
13,422
14,009
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
null
6,470
class MoonshineDecoderMLP(nn.Module): def __init__(self, config, hidden_act): super().__init__() self.config = config self.activation_fn = ACT2FN[hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size * 2) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states, gate = hidden_states.chunk(2, dim=-1) hidden_states = self.activation_fn(gate) * hidden_states hidden_states = self.fc2(hidden_states) return hidden_states
class_definition
14,012
14,671
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
null
6,471
class MoonshineAttention(GlmAttention): def __init__( self, config: MoonshineConfig, layer_idx: int, is_causal: bool, num_attention_heads: int, num_key_value_heads: int, ): config.update({"num_attention_heads": num_attention_heads, "num_key_value_heads": num_key_value_heads}) super().__init__(config, layer_idx) self.is_causal = is_causal def forward( self, hidden_states: torch.Tensor, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, key_value_states: Optional[torch.Tensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len = hidden_states.shape[:-1] query_states = ( self.q_proj(hidden_states).view(bsz, q_len, self.config.num_key_value_heads, self.head_dim).transpose(1, 2) ) is_cross_attention = key_value_states is not None if past_key_value is not None: is_updated = past_key_value.is_updated.get(self.layer_idx) if is_cross_attention: # after the first generated id, we can subsequently re-use all key/value_states from cache past_key_value.is_updated[self.layer_idx] = True past_key_value = past_key_value.cross_attention_cache else: past_key_value = past_key_value.self_attention_cache # use key_value_states if cross attention current_states = key_value_states if key_value_states is not None else hidden_states if is_cross_attention and past_key_value and is_updated: key_states = past_key_value.key_cache[self.layer_idx] value_states = past_key_value.value_cache[self.layer_idx] else: key_states = ( self.k_proj(current_states) .view(bsz, -1, self.config.num_key_value_heads, self.head_dim) .transpose(1, 2) ) value_states = ( self.v_proj(current_states) .view(bsz, -1, self.config.num_key_value_heads, self.head_dim) .transpose(1, 2) ) if is_cross_attention and past_key_value is not None: key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) if not is_cross_attention: cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, cache_kwargs ) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] is_causal = True if self.is_causal and attention_mask is None and q_len > 1 else False attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, is_causal=is_causal, **kwargs, ) attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights
class_definition
14,674
19,073
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
null
6,472
class MoonshineRotaryEmbedding(GlmRotaryEmbedding): pass
class_definition
19,076
19,136
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
null
6,473
class MoonshineEncoderLayer(LlamaDecoderLayer): def __init__(self, config: MoonshineConfig, layer_idx: int): super().__init__(config, layer_idx) self.self_attn = MoonshineAttention( config=config, layer_idx=layer_idx, is_causal=False, num_attention_heads=config.encoder_num_attention_heads, num_key_value_heads=config.encoder_num_key_value_heads, ) self.mlp = MoonshineEncoderMLP(config, config.encoder_hidden_act) self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
class_definition
19,139
19,812
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
null
6,474
class MoonshineDecoderLayer(nn.Module): def __init__(self, config: MoonshineConfig, layer_idx: int = None): super().__init__() self.hidden_size = config.hidden_size self.self_attn = MoonshineAttention( config=config, layer_idx=layer_idx, is_causal=True, num_attention_heads=config.decoder_num_attention_heads, num_key_value_heads=config.decoder_num_key_value_heads, ) self.encoder_attn = MoonshineAttention( config=config, layer_idx=layer_idx, is_causal=False, num_attention_heads=config.decoder_num_attention_heads, num_key_value_heads=config.decoder_num_key_value_heads, ) self.mlp = MoonshineDecoderMLP(config, config.decoder_hidden_act) self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False) self.final_layernorm = nn.LayerNorm(config.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, encoder_position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 encoder_position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs
class_definition
19,815
23,383
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
null
6,475
class MoonshinePreTrainedModel(PreTrainedModel): config_class = MoonshineConfig base_model_prefix = "model" main_input_name = "input_values" supports_gradient_checkpointing = True _no_split_modules = ["MoonshineEncoderLayer", "MoonshineDecoderLayer"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True _supports_static_cache = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ output_conv1_length = int((input_lengths - 127) / 64 + 1) output_conv2_length = int((output_conv1_length - 7) / 3 + 1) output_conv3_length = int((output_conv2_length - 3) / 2 + 1) return output_conv3_length
