text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class FlaxWav2Vec2ForPreTraining(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
30,976
31,141
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,800
class FlaxWav2Vec2Model(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
31,144
31,300
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,801
class FlaxWav2Vec2PreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
31,303
31,469
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,802
class FlaxWhisperForAudioClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
31,472
31,644
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,803
class FlaxWhisperForConditionalGeneration(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
31,647
31,821
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,804
class FlaxWhisperModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
31,824
31,979
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,805
class FlaxWhisperPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
31,982
32,147
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,806
class FlaxXGLMForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
32,150
32,308
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,807
class FlaxXGLMModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
32,311
32,463
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,808
class FlaxXGLMPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
32,466
32,628
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,809
class FlaxXLMRobertaForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
32,631
32,795
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,810
class FlaxXLMRobertaForMaskedLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
32,798
32,962
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,811
class FlaxXLMRobertaForMultipleChoice(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
32,965
33,135
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,812
class FlaxXLMRobertaForQuestionAnswering(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
33,138
33,311
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,813
class FlaxXLMRobertaForSequenceClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
33,314
33,492
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,814
class FlaxXLMRobertaForTokenClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
33,495
33,670
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,815
class FlaxXLMRobertaModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
33,673
33,831
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,816
class FlaxXLMRobertaPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
class_definition
33,834
34,002
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
null
2,817
class NllbMoeConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`NllbMoeModel`]. It is used to instantiate an NLLB-MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the NLLB-MoE [facebook/nllb-moe-54b](https://huggingface.co/facebook/nllb-moe-54b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the NllbMoe model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`NllbMoeModel`] or d_model (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 12): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in encoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. classifier_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for classifier. max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. second_expert_policy ( `str`, *optional*, default to `"all"`): The policy used for the sampling the probability of being sampled to a second expert for each token. normalize_router_prob_before_dropping (`bool`, *optional*, defaults to `True`): Whether or not to normalize the router probabilities before applying a mask based on the experts capacity (capacity dropping). batch_prioritized_routing (`bool`, *optional*, defaults to `True`): Whether or not to orders the tokens by their router probabilities before capacity dropping. This means that the tokens that have the highest probabilities will be routed before other tokens that might be further in the sequence. moe_eval_capacity_token_fraction (`float`, *optional*, defaults to 1.0): Fraction of tokens as capacity during validation, if set to negative, uses the same as training. Should be in range: (0.0, 1.0]. num_experts (`int`, *optional*, defaults to 128): Number of experts for each NllbMoeSparseMlp layer. expert_capacity (`int`, *optional*, defaults to 64): Number of tokens that can be stored in each expert. encoder_sparse_step (`int`, *optional*, defaults to 4): Frequency of the sparse layers in the encoder. 4 means that one out of 4 layers will be sparse. decoder_sparse_step (`int`, *optional*, defaults to 4): Frequency of the sparse layers in the decoder. 4 means that one out of 4 layers will be sparse. router_dtype (`str`, *optional*, default to `"float32"`): The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the *selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961). router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`): Whether to ignore padding tokens when routing. if `False`, the padding tokens are not routed to any experts. router_bias (`bool`, *optional*, defaults to `False`): Whether or not the classifier of the router should have a bias. moe_token_dropout (`float`, *optional*, defualt ot 0.2): Masking rate for MoE expert output masking (EOM), which is implemented via a Dropout2d on the expert outputs. output_router_logits (`bool`, *optional*, defaults to `False`): Whether or not to return the router logits. Only set to `True` to get the auxiliary loss when training. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Example: ```python >>> from transformers import NllbMoeModel, NllbMoeConfig >>> # Initializing a NllbMoe facebook/nllb-moe-54b style configuration >>> configuration = NllbMoeConfig() >>> # Initializing a model from the facebook/nllb-moe-54b style configuration >>> model = NllbMoeModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "nllb-moe" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=128112, max_position_embeddings=1024, encoder_layers=12, encoder_ffn_dim=4096, encoder_attention_heads=16, decoder_layers=12, decoder_ffn_dim=4096, decoder_attention_heads=16, encoder_layerdrop=0.05, decoder_layerdrop=0.05, use_cache=True, is_encoder_decoder=True, activation_function="relu", d_model=1024, dropout=0.1, attention_dropout=0.1, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=2, scale_embedding=True, router_bias=False, router_dtype="float32", router_ignore_padding_tokens=False, num_experts=128, expert_capacity=64, encoder_sparse_step=4, decoder_sparse_step=4, router_z_loss_coef=0.001, router_aux_loss_coef=0.001, second_expert_policy="all", normalize_router_prob_before_dropping=False, batch_prioritized_routing=False, moe_eval_capacity_token_fraction=1.0, moe_token_dropout=0.2, pad_token_id=1, bos_token_id=0, eos_token_id=2, output_router_logits=False, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.router_z_loss_coef = router_z_loss_coef self.router_aux_loss_coef = router_aux_loss_coef self.decoder_sparse_step = decoder_sparse_step self.encoder_sparse_step = encoder_sparse_step self.num_experts = num_experts self.expert_capacity = expert_capacity self.router_bias = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}") self.router_dtype = router_dtype self.router_ignore_padding_tokens = router_ignore_padding_tokens self.batch_prioritized_routing = batch_prioritized_routing self.second_expert_policy = second_expert_policy self.normalize_router_prob_before_dropping = normalize_router_prob_before_dropping self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction self.moe_token_dropout = moe_token_dropout self.output_router_logits = output_router_logits super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, **kwargs, )
class_definition
755
11,167
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/configuration_nllb_moe.py
null
2,818
class NllbMoeScaledWordEmbedding(nn.Embedding): """ This module overrides nn.Embeddings' forward by multiplying with embeddings scale. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0): super().__init__(num_embeddings, embedding_dim, padding_idx) self.embed_scale = embed_scale def forward(self, input_ids: torch.Tensor): return super().forward(input_ids) * self.embed_scale
class_definition
5,186
5,674
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
null
2,819
class NllbMoeSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__() self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.register_buffer("weights", emb_weights, persistent=False) @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward( self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0 ): if input_ids is not None: bsz, seq_len = input_ids.size() # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( input_ids.device ) else: bsz, seq_len = inputs_embeds.size()[:-1] position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length) # expand embeddings if needed max_pos = self.padding_idx + 1 + seq_len + past_key_values_length if max_pos > self.weights.size(0): self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach() def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
class_definition
5,772
9,374
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
null
2,820
class NllbMoeTop2Router(nn.Module): """ Router using tokens choose top-2 experts assignment. This router uses the same mechanism as in NLLB-MoE from the fairseq repository. Items are sorted by router_probs and then routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee that each token is processed by an expert**, or that each expert receives at least one token. The router combining weights are also returned to make sure that the states that are not updated will be masked. """ def __init__(self, config: NllbMoeConfig): super().__init__() self.num_experts = config.num_experts self.expert_capacity = config.expert_capacity self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias) self.router_ignore_padding_tokens = config.router_ignore_padding_tokens self.dtype = getattr(torch, config.router_dtype) self.second_expert_policy = config.second_expert_policy self.normalize_router_prob_before_dropping = config.normalize_router_prob_before_dropping self.batch_prioritized_routing = config.batch_prioritized_routing self.moe_eval_capacity_token_fraction = config.moe_eval_capacity_token_fraction def _cast_classifier(self): r""" `bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an instance of the `Linear8bitLt` class by checking special attributes. """ if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")): self.classifier = self.classifier.to(self.dtype) def normalize_router_probabilities(self, router_probs, top_1_mask, top_2_mask): top_1_max_probs = (router_probs * top_1_mask).sum(dim=1) top_2_max_probs = (router_probs * top_2_mask).sum(dim=1) denom_s = torch.clamp(top_1_max_probs + top_2_max_probs, min=torch.finfo(router_probs.dtype).eps) top_1_max_probs = top_1_max_probs / denom_s top_2_max_probs = top_2_max_probs / denom_s return top_1_max_probs, top_2_max_probs def route_tokens( self, router_logits: torch.Tensor, input_dtype: torch.dtype = torch.float32, padding_mask: Optional[torch.LongTensor] = None, ) -> Tuple: """ Computes the `dispatch_mask` and the `dispatch_weights` for each experts. The masks are adapted to the expert capacity. """ nb_tokens = router_logits.shape[0] # Apply Softmax and cast back to the original `dtype` router_probs = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(input_dtype) top_1_expert_index = torch.argmax(router_probs, dim=-1) top_1_mask = torch.nn.functional.one_hot(top_1_expert_index, num_classes=self.num_experts) if self.second_expert_policy == "sampling": gumbel = torch.distributions.gumbel.Gumbel(0, 1).rsample router_logits += gumbel(router_logits.shape).to(router_logits.device) # replace top_1_expert_index with min values logits_except_top_1 = router_logits.masked_fill(top_1_mask.bool(), float("-inf")) top_2_expert_index = torch.argmax(logits_except_top_1, dim=-1) top_2_mask = torch.nn.functional.one_hot(top_2_expert_index, num_classes=self.num_experts) if self.normalize_router_prob_before_dropping: top_1_max_probs, top_2_max_probs = self.normalize_router_probabilities( router_probs, top_1_mask, top_2_mask ) if self.second_expert_policy == "random": top_2_max_probs = (router_probs * top_2_mask).sum(dim=1) sampled = (2 * top_2_max_probs) > torch.rand_like(top_2_max_probs.float()) top_2_mask = top_2_mask * sampled.repeat(self.num_experts, 1).transpose(1, 0) if padding_mask is not None and not self.router_ignore_padding_tokens: if len(padding_mask.shape) == 4: # only get the last causal mask padding_mask = padding_mask[:, :, -1, :].reshape(-1)[-nb_tokens:] non_padding = ~padding_mask.bool() top_1_mask = top_1_mask * non_padding.unsqueeze(-1).to(top_1_mask.dtype) top_2_mask = top_2_mask * non_padding.unsqueeze(-1).to(top_1_mask.dtype) if self.batch_prioritized_routing: # sort tokens based on their routing probability # to make sure important tokens are routed, first importance_scores = -1 * router_probs.max(dim=1)[0] sorted_top_1_mask = top_1_mask[importance_scores.argsort(dim=0)] sorted_cumsum1 = (torch.cumsum(sorted_top_1_mask, dim=0) - 1) * sorted_top_1_mask locations1 = sorted_cumsum1[importance_scores.argsort(dim=0).argsort(dim=0)] sorted_top_2_mask = top_2_mask[importance_scores.argsort(dim=0)] sorted_cumsum2 = (torch.cumsum(sorted_top_2_mask, dim=0) - 1) * sorted_top_2_mask locations2 = sorted_cumsum2[importance_scores.argsort(dim=0).argsort(dim=0)] # Update 2nd's location by accounting for locations of 1st locations2 += torch.sum(top_1_mask, dim=0, keepdim=True) else: locations1 = torch.cumsum(top_1_mask, dim=0) - 1 locations2 = torch.cumsum(top_2_mask, dim=0) - 1 # Update 2nd's location by accounting for locations of 1st locations2 += torch.sum(top_1_mask, dim=0, keepdim=True) if not self.training and self.moe_eval_capacity_token_fraction > 0: self.expert_capacity = math.ceil(self.moe_eval_capacity_token_fraction * nb_tokens) else: capacity = 2 * math.ceil(nb_tokens / self.num_experts) self.expert_capacity = capacity if self.expert_capacity is None else self.expert_capacity # Remove locations outside capacity from ( cumsum < capacity = False will not be routed) top_1_mask = top_1_mask * torch.lt(locations1, self.expert_capacity) top_2_mask = top_2_mask * torch.lt(locations2, self.expert_capacity) if not self.normalize_router_prob_before_dropping: top_1_max_probs, top_2_max_probs = self.normalize_router_probabilities( router_probs, top_1_mask, top_2_mask ) # Calculate combine_weights and dispatch_mask gates1 = top_1_max_probs[:, None] * top_1_mask gates2 = top_2_max_probs[:, None] * top_2_mask router_probs = gates1 + gates2 return top_1_mask, router_probs def forward(self, hidden_states: torch.Tensor, padding_mask: Optional[torch.LongTensor] = None) -> Tuple: r""" The hidden states are reshaped to simplify the computation of the router probabilities (combining weights for each experts.) Args: hidden_states (`torch.Tensor`): (batch_size, sequence_length, hidden_dim) from which router probabilities are computed. Returns: top_1_mask (`torch.Tensor` of shape (batch_size, sequence_length)): Index tensor of shape [batch_size, sequence_length] corresponding to the expert selected for each token using the top1 probabilities of the router. router_probabilities (`torch.Tensor` of shape (batch_size, sequence_length, nump_experts)): Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each token and expert. Used for routing tokens to experts. router_logits (`torch.Tensor` of shape (batch_size, sequence_length))): Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits. This is used later for computing router z-loss. """ self.input_dtype = hidden_states.dtype batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.reshape((batch_size * sequence_length), hidden_dim) hidden_states = hidden_states.to(self.dtype) self._cast_classifier() router_logits = self.classifier(hidden_states) top_1_mask, router_probs = self.route_tokens(router_logits, self.input_dtype, padding_mask) return top_1_mask, router_probs
class_definition
9,377
17,762
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
null
2,821
class NllbMoeDenseActDense(nn.Module): def __init__(self, config: NllbMoeConfig, ffn_dim: int): super().__init__() self.fc1 = nn.Linear(config.d_model, ffn_dim) self.fc2 = nn.Linear(ffn_dim, config.d_model) self.dropout = nn.Dropout(config.activation_dropout) self.act = ACT2FN[config.activation_function] def forward(self, hidden_states): hidden_states = self.fc1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) if ( isinstance(self.fc2.weight, torch.Tensor) and hidden_states.dtype != self.fc2.weight.dtype and (self.fc2.weight.dtype != torch.int8 and self.fc2.weight.dtype != torch.uint8) ): hidden_states = hidden_states.to(self.fc2.weight.dtype) hidden_states = self.fc2(hidden_states) return hidden_states
class_definition
17,765
18,680
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
null
2,822
class NllbMoeSparseMLP(nn.Module): r""" Implementation of the NLLB-MoE sparse MLP module. """ def __init__(self, config: NllbMoeConfig, ffn_dim: int, expert_class: nn.Module = NllbMoeDenseActDense): super().__init__() self.router = NllbMoeTop2Router(config) self.moe_token_dropout = config.moe_token_dropout self.token_dropout = nn.Dropout(self.moe_token_dropout) self.num_experts = config.num_experts self.experts = nn.ModuleDict() for idx in range(self.num_experts): self.experts[f"expert_{idx}"] = expert_class(config, ffn_dim) def forward(self, hidden_states: torch.Tensor, padding_mask: Optional[torch.Tensor] = False): r""" The goal of this forward pass is to have the same number of operation as the equivalent `NllbMoeDenseActDense` (mlp) layer. This means that all of the hidden states should be processed at most twice ( since we are using a top_2 gating mecanism). This means that we keep the complexity to O(batch_size x sequence_length x hidden_dim) instead of O(num_experts x batch_size x sequence_length x hidden_dim). 1- Get the `router_probs` from the `router`. The shape of the `router_mask` is `(batch_size X sequence_length, num_expert)` and corresponds to the boolean version of the `router_probs`. The inputs are masked using the `router_mask`. 2- Dispatch the hidden_states to its associated experts. The router probabilities are used to weight the contribution of each experts when updating the masked hidden states. Args: hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_dim)`): The hidden states padding_mask (`torch.Tensor`, *optional*, defaults to `False`): Attention mask. Can be in the causal form or not. Returns: hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_dim)`): Updated hidden states router_logits (`torch.Tensor` of shape `(batch_size, sequence_length, num_experts)`): Needed for computing the loss """ batch_size, sequence_length, hidden_dim = hidden_states.shape top_1_mask, router_probs = self.router(hidden_states, padding_mask) router_mask = router_probs.bool() hidden_states = hidden_states.reshape((batch_size * sequence_length), hidden_dim) masked_hidden_states = torch.einsum("bm,be->ebm", hidden_states, router_mask) for idx, expert in enumerate(self.experts.values()): token_indices = router_mask[:, idx] combining_weights = router_probs[token_indices, idx] expert_output = expert(masked_hidden_states[idx, token_indices]) if self.moe_token_dropout > 0: if self.training: expert_output = self.token_dropout(expert_output) else: expert_output *= 1 - self.moe_token_dropout masked_hidden_states[idx, token_indices] = torch.einsum("b,be->be", combining_weights, expert_output) hidden_states = masked_hidden_states.sum(dim=0).reshape(batch_size, sequence_length, hidden_dim) top_1_expert_index = torch.argmax(top_1_mask, dim=-1) return hidden_states, (router_probs, top_1_expert_index)