class_definition
24,421
25,718
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
null
6,476
class MoonshineEncoder(MoonshinePreTrainedModel): """ Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoonshineEncoderLayer`] Args: config: MoonshineConfig """ main_input_name = "input_values" def __init__(self, config: MoonshineConfig): super().__init__(config) self.config = config embed_dim = config.hidden_size self.conv1 = nn.Conv1d(1, embed_dim, kernel_size=127, stride=64, bias=False) self.conv2 = nn.Conv1d(embed_dim, 2 * embed_dim, kernel_size=7, stride=3) self.conv3 = nn.Conv1d(2 * embed_dim, embed_dim, kernel_size=3, stride=2) self.groupnorm = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=1e-5) self.rotary_emb = MoonshineRotaryEmbedding(config=config) self.layers = nn.ModuleList( [MoonshineEncoderLayer(config, idx) for idx in range(config.encoder_num_hidden_layers)] ) self.layer_norm = nn.LayerNorm(embed_dim, bias=False) self.gradient_checkpointing = False self.post_init() def get_input_embeddings(self) -> nn.Module: return self.conv1 def set_input_embeddings(self, value: nn.Module): self.conv1 = value def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`): Float values of the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoFeatureExtractor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. attention_mask (`torch.Tensor`)`, *optional*): Moonshine does not support masking of the `input_values`, this argument is preserved for compatibility, but it is not used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_values is None: raise ValueError("You must specify input_values.") # conv downsampling input_values = input_values.unsqueeze(1) hidden_states = nn.functional.tanh(self.conv1(input_values)) hidden_states = self.groupnorm(hidden_states) hidden_states = nn.functional.gelu(self.conv2(hidden_states)) hidden_states = nn.functional.gelu(self.conv3(hidden_states)) hidden_states = hidden_states.permute(0, 2, 1) position_ids = torch.arange(0, hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # encoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, None, position_ids, None, output_attentions, False, None, position_embeddings, ) else: layer_outputs = encoder_layer( hidden_states, position_ids=position_ids, output_attentions=output_attentions, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last encoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple()
class_definition
25,721
31,479
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
null
6,477
class MoonshineDecoder(LlamaModel): main_input_name = "input_ids" def __init__(self, config: MoonshineConfig): super().__init__(config) self.norm = nn.LayerNorm(config.hidden_size, bias=False) self.layers = nn.ModuleList( [MoonshineDecoderLayer(config, idx) for idx in range(config.decoder_num_hidden_layers)] ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: """ Args: encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: self_attention_cache = DynamicCache() cross_attention_cache = DynamicCache() past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, encoder_hidden_states, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, encoder_hidden_states=encoder_hidden_states, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) return output if return_dict else output.to_tuple()
class_definition
31,482
37,120
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
null
6,478
class MoonshineModel(WhisperModel): @add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: r""" ```python >>> import torch >>> from transformers import AutoFeatureExtractor, MoonshineModel >>> from datasets import load_dataset >>> model = MoonshineModel.from_pretrained("UsefulSensors/moonshine-tiny") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("UsefulSensors/moonshine-tiny") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") >>> input_values = inputs.input_values >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_values, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 288] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, position_ids=decoder_position_ids, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
class_definition
43,173
47,632
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
null
6,479