class_definition
18,683
22,090
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
null
2,823
class NllbMoeAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[NllbMoeConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if encoder_hidden_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = encoder_hidden_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == encoder_hidden_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `encoder_hidden_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == encoder_hidden_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz) value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value
class_definition
22,219
29,655
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
null
2,824
class NllbMoeEncoderLayer(nn.Module): def __init__(self, config: NllbMoeConfig, is_sparse: bool = False): super().__init__() self.embed_dim = config.d_model self.is_sparse = is_sparse self.self_attn = NllbMoeAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, ) self.attn_dropout = nn.Dropout(config.dropout) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) if not self.is_sparse: self.ffn = NllbMoeDenseActDense(config, ffn_dim=config.encoder_ffn_dim) else: self.ffn = NllbMoeSparseMLP(config, ffn_dim=config.encoder_ffn_dim) self.ff_layer_norm = nn.LayerNorm(config.d_model) self.ff_dropout = nn.Dropout(config.activation_dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, output_router_logits: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = self.attn_dropout(hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.ff_layer_norm(hidden_states) if self.is_sparse: hidden_states, router_states = self.ffn(hidden_states, attention_mask) else: # router_states set to None to track which layers have None gradients. hidden_states, router_states = self.ffn(hidden_states), None hidden_states = self.ff_dropout(hidden_states) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) if output_router_logits: outputs += (router_states,) return outputs
class_definition
29,658
32,930
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
null
2,825
class NllbMoeDecoderLayer(nn.Module): def __init__(self, config: NllbMoeConfig, is_sparse: bool = False): super().__init__() self.embed_dim = config.d_model self.is_sparse = is_sparse self.self_attn = NllbMoeAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.attn_dropout = nn.Dropout(config.dropout) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.cross_attention = NllbMoeAttention( self.embed_dim, config.decoder_attention_heads, config.attention_dropout, is_decoder=True ) self.cross_attention_layer_norm = nn.LayerNorm(self.embed_dim) if not self.is_sparse: self.ffn = NllbMoeDenseActDense(config, ffn_dim=config.decoder_ffn_dim) else: self.ffn = NllbMoeSparseMLP(config, ffn_dim=config.decoder_ffn_dim) self.ff_layer_norm = nn.LayerNorm(config.d_model) self.ff_dropout = nn.Dropout(config.activation_dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = self.attn_dropout(hidden_states) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.cross_attention_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attention( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, past_key_value=cross_attn_past_key_value, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, output_attentions=output_attentions, ) hidden_states = self.attn_dropout(hidden_states) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value += cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.ff_layer_norm(hidden_states) if self.is_sparse: hidden_states, router_states = self.ffn(hidden_states, attention_mask) else: hidden_states, router_states = self.ffn(hidden_states), None hidden_states = self.ff_dropout(hidden_states) hidden_states = residual + hidden_states # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states, present_key_value) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if output_router_logits: outputs += (router_states,) return outputs
class_definition
32,933
39,074
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
null
2,826
class NllbMoePreTrainedModel(PreTrainedModel): config_class = NllbMoeConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["NllbMoeEncoderLayer", "NllbMoeDecoderLayer"] def _init_weights(self, module): """Initialize the weights""" std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
39,077
39,808
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
null
2,827
class NllbMoeEncoder(NllbMoePreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`NllbMoeEncoderLayer`]. Args: config: NllbMoeConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: NllbMoeConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.embed_tokens = NllbMoeScaledWordEmbedding( config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale ) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = NllbMoeSinusoidalPositionalEmbedding( config.max_position_embeddings, embed_dim, self.padding_idx, ) sparse_step = config.encoder_sparse_step self.layers = nn.ModuleList() for i in range(config.encoder_layers): is_sparse = (i + 1) % sparse_step == 0 if sparse_step > 0 else False self.layers.append(NllbMoeEncoderLayer(config, is_sparse)) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) embed_pos = self.embed_positions(input_ids, inputs_embeds) embed_pos = embed_pos.to(inputs_embeds.device) hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_router_probs = () if output_router_logits else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) if self.training and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, output_router_logits=output_router_logits, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if output_router_logits: all_router_probs += (layer_outputs[-1],) last_hidden_state = self.layer_norm(hidden_states) if output_hidden_states: encoder_states += (last_hidden_state,) if not return_dict: return tuple( v for v in [last_hidden_state, encoder_states, all_attentions, all_router_probs] if v is not None ) return MoEModelOutput( last_hidden_state=last_hidden_state, hidden_states=encoder_states, attentions=all_attentions, router_probs=all_router_probs, )
class_definition
47,628
56,318
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
null
2,828
class NllbMoeDecoder(NllbMoePreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`NllbMoeDecoderLayer`] Args: config: NllbMoeConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: NllbMoeConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = NllbMoeScaledWordEmbedding( config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale ) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = NllbMoeSinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, self.padding_idx, ) sparse_step = config.decoder_sparse_step self.layers = nn.ModuleList() for i in range(config.decoder_layers): is_sparse = (i + 1) % sparse_step == 0 if sparse_step > 0 else False self.layers.append(NllbMoeDecoderLayer(config, is_sparse)) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length) positions = positions.to(inputs_embeds.device) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_router_probs = () if output_router_logits else None all_cross_attentions = () if output_attentions else None present_key_value_states = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False if not skip_the_layer or synced_gpus: layer_head_mask = head_mask[idx] if head_mask is not None else None cross_attn_layer_head_mask = cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None past_key_value = past_key_values[idx] if past_key_values is not None else None # under fsdp or deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False layer_outputs = self._gradient_checkpointing_func( decoder_layer.forward, hidden_states, combined_attention_mask, encoder_hidden_states, encoder_attention_mask, layer_head_mask, cross_attn_layer_head_mask, None, # past_key_value is always None with gradient checkpointing use_cache, output_attentions, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=layer_head_mask, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, output_router_logits=output_router_logits, ) hidden_states = layer_outputs[0] if skip_the_layer: continue if use_cache: present_key_value_states += (layer_outputs[1],) if output_attentions: all_self_attns += (layer_outputs[2],) all_cross_attentions += (layer_outputs[3],) if output_router_logits: all_router_probs += (layer_outputs[-1],) hidden_states = self.layer_norm(hidden_states) # Add last layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, present_key_value_states, all_hidden_states, all_self_attns, all_cross_attentions, all_router_probs, ] if v is not None ) return MoEModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, router_probs=all_router_probs, )
class_definition
56,321
70,491
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
null
2,829
class NllbMoeModel(NllbMoePreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: NllbMoeConfig): super().__init__(config) padding_idx, vocab_size = config.pad_token_id, config.vocab_size embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.shared = NllbMoeScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale) self.encoder = NllbMoeEncoder(config, self.shared) self.decoder = NllbMoeDecoder(config, self.shared) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING) @add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqMoEModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqMoEModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, NllbMoeModel >>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts") >>> model = SwitchTransformersModel.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for NllbMoeModel >>> decoder_input_ids = model._shift_right(decoder_input_ids) >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" return_dict = return_dict if return_dict is not None else self.config.return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, MoEModelOutput): encoder_outputs = MoEModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, router_probs=encoder_outputs[3] if len(encoder_outputs) > 3 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqMoEModelOutput( past_key_values=decoder_outputs.past_key_values, cross_attentions=decoder_outputs.cross_attentions, last_hidden_state=decoder_outputs.last_hidden_state, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, decoder_hidden_states=decoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, decoder_attentions=decoder_outputs.attentions, encoder_router_logits=encoder_outputs.router_probs, decoder_router_logits=decoder_outputs.router_probs, )
class_definition
70,642
76,800
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
null
2,830
class NllbMoeForConditionalGeneration(NllbMoePreTrainedModel, GenerationMixin): base_model_prefix = "model" _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: NllbMoeConfig): super().__init__(config) self.model = NllbMoeModel(config) self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) self.router_z_loss_coef = config.router_z_loss_coef self.router_aux_loss_coef = config.router_aux_loss_coef # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqMoEOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(NLLB_MOE_GENERATION_EXAMPLE) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqMoEOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) if labels is not None: if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) loss = None encoder_aux_loss = None decoder_aux_loss = None if labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-100) # todo check in the config if router loss enables if output_router_logits: encoder_router_logits = outputs[-1] decoder_router_logits = outputs[3 if output_attentions else 4] # Compute the router loss (z_loss + auxiliary loss) for each router in the encoder and decoder encoder_router_logits, encoder_expert_indexes = self._unpack_router_logits(encoder_router_logits) encoder_aux_loss = load_balancing_loss_func(encoder_router_logits, encoder_expert_indexes) decoder_router_logits, decoder_expert_indexes = self._unpack_router_logits(decoder_router_logits) decoder_aux_loss = load_balancing_loss_func(decoder_router_logits, decoder_expert_indexes) loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) if output_router_logits and labels is not None: aux_loss = self.router_aux_loss_coef * (encoder_aux_loss + decoder_aux_loss) loss = loss + aux_loss output = (loss,) if loss is not None else () if not return_dict: output += (lm_logits,) if output_router_logits: # only return the loss if they are not None output += ( encoder_aux_loss, decoder_aux_loss, *outputs[1:], ) else: output += outputs[1:] return output return Seq2SeqMoEOutput( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, cross_attentions=outputs.cross_attentions, encoder_aux_loss=encoder_aux_loss, decoder_aux_loss=decoder_aux_loss, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, decoder_hidden_states=outputs.decoder_hidden_states, encoder_attentions=outputs.encoder_attentions, decoder_attentions=outputs.decoder_attentions, encoder_router_logits=outputs.encoder_router_logits, decoder_router_logits=outputs.decoder_router_logits, ) def _unpack_router_logits(self, router_outputs): total_router_logits = [] total_expert_indexes = [] for router_output in router_outputs: if router_output is not None: router_logits, expert_indexes = router_output total_router_logits.append(router_logits) total_expert_indexes.append(expert_indexes) total_router_logits = torch.cat(total_router_logits, dim=1) if len(total_router_logits) > 0 else None total_expert_indexes = torch.stack(total_expert_indexes, dim=1) if len(total_expert_indexes) > 0 else None return total_router_logits, total_expert_indexes @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
class_definition
76,940
84,433
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
null
2,831
class SEWDNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states
class_definition
10,430
11,155
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,832
class SEWDLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states
class_definition
11,266
12,241
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,833
class SEWDGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states
class_definition
12,352
13,245
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,834
class SEWDPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, stride=config.squeeze_factor, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) if hasattr(self.conv, "parametrizations"): weight_g = self.conv.parametrizations.weight.original0 weight_v = self.conv.parametrizations.weight.original1 else: weight_g = self.conv.weight_g weight_v = self.conv.weight_v deepspeed.zero.register_external_parameter(self, weight_v) deepspeed.zero.register_external_parameter(self, weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = SEWDSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states
class_definition
13,341
15,059
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,835
class SEWDSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states
class_definition
15,163
15,524
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,836
class SEWDUpsampling(nn.Module): def __init__(self, config): super().__init__() self.projection = nn.Linear(config.hidden_size, config.hidden_size * config.squeeze_factor) self.activation = ACT2FN[config.feat_extract_activation] self.squeeze_factor = config.squeeze_factor def forward(self, hidden_states): hidden_states = self.projection(hidden_states) hidden_states = self.activation(hidden_states) if self.squeeze_factor > 1: # transform embedding channels to sequence length bsz, src_len, src_embed_dim = hidden_states.size() tgt_len = src_len * self.squeeze_factor tgt_embed_dim = src_embed_dim // self.squeeze_factor hidden_states = hidden_states.reshape(bsz, src_len, self.squeeze_factor, tgt_embed_dim) hidden_states = hidden_states.reshape(bsz, tgt_len, tgt_embed_dim) return hidden_states
class_definition
15,607
16,552
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,837
class SEWDFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [SEWDGroupNormConvLayer(config, layer_id=0)] + [ SEWDNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [SEWDLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states
class_definition
16,659
18,347
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,838
class SEWDFeatureExtractor(SEWDFeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, )
class_definition
18,350
18,722
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,839
class ContextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size) self.dropout = StableDropout(config.pooler_dropout) self.config = config def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. context_token = hidden_states[:, 0] context_token = self.dropout(context_token) pooled_output = self.dense(context_token) pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output) return pooled_output @property def output_dim(self): return self.config.hidden_size
class_definition
18,725
19,469
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,840
class XSoftmax(torch.autograd.Function): """ Masked Softmax which is optimized for saving memory Args: input (`torch.tensor`): The input tensor that will apply softmax. mask (`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation. dim (int): The dimension that will apply softmax Example: ```python >>> import torch >>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax >>> # Make a tensor >>> x = torch.randn([4, 20, 100]) >>> # Create a mask >>> mask = (x > 0).int() >>> # Specify the dimension to apply softmax >>> dim = -1 >>> y = XSoftmax.apply(x, mask, dim) ```""" @staticmethod def forward(ctx, input, mask, dim): ctx.dim = dim rmask = ~(mask.to(torch.bool)) output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min)) output = torch.softmax(output, ctx.dim) output.masked_fill_(rmask, 0) ctx.save_for_backward(output) return output @staticmethod def backward(ctx, grad_output): (output,) = ctx.saved_tensors inputGrad = softmax_backward_data(ctx, grad_output, output, ctx.dim, output) return inputGrad, None, None @staticmethod def symbolic(g, self, mask, dim): import torch.onnx.symbolic_helper as sym_help from torch.onnx.symbolic_opset9 import masked_fill, softmax mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"]) r_mask = g.op( "Cast", g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value), to_i=sym_help.cast_pytorch_to_onnx["Bool"], ) output = masked_fill( g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min)) ) output = softmax(g, output, dim) return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))
class_definition
19,472
21,565
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,841
class DropoutContext: def __init__(self): self.dropout = 0 self.mask = None self.scale = 1 self.reuse_mask = True
class_definition
21,568
21,717
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,842
class XDropout(torch.autograd.Function): """Optimized dropout function to save computation and memory by using mask operation instead of multiplication.""" @staticmethod def forward(ctx, input, local_ctx): mask, dropout = get_mask(input, local_ctx) ctx.scale = 1.0 / (1 - dropout) if dropout > 0: ctx.save_for_backward(mask) return input.masked_fill(mask, 0) * ctx.scale else: return input @staticmethod def backward(ctx, grad_output): if ctx.scale > 1: (mask,) = ctx.saved_tensors return grad_output.masked_fill(mask, 0) * ctx.scale, None else: return grad_output, None @staticmethod def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value: from torch.onnx import symbolic_opset12 dropout_p = local_ctx if isinstance(local_ctx, DropoutContext): dropout_p = local_ctx.dropout # StableDropout only calls this function when training. train = True # TODO: We should check if the opset_version being used to export # is > 12 here, but there's no good way to do that. As-is, if the # opset_version < 12, export will fail with a CheckerError. # Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like: # if opset_version < 12: # return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train) return symbolic_opset12.dropout(g, input, dropout_p, train)