class MoonshineForConditionalGeneration(MoonshinePreTrainedModel, GenerationMixin): _tied_weights_keys = ["proj_out.weight"] def __init__(self, config: MoonshineConfig): super().__init__(config) self.model = MoonshineModel(config) self.proj_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def get_output_embeddings(self): return self.proj_out def set_output_embeddings(self, new_embeddings): self.proj_out = new_embeddings def get_input_embeddings(self) -> nn.Module: return self.model.get_input_embeddings() @add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import torch >>> from transformers import AutoProcessor, MoonshineForConditionalGeneration >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("UsefulSensors/moonshine-tiny") >>> model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") >>> input_values = inputs.input_values >>> generated_ids = model.generate(input_values, max_new_tokens=100) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> transcription 'Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_values, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, decoder_position_ids=decoder_position_ids, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) logits = self.proj_out(outputs[0]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def generate(self, *args, **kwargs): # TODO: @eustlb do it rather with a custom logits processor token_limit_factor = 6.5 / 16000.0 # Maximum of 6.5 tokens per second if kwargs.get("max_new_tokens") is None and kwargs.get("max_length") is None: if kwargs.get("attention_mask") is not None: seq_lens = kwargs["attention_mask"].sum(dim=-1) else: seq_lens = kwargs["input_values"].shape[-1] max_length = int(seq_lens.max().item() * token_limit_factor) logger.warning_once( f"Based on the input length, Moonshine will generate up to {max_length} tokens (ratio of 6.5 tokens/second). " "To specify a different length, set either `max_new_tokens` or `max_length`." ) kwargs["max_length"] = max_length return super().generate(*args, **kwargs)
class_definition
47,795
53,832
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/moonshine/modular_moonshine.py
null
6,480
class ColPaliProcessorKwargs(ProcessingKwargs, total=False): _defaults = { "text_kwargs": { "padding": "longest", }, "images_kwargs": { "data_format": "channels_first", "do_convert_rgb": True, }, "common_kwargs": {"return_tensors": "pt"}, }
class_definition
1,228
1,552
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/modular_colpali.py
null
6,481
class ColPaliProcessor(PaliGemmaProcessor): r""" Constructs a ColPali processor which wraps a PaliGemmaProcessor and special methods to process images and queries, as well as to compute the late-interaction retrieval score. [`ColPaliProcessor`] offers all the functionalities of [`PaliGemmaProcessor`]. See the [`~PaliGemmaProcessor.__call__`] for more information. Args: image_processor ([`SiglipImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. """ visual_prompt_prefix: ClassVar[str] = "Describe the image." query_prefix: ClassVar[str] = "Question: " @property def query_augmentation_token(self) -> str: """ Return the query augmentation token. Query augmentation buffers are used as reasoning buffers during inference. """ return self.tokenizer.pad_token def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, audio=None, videos=None, **kwargs: Unpack[ColPaliProcessorKwargs], ) -> BatchFeature: """ Main method to prepare for the model either (1) one or several texts, either (2) one or several image(s). This method is custom wrapper around the PaliGemmaProcessor's [`~PaliGemmaProcessor.__call__`] method adapted for the ColPali model. It cannot process both text and images at the same time. When preparing the the text(s), this method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`]. When preparing the the image(s), this method forwards the `images` and `kwargs` arguments to SiglipImageProcessor's [`~SiglipImageProcessor.__call__`]. Please refer to the doctsring of the above two methods for more information. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ output_kwargs = self._merge_kwargs( ColPaliProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) suffix = output_kwargs["text_kwargs"].pop("suffix", None) return_token_type_ids = True if suffix is not None else False if text is None and images is None: raise ValueError("Either text or images must be provided") if text is not None and images is not None: raise ValueError("Only one of text or images can be processed at a time") if images is not None: if is_valid_image(images): images = [images] elif isinstance(images, list) and is_valid_image(images[0]): pass elif not (isinstance(images, list) and isinstance(images[0], list) and is_valid_image(images[0][0])): raise ValueError("images must be an image, list of images or list of list of images") texts_doc = [self.visual_prompt_prefix] * len(images) images = [image.convert("RGB") for image in images] input_strings = [ build_string_from_input( prompt=prompt, bos_token=self.tokenizer.bos_token, image_seq_len=self.image_seq_length, image_token=IMAGE_TOKEN, num_images=len(image_list) if isinstance(image_list, list) else 1, ) for prompt, image_list in zip(texts_doc, images) ] images = make_batched_images(images) pixel_values = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"] # max_length has to account for the image tokens if output_kwargs["text_kwargs"].get("max_length", None) is not None: output_kwargs["text_kwargs"]["max_length"] += self.image_seq_length inputs = self.tokenizer( input_strings, return_token_type_ids=False, **output_kwargs["text_kwargs"], ) return_data = {**inputs, "pixel_values": pixel_values} if return_token_type_ids: labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100) return_data.update({"labels": labels}) return BatchFeature(data=return_data) elif text is not None: if isinstance(text, str): text = [text] elif not (isinstance(text, list) and isinstance(text[0], str)): raise ValueError("Text must be a string or a list of strings") if suffix is None: suffix = self.query_augmentation_token * 10 texts_query: List[str] = [] for query in text: query = self.tokenizer.bos_token + self.query_prefix + query query += suffix # add suffix (pad tokens) query += "\n" # make input ISO to PaliGemma's processor texts_query.append(query) output_kwargs["text_kwargs"]["max_length"] = output_kwargs["text_kwargs"].get("max_length", 50) batch_query = self.tokenizer( texts_query, return_token_type_ids=False, **output_kwargs["text_kwargs"], ) return batch_query def process_images( self, images: ImageInput = None, **kwargs: Unpack[ColPaliProcessorKwargs], ) -> BatchFeature: """ Prepare for the model one or several image(s). This method is a wrapper around the `__call__` method of the ColPaliProcessor's [`ColPaliProcessor.__call__`]. This method forwards the `images` and `kwargs` arguments to SiglipImageProcessor's [`~SiglipImageProcessor.__call__`]. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ return self.__call__(images=images, **kwargs) def process_queries( self, text: Union[TextInput, List[TextInput]], **kwargs: Unpack[ColPaliProcessorKwargs], ) -> BatchFeature: """ Prepare for the model one or several texts. This method is a wrapper around the `__call__` method of the ColPaliProcessor's [`ColPaliProcessor.__call__`]. This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`]. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). """ return self.__call__(text=text, **kwargs) def score_retrieval( self, query_embeddings: Union["torch.Tensor", List["torch.Tensor"]], passage_embeddings: Union["torch.Tensor", List["torch.Tensor"]], batch_size: int = 128, output_dtype: Optional["torch.dtype"] = None, output_device: Union["torch.device", str] = "cpu", ) -> "torch.Tensor": """ Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector query embeddings (`qs`) and passage embeddings (`ps`). For ColPali, a passage is the image of a document page. Because the embedding tensors are multi-vector and can thus have different shapes, they should be fed as: (1) a list of tensors, where the i-th tensor is of shape (sequence_length_i, embedding_dim) (2) a single tensor of shape (n_passages, max_sequence_length, embedding_dim) -> usually obtained by padding the list of tensors. Args: query_embeddings (`Union[torch.Tensor, List[torch.Tensor]`): Query embeddings. passage_embeddings (`Union[torch.Tensor, List[torch.Tensor]`): Passage embeddings. batch_size (`int`, *optional*, defaults to 128): Batch size for computing scores. output_dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): The dtype of the output tensor. If `None`, the dtype of the input embeddings is used. output_device (`torch.device` or `str`, *optional*, defaults to "cpu"): The device of the output tensor. Returns: `torch.Tensor`: A tensor of shape `(n_queries, n_passages)` containing the scores. The score tensor is saved on the "cpu" device. """ if len(query_embeddings) == 0: raise ValueError("No queries provided") if len(passage_embeddings) == 0: raise ValueError("No passages provided") if query_embeddings[0].device != passage_embeddings[0].device: raise ValueError("Queries and passages must be on the same device") if query_embeddings[0].dtype != passage_embeddings[0].dtype: raise ValueError("Queries and passages must have the same dtype") if output_dtype is None: output_dtype = query_embeddings[0].dtype scores: List[torch.Tensor] = [] for i in range(0, len(query_embeddings), batch_size): batch_scores: List[torch.Tensor] = [] batch_queries = torch.nn.utils.rnn.pad_sequence( query_embeddings[i : i + batch_size], batch_first=True, padding_value=0 ) for j in range(0, len(passage_embeddings), batch_size): batch_passages = torch.nn.utils.rnn.pad_sequence( passage_embeddings[j : j + batch_size], batch_first=True, padding_value=0 ) batch_scores.append( torch.einsum("bnd,csd->bcns", batch_queries, batch_passages).max(dim=3)[0].sum(dim=2) ) scores.append(torch.cat(batch_scores, dim=1).to(output_dtype).to(output_device)) return torch.cat(scores, dim=0)
class_definition
1,555
15,846
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/modular_colpali.py
null
6,482