class_definition
21,720
23,317
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,843
class StableDropout(nn.Module): """ Optimized dropout module for stabilizing the training Args: drop_prob (float): the dropout probabilities """ def __init__(self, drop_prob): super().__init__() self.drop_prob = drop_prob self.count = 0 self.context_stack = None def forward(self, x): """ Call the module Args: x (`torch.tensor`): The input tensor to apply dropout """ if self.training and self.drop_prob > 0: return XDropout.apply(x, self.get_context()) return x def clear_context(self): self.count = 0 self.context_stack = None def init_context(self, reuse_mask=True, scale=1): if self.context_stack is None: self.context_stack = [] self.count = 0 for c in self.context_stack: c.reuse_mask = reuse_mask c.scale = scale def get_context(self): if self.context_stack is not None: if self.count >= len(self.context_stack): self.context_stack.append(DropoutContext()) ctx = self.context_stack[self.count] ctx.dropout = self.drop_prob self.count += 1 return ctx else: return self.drop_prob
class_definition
23,320
24,640
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,844
class SEWDSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = nn.Dropout(config.activation_dropout) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
24,643
25,197
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,845
class DisentangledSelfAttention(nn.Module): """ Disentangled self-attention module Parameters: config (`DebertaV2Config`): A model config class instance with the configuration to build a new model. The schema is similar to *BertConfig*, for more details, please refer [`DebertaV2Config`] """ def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads _attention_head_size = config.hidden_size // config.num_attention_heads self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.share_att_key = getattr(config, "share_att_key", False) self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.position_buckets = getattr(config, "position_buckets", -1) self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.pos_ebd_size = self.max_relative_positions if self.position_buckets > 0: self.pos_ebd_size = self.position_buckets self.pos_dropout = StableDropout(config.activation_dropout) if not self.share_att_key: if "c2p" in self.pos_att_type: self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) if "p2c" in self.pos_att_type: self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = StableDropout(config.attention_dropout) def transpose_for_scores(self, x, attention_heads): new_x_shape = x.size()[:-1] + (attention_heads, -1) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1)) def forward( self, hidden_states, attention_mask, output_attentions=False, query_states=None, relative_pos=None, rel_embeddings=None, ): """ Call the module Args: hidden_states (`torch.FloatTensor`): Input states to the module usually the output from previous layer, it will be the Q,K and V in *Attention(Q,K,V)* attention_mask (`torch.BoolTensor`): An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j* th token. output_attentions (`bool`, *optional*): Whether return the attention matrix. query_states (`torch.FloatTensor`, *optional*): The *Q* state in *Attention(Q,K,V)*. relative_pos (`torch.LongTensor`): The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with values ranging in [*-max_relative_positions*, *max_relative_positions*]. rel_embeddings (`torch.FloatTensor`): The embedding of relative distances. It's a tensor of shape [\\(2 \\times \\text{max_relative_positions}\\), *hidden_size*]. """ if query_states is None: query_states = hidden_states query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads) key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads) value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads) rel_att = None # Take the dot product between "query" and "key" to get the raw attention scores. scale_factor = 1 if "c2p" in self.pos_att_type: scale_factor += 1 if "p2c" in self.pos_att_type: scale_factor += 1 scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor) attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2) / scale.to(dtype=query_layer.dtype)) if self.relative_attention: rel_embeddings = self.pos_dropout(rel_embeddings) rel_att = self.disentangled_attention_bias( query_layer, key_layer, relative_pos, rel_embeddings, scale_factor ) if rel_att is not None: attention_scores = attention_scores + rel_att attention_scores = attention_scores attention_scores = attention_scores.view( -1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1) ) # bsz x height x length x dimension attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1) attention_probs = self.dropout(attention_probs) context_layer = torch.bmm( attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer ) context_layer = ( context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1)) .permute(0, 2, 1, 3) .contiguous() ) new_context_layer_shape = context_layer.size()[:-2] + (-1,) context_layer = context_layer.view(new_context_layer_shape) if output_attentions: return (context_layer, attention_probs) else: return context_layer def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor): if relative_pos is None: q = query_layer.size(-2) relative_pos = build_relative_position( q, key_layer.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions, device=query_layer.device, ) if relative_pos.dim() == 2: relative_pos = relative_pos.unsqueeze(0).unsqueeze(0) elif relative_pos.dim() == 3: relative_pos = relative_pos.unsqueeze(1) # bsz x height x query x key elif relative_pos.dim() != 4: raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}") att_span = self.pos_ebd_size relative_pos = relative_pos.long().to(query_layer.device) rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0) if self.share_att_key: pos_query_layer = self.transpose_for_scores( self.query_proj(rel_embeddings), self.num_attention_heads ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat( query_layer.size(0) // self.num_attention_heads, 1, 1 ) else: if "c2p" in self.pos_att_type: pos_key_layer = self.transpose_for_scores( self.pos_key_proj(rel_embeddings), self.num_attention_heads ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1) if "p2c" in self.pos_att_type: pos_query_layer = self.transpose_for_scores( self.pos_query_proj(rel_embeddings), self.num_attention_heads ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1) score = 0 # content->position if "c2p" in self.pos_att_type: scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor) c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2)) c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1) c2p_att = torch.gather( c2p_att, dim=-1, index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]), ) score += c2p_att / scale.to(dtype=c2p_att.dtype) # position->content if "p2c" in self.pos_att_type: scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor) if key_layer.size(-2) != query_layer.size(-2): r_pos = build_relative_position( key_layer.size(-2), key_layer.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions, device=query_layer.device, ) r_pos = r_pos.unsqueeze(0) else: r_pos = relative_pos p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1) p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2)) p2c_att = torch.gather( p2c_att, dim=-1, index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]), ).transpose(-1, -2) score += p2c_att / scale.to(dtype=p2c_att.dtype) return score
class_definition
25,200
35,330
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,846
class SEWDAttention(nn.Module): def __init__(self, config): super().__init__() self.self = DisentangledSelfAttention(config) self.output = SEWDSelfOutput(config) self.config = config def forward( self, hidden_states, attention_mask, output_attentions=False, query_states=None, relative_pos=None, rel_embeddings=None, ): self_output = self.self( hidden_states, attention_mask, output_attentions, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, ) if output_attentions: self_output, att_matrix = self_output if query_states is None: query_states = hidden_states attention_output = self.output(self_output, query_states) if output_attentions: return (attention_output, att_matrix) else: return attention_output
class_definition
35,333
36,354
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,847
class SEWDIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
36,443
37,008
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,848
class SEWDOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = nn.Dropout(config.activation_dropout) self.config = config def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
37,011
37,596
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,849
class SEWDLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = SEWDAttention(config) self.intermediate = SEWDIntermediate(config) self.output = SEWDOutput(config) def forward( self, hidden_states, attention_mask, query_states=None, relative_pos=None, rel_embeddings=None, output_attentions=False, ): attention_output = self.attention( hidden_states, attention_mask, output_attentions=output_attentions, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, ) if output_attentions: attention_output, att_matrix = attention_output intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) if output_attentions: return (layer_output, att_matrix) else: return layer_output
class_definition
37,599
38,658
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,850
class ConvLayer(nn.Module): def __init__(self, config): super().__init__() kernel_size = getattr(config, "conv_kernel_size", 3) groups = getattr(config, "conv_groups", 1) self.conv_act = getattr(config, "conv_act", "tanh") self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups ) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.hidden_dropout_prob) self.config = config def forward(self, hidden_states, residual_states, input_mask): out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous() rmask = (1 - input_mask).bool() out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0) out = ACT2FN[self.conv_act](self.dropout(out)) layer_norm_input = residual_states + out output = self.LayerNorm(layer_norm_input).to(layer_norm_input) if input_mask is None: output_states = output else: if input_mask.dim() != layer_norm_input.dim(): if input_mask.dim() == 4: input_mask = input_mask.squeeze(1).squeeze(1) input_mask = input_mask.unsqueeze(2) input_mask = input_mask.to(output.dtype) output_states = output * input_mask return output_states
class_definition
38,661
40,127
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,851
class SEWDTransformerEncoder(nn.Module): """Modified BertEncoder with relative position bias support""" def __init__(self, config): super().__init__() self.layer = nn.ModuleList([SEWDLayer(config) for _ in range(config.num_hidden_layers)]) self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.position_buckets = getattr(config, "position_buckets", -1) pos_ebd_size = self.max_relative_positions * 2 if self.position_buckets > 0: pos_ebd_size = self.position_buckets * 2 self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size) self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")] if "layer_norm" in self.norm_rel_ebd: self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True) self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None self.gradient_checkpointing = False def get_rel_embedding(self): rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd): rel_embeddings = self.LayerNorm(rel_embeddings) return rel_embeddings def get_attention_mask(self, attention_mask): if attention_mask.dim() <= 2: extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1) elif attention_mask.dim() == 3: attention_mask = attention_mask.unsqueeze(1) return attention_mask def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): if self.relative_attention and relative_pos is None: q = query_states.size(-2) if query_states is not None else hidden_states.size(-2) relative_pos = build_relative_position( q, hidden_states.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions, device=hidden_states.device, ) return relative_pos def forward( self, hidden_states, attention_mask, output_hidden_states=True, output_attentions=False, query_states=None, relative_pos=None, return_dict=True, ): if attention_mask.dim() <= 2: input_mask = attention_mask else: input_mask = attention_mask.sum(-2) > 0 attention_mask = self.get_attention_mask(attention_mask) relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None if isinstance(hidden_states, Sequence): next_kv = hidden_states[0] else: next_kv = hidden_states rel_embeddings = self.get_rel_embedding() output_states = next_kv for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) if self.gradient_checkpointing and self.training: output_states = self._gradient_checkpointing_func( layer_module.__call__, next_kv, attention_mask, query_states, relative_pos, rel_embeddings, output_attentions, ) else: output_states = layer_module( next_kv, attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, ) if output_attentions: output_states, att_m = output_states if i == 0 and self.conv is not None: output_states = self.conv(hidden_states, output_states, input_mask) if query_states is not None: query_states = output_states if isinstance(hidden_states, Sequence): next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None else: next_kv = output_states if output_attentions: all_attentions = all_attentions + (att_m,) if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) if not return_dict: return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions )
class_definition
40,130
45,451
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,852
class SEWDEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = SEWDPositionalConvEmbedding(config) self.pool = nn.AvgPool1d(config.squeeze_factor, config.squeeze_factor) self.encoder = SEWDTransformerEncoder(config) self.upsample = SEWDUpsampling(config) self.gradient_checkpointing = False def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): max_encoder_length = hidden_states.shape[1] // self.config.squeeze_factor if attention_mask is None: attention_mask = torch.ones( (hidden_states.shape[0], max_encoder_length), dtype=torch.long, device=hidden_states.device ) else: # make sure padded tokens output 0 expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask.bool()] = 0.0 input_lengths = (attention_mask.long()).sum(-1) # apply pooling formula to get real output_lengths output_lengths = input_lengths // self.config.squeeze_factor attention_ids = ( torch.arange(0, max_encoder_length, device=output_lengths.device) .view(1, -1) .expand(output_lengths.shape[0], -1) ) attention_mask = (attention_ids < output_lengths.view(-1, 1)).long() n_input_timesteps = hidden_states.shape[1] hidden_states = hidden_states.transpose(1, 2) position_embeddings = self.pos_conv_embed(hidden_states) pooled_hidden_states = self.pool(hidden_states) min_length = min(position_embeddings.size(-1), pooled_hidden_states.size(-1)) hidden_states = pooled_hidden_states[..., :min_length] + position_embeddings[..., :min_length] hidden_states = hidden_states.transpose(1, 2) encoder_outputs = self.encoder(hidden_states, attention_mask, output_hidden_states, output_attentions) hidden_states = self.upsample(encoder_outputs.last_hidden_state) if hidden_states.shape[1] < n_input_timesteps: hidden_states = nn.functional.pad(hidden_states, (0, 0, 0, n_input_timesteps - hidden_states.shape[1])) if not return_dict: return tuple( v for v in [hidden_states, encoder_outputs.hidden_states, encoder_outputs.attentions] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
45,454
48,314
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,853
class SEWDPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SEWDConfig base_model_prefix = "sew-d" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, SEWDPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): if is_deepspeed_zero3_enabled(): import deepspeed if hasattr(module, "weight_v") and hasattr(module, "weight_g"): with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0): nn.init.kaiming_normal_(module.weight.data) else: with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0): nn.init.kaiming_normal_(module.weight.data) else: nn.init.kaiming_normal_(module.weight.data) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None: module.bias.data.zero_() def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask
class_definition
48,317
51,906
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,854
class SEWDModel(SEWDPreTrainedModel): def __init__(self, config: SEWDConfig): super().__init__(config) self.config = config self.feature_extractor = SEWDFeatureEncoder(config) self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.feature_layer_norm_eps) self.project_features = config.conv_dim[-1] != config.hidden_size if self.project_features: self.feature_projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.feature_dropout = nn.Dropout(config.feat_proj_dropout) if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_()) self.encoder = SEWDEncoder(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) extract_features = self.layer_norm(extract_features) if self.project_features: extract_features = self.feature_projection(extract_features) hidden_states = self.feature_dropout(extract_features) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
54,755
60,248
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,855
class SEWDForCTC(SEWDPreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.sew_d = SEWDModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `SEWDForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for SEWD so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, SEWD never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.sew_d.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.sew_d.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") outputs = self.sew_d( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions )
class_definition
60,545
67,325
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,856
class SEWDForSequenceClassification(SEWDPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of SEWD adapters (config.add_adapter=True)" ) self.sew_d = SEWDModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.sew_d.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.sew_d.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_SEQ_CLASS_CHECKPOINT, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.sew_d( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) expand_padding_mask = padding_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
67,689
72,761
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
null
2,857
class SEWDConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SEWDModel`]. It is used to instantiate a SEW-D model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SEW-D [asapp/sew-d-tiny-100k](https://huggingface.co/asapp/sew-d-tiny-100k) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32): Vocabulary size of the SEW-D model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`SEWD`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. squeeze_factor (`int`, *optional*, defaults to 2): Sequence length downsampling factor after the encoder and upsampling factor after the transformer. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). position_buckets (`int`, *optional*, defaults to 256): The maximum size of relative position embeddings. share_att_key (`bool`, *optional*, defaults to `True`): Whether to share attention key with c2p and p2c. relative_attention (`bool`, *optional*, defaults to `True`): Whether to use relative position encoding. pos_att_type (`Tuple[str]`, *optional*, defaults to `("p2c", "c2p")`): The type of relative position attention, it can be a combination of `("p2c", "c2p")`, e.g. `("p2c")`, `("p2c", "c2p")`, `("p2c", "c2p")`. norm_rel_ebd (`str`, *optional*, defaults to `"layer_norm"`): Whether to use layer norm in relative embedding (`"layer_norm"` if yes) hidden_act (`str` or `function`, *optional*, defaults to `"gelu_python"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"`, `"gelu_python"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): Deprecated. Not used by the model and will be removed in a future version. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`SEWDForCTC`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-7): The epsilon used by the layer normalization layers in the transformer encoder. feature_layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization after the feature encoder. feat_extract_norm (`str`, *optional*, defaults to `"group"`): The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D convolutional layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the feature encoder. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' diversity_loss_weight (`int`, *optional*, defaults to 0.1): The weight of the codebook diversity loss component. ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`SEWDForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`SEWDForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`Wav2Vec2ForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. Example: ```python >>> from transformers import SEWDConfig, SEWDModel >>> # Initializing a SEW-D asapp/sew-d-tiny-100k style configuration >>> configuration = SEWDConfig() >>> # Initializing a model (with random weights) from the asapp/sew-d-tiny-100k style configuration >>> model = SEWDModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "sew-d" def __init__( self, vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, squeeze_factor=2, max_position_embeddings=512, position_buckets=256, share_att_key=True, relative_attention=True, pos_att_type=("p2c", "c2p"), norm_rel_ebd="layer_norm", hidden_act="gelu_python", hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, final_dropout=0.1, initializer_range=0.02, layer_norm_eps=1e-7, feature_layer_norm_eps=1e-5, feat_extract_norm="group", feat_extract_activation="gelu", conv_dim=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), conv_stride=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), conv_kernel=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, ctc_loss_reduction="mean", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, pad_token_id=0, bos_token_id=1, eos_token_id=2, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_feat_extract_layers = len(self.conv_dim) self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.squeeze_factor = squeeze_factor self.max_position_embeddings = max_position_embeddings self.position_buckets = position_buckets self.share_att_key = share_att_key self.relative_attention = relative_attention self.norm_rel_ebd = norm_rel_ebd self.pos_att_type = list(pos_att_type) self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self._hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layer_norm_eps = layer_norm_eps self.feature_layer_norm_eps = feature_layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. " "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, " f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride) " f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # sequence classification self.use_weighted_layer_sum = use_weighted_layer_sum self.classifier_proj_size = classifier_proj_size @property def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1) def to_dict(self): """ Serializes this instance to a Python dictionary. """ output = super().to_dict() output["hidden_dropout"] = output.pop("_hidden_dropout") return output
class_definition
831
16,147
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/configuration_sew_d.py
null
2,858
class TableTransformerDecoderOutput(BaseModelOutputWithCrossAttentions): """ Base class for outputs of the TABLE_TRANSFORMER decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding losses. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. """ intermediate_hidden_states: Optional[torch.FloatTensor] = None
class_definition
1,745
4,143
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,859
class TableTransformerModelOutput(Seq2SeqModelOutput): """ Base class for outputs of the TABLE_TRANSFORMER encoder-decoder model. This class adds one attribute to Seq2SeqModelOutput, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding losses. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the decoder of the model. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. """ intermediate_hidden_states: Optional[torch.FloatTensor] = None
class_definition
4,278
7,793
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,860
class TableTransformerObjectDetectionOutput(ModelOutput): """ Output type of [`TableTransformerForObjectDetection`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss. loss_dict (`Dict`, *optional*): A dictionary containing the individual losses. Useful for logging. logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): Classification logits (including no-object) for all queries. pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use [`~TableTransformerImageProcessor.post_process_object_detection`] to retrieve the unnormalized bounding boxes. auxiliary_outputs (`list[Dict]`, *optional*): Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and `pred_boxes`) for each decoder layer. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the decoder of the model. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None loss_dict: Optional[Dict] = None logits: torch.FloatTensor = None pred_boxes: torch.FloatTensor = None auxiliary_outputs: Optional[List[Dict]] = None last_hidden_state: Optional[torch.FloatTensor] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
7,953
12,938
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,861
class TableTransformerFrozenBatchNorm2d(nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, n): super().__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): num_batches_tracked_key = prefix + "num_batches_tracked" if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ) def forward(self, x): # move reshapes to the beginning # to make it user-friendly weight = self.weight.reshape(1, -1, 1, 1) bias = self.bias.reshape(1, -1, 1, 1) running_var = self.running_var.reshape(1, -1, 1, 1) running_mean = self.running_mean.reshape(1, -1, 1, 1) epsilon = 1e-5 scale = weight * (running_var + epsilon).rsqrt() bias = bias - running_mean * scale return x * scale + bias
class_definition
13,044
14,568
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,862
class TableTransformerConvEncoder(nn.Module): """ Convolutional backbone, using either the AutoBackbone API or one from the timm library. nn.BatchNorm2d layers are replaced by TableTransformerFrozenBatchNorm2d as defined above. """ def __init__(self, config): super().__init__() self.config = config # For backwards compatibility we have to use the timm library directly instead of the AutoBackbone API if config.use_timm_backbone: # We default to values which were previously hard-coded. This enables configurability from the config # using backbone arguments, while keeping the default behavior the same. requires_backends(self, ["timm"]) kwargs = getattr(config, "backbone_kwargs", {}) kwargs = {} if kwargs is None else kwargs.copy() out_indices = kwargs.pop("out_indices", (1, 2, 3, 4)) num_channels = kwargs.pop("in_chans", config.num_channels) if config.dilation: kwargs["output_stride"] = kwargs.get("output_stride", 16) backbone = create_model( config.backbone, pretrained=config.use_pretrained_backbone, features_only=True, out_indices=out_indices, in_chans=num_channels, **kwargs, ) else: backbone = load_backbone(config) # replace batch norm by frozen batch norm with torch.no_grad(): replace_batch_norm(backbone) self.model = backbone self.intermediate_channel_sizes = ( self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels ) backbone_model_type = None if config.backbone is not None: backbone_model_type = config.backbone elif config.backbone_config is not None: backbone_model_type = config.backbone_config.model_type else: raise ValueError("Either `backbone` or `backbone_config` should be provided in the config") if "resnet" in backbone_model_type: for name, parameter in self.model.named_parameters(): if config.use_timm_backbone: if "layer2" not in name and "layer3" not in name and "layer4" not in name: parameter.requires_grad_(False) else: if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name: parameter.requires_grad_(False) def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor): # send pixel_values through the model to get list of feature maps features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps out = [] for feature_map in features: # downsample pixel_mask to match shape of corresponding feature_map mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0] out.append((feature_map, mask)) return out
class_definition
15,610
18,789
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,863
class TableTransformerConvModel(nn.Module): """ This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder. """ def __init__(self, conv_encoder, position_embedding): super().__init__() self.conv_encoder = conv_encoder self.position_embedding = position_embedding def forward(self, pixel_values, pixel_mask): # send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples out = self.conv_encoder(pixel_values, pixel_mask) pos = [] for feature_map, mask in out: # position encoding pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype)) return out, pos
class_definition
18,887
19,650
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,864
class TableTransformerSinePositionEmbedding(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None): super().__init__() self.embedding_dim = embedding_dim self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, pixel_values, pixel_mask): if pixel_mask is None: raise ValueError("No pixel mask provided") y_embed = pixel_mask.cumsum(1, dtype=torch.float32) x_embed = pixel_mask.cumsum(2, dtype=torch.float32) if self.normalize: y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float() dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos
class_definition
19,760
21,476
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,865
class TableTransformerLearnedPositionEmbedding(nn.Module): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, embedding_dim=256): super().__init__() self.row_embeddings = nn.Embedding(50, embedding_dim) self.column_embeddings = nn.Embedding(50, embedding_dim) def forward(self, pixel_values, pixel_mask=None): height, width = pixel_values.shape[-2:] width_values = torch.arange(width, device=pixel_values.device) height_values = torch.arange(height, device=pixel_values.device) x_emb = self.column_embeddings(width_values) y_emb = self.row_embeddings(height_values) pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1) pos = pos.permute(2, 0, 1) pos = pos.unsqueeze(0) pos = pos.repeat(pixel_values.shape[0], 1, 1, 1) return pos
class_definition
21,589
22,542
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,866
class TableTransformerAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and keys (as explained in the TABLE_TRANSFORMER paper). """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if self.head_dim * num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {num_heads})." ) self.scaling = self.head_dim**-0.5 self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor]): return tensor if object_queries is None else tensor + object_queries def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, object_queries: Optional[torch.Tensor] = None, key_value_states: Optional[torch.Tensor] = None, spatial_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size, target_len, embed_dim = hidden_states.size() # add position embeddings to the hidden states before projecting to queries and keys if object_queries is not None: hidden_states_original = hidden_states hidden_states = self.with_pos_embed(hidden_states, object_queries) # add key-value position embeddings to the key value states if spatial_position_embeddings is not None: key_value_states_original = key_value_states key_value_states = self.with_pos_embed(key_value_states, spatial_position_embeddings) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, batch_size) value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) proj_shape = (batch_size * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) source_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (batch_size, 1, target_len, source_len): raise ValueError( f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is" f" {attention_mask.size()}" ) attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, target_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped
class_definition
23,294
29,194
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,867
class TableTransformerEncoderLayer(nn.Module): # Copied from transformers.models.detr.modeling_detr.DetrEncoderLayer.__init__ with Detr->TableTransformer def __init__(self, config: TableTransformerConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = TableTransformerAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, object_queries: torch.Tensor = None, output_attentions: bool = False, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. object_queries (`torch.FloatTensor`, *optional*): object queries, to be added to hidden_states. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, object_queries=object_queries, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if self.training: if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
29,197
32,356
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,868
class TableTransformerDecoderLayer(nn.Module): # Copied from transformers.models.detr.modeling_detr.DetrDecoderLayer.__init__ with Detr->TableTransformer def __init__(self, config: TableTransformerConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = TableTransformerAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = TableTransformerAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, object_queries: Optional[torch.Tensor] = None, query_position_embeddings: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. object_queries (`torch.FloatTensor`, *optional*): object queries that are added to the queries and keys in the cross-attention layer. query_position_embeddings (`torch.FloatTensor`, *optional*): object queries that are added to the queries and keys in the self-attention layer. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, object_queries=query_position_embeddings, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, object_queries=query_position_embeddings, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, spatial_position_embeddings=object_queries, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) # Fully Connected hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs
class_definition
32,359
37,221
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,869
class TableTransformerPreTrainedModel(PreTrainedModel): config_class = TableTransformerConfig base_model_prefix = "model" main_input_name = "pixel_values" _no_split_modules = [ r"TableTransformerConvEncoder", r"TableTransformerEncoderLayer", r"TableTransformerDecoderLayer", ] def _init_weights(self, module): std = self.config.init_std if isinstance(module, TableTransformerLearnedPositionEmbedding): nn.init.uniform_(module.row_embeddings.weight) nn.init.uniform_(module.column_embeddings.weight) if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
37,224
38,399
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,870
class TableTransformerEncoder(TableTransformerPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TableTransformerEncoderLayer`]. The encoder updates the flattened feature map through multiple self-attention layers. Small tweak for Table Transformer: - object_queries are added to the forward pass. Args: config: TableTransformerConfig """ def __init__(self, config: TableTransformerConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop self.layers = nn.ModuleList([TableTransformerEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layernorm = nn.LayerNorm(config.d_model) # Initialize weights and apply final processing self.post_init() def forward( self, inputs_embeds=None, attention_mask=None, object_queries=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Flattened feature map (output of the backbone + projection layer) that is passed to the encoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`: - 1 for pixel features that are real (i.e. **not masked**), - 0 for pixel features that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Position embeddings that are added to the queries and keys in each self-attention layer. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = inputs_embeds hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: # we add object_queries as extra input to the encoder_layer layer_outputs = encoder_layer( hidden_states, attention_mask, object_queries=object_queries, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) hidden_states = self.layernorm(hidden_states) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions )
class_definition
41,748
46,619
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,871
class TableTransformerDecoder(TableTransformerPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TableTransformerDecoderLayer`]. The decoder updates the query embeddings through multiple self-attention and cross-attention layers. Some small tweaks for TABLE_TRANSFORMER: - object_queries and query_position_embeddings are added to the forward pass. - if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers. Args: config: TableTransformerConfig """ def __init__(self, config: TableTransformerConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.layers = nn.ModuleList([TableTransformerDecoderLayer(config) for _ in range(config.decoder_layers)]) # in TABLE_TRANSFORMER, the decoder uses layernorm after the last decoder layer output self.layernorm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, inputs_embeds=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, object_queries=None, query_position_embeddings=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): The query embeddings that are passed into the decoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`: - 1 for queries that are **not masked**, - 0 for queries that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Object queries that are added to the queries and keys in each cross-attention layer. query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): , *optional*): Position embeddings that are added to the values and keys in each self-attention layer. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is not None: hidden_states = inputs_embeds input_shape = inputs_embeds.size()[:-1] combined_attention_mask = None if attention_mask is not None and combined_attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] combined_attention_mask = combined_attention_mask + _prepare_4d_attention_mask( attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # optional intermediate hidden states intermediate = () if self.config.auxiliary_loss else None # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, combined_attention_mask, encoder_hidden_states, encoder_attention_mask, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=combined_attention_mask, object_queries=object_queries, query_position_embeddings=query_position_embeddings, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if self.config.auxiliary_loss: hidden_states = self.layernorm(hidden_states) intermediate += (hidden_states,) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # finally, apply layernorm hidden_states = self.layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) # stack intermediate decoder activations if self.config.auxiliary_loss: intermediate = torch.stack(intermediate) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, intermediate] if v is not None ) return TableTransformerDecoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, intermediate_hidden_states=intermediate, )