class ColPaliConfig(PretrainedConfig): r""" Configuration class to store the configuration of a [`ColPaliForRetrieval`]. It is used to instantiate an instance of `ColPaliForRetrieval` according to the specified arguments, defining the model architecture following the methodology from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper. Creating a configuration with the default settings will result in a configuration where the VLM backbone is set to the default PaliGemma configuration, i.e the one from [vidore/colpali-v1.2](https://huggingface.co/vidore/colpali-v1.2). The ColPali config is very similar to [`PaligemmaConfig`], but with an extra attribute defining the embedding dimension. Note that contrarily to what the class name suggests (actually the name refers to the ColPali **methodology**), you can use a different VLM backbone model than PaliGemma by passing the corresponding VLM configuration to the class constructor. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vlm_config (`PretrainedConfig`, *optional*): Configuration of the VLM backbone model. text_config (`PretrainedConfig`, *optional*): Configuration of the text backbone model. Overrides the `text_config` attribute of the `vlm_config` if provided. embedding_dim (`int`, *optional*, defaults to 128): Dimension of the multi-vector embeddings produced by the model. Example: ```python from transformers.models.colpali import ColPaliConfig, ColPaliForRetrieval config = ColPaliConfig() model = ColPaliForRetrieval(config) ``` """ model_type = "colpali" sub_configs = {"vlm_config": PretrainedConfig, "text_config": AutoConfig} def __init__( self, vlm_config=None, text_config=None, embedding_dim: int = 128, **kwargs, ): if vlm_config is None: vlm_config = CONFIG_MAPPING["paligemma"]() logger.info( "`vlm_config` is `None`. Initializing `vlm_config` with the `PaliGemmaConfig` with default values." ) elif isinstance(vlm_config, dict): vlm_config = deepcopy(vlm_config) if "model_type" not in vlm_config: raise KeyError( "The `model_type` key is missing in the `vlm_config` dictionary. Please provide the model type." ) elif vlm_config["model_type"] not in CONFIG_MAPPING: raise ValueError( f"The model type `{vlm_config['model_type']}` is not supported. Please provide a valid model type." ) vlm_config = CONFIG_MAPPING[vlm_config["model_type"]](**vlm_config) elif isinstance(vlm_config, PretrainedConfig): vlm_config = vlm_config else: raise TypeError( f"Invalid type for `vlm_config`. Expected `PretrainedConfig`, `dict`, or `None`, but got {type(vlm_config)}." ) self.vlm_config = vlm_config self.text_config = text_config = text_config if text_config is not None else vlm_config.text_config if isinstance(self.text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gemma" self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) self.embedding_dim = embedding_dim super().__init__(**kwargs)
class_definition
821
4,486
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/configuration_colpali.py
null
6,483
class ColPaliProcessorKwargs(ProcessingKwargs, total=False): _defaults = { "text_kwargs": { "padding": "longest", }, "images_kwargs": { "data_format": "channels_first", "do_convert_rgb": True, }, "common_kwargs": {"return_tensors": "pt"}, }
class_definition
1,825
2,149
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/processing_colpali.py
null
6,484
class ColPaliProcessor(ProcessorMixin): r""" Constructs a ColPali processor which wraps a PaliGemmaProcessor and special methods to process images and queries, as well as to compute the late-interaction retrieval score. [`ColPaliProcessor`] offers all the functionalities of [`PaliGemmaProcessor`]. See the [`~PaliGemmaProcessor.__call__`] for more information. Args: image_processor ([`SiglipImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = ["chat_template"] image_processor_class = "SiglipImageProcessor" tokenizer_class = ("GemmaTokenizer", "GemmaTokenizerFast") visual_prompt_prefix: ClassVar[str] = "Describe the image." query_prefix: ClassVar[str] = "Question: " def __init__( self, image_processor=None, tokenizer=None, chat_template=None, **kwargs, ): if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") if not hasattr(image_processor, "image_seq_length"): raise ValueError("Image processor is missing an `image_seq_length` attribute.") self.image_seq_length = image_processor.image_seq_length if not hasattr(tokenizer, "image_token"): image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True) tokens_to_add = {"additional_special_tokens": [image_token]} tokenizer.add_special_tokens(tokens_to_add) self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) else: self.image_token_id = tokenizer.image_token_id tokenizer.add_tokens(EXTRA_TOKENS) tokenizer.add_bos_token = False tokenizer.add_eos_token = False super().__init__(image_processor, tokenizer, chat_template=chat_template) def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, audio=None, videos=None, **kwargs: Unpack[ColPaliProcessorKwargs], ) -> BatchFeature: """ Main method to prepare for the model either (1) one or several texts, either (2) one or several image(s). This method is custom wrapper around the PaliGemmaProcessor's [`~PaliGemmaProcessor.__call__`] method adapted for the ColPali model. It cannot process both text and images at the same time. When preparing the the text(s), this method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`]. When preparing the the image(s), this method forwards the `images` and `kwargs` arguments to SiglipImageProcessor's [`~SiglipImageProcessor.__call__`]. Please refer to the doctsring of the above two methods for more information. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ output_kwargs = self._merge_kwargs( ColPaliProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) suffix = output_kwargs["text_kwargs"].pop("suffix", None) return_token_type_ids = True if suffix is not None else False if text is None and images is None: raise ValueError("Either text or images must be provided") if text is not None and images is not None: raise ValueError("Only one of text or images can be processed at a time") if images is not None: if is_valid_image(images): images = [images] elif isinstance(images, list) and is_valid_image(images[0]): pass elif not (isinstance(images, list) and isinstance(images[0], list) and is_valid_image(images[0][0])): raise ValueError("images must be an image, list of images or list of list of images") texts_doc = [self.visual_prompt_prefix] * len(images) images = [image.convert("RGB") for image in images] input_strings = [ build_string_from_input( prompt=prompt, bos_token=self.tokenizer.bos_token, image_seq_len=self.image_seq_length, image_token=IMAGE_TOKEN, num_images=len(image_list) if isinstance(image_list, list) else 1, ) for prompt, image_list in zip(texts_doc, images) ] images = make_batched_images(images) pixel_values = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"] # max_length has to account for the image tokens if output_kwargs["text_kwargs"].get("max_length", None) is not None: output_kwargs["text_kwargs"]["max_length"] += self.image_seq_length inputs = self.tokenizer( input_strings, return_token_type_ids=False, **output_kwargs["text_kwargs"], ) return_data = {**inputs, "pixel_values": pixel_values} if return_token_type_ids: labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100) return_data.update({"labels": labels}) return BatchFeature(data=return_data) elif text is not None: if isinstance(text, str): text = [text] elif not (isinstance(text, list) and isinstance(text[0], str)): raise ValueError("Text must be a string or a list of strings") if suffix is None: suffix = self.query_augmentation_token * 10 texts_query: List[str] = [] for query in text: query = self.tokenizer.bos_token + self.query_prefix + query query += suffix # add suffix (pad tokens) query += "\n" # make input ISO to PaliGemma's processor texts_query.append(query) output_kwargs["text_kwargs"]["max_length"] = output_kwargs["text_kwargs"].get("max_length", 50) batch_query = self.tokenizer( texts_query, return_token_type_ids=False, **output_kwargs["text_kwargs"], ) return batch_query def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def query_augmentation_token(self) -> str: """ Return the query augmentation token. Query augmentation buffers are used as reasoning buffers during inference. """ return self.tokenizer.pad_token def process_images( self, images: ImageInput = None, **kwargs: Unpack[ColPaliProcessorKwargs], ) -> BatchFeature: """ Prepare for the model one or several image(s). This method is a wrapper around the `__call__` method of the ColPaliProcessor's [`ColPaliProcessor.__call__`]. This method forwards the `images` and `kwargs` arguments to SiglipImageProcessor's [`~SiglipImageProcessor.__call__`]. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ return self.__call__(images=images, **kwargs) def process_queries( self, text: Union[TextInput, List[TextInput]], **kwargs: Unpack[ColPaliProcessorKwargs], ) -> BatchFeature: """ Prepare for the model one or several texts. This method is a wrapper around the `__call__` method of the ColPaliProcessor's [`ColPaliProcessor.__call__`]. This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`]. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). """ return self.__call__(text=text, **kwargs) def score_retrieval( self, query_embeddings: Union["torch.Tensor", List["torch.Tensor"]], passage_embeddings: Union["torch.Tensor", List["torch.Tensor"]], batch_size: int = 128, output_dtype: Optional["torch.dtype"] = None, output_device: Union["torch.device", str] = "cpu", ) -> "torch.Tensor": """ Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector query embeddings (`qs`) and passage embeddings (`ps`). For ColPali, a passage is the image of a document page. Because the embedding tensors are multi-vector and can thus have different shapes, they should be fed as: (1) a list of tensors, where the i-th tensor is of shape (sequence_length_i, embedding_dim) (2) a single tensor of shape (n_passages, max_sequence_length, embedding_dim) -> usually obtained by padding the list of tensors. Args: query_embeddings (`Union[torch.Tensor, List[torch.Tensor]`): Query embeddings. passage_embeddings (`Union[torch.Tensor, List[torch.Tensor]`): Passage embeddings. batch_size (`int`, *optional*, defaults to 128): Batch size for computing scores. output_dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): The dtype of the output tensor. If `None`, the dtype of the input embeddings is used. output_device (`torch.device` or `str`, *optional*, defaults to "cpu"): The device of the output tensor. Returns: `torch.Tensor`: A tensor of shape `(n_queries, n_passages)` containing the scores. The score tensor is saved on the "cpu" device. """ if len(query_embeddings) == 0: raise