class_definition
46,739
54,731
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,872
class TableTransformerModel(TableTransformerPreTrainedModel): # Copied from transformers.models.detr.modeling_detr.DetrModel.__init__ with Detr->TableTransformer def __init__(self, config: TableTransformerConfig): super().__init__(config) # Create backbone + positional encoding backbone = TableTransformerConvEncoder(config) object_queries = build_position_encoding(config) self.backbone = TableTransformerConvModel(backbone, object_queries) # Create projection layer self.input_projection = nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1) self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model) self.encoder = TableTransformerEncoder(config) self.decoder = TableTransformerDecoder(config) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def freeze_backbone(self): for name, param in self.backbone.conv_encoder.model.named_parameters(): param.requires_grad_(False) def unfreeze_backbone(self): for name, param in self.backbone.conv_encoder.model.named_parameters(): param.requires_grad_(True) @add_start_docstrings_to_model_forward(TABLE_TRANSFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TableTransformerModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, pixel_mask: Optional[torch.FloatTensor] = None, decoder_attention_mask: Optional[torch.FloatTensor] = None, encoder_outputs: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], TableTransformerModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TableTransformerModel >>> from huggingface_hub import hf_hub_download >>> from PIL import Image >>> file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png") >>> image = Image.open(file_path).convert("RGB") >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection") >>> model = TableTransformerModel.from_pretrained("microsoft/table-transformer-detection") >>> # prepare image for the model >>> inputs = image_processor(images=image, return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> # the last hidden states are the final query embeddings of the Transformer decoder >>> # these are of shape (batch_size, num_queries, hidden_size) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 15, 256] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_channels, height, width = pixel_values.shape device = pixel_values.device if pixel_mask is None: pixel_mask = torch.ones(((batch_size, height, width)), device=device) # First, sent pixel_values + pixel_mask through Backbone to obtain the features # pixel_values should be of shape (batch_size, num_channels, height, width) # pixel_mask should be of shape (batch_size, height, width) features, position_embeddings_list = self.backbone(pixel_values, pixel_mask) # get final feature map and downsampled mask feature_map, mask = features[-1] if mask is None: raise ValueError("Backbone does not return downsampled pixel mask") # Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) projected_feature_map = self.input_projection(feature_map) # Third, flatten the feature map + object queries of shape NxCxHxW to NxCxHW, and permute it to NxHWxC # In other words, turn their shape into (batch_size, sequence_length, hidden_size) flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1) object_queries = position_embeddings_list[-1].flatten(2).permute(0, 2, 1) flattened_mask = mask.flatten(1) # Fourth, sent flattened_features + flattened_mask + object queries through encoder # flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size) # flattened_mask is a Tensor of shape (batch_size, heigth*width) if encoder_outputs is None: encoder_outputs = self.encoder( inputs_embeds=flattened_features, attention_mask=flattened_mask, object_queries=object_queries, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # Fifth, sent query embeddings + object queries through the decoder (which is conditioned on the encoder output) query_position_embeddings = self.query_position_embeddings.weight.unsqueeze(0).repeat(batch_size, 1, 1) queries = torch.zeros_like(query_position_embeddings) # decoder outputs consists of (dec_features, dec_hidden, dec_attn) decoder_outputs = self.decoder( inputs_embeds=queries, attention_mask=None, object_queries=object_queries, query_position_embeddings=query_position_embeddings, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=flattened_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return TableTransformerModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, intermediate_hidden_states=decoder_outputs.intermediate_hidden_states, )
class_definition
54,978
62,528
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,873
class TableTransformerForObjectDetection(TableTransformerPreTrainedModel): # Copied from transformers.models.detr.modeling_detr.DetrForObjectDetection.__init__ with Detr->TableTransformer def __init__(self, config: TableTransformerConfig): super().__init__(config) # DETR encoder-decoder model self.model = TableTransformerModel(config) # Object detection heads self.class_labels_classifier = nn.Linear( config.d_model, config.num_labels + 1 ) # We add one for the "no object" class self.bbox_predictor = TableTransformerMLPPredictionHead( input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3 ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(TABLE_TRANSFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TableTransformerObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, pixel_mask: Optional[torch.FloatTensor] = None, decoder_attention_mask: Optional[torch.FloatTensor] = None, encoder_outputs: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[List[Dict]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], TableTransformerObjectDetectionOutput]: r""" labels (`List[Dict]` of len `(batch_size,)`, *optional*): Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`. Returns: Examples: ```python >>> from huggingface_hub import hf_hub_download >>> from transformers import AutoImageProcessor, TableTransformerForObjectDetection >>> import torch >>> from PIL import Image >>> file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png") >>> image = Image.open(file_path).convert("RGB") >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection") >>> model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax) >>> target_sizes = torch.tensor([image.size[::-1]]) >>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[ ... 0 ... ] >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): ... box = [round(i, 2) for i in box.tolist()] ... print( ... f"Detected {model.config.id2label[label.item()]} with confidence " ... f"{round(score.item(), 3)} at location {box}" ... ) Detected table with confidence 1.0 at location [202.1, 210.59, 1119.22, 385.09] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # First, sent images through TABLE_TRANSFORMER base model to obtain encoder + decoder outputs outputs = self.model( pixel_values, pixel_mask=pixel_mask, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # class logits + predicted bounding boxes logits = self.class_labels_classifier(sequence_output) pred_boxes = self.bbox_predictor(sequence_output).sigmoid() loss, loss_dict, auxiliary_outputs = None, None, None if labels is not None: outputs_class, outputs_coord = None, None if self.config.auxiliary_loss: intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4] outputs_class = self.class_labels_classifier(intermediate) outputs_coord = self.bbox_predictor(intermediate).sigmoid() loss, loss_dict, auxiliary_outputs = self.loss_function( logits, labels, self.device, pred_boxes, self.config, outputs_class, outputs_coord ) if not return_dict: if auxiliary_outputs is not None: output = (logits, pred_boxes) + auxiliary_outputs + outputs else: output = (logits, pred_boxes) + outputs return ((loss, loss_dict) + output) if loss is not None else output return TableTransformerObjectDetectionOutput( loss=loss, loss_dict=loss_dict, logits=logits, pred_boxes=pred_boxes, auxiliary_outputs=auxiliary_outputs, last_hidden_state=outputs.last_hidden_state, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, )
class_definition
62,773
68,976
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,874
class TableTransformerMLPPredictionHead(nn.Module): """ Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, height and width of a bounding box w.r.t. an image. Copied from https://github.com/facebookresearch/table_transformer/blob/master/models/table_transformer.py """ def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x
class_definition
69,106
69,917
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
null
2,875
class TableTransformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`TableTransformerModel`]. It is used to instantiate a Table Transformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Table Transformer [microsoft/table-transformer-detection](https://huggingface.co/microsoft/table-transformer-detection) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: use_timm_backbone (`bool`, *optional*, defaults to `True`): Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`] API. backbone_config (`PretrainedConfig` or `dict`, *optional*): The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which case it will default to `ResNetConfig()`. num_channels (`int`, *optional*, defaults to 3): The number of input channels. num_queries (`int`, *optional*, defaults to 100): Number of object queries, i.e. detection slots. This is the maximal number of objects [`TableTransformerModel`] can detect in a single image. For COCO, we recommend 100 queries. d_model (`int`, *optional*, defaults to 256): Dimension of the layers. encoder_layers (`int`, *optional*, defaults to 6): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 6): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimension of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimension of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. init_xavier_std (`float`, *optional*, defaults to 1): The scaling factor used for the Xavier initialization gain in the HM Attention map module. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. auxiliary_loss (`bool`, *optional*, defaults to `False`): Whether auxiliary decoding losses (loss at each decoder layer) are to be used. position_embedding_type (`str`, *optional*, defaults to `"sine"`): Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`. backbone (`str`, *optional*): Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. use_pretrained_backbone (`bool`, *optional*, `True`): Whether to use pretrained weights for the backbone. backbone_kwargs (`dict`, *optional*): Keyword arguments to be passed to AutoBackbone when loading from a checkpoint e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. dilation (`bool`, *optional*, defaults to `False`): Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when `use_timm_backbone` = `True`. class_cost (`float`, *optional*, defaults to 1): Relative weight of the classification error in the Hungarian matching cost. bbox_cost (`float`, *optional*, defaults to 5): Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost. giou_cost (`float`, *optional*, defaults to 2): Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost. mask_loss_coefficient (`float`, *optional*, defaults to 1): Relative weight of the Focal loss in the panoptic segmentation loss. dice_loss_coefficient (`float`, *optional*, defaults to 1): Relative weight of the DICE/F-1 loss in the panoptic segmentation loss. bbox_loss_coefficient (`float`, *optional*, defaults to 5): Relative weight of the L1 bounding box loss in the object detection loss. giou_loss_coefficient (`float`, *optional*, defaults to 2): Relative weight of the generalized IoU loss in the object detection loss. eos_coefficient (`float`, *optional*, defaults to 0.1): Relative classification weight of the 'no-object' class in the object detection loss. Examples: ```python >>> from transformers import TableTransformerModel, TableTransformerConfig >>> # Initializing a Table Transformer microsoft/table-transformer-detection style configuration >>> configuration = TableTransformerConfig() >>> # Initializing a model from the microsoft/table-transformer-detection style configuration >>> model = TableTransformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "table-transformer" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } # Copied from transformers.models.detr.configuration_detr.DetrConfig.__init__ def __init__( self, use_timm_backbone=True, backbone_config=None, num_channels=3, num_queries=100, encoder_layers=6, encoder_ffn_dim=2048, encoder_attention_heads=8, decoder_layers=6, decoder_ffn_dim=2048, decoder_attention_heads=8, encoder_layerdrop=0.0, decoder_layerdrop=0.0, is_encoder_decoder=True, activation_function="relu", d_model=256, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, init_xavier_std=1.0, auxiliary_loss=False, position_embedding_type="sine", backbone="resnet50", use_pretrained_backbone=True, backbone_kwargs=None, dilation=False, class_cost=1, bbox_cost=5, giou_cost=2, mask_loss_coefficient=1, dice_loss_coefficient=1, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.1, **kwargs, ): # We default to values which were previously hard-coded in the model. This enables configurability of the config # while keeping the default behavior the same. if use_timm_backbone and backbone_kwargs is None: backbone_kwargs = {} if dilation: backbone_kwargs["output_stride"] = 16 backbone_kwargs["out_indices"] = [1, 2, 3, 4] backbone_kwargs["in_chans"] = num_channels # Backwards compatibility elif not use_timm_backbone and backbone in (None, "resnet50"): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"]) elif isinstance(backbone_config, dict): backbone_model_type = backbone_config.get("model_type") config_class = CONFIG_MAPPING[backbone_model_type] backbone_config = config_class.from_dict(backbone_config) backbone = None # set timm attributes to None dilation = None verify_backbone_config_arguments( use_timm_backbone=use_timm_backbone, use_pretrained_backbone=use_pretrained_backbone, backbone=backbone, backbone_config=backbone_config, backbone_kwargs=backbone_kwargs, ) self.use_timm_backbone = use_timm_backbone self.backbone_config = backbone_config self.num_channels = num_channels self.num_queries = num_queries self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.init_xavier_std = init_xavier_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.num_hidden_layers = encoder_layers self.auxiliary_loss = auxiliary_loss self.position_embedding_type = position_embedding_type self.backbone = backbone self.use_pretrained_backbone = use_pretrained_backbone self.backbone_kwargs = backbone_kwargs self.dilation = dilation # Hungarian matcher self.class_cost = class_cost self.bbox_cost = bbox_cost self.giou_cost = giou_cost # Loss coefficients self.mask_loss_coefficient = mask_loss_coefficient self.dice_loss_coefficient = dice_loss_coefficient self.bbox_loss_coefficient = bbox_loss_coefficient self.giou_loss_coefficient = giou_loss_coefficient self.eos_coefficient = eos_coefficient super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs) @property def num_attention_heads(self) -> int: return self.encoder_attention_heads @property def hidden_size(self) -> int: return self.d_model
class_definition
1,018
12,698
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/configuration_table_transformer.py
null
2,876
class TableTransformerOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def atol_for_validation(self) -> float: return 1e-5 @property def default_onnx_opset(self) -> int: return 12
class_definition
12,774
13,303
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/configuration_table_transformer.py
null
2,877
class BarkSemanticGenerationConfig(GenerationConfig): model_type = "semantic" def __init__( self, eos_token_id=10_000, renormalize_logits=True, max_new_tokens=768, output_scores=False, return_dict_in_generate=False, output_hidden_states=False, output_attentions=False, temperature=1.0, do_sample=False, text_encoding_offset=10_048, text_pad_token=129_595, semantic_infer_token=129_599, semantic_vocab_size=10_000, max_input_semantic_length=256, semantic_rate_hz=49.9, min_eos_p=None, **kwargs, ): """Class that holds a generation configuration for [`BarkSemanticModel`]. This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the documentation from [`GenerationConfig`] for more information. Args: eos_token_id (`int`, *optional*, defaults to 10_000): The id of the *end-of-sequence* token. renormalize_logits (`bool`, *optional*, defaults to `True`): Whether to renormalize the logits after applying all the logits processors (including the custom ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the score logits are normalized but some logit processors break the normalization. max_new_tokens (`int`, *optional*, defaults to 768): The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt. output_scores (`bool`, *optional*, defaults to `False`): Whether or not to return the prediction scores. See `scores` under returned tensors for more details. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. output_hidden_states (`bool`, *optional*, defaults to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more details. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more details. temperature (`float`, *optional*, defaults to 1.0): The value used to modulate the next token probabilities. do_sample (`bool`, *optional*, defaults to `False`): Whether or not to use sampling ; use greedy decoding otherwise. text_encoding_offset (`int`, *optional*, defaults to 10_048): Text encoding offset. text_pad_token (`int`, *optional*, defaults to 129_595): Text pad token. semantic_infer_token (`int`, *optional*, defaults to 129_599): Semantic infer token. semantic_vocab_size (`int`, *optional*, defaults to 10_000): Semantic vocab size. max_input_semantic_length (`int`, *optional*, defaults to 256): Max length of semantic input vector. semantic_rate_hz (`float`, *optional*, defaults to 49.9): Semantic rate in Hertz. min_eos_p (`float`, *optional*): Minimum threshold of the probability of the EOS token for it to be sampled. This is an early stopping strategy to mitigate potential unwanted generations at the end of a prompt. The original implementation suggests a default value of 0.2. """ super().__init__( temperature=temperature, do_sample=do_sample, eos_token_id=eos_token_id, renormalize_logits=renormalize_logits, max_new_tokens=max_new_tokens, output_scores=output_scores, return_dict_in_generate=return_dict_in_generate, output_hidden_states=output_hidden_states, output_attentions=output_attentions, **kwargs, ) self.text_encoding_offset = text_encoding_offset self.text_pad_token = text_pad_token self.semantic_pad_token = eos_token_id self.semantic_infer_token = semantic_infer_token self.semantic_vocab_size = semantic_vocab_size self.max_input_semantic_length = max_input_semantic_length self.semantic_rate_hz = semantic_rate_hz self.min_eos_p = min_eos_p
class_definition
864
5,488
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/generation_configuration_bark.py
null
2,878
class BarkCoarseGenerationConfig(GenerationConfig): model_type = "coarse_acoustics" def __init__( self, renormalize_logits=True, output_scores=False, return_dict_in_generate=False, output_hidden_states=False, output_attentions=False, temperature=1.0, do_sample=False, coarse_semantic_pad_token=12_048, coarse_rate_hz=75, n_coarse_codebooks=2, coarse_infer_token=12_050, max_coarse_input_length=256, max_coarse_history: int = 630, sliding_window_len: int = 60, **kwargs, ): """Class that holds a generation configuration for [`BarkCoarseModel`]. This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the documentation from [`GenerationConfig`] for more information. Args: renormalize_logits (`bool`, *optional*, defaults to `True`): Whether to renormalize the logits after applying all the logits processors (including the custom ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the score logits are normalized but some logit processors break the normalization. output_scores (`bool`, *optional*, defaults to `False`): Whether or not to return the prediction scores. See `scores` under returned tensors for more details. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. output_hidden_states (`bool`, *optional*, defaults to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more details. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more details. temperature (`float`, *optional*, defaults to 1.0): The value used to modulate the next token probabilities. do_sample (`bool`, *optional*, defaults to `False`): Whether or not to use sampling ; use greedy decoding otherwise. coarse_semantic_pad_token (`int`, *optional*, defaults to 12_048): Coarse semantic pad token. coarse_rate_hz (`int`, *optional*, defaults to 75): Coarse rate in Hertz. n_coarse_codebooks (`int`, *optional*, defaults to 2): Number of coarse codebooks. coarse_infer_token (`int`, *optional*, defaults to 12_050): Coarse infer token. max_coarse_input_length (`int`, *optional*, defaults to 256): Max length of input coarse vector. max_coarse_history (`int`, *optional*, defaults to 630): Max length of the output of the coarse acoustics model used in the fine generation step. sliding_window_len (`int`, *optional*, defaults to 60): The coarse generation step uses a sliding window to generate raw audio. """ super().__init__( temperature=temperature, do_sample=do_sample, renormalize_logits=renormalize_logits, output_scores=output_scores, return_dict_in_generate=return_dict_in_generate, output_hidden_states=output_hidden_states, output_attentions=output_attentions, **kwargs, ) self.coarse_semantic_pad_token = coarse_semantic_pad_token self.coarse_rate_hz = coarse_rate_hz self.n_coarse_codebooks = n_coarse_codebooks self.coarse_infer_token = coarse_infer_token self.max_coarse_input_length = max_coarse_input_length self.max_coarse_history = max_coarse_history self.sliding_window_len = sliding_window_len
class_definition
5,491
9,567
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/generation_configuration_bark.py
null
2,879
class BarkFineGenerationConfig(GenerationConfig): model_type = "fine_acoustics" def __init__( self, temperature=1.0, max_fine_history_length=512, max_fine_input_length=1024, n_fine_codebooks=8, **kwargs, ): """Class that holds a generation configuration for [`BarkFineModel`]. [`BarkFineModel`] is an autoencoder model, so should not usually be used for generation. However, under the hood, it uses `temperature` when used by [`BarkModel`] This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the documentation from [`GenerationConfig`] for more information. Args: temperature (`float`, *optional*): The value used to modulate the next token probabilities. max_fine_history_length (`int`, *optional*, defaults to 512): Max length of the fine history vector. max_fine_input_length (`int`, *optional*, defaults to 1024): Max length of fine input vector. n_fine_codebooks (`int`, *optional*, defaults to 8): Number of codebooks used. """ super().__init__(temperature=temperature) self.max_fine_history_length = max_fine_history_length self.max_fine_input_length = max_fine_input_length self.n_fine_codebooks = n_fine_codebooks def validate(self, **kwargs): """ Overrides GenerationConfig.validate because BarkFineGenerationConfig don't use any parameters outside temperature. """ pass
class_definition
9,570
11,215
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/generation_configuration_bark.py
null
2,880
class BarkGenerationConfig(GenerationConfig): model_type = "bark" is_composition = True # TODO (joao): nested from_dict def __init__( self, semantic_config: Dict = None, coarse_acoustics_config: Dict = None, fine_acoustics_config: Dict = None, sample_rate=24_000, codebook_size=1024, **kwargs, ): """Class that holds a generation configuration for [`BarkModel`]. The [`BarkModel`] does not have a `generate` method, but uses this class to generate speeches with a nested [`BarkGenerationConfig`] which uses [`BarkSemanticGenerationConfig`], [`BarkCoarseGenerationConfig`], [`BarkFineGenerationConfig`]. This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the documentation from [`GenerationConfig`] for more information. Args: semantic_config (`Dict`, *optional*): Semantic generation configuration. coarse_acoustics_config (`Dict`, *optional*): Coarse generation configuration. fine_acoustics_config (`Dict`, *optional*): Fine generation configuration. sample_rate (`int`, *optional*, defaults to 24_000): Sample rate. codebook_size (`int`, *optional*, defaults to 1024): Vector length for each codebook. """ if semantic_config is None: semantic_config = {} logger.info("semantic_config is None. initializing the semantic model with default values.") if coarse_acoustics_config is None: coarse_acoustics_config = {} logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.") if fine_acoustics_config is None: fine_acoustics_config = {} logger.info("fine_acoustics_config is None. initializing the fine model with default values.") self.semantic_config = BarkSemanticGenerationConfig(**semantic_config) self.coarse_acoustics_config = BarkCoarseGenerationConfig(**coarse_acoustics_config) self.fine_acoustics_config = BarkFineGenerationConfig(**fine_acoustics_config) self.sample_rate = sample_rate self.codebook_size = codebook_size @classmethod def from_sub_model_configs( cls, semantic_config: BarkSemanticGenerationConfig, coarse_acoustics_config: BarkCoarseGenerationConfig, fine_acoustics_config: BarkFineGenerationConfig, **kwargs, ): r""" Instantiate a [`BarkGenerationConfig`] (or a derived class) from bark sub-models generation configuration. Returns: [`BarkGenerationConfig`]: An instance of a configuration object """ return cls( semantic_config=semantic_config.to_dict(), coarse_acoustics_config=coarse_acoustics_config.to_dict(), fine_acoustics_config=fine_acoustics_config.to_dict(), **kwargs, ) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["semantic_config"] = self.semantic_config.to_dict() output["coarse_acoustics_config"] = self.coarse_acoustics_config.to_dict() output["fine_acoustics_config"] = self.fine_acoustics_config.to_dict() output["model_type"] = self.__class__.model_type return output
class_definition
11,218
14,946
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/generation_configuration_bark.py
null
2,881
class BarkProcessor(ProcessorMixin): r""" Constructs a Bark processor which wraps a text tokenizer and optional Bark voice presets into a single processor. Args: tokenizer ([`PreTrainedTokenizer`]): An instance of [`PreTrainedTokenizer`]. speaker_embeddings (`Dict[Dict[str]]`, *optional*): Optional nested speaker embeddings dictionary. The first level contains voice preset names (e.g `"en_speaker_4"`). The second level contains `"semantic_prompt"`, `"coarse_prompt"` and `"fine_prompt"` embeddings. The values correspond to the path of the corresponding `np.ndarray`. See [here](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c) for a list of `voice_preset_names`. """ tokenizer_class = "AutoTokenizer" attributes = ["tokenizer"] preset_shape = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__(self, tokenizer, speaker_embeddings=None): super().__init__(tokenizer) self.speaker_embeddings = speaker_embeddings @classmethod def from_pretrained( cls, pretrained_processor_name_or_path, speaker_embeddings_dict_path="speaker_embeddings_path.json", **kwargs ): r""" Instantiate a Bark processor associated with a pretrained model. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained [`BarkProcessor`] hosted inside a model repo on huggingface.co. - a path to a *directory* containing a processor saved using the [`~BarkProcessor.save_pretrained`] method, e.g., `./my_model_directory/`. speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`): The name of the `.json` file containing the speaker_embeddings dictionnary located in `pretrained_model_name_or_path`. If `None`, no speaker_embeddings is loaded. **kwargs Additional keyword arguments passed along to both [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`]. """ if speaker_embeddings_dict_path is not None: speaker_embeddings_path = get_file_from_repo( pretrained_processor_name_or_path, speaker_embeddings_dict_path, subfolder=kwargs.pop("subfolder", None), cache_dir=kwargs.pop("cache_dir", None), force_download=kwargs.pop("force_download", False), proxies=kwargs.pop("proxies", None), resume_download=kwargs.pop("resume_download", None), local_files_only=kwargs.pop("local_files_only", False), token=kwargs.pop("use_auth_token", None), revision=kwargs.pop("revision", None), ) if speaker_embeddings_path is None: logger.warning( f"""`{os.path.join(pretrained_processor_name_or_path,speaker_embeddings_dict_path)}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) speaker_embeddings = None else: with open(speaker_embeddings_path) as speaker_embeddings_json: speaker_embeddings = json.load(speaker_embeddings_json) else: speaker_embeddings = None tokenizer = AutoTokenizer.from_pretrained(pretrained_processor_name_or_path, **kwargs) return cls(tokenizer=tokenizer, speaker_embeddings=speaker_embeddings) def save_pretrained( self, save_directory, speaker_embeddings_dict_path="speaker_embeddings_path.json", speaker_embeddings_directory="speaker_embeddings", push_to_hub: bool = False, **kwargs, ): """ Saves the attributes of this processor (tokenizer...) in the specified directory so that it can be reloaded using the [`~BarkProcessor.from_pretrained`] method. Args: save_directory (`str` or `os.PathLike`): Directory where the tokenizer files and the speaker embeddings will be saved (directory will be created if it does not exist). speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`): The name of the `.json` file that will contains the speaker_embeddings nested path dictionnary, if it exists, and that will be located in `pretrained_model_name_or_path/speaker_embeddings_directory`. speaker_embeddings_directory (`str`, *optional*, defaults to `"speaker_embeddings/"`): The name of the folder in which the speaker_embeddings arrays will be saved. push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). kwargs: Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ if self.speaker_embeddings is not None: os.makedirs(os.path.join(save_directory, speaker_embeddings_directory, "v2"), exist_ok=True) embeddings_dict = {} embeddings_dict["repo_or_path"] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": voice_preset = self._load_voice_preset(prompt_key) tmp_dict = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"], speaker_embeddings_directory, f"{prompt_key}_{key}" ), voice_preset[key], allow_pickle=False, ) tmp_dict[key] = os.path.join(speaker_embeddings_directory, f"{prompt_key}_{key}.npy") embeddings_dict[prompt_key] = tmp_dict with open(os.path.join(save_directory, speaker_embeddings_dict_path), "w") as fp: json.dump(embeddings_dict, fp) super().save_pretrained(save_directory, push_to_hub, **kwargs) def _load_voice_preset(self, voice_preset: str = None, **kwargs): voice_preset_paths = self.speaker_embeddings[voice_preset] voice_preset_dict = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) path = get_file_from_repo( self.speaker_embeddings.get("repo_or_path", "/"), voice_preset_paths[key], subfolder=kwargs.pop("subfolder", None), cache_dir=kwargs.pop("cache_dir", None), force_download=kwargs.pop("force_download", False), proxies=kwargs.pop("proxies", None), resume_download=kwargs.pop("resume_download", None), local_files_only=kwargs.pop("local_files_only", False), token=kwargs.pop("use_auth_token", None), revision=kwargs.pop("revision", None), ) if path is None: raise ValueError( f"""`{os.path.join(self.speaker_embeddings.get("repo_or_path", "/"),voice_preset_paths[key])}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) voice_preset_dict[key] = np.load(path) return voice_preset_dict def _validate_voice_preset_dict(self, voice_preset: Optional[dict] = None): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"Voice preset unrecognized, missing {key} as a key.") if not isinstance(voice_preset[key], np.ndarray): raise TypeError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.") if len(voice_preset[key].shape) != self.preset_shape[key]: raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.") def __call__( self, text=None, voice_preset=None, return_tensors="pt", max_length=256, add_special_tokens=False, return_attention_mask=True, return_token_type_ids=False, **kwargs, ): """ Main method to prepare for the model one or several sequences(s). This method forwards the `text` and `kwargs` arguments to the AutoTokenizer's [`~AutoTokenizer.__call__`] to encode the text. The method also proposes a voice preset which is a dictionary of arrays that conditions `Bark`'s output. `kwargs` arguments are forwarded to the tokenizer and to `cached_file` method if `voice_preset` is a valid filename. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). voice_preset (`str`, `Dict[np.ndarray]`): The voice preset, i.e the speaker embeddings. It can either be a valid voice_preset name, e.g `"en_speaker_1"`, or directly a dictionnary of `np.ndarray` embeddings for each submodel of `Bark`. Or it can be a valid file name of a local `.npz` single voice preset. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. Returns: Tuple([`BatchEncoding`], [`BatchFeature`]): A tuple composed of a [`BatchEncoding`], i.e the output of the `tokenizer` and a [`BatchFeature`], i.e the voice preset with the right tensors type. """ if voice_preset is not None and not isinstance(voice_preset, dict): if ( isinstance(voice_preset, str) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): voice_preset = self._load_voice_preset(voice_preset) else: if isinstance(voice_preset, str) and not voice_preset.endswith(".npz"): voice_preset = voice_preset + ".npz" voice_preset = np.load(voice_preset) if voice_preset is not None: self._validate_voice_preset_dict(voice_preset, **kwargs) voice_preset = BatchFeature(data=voice_preset, tensor_type=return_tensors) encoded_text = self.tokenizer( text, return_tensors=return_tensors, padding="max_length", max_length=max_length, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, add_special_tokens=add_special_tokens, **kwargs, ) if voice_preset is not None: encoded_text["history_prompt"] = voice_preset return encoded_text
class_definition
1,003
13,309
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/processing_bark.py
null
2,882
class BarkSubModelConfig(PretrainedConfig): keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", "vocab_size": "input_vocab_size", "window_size": "block_size", } def __init__( self, block_size=1024, input_vocab_size=10_048, output_vocab_size=10_048, num_layers=12, num_heads=12, hidden_size=768, dropout=0.0, bias=True, # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster initializer_range=0.02, use_cache=True, **kwargs, ): self.block_size = block_size self.input_vocab_size = input_vocab_size self.output_vocab_size = output_vocab_size self.num_layers = num_layers self.num_heads = num_heads self.hidden_size = hidden_size self.dropout = dropout self.bias = bias self.use_cache = use_cache self.initializer_range = initializer_range super().__init__(**kwargs)
class_definition
3,506
4,624
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/configuration_bark.py
null
2,883
class BarkSemanticConfig(BarkSubModelConfig): model_type = "semantic" base_config_key = "semantic_config"
class_definition
5,206
5,319
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/configuration_bark.py
null
2,884
class BarkCoarseConfig(BarkSubModelConfig): model_type = "coarse_acoustics" base_config_key = "coarse_acoustics_config"
class_definition
5,889
6,016
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/configuration_bark.py
null
2,885
class BarkFineConfig(BarkSubModelConfig): model_type = "fine_acoustics" base_config_key = "fine_acoustics_config" def __init__(self, tie_word_embeddings=True, n_codes_total=8, n_codes_given=1, **kwargs): self.n_codes_total = n_codes_total self.n_codes_given = n_codes_given super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
class_definition
6,920
7,299
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/configuration_bark.py
null
2,886
class BarkConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`BarkModel`]. It is used to instantiate a Bark model according to the specified sub-models configurations, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark [suno/bark](https://huggingface.co/suno/bark) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: semantic_config ([`BarkSemanticConfig`], *optional*): Configuration of the underlying semantic sub-model. coarse_acoustics_config ([`BarkCoarseConfig`], *optional*): Configuration of the underlying coarse acoustics sub-model. fine_acoustics_config ([`BarkFineConfig`], *optional*): Configuration of the underlying fine acoustics sub-model. codec_config ([`AutoConfig`], *optional*): Configuration of the underlying codec sub-model. Example: ```python >>> from transformers import ( ... BarkSemanticConfig, ... BarkCoarseConfig, ... BarkFineConfig, ... BarkModel, ... BarkConfig, ... AutoConfig, ... ) >>> # Initializing Bark sub-modules configurations. >>> semantic_config = BarkSemanticConfig() >>> coarse_acoustics_config = BarkCoarseConfig() >>> fine_acoustics_config = BarkFineConfig() >>> codec_config = AutoConfig.from_pretrained("facebook/encodec_24khz") >>> # Initializing a Bark module style configuration >>> configuration = BarkConfig.from_sub_model_configs( ... semantic_config, coarse_acoustics_config, fine_acoustics_config, codec_config ... ) >>> # Initializing a model (with random weights) >>> model = BarkModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "bark" sub_configs = { "semantic_config": BarkSemanticConfig, "coarse_acoustics_config": BarkCoarseConfig, "fine_acoustics_config": BarkFineConfig, "codec_config": AutoConfig, } def __init__( self, semantic_config: Dict = None, coarse_acoustics_config: Dict = None, fine_acoustics_config: Dict = None, codec_config: Dict = None, initializer_range=0.02, **kwargs, ): if semantic_config is None: semantic_config = {} logger.info("semantic_config is None. initializing the semantic model with default values.") if coarse_acoustics_config is None: coarse_acoustics_config = {} logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.") if fine_acoustics_config is None: fine_acoustics_config = {} logger.info("fine_acoustics_config is None. initializing the fine model with default values.") if codec_config is None: codec_config = {} logger.info("codec_config is None. initializing the codec model with default values.") self.semantic_config = BarkSemanticConfig(**semantic_config) self.coarse_acoustics_config = BarkCoarseConfig(**coarse_acoustics_config) self.fine_acoustics_config = BarkFineConfig(**fine_acoustics_config) codec_model_type = codec_config["model_type"] if "model_type" in codec_config else "encodec" self.codec_config = CONFIG_MAPPING[codec_model_type](**codec_config) self.initializer_range = initializer_range super().__init__(**kwargs) @classmethod def from_sub_model_configs( cls, semantic_config: BarkSemanticConfig, coarse_acoustics_config: BarkCoarseConfig, fine_acoustics_config: BarkFineConfig, codec_config: PretrainedConfig, **kwargs, ): r""" Instantiate a [`BarkConfig`] (or a derived class) from bark sub-models configuration. Returns: [`BarkConfig`]: An instance of a configuration object """ return cls( semantic_config=semantic_config.to_dict(), coarse_acoustics_config=coarse_acoustics_config.to_dict(), fine_acoustics_config=fine_acoustics_config.to_dict(), codec_config=codec_config.to_dict(), **kwargs, )