ValueError("No queries provided") if len(passage_embeddings) == 0: raise ValueError("No passages provided") if query_embeddings[0].device != passage_embeddings[0].device: raise ValueError("Queries and passages must be on the same device") if query_embeddings[0].dtype != passage_embeddings[0].dtype: raise ValueError("Queries and passages must have the same dtype") if output_dtype is None: output_dtype = query_embeddings[0].dtype scores: List[torch.Tensor] = [] for i in range(0, len(query_embeddings), batch_size): batch_scores: List[torch.Tensor] = [] batch_queries = torch.nn.utils.rnn.pad_sequence( query_embeddings[i : i + batch_size], batch_first=True, padding_value=0 ) for j in range(0, len(passage_embeddings), batch_size): batch_passages = torch.nn.utils.rnn.pad_sequence( passage_embeddings[j : j + batch_size], batch_first=True, padding_value=0 ) batch_scores.append( torch.einsum("bnd,csd->bcns", batch_queries, batch_passages).max(dim=3)[0].sum(dim=2) ) scores.append(torch.cat(batch_scores, dim=1).to(output_dtype).to(output_device)) return torch.cat(scores, dim=0)
class_definition
3,796
20,362
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/processing_colpali.py
null
6,485
class ColPaliPreTrainedModel(PreTrainedModel): config_class = ColPaliConfig base_model_prefix = "model" _no_split_modules = [] def _init_weights(self, module): std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.vlm_config.text_config.initializer_range ) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
2,140
2,921
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/modeling_colpali.py
null
6,486
class ColPaliForRetrievalOutput(ModelOutput): """ Base class for ColPali embeddings output. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): The embeddings of the model. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder after projecting last hidden state. """ loss: Optional[torch.FloatTensor] = None embeddings: torch.Tensor = None past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[torch.FloatTensor] = None
class_definition
2,935
5,423
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/modeling_colpali.py
null
6,487
class ColPaliForRetrieval(ColPaliPreTrainedModel): def __init__(self, config: ColPaliConfig): super().__init__(config) self.config = config self.vocab_size = config.vlm_config.text_config.vocab_size vlm = AutoModelForImageTextToText.from_config(config.vlm_config) if vlm.language_model._tied_weights_keys is not None: self._tied_weights_keys = [f"vlm.language_model.{k}" for k in vlm.language_model._tied_weights_keys] self.vlm = vlm self.embedding_dim = self.config.embedding_dim self.embedding_proj_layer = nn.Linear( self.config.vlm_config.text_config.hidden_size, self.embedding_dim, ) self.post_init() @add_start_docstrings_to_model_forward(COLPALI_FOR_RETRIEVAL_INPUT_DOCSTRING) @replace_return_docstrings(output_type=ColPaliForRetrievalOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, ColPaliForRetrievalOutput]: r""" Returns: """ if "pixel_values" in kwargs: kwargs["pixel_values"] = kwargs["pixel_values"].to(dtype=self.dtype) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vlm( input_ids=input_ids, attention_mask=attention_mask, pixel_values=pixel_values, output_hidden_states=True, return_dict=return_dict, output_attentions=output_attentions, **kwargs, ) last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size) embeddings = self.embedding_proj_layer(last_hidden_states) # (batch_size, sequence_length, dim) # L2 normalization embeddings = embeddings / embeddings.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim) embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim) loss = None if not return_dict: output = (embeddings,) + outputs[2:] output[2] = output[2] if output_hidden_states is not None else None output[-1] = (outputs.image_hidden_states if pixel_values is not None else None,) return (loss,) + output if loss is not None else output return ColPaliForRetrievalOutput( loss=loss, embeddings=embeddings, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, image_hidden_states=outputs.image_hidden_states if pixel_values is not None else None, ) def get_input_embeddings(self): return self.vlm.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.vlm.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.vlm.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.vlm.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.vlm.language_model.set_decoder(decoder) def get_decoder(self): return self.vlm.language_model.get_decoder() def tie_weights(self): return self.vlm.language_model.tie_weights() def resize_token_embeddings( self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, mean_resizing: bool = True, ) -> nn.Embedding: model_embeds = self.vlm.language_model.resize_token_embeddings( new_num_tokens=new_num_tokens, pad_to_multiple_of=pad_to_multiple_of, mean_resizing=mean_resizing, ) self.config.vlm_config.text_config.vocab_size = model_embeds.num_embeddings self.config.vlm_config.vocab_size = model_embeds.num_embeddings self.vlm.vocab_size = model_embeds.num_embeddings self.vocab_size = model_embeds.num_embeddings return model_embeds
class_definition
8,695
13,394
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/colpali/modeling_colpali.py
null
6,488
class FlaxPegasusAttention(nn.Module): config: PegasusConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights
class_definition
12,327
19,726
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
null
6,489
class FlaxPegasusEncoderLayer(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxPegasusAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
19,831
22,121
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
null
6,490
class FlaxPegasusEncoderLayerCollection(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxPegasusEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions )
class_definition
22,232
24,192
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
null
6,491
class FlaxPegasusDecoderLayer(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxPegasusAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxPegasusAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs
class_definition
24,297
27,855
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
null
6,492
class FlaxPegasusDecoderLayerCollection(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxPegasusDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, )
class_definition
27,966
30,692
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
null
6,493
class FlaxPegasusEncoder(nn.Module): config: PegasusConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_source_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) self.layers = FlaxPegasusEncoderLayerCollection(self.config, self.dtype) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions embed_pos = jnp.take(self.embed_positions, position_ids, axis=0) # explicitly cast the positions here, since self.embed_positions are not registered as parameters embed_pos = embed_pos.astype(inputs_embeds.dtype) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] last_hidden_state = self.layer_norm(last_hidden_state) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_state,) if not return_dict: outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=outputs.attentions, )
class_definition
30,695
33,308
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
null
6,494
class FlaxPegasusDecoder(nn.Module): config: PegasusConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_target_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) self.layers = FlaxPegasusDecoderLayerCollection(self.config, self.dtype) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions positions = jnp.take(self.embed_positions, position_ids, axis=0) # explicitly cast the positions here, since self.embed_positions are not registered as parameters positions = positions.astype(inputs_embeds.dtype) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] last_hidden_state = self.layer_norm(last_hidden_state) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_state,) if not return_dict: outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
class_definition
33,311
36,279
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
null
6,495
class FlaxPegasusModule(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.encoder = FlaxPegasusEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) self.decoder = FlaxPegasusDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
class_definition
36,374
38,823
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
null
6,496
class FlaxPegasusPreTrainedModel(FlaxPreTrainedModel): config_class = PegasusConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: PegasusConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) decoder_input_ids = input_ids decoder_attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(PEGASUS_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=PegasusConfig) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large") >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(PEGASUS_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=PegasusConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large") >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxPegasusAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # prepare decoder inputs if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, )
class_definition
38,826
53,173
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
null
6,497
class FlaxPegasusModel(FlaxPegasusPreTrainedModel): config: PegasusConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxPegasusModule
class_definition
53,335
53,516
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
null
6,498
class FlaxPegasusForConditionalGenerationModule(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.model = FlaxPegasusModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.model.shared.num_embeddings, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype)) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, )
class_definition
53,746
56,342
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py
null
6,499