class_definition
7,302
11,807
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/configuration_bark.py
null
2,887
class BarkSelfAttention(nn.Module): # adapted from GPTNeoSelfAttention and Bark code # BarkSelfAttention can have two attention type, i.e full attention or causal attention def __init__(self, config, is_causal=False): super().__init__() # regularization self.dropout = config.dropout self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) self.embed_dim = config.hidden_size self.num_heads = config.num_heads self.head_dim = self.embed_dim // self.num_heads if config.hidden_size % config.num_heads != 0: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) # key, query, value projections for all heads, but in a batch self.att_proj = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.bias) # output projection self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=config.bias) self.is_causal = is_causal if is_causal: block_size = config.block_size bias = torch.tril(torch.ones((block_size, block_size), dtype=bool)).view(1, 1, block_size, block_size) self.register_buffer("bias", bias) # Copied from transformers.models.gpt_neo.modeling_gpt_neo.GPTNeoSelfAttention._split_heads def _split_heads(self, tensor, num_heads, attn_head_size): """ Splits hidden_size dim into attn_head_size and num_heads """ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) tensor = tensor.view(new_shape) return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) def _merge_heads(self, tensor, num_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into hidden_size """ # re-assemble all head outputs side by side # (batch, num_heads, seq_len, attn_head_size) -> (batch, seq_len, num_heads*attn_head_size) tensor = tensor.transpose(1, 2).contiguous() tensor = tensor.view(tensor.size()[:-2] + (num_heads * attn_head_size,)) return tensor def _attn(self, query, key, value, attention_mask=None, head_mask=None): # unlike GPTNeo's SelfAttention, divide by the square root of the dimension of the query and the key attn_weights = torch.matmul(query, key.transpose(-1, -2)) * (1.0 / math.sqrt(self.head_dim)) if self.is_causal: query_length, key_length = query.size(-2), key.size(-2) # fill the upper left part of the attention weights with inf attn_weights = attn_weights.masked_fill( self.bias[:, :, key_length - query_length : key_length, :key_length] == 0, torch.finfo(attn_weights.dtype).min, ) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) attn_weights = attn_weights.to(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask # (batch, num_heads, seq_len, seq_len) x (batch, num_heads, seq_len, attn_head_size) # -> (batch, num_heads, seq_len, attn_head_size) attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def forward( self, hidden_states, attention_mask=None, past_key_values=None, head_mask=None, use_cache=False, output_attentions=False, ): # calculate query, key, values for all heads in batch and move head forward to be the batch dim query, key, value = self.att_proj(hidden_states).split(self.embed_dim, dim=2) query = self._split_heads(query, self.num_heads, self.head_dim) key = self._split_heads(key, self.num_heads, self.head_dim) value = self._split_heads(value, self.num_heads, self.head_dim) if past_key_values is not None: past_key = past_key_values[0] past_value = past_key_values[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) if use_cache is True: present = (key, value) else: present = None attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
1,983
6,996
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
null
2,888
class BarkSelfFlashAttention2(BarkSelfAttention): """ Bark flash attention module. This module inherits from `BarkSelfAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def _split_heads(self, tensor, num_heads, attn_head_size): """ Splits hidden_size dim into attn_head_size and num_heads """ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) tensor = tensor.view(new_shape) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim - (batch, seq_length, head, head_features) return tensor def _merge_heads(self, tensor, num_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into hidden_size """ # re-assemble all head outputs side by side # (batch, seq_len, num_heads, attn_head_size) -> (batch, seq_len, num_heads*attn_head_size) tensor = tensor.view(tensor.size()[:-2] + (num_heads * attn_head_size,)) return tensor def forward( self, hidden_states, attention_mask=None, past_key_values=None, head_mask=None, use_cache=False, output_attentions=False, ): batch_size, query_len, _ = hidden_states.size() # calculate query, key, values for all heads in batch and move head forward to be the batch dim query, key, value = self.att_proj(hidden_states).split(self.embed_dim, dim=2) query = self._split_heads(query, self.num_heads, self.head_dim) key = self._split_heads(key, self.num_heads, self.head_dim) value = self._split_heads(value, self.num_heads, self.head_dim) if past_key_values is not None: # (batch, head, seq_length, head_features) -> (batch, seq_length, head, head_features) past_key = past_key_values[0].transpose(1, 2) past_value = past_key_values[1].transpose(1, 2) # and merge on seq_length key = torch.cat((past_key, key), dim=1) value = torch.cat((past_value, value), dim=1) if use_cache is True: # (batch, head, seq_length, head_features) present = (key.transpose(1, 2), value.transpose(1, 2)) else: present = None attn_output = _flash_attention_forward( query, key, value, attention_mask, query_len, dropout=self.dropout if self.training else 0.0, use_top_left_mask=self._flash_attn_uses_top_left_mask, is_causal=self.is_causal, ) attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: attn_weights = None outputs += (attn_weights,) return outputs
class_definition
6,999
10,885
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
null
2,889
class BarkLayerNorm(nn.Module): """LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False.""" def __init__(self, hidden_size, bias=True): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) if bias else None def forward(self, input): return F.layer_norm(input, self.weight.shape, self.weight, self.bias, eps=1e-5)
class_definition
11,001
11,454
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
null
2,890
class BarkMLP(nn.Module): def __init__(self, config): super().__init__() self.in_proj = nn.Linear(config.hidden_size, 4 * config.hidden_size, bias=config.bias) self.out_proj = nn.Linear(4 * config.hidden_size, config.hidden_size, bias=config.bias) self.dropout = nn.Dropout(config.dropout) self.gelu = nn.GELU() def forward(self, hidden_states): hidden_states = self.in_proj(hidden_states) hidden_states = self.gelu(hidden_states) hidden_states = self.out_proj(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
11,457
12,086
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
null
2,891
class BarkBlock(nn.Module): def __init__(self, config, is_causal=False): super().__init__() if is_causal: # if causal, uses handmade LayerNorm, so that the layerNorm bias is optional # this handmade layerNorm is used to stick with Bark choice of leaving optional bias in # AutoRegressive models (corresponding to the "Text" and the "Coarse" modules) self.layernorm_1 = BarkLayerNorm(config.hidden_size, bias=config.bias) self.layernorm_2 = BarkLayerNorm(config.hidden_size, bias=config.bias) else: self.layernorm_1 = nn.LayerNorm(config.hidden_size) self.layernorm_2 = nn.LayerNorm(config.hidden_size) self.attn = BARK_ATTENTION_CLASSES[config._attn_implementation](config, is_causal=is_causal) self.mlp = BarkMLP(config) def forward( self, hidden_states, past_key_values=None, attention_mask=None, head_mask=None, use_cache=False, output_attentions=False, ): intermediary_hidden_states = self.layernorm_1(hidden_states) attn_outputs = self.attn( intermediary_hidden_states, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] # output_attn: output, present_key_values, (attn_weights) outputs = attn_outputs[1:] intermediary_hidden_states = hidden_states + attn_output intermediary_hidden_states = intermediary_hidden_states + self.mlp( self.layernorm_2(intermediary_hidden_states) ) if use_cache: outputs = (intermediary_hidden_states,) + outputs else: outputs = (intermediary_hidden_states,) + outputs[1:] return outputs # hidden_states, ((present), attentions)
class_definition
12,089
14,074
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
null
2,892
class BarkPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BarkConfig supports_gradient_checkpointing = False _supports_flash_attn_2 = True def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear,)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) @property def device(self) -> torch.device: """ `torch.device`: The device on which the module is (assuming that all the module parameters are on the same device). """ # if has _hf_hook, has been offloaded so the device has to be found in the hook if not hasattr(self, "_hf_hook"): return get_parameter_device(self) for module in self.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return get_parameter_device(self)
class_definition
14,077
16,020
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
null
2,893
class BarkCausalModel(BarkPreTrainedModel, GenerationMixin): config_class = BarkSubModelConfig def __init__(self, config): super().__init__(config) self.config = config # initialize as an autoregressive GPT-like model self.input_embeds_layer = nn.Embedding(config.input_vocab_size, config.hidden_size) self.position_embeds_layer = nn.Embedding(config.block_size, config.hidden_size) self.drop = nn.Dropout(config.dropout) self.layers = nn.ModuleList([BarkBlock(config, is_causal=True) for _ in range(config.num_layers)]) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self.layernorm_final = BarkLayerNorm(config.hidden_size, bias=config.bias) self.lm_head = nn.Linear(config.hidden_size, config.output_vocab_size, bias=False) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.input_embeds_layer def set_input_embeddings(self, new_embeddings): self.input_embeds_layer = new_embeddings def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): # Overwritten -- bark has a model-specific hack input_embeds = kwargs.get("input_embeds", None) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if past_key_values is not None: # Omit tokens covered by past_key_values seq_len = input_ids.shape[1] past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] # input_embeds have already been used and is not required anymore input_embeds = None else: if input_embeds is not None and kwargs.get("use_cache"): seq_len = input_embeds.shape[1] else: seq_len = input_ids.shape[1] # ensure that attention_mask and position_ids shapes are aligned with the weird Bark hack of reducing # sequence length on the first forward pass if attention_mask is not None: attention_mask = attention_mask[:, :seq_len] if position_ids is not None: position_ids = position_ids[:, :seq_len] if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] else: position_ids = None if input_embeds is not None and kwargs.get("use_cache"): return { "input_ids": None, "input_embeds": input_embeds, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, } return { "input_ids": input_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, } @add_start_docstrings_to_model_forward(BARK_CAUSAL_MODEL_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[torch.FloatTensor]] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, input_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict loss = None if labels is not None: raise NotImplementedError( "Training is not implemented yet for Bark - ensure you do not pass `labels` to the model." ) # Verify if input_embeds already exists # then compute embeddings. if input_ids is not None and input_embeds is not None: raise ValueError("You cannot specify both input_ids and input_embeds at the same time") elif input_embeds is not None and past_key_values is None: # we want to return the input_embeds in priority so that it is in line with a weird hack # of Bark which concatenate two bits of the input_embeds on the first forward pass of the semantic model pass elif input_ids is not None: input_embeds = self.input_embeds_layer(input_ids) # token embeddings of shape (b, t, n_embd) elif input_embeds is not None: pass else: raise ValueError("You have to specify either input_ids or input_embeds") input_shape = input_embeds.size()[:-1] batch_size = input_embeds.shape[0] seq_length = input_shape[-1] device = input_ids.device if input_ids is not None else input_embeds.device if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.layers)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0) # shape (1, seq_length) position_embeds = self.position_embeds_layer(position_ids) # position embeddings of shape (1, t, n_embd) # Attention mask. if attention_mask is not None: if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") if self._use_flash_attention_2: attention_mask = attention_mask if 0 in attention_mask else None else: attention_mask = attention_mask.view(batch_size, -1) # [bsz, to_seq_length] -> [bsz, 1, 1, to_seq_length] # from_seq_length is 1 to easily broadcast attention_mask = _prepare_4d_attention_mask(attention_mask, input_embeds.dtype, tgt_len=1) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x num_heads x N x N # head_mask has shape num_layers x batch x num_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.num_layers) hidden_states = self.drop(input_embeds + position_embeds) output_shape = input_shape + (hidden_states.size(-1),) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False present_key_values = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (block, past_layer_key_values) in enumerate(zip(self.layers, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: outputs = self._gradient_checkpointing_func( block.__call__, hidden_states, None, attention_mask, head_mask[i], use_cache, output_attentions, ) else: outputs = block( hidden_states, past_key_values=past_layer_key_values, attention_mask=attention_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache: present_key_values = present_key_values + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) hidden_states = self.layernorm_final(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) logits = self.lm_head(hidden_states) if not return_dict: return tuple( v for v in [None, logits, present_key_values, all_hidden_states, all_self_attentions] if v is not None ) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @staticmethod def _reorder_cache( past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor ) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. """ # Necessary for beam_search return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past_key_values )
class_definition
24,166
35,008
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
null
2,894
class BarkSemanticModel(BarkCausalModel): base_model_prefix = "semantic" config_class = BarkSemanticConfig def generate( self, input_ids: torch.Tensor, semantic_generation_config: BarkSemanticGenerationConfig = None, history_prompt: Optional[Dict[str, torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, **kwargs, ) -> torch.LongTensor: """ Generates text semantic tokens from an input prompt and an additional optional `Bark` speaker prompt. Args: input_ids (`Optional[torch.Tensor]` of shape (batch_size, seq_len), *optional*): Input ids, i.e tokenized input sentences. Will be truncated up to semantic_generation_config.max_input_semantic_length tokens. Note that the output audios will be as long as the longest generation among the batch. semantic_generation_config (`BarkSemanticGenerationConfig`): Generation config indicating how to generate the semantic tokens. history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*): Optional `Bark` speaker prompt. attention_mask (`Optional[torch.Tensor]`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Returns: torch.LongTensor: Output semantic tokens. """ if semantic_generation_config is None: raise ValueError("`semantic_generation_config` has to be provided") batch_size = input_ids.shape[0] max_input_semantic_length = semantic_generation_config.max_input_semantic_length input_ids = input_ids + semantic_generation_config.text_encoding_offset if attention_mask is not None: input_ids = input_ids.masked_fill((1 - attention_mask).bool(), semantic_generation_config.text_pad_token) if history_prompt is not None: semantic_history = history_prompt["semantic_prompt"][-max_input_semantic_length:] semantic_history = nn.functional.pad( semantic_history, (0, max_input_semantic_length - len(semantic_history)), value=semantic_generation_config.semantic_pad_token, mode="constant", ) else: semantic_history = torch.tensor( [semantic_generation_config.semantic_pad_token] * max_input_semantic_length, dtype=torch.int ).to(self.device) semantic_history = torch.repeat_interleave(semantic_history[None], batch_size, dim=0) infer_array = torch.tensor( [[semantic_generation_config.semantic_infer_token]] * batch_size, dtype=torch.int ).to(self.device) input_embeds = torch.cat( [ self.input_embeds_layer(input_ids[:, :max_input_semantic_length]) + self.input_embeds_layer(semantic_history[:, : max_input_semantic_length + 1]), self.input_embeds_layer(infer_array), ], dim=1, ) tokens_to_suppress = list( range(semantic_generation_config.semantic_vocab_size, semantic_generation_config.semantic_pad_token) ) tokens_to_suppress.extend( list(range(semantic_generation_config.semantic_pad_token + 1, self.config.output_vocab_size)) ) suppress_tokens_logits_processor = SuppressTokensLogitsProcessor(tokens_to_suppress, device=input_ids.device) min_eos_p = kwargs.get("min_eos_p", semantic_generation_config.min_eos_p) early_stopping_logits_processor = BarkEosPrioritizerLogitsProcessor( eos_token_id=semantic_generation_config.eos_token_id, min_eos_p=min_eos_p, device=input_ids.device ) # pass input_ids in order to stay consistent with the transformers generate method even though it is not used # (except to get the input seq_len - that's why we keep the first 257 tokens) semantic_output = super().generate( torch.ones((batch_size, max_input_semantic_length + 1), dtype=torch.int).to(self.device), input_embeds=input_embeds, logits_processor=[suppress_tokens_logits_processor, early_stopping_logits_processor], generation_config=semantic_generation_config, **kwargs, ) # size: 10048 # take the generated semantic tokens semantic_output = semantic_output[:, max_input_semantic_length + 1 :] return semantic_output
class_definition
35,281
40,053
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
null
2,895
class BarkCoarseModel(BarkCausalModel): base_model_prefix = "coarse_acoustics" config_class = BarkCoarseConfig def preprocess_histories( self, max_coarse_history: int, semantic_to_coarse_ratio: int, batch_size: int, semantic_generation_config: int, codebook_size: int, history_prompt: Optional[Dict[str, torch.Tensor]] = None, ): """ Preprocess the optional `Bark` speaker prompts before `self.generate`. Args: max_coarse_history (`int`): Maximum size of coarse tokens used. semantic_to_coarse_ratio (`int`): Ratio of semantic to coarse frequency batch_size (`int`): Batch size, i.e the number of samples. semantic_generation_config (`BarkSemanticGenerationConfig`): Generation config indicating how to generate the semantic tokens. codebook_size (`int`): Codebook channel size, i.e. the size of the output vocabulary per codebook channel. history_prompt (`Optional[Dict[str,torch.Tensor]]`): Optional `Bark` speaker prompt. Returns: Returns: `tuple(torch.FloatTensor)`: - **x_semantic_history** (`torch.FloatTensor` -- Processed semantic speaker prompt. - **x_coarse_history** (`torch.FloatTensor`) -- Processed coarse speaker prompt. """ if history_prompt is not None: x_semantic_history = torch.repeat_interleave(history_prompt["semantic_prompt"][None], batch_size, dim=0) # clone to avoid modifying history_prompt.coarse_prompt x_coarse_history = history_prompt["coarse_prompt"].clone() # offset x_coarse_history if codebook_size is not None: for n in range(1, x_coarse_history.shape[0]): # offset x_coarse_history[n, :] += codebook_size * n # flatten x_coarse_history x_coarse_history = torch.transpose(x_coarse_history, 0, 1).reshape(-1) x_coarse_history = x_coarse_history + semantic_generation_config.semantic_vocab_size x_coarse_history = torch.repeat_interleave(x_coarse_history[None], batch_size, dim=0) # e.g: after SEMANTIC_VOCAB_SIZE (10000), 1024 tokens dedicated to first codebook, 1024 next tokens # dedicated to second codebook. max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio)) # trim histories correctly n_semantic_hist_provided = min( [ max_semantic_history, x_semantic_history.shape[1] - x_semantic_history.shape[1] % 2, int(np.floor(x_coarse_history.shape[1] / semantic_to_coarse_ratio)), ] ) n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio)) x_semantic_history = x_semantic_history[:, -n_semantic_hist_provided:].int() x_coarse_history = x_coarse_history[:, -n_coarse_hist_provided:].int() # bit of a hack for time alignment (sounds better) - from Bark original implementation x_coarse_history = x_coarse_history[:, :-2] else: # shape: (batch_size, 0) x_semantic_history = torch.tensor([[]] * batch_size, dtype=torch.int).to(self.device) x_coarse_history = torch.tensor([[]] * batch_size, dtype=torch.int).to(self.device) return x_semantic_history, x_coarse_history def generate( self, semantic_output: torch.Tensor, semantic_generation_config: BarkSemanticGenerationConfig = None, coarse_generation_config: BarkCoarseGenerationConfig = None, codebook_size: int = 1024, history_prompt: Optional[Dict[str, torch.Tensor]] = None, return_output_lengths: Optional[bool] = None, **kwargs, ) -> Union[torch.LongTensor, Tuple[torch.LongTensor, torch.LongTensor]]: """ Generates coarse acoustics tokens from input text semantic tokens and an additional optional `Bark` speaker prompt. Args: semantic_output (`torch.Tensor` of shape (batch_size, seq_len), *optional*): Input text semantic ids, i.e the output of `BarkSemanticModel.generate`. semantic_generation_config (`BarkSemanticGenerationConfig`): Generation config indicating how to generate the semantic tokens. coarse_generation_config (`BarkCoarseGenerationConfig`): Generation config indicating how to generate the coarse tokens. codebook_size (`int`, *optional*, defaults to 1024): Codebook channel size, i.e. the size of the output vocabulary per codebook channel. history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*): Optional `Bark` speaker prompt. return_output_lengths (`bool`, *optional*): Whether or not to return the output lengths. Useful when batching. Returns: By default: torch.LongTensor: Output coarse acoustics tokens. If `return_output_lengths=True`: `Tuple(torch.Tensor, torch.Tensor): The output coarse acoustics tokens, and the length of each sample of the batch. """ if semantic_generation_config is None: raise ValueError("`semantic_generation_config` has to be provided") if coarse_generation_config is None: raise ValueError("`coarse_generation_config` has to be provided") max_coarse_input_length = coarse_generation_config.max_coarse_input_length max_coarse_history = coarse_generation_config.max_coarse_history sliding_window_len = coarse_generation_config.sliding_window_len # replace semantic_pad_token (eos_tok and pad_tok here) with coarse_semantic_pad_token i.e the pad_token # used in the next model semantic_output.masked_fill_( semantic_output == semantic_generation_config.semantic_pad_token, coarse_generation_config.coarse_semantic_pad_token, ) semantic_to_coarse_ratio = ( coarse_generation_config.coarse_rate_hz / semantic_generation_config.semantic_rate_hz * coarse_generation_config.n_coarse_codebooks ) max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio)) output_lengths = (semantic_output != coarse_generation_config.coarse_semantic_pad_token).sum(1) output_lengths = torch.floor( output_lengths * semantic_to_coarse_ratio / coarse_generation_config.n_coarse_codebooks ) output_lengths = torch.round(output_lengths * coarse_generation_config.n_coarse_codebooks).int() max_generated_len = torch.max(output_lengths).item() batch_size = semantic_output.shape[0] x_semantic_history, x_coarse = self.preprocess_histories( history_prompt=history_prompt, max_coarse_history=max_coarse_history, semantic_to_coarse_ratio=semantic_to_coarse_ratio, batch_size=batch_size, semantic_generation_config=semantic_generation_config, codebook_size=codebook_size, ) base_semantic_idx = x_semantic_history.shape[1] semantic_output = torch.hstack([x_semantic_history, semantic_output]) n_window_steps = int(np.ceil(max_generated_len / sliding_window_len)) total_generated_len = 0 len_coarse_history = x_coarse.shape[1] for _ in range(n_window_steps): semantic_idx = base_semantic_idx + int(round(total_generated_len / semantic_to_coarse_ratio)) # pad from right side input_coarse = semantic_output[:, np.max([0, semantic_idx - max_semantic_history]) :] input_coarse = input_coarse[:, :max_coarse_input_length] input_coarse = F.pad( input_coarse, (0, max_coarse_input_length - input_coarse.shape[-1]), "constant", coarse_generation_config.coarse_semantic_pad_token, ) input_coarse = torch.hstack( [ input_coarse, torch.tensor([[coarse_generation_config.coarse_infer_token]] * batch_size).to(self.device), x_coarse[:, -max_coarse_history:], ] ) alternatingLogitsProcessor = AlternatingCodebooksLogitsProcessor( input_coarse.shape[1], semantic_generation_config.semantic_vocab_size, codebook_size, ) output_coarse = super().generate( input_coarse, logits_processor=[alternatingLogitsProcessor], max_new_tokens=min(sliding_window_len, max_generated_len - total_generated_len), generation_config=coarse_generation_config, **kwargs, ) input_coarse_len = input_coarse.shape[1] x_coarse = torch.hstack([x_coarse, output_coarse[:, input_coarse_len:]]) total_generated_len = x_coarse.shape[1] - len_coarse_history del output_coarse coarse_output = x_coarse[:, len_coarse_history:] if return_output_lengths: return coarse_output, output_lengths return coarse_output
class_definition
40,338
49,954
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
null
2,896
class BarkFineModel(BarkPreTrainedModel): base_model_prefix = "fine_acoustics" config_class = BarkFineConfig main_input_name = "codebook_idx" def __init__(self, config): # non-causal gpt-like model with one embedding layer and one lm_head for each codebook of Encodec super().__init__(config) self.config = config # initialize a modified non causal GPT-like model # note that for there is one embedding layer and one lm_head for each codebook of Encodec self.input_embeds_layers = nn.ModuleList( [nn.Embedding(config.input_vocab_size, config.hidden_size) for _ in range(config.n_codes_total)] ) self.position_embeds_layer = nn.Embedding(config.block_size, config.hidden_size) self.drop = nn.Dropout(config.dropout) self.layers = nn.ModuleList([BarkBlock(config, is_causal=False) for _ in range(config.num_layers)]) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self.layernorm_final = nn.LayerNorm(config.hidden_size) self.lm_heads = nn.ModuleList( [ nn.Linear(config.hidden_size, config.output_vocab_size, bias=False) for _ in range(config.n_codes_given, config.n_codes_total) ] ) self.gradient_checkpointing = False self.n_codes_total = config.n_codes_total # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): # one embedding layers for each codebook return self.input_embeds_layers def set_input_embeddings(self, new_embeddings): # one embedding layers for each codebook self.input_embeds_layers = new_embeddings def get_output_embeddings(self): # one lm_head for each codebook return self.lm_heads def set_output_embeddings(self, new_output_embeddings): # one lm_head for each codebook self.lm_heads = new_output_embeddings def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None): old_embeddings_list = self.get_input_embeddings() new_embeddings_list = nn.ModuleList( [ self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of) for old_embeddings in old_embeddings_list ] ) self.set_input_embeddings(new_embeddings_list) new_num_tokens = new_embeddings_list[0].weight.shape[0] # if word embeddings are not tied, make sure that lm head is resized as well if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings: old_lm_head_list = self.get_output_embeddings() new_lm_head_list = nn.ModuleList( [self._get_resized_lm_head(old_lm_head, new_num_tokens) for old_lm_head in old_lm_head_list] ) self.set_output_embeddings(new_lm_head_list) return self.get_input_embeddings() def resize_token_embeddings( self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None ) -> nn.Embedding: """ Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`. Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. Arguments: new_num_tokens (`int`, *optional*): The number of new tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything. pad_to_multiple_of (`int`, *optional*): If set will pad the embedding matrix to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Return: `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model. """ model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of) if new_num_tokens is None and pad_to_multiple_of is None: return model_embeds # Update base model and current model config self.config.output_vocab_size = model_embeds[0].weight.shape[0] self.config.vocab_size = model_embeds[0].weight.shape[0] self.output_vocab_size = model_embeds[0].weight.shape[0] self.vocab_size = model_embeds[0].weight.shape[0] # Tie weights again if needed self.tie_weights() return model_embeds def _tie_weights(self): if getattr(self.config, "tie_word_embeddings", True): self._tied_weights_keys = [] output_embeddings = self.get_output_embeddings() input_embeddings = self.get_input_embeddings() for i in range(self.config.n_codes_total - self.config.n_codes_given): # self.input_embeds_layers[i + 1].weight = self.lm_heads[i].weight self._tie_or_clone_weights(output_embeddings[i], input_embeddings[i + 1]) self._tied_weights_keys.append(f"lm_heads.{i}.weight") def tie_weights(self): """ Tie the weights between the input embeddings list and the output embeddings list. If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the weights instead. """ if getattr(self.config, "tie_word_embeddings", True): self._tied_weights_keys = [] output_embeddings = self.get_output_embeddings() input_embeddings = self.get_input_embeddings() for i in range(self.config.n_codes_total - self.config.n_codes_given): # self.input_embeds_layers[i + 1].weight = self.lm_heads[i].weight self._tie_or_clone_weights(output_embeddings[i], input_embeddings[i + 1]) self._tied_weights_keys.append(f"lm_heads.{i}.weight") for module in self.modules(): if hasattr(module, "_tie_weights"): module._tie_weights() @add_start_docstrings_to_model_forward(BARK_FINE_INPUTS_DOCSTRING) def forward( self, codebook_idx: int, # an additionnal idx corresponding to the id of the codebook that will be predicted input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, input_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict loss = None if labels is not None: raise NotImplementedError("Training is not implemented yet") if codebook_idx == 0: raise ValueError("Cannot predict 0th codebook - 0th codebook should be predicted by the coarse model") if input_ids is not None and input_embeds is not None: raise ValueError("You cannot specify both input_ids and input_embeds at the same time") if input_ids is None and input_embeds is None: raise ValueError("You have to specify either input_ids or input_embeds") if input_ids is not None: # the input_embeddings are the sum of the j previous codebooks embeddings before # the current codebook_idx codebook # forward the GPT model itself input_embeds = [ input_embeds_layer(input_ids[:, :, i]).unsqueeze(-1) for i, input_embeds_layer in enumerate(self.input_embeds_layers) ] # token embeddings of shape (b, t, n_embd) input_embeds = torch.cat(input_embeds, dim=-1) input_embeds = input_embeds[:, :, :, : codebook_idx + 1].sum(dim=-1) input_shape = input_embeds.size()[:-1] batch_size = input_embeds.shape[0] seq_length = input_shape[1] device = input_ids.device if input_ids is not None else input_embeds.device if position_ids is None: position_ids = torch.arange(0, seq_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0) # shape (1, seq_length) position_embeds = self.position_embeds_layer(position_ids) # position embeddings of shape (1, t, n_embd) # Attention mask. if attention_mask is not None: if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") if self._use_flash_attention_2: attention_mask = attention_mask if 0 in attention_mask else None else: # [bsz, to_seq_length] -> [bsz, 1, 1, to_seq_length] # from_seq_length is 1 to easily broadcast attention_mask = _prepare_4d_attention_mask(attention_mask, input_embeds.dtype, tgt_len=1) head_mask = self.get_head_mask(head_mask, self.config.num_layers) hidden_states = self.drop(input_embeds + position_embeds) output_shape = input_shape + (hidden_states.size(-1),) all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, block in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = block( hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], output_attentions=output_attentions, ) hidden_states = outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (outputs[1],) hidden_states = self.layernorm_final(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) logits = self.lm_heads[codebook_idx - self.config.n_codes_given](hidden_states) if not return_dict: return tuple(v for v in [None, logits, all_hidden_states, all_self_attentions] if v is not None) return MaskedLMOutput( loss=loss, logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions, ) def generate( self, coarse_output: torch.Tensor, semantic_generation_config: BarkSemanticGenerationConfig = None, coarse_generation_config: BarkCoarseGenerationConfig = None, fine_generation_config: BarkFineGenerationConfig = None, codebook_size: int = 1024, history_prompt: Optional[Dict[str, torch.Tensor]] = None, **kwargs, ) -> torch.LongTensor: """ Generates fine acoustics tokens from input coarse acoustics tokens and an additional optional `Bark` speaker prompt. Args: coarse_output (`torch.Tensor` of shape (batch_size, seq_len)): Input coarse acoustics ids, i.e the output of `BarkCoarseModel.generate`. semantic_generation_config (`BarkSemanticGenerationConfig`): Generation config indicating how to generate the semantic tokens. coarse_generation_config (`BarkCoarseGenerationConfig`): Generation config indicating how to generate the coarse tokens. fine_generation_config (`BarkFineGenerationConfig`): Generation config indicating how to generate the fine tokens. codebook_size (`int`, *optional*, defaults to 1024): Codebook channel size, i.e. the size of the output vocabulary per codebook channel. history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*): Optional `Bark` speaker prompt. Returns: torch.LongTensor: Output fine acoustics tokens. """ if semantic_generation_config is None: raise ValueError("`semantic_generation_config` has to be provided") if coarse_generation_config is None: raise ValueError("`coarse_generation_config` has to be provided") if fine_generation_config is None: raise ValueError("`fine_generation_config` has to be provided") # since we don't really use GenerationConfig through the fine model (autoencoder) # and since only temperature is used from the classic GenerationConfig parameters # manually impose the kwargs priority over the generation config temperature = kwargs.get("temperature", fine_generation_config.temperature) max_fine_history_length = fine_generation_config.max_fine_history_length max_fine_input_length = fine_generation_config.max_fine_input_length # shape: (batch, n_coarse_codebooks * seq_len) # new_shape: (batch, seq_len, n_coarse_codebooks) coarse_output = coarse_output.view(coarse_output.shape[0], -1, coarse_generation_config.n_coarse_codebooks) # brings ids into the range [0, codebook_size -1] coarse_output = torch.remainder(coarse_output - semantic_generation_config.semantic_vocab_size, codebook_size) batch_size = coarse_output.shape[0] if history_prompt is not None: x_fine_history = torch.repeat_interleave(history_prompt["fine_prompt"].T[None], batch_size, dim=0) # transpose to get to shape (seq_len, n_fine_codebooks) else: x_fine_history = None n_coarse = coarse_generation_config.n_coarse_codebooks # pad the last 6th codebooks fine_input = F.pad( coarse_output, (0, fine_generation_config.n_fine_codebooks - n_coarse), "constant", codebook_size, ) # prepend history if available (max max_fine_history_length) if x_fine_history is not None: fine_input = torch.cat([x_fine_history[:, -max_fine_history_length:, :], fine_input], dim=1) # len of the fine_history that has been added to fine_input n_history = x_fine_history[:, -max_fine_history_length:, :].shape[1] else: n_history = 0 n_remove_from_end = 0 # need to pad if too short (since non-causal model) if fine_input.shape[1] < max_fine_input_length: n_remove_from_end = max_fine_input_length - fine_input.shape[1] fine_input = F.pad(fine_input, (0, 0, 0, n_remove_from_end), mode="constant", value=codebook_size) # we can be lazy about fractional loop and just keep overwriting codebooks. # seems that coarse_output.shape[1] - (max_fine_input_length - n_history) is equal to minus n_remove_from_end # So if we needed to pad because too short, n_loops is always 1 (because n_remove_from_end > 0) # If not, we loop over at least twice. n_loops = (coarse_output.shape[1] - (max_fine_input_length - n_history)) / max_fine_history_length n_loops = int(np.ceil(n_loops)) n_loops = max(0, n_loops) + 1 for n_outer in range(n_loops): start_idx = min([n_outer * max_fine_history_length, fine_input.shape[1] - max_fine_input_length]) start_fill_idx = min( [n_history + n_outer * max_fine_history_length, fine_input.shape[1] - max_fine_history_length] ) rel_start_fill_idx = start_fill_idx - start_idx input_buffer = fine_input[:, start_idx : start_idx + max_fine_input_length, :] for n_inner in range(n_coarse, fine_generation_config.n_fine_codebooks): logits = self.forward(n_inner, input_buffer).logits if temperature is None or temperature == 1.0: relevant_logits = logits[:, rel_start_fill_idx:, :codebook_size] codebook_preds = torch.argmax(relevant_logits, -1) else: relevant_logits = logits[:, :, :codebook_size] / temperature # apply softmax probs = F.softmax(relevant_logits, dim=-1)[:, rel_start_fill_idx:max_fine_input_length] # reshape to 2D: (batch_size, seq_len, codebook_size) -> (batch_size*seq_len, codebook_size) probs = probs.reshape((-1, codebook_size)) # multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len) codebook_preds = torch.multinomial(probs, num_samples=1).view(batch_size, -1) codebook_preds = codebook_preds.to(torch.int32) input_buffer[:, rel_start_fill_idx:, n_inner] = codebook_preds del logits, codebook_preds # transfer into fine_input for n_inner in range(n_coarse, fine_generation_config.n_fine_codebooks): fine_input[ :, start_fill_idx : start_fill_idx + (max_fine_input_length - rel_start_fill_idx), n_inner ] = input_buffer[:, rel_start_fill_idx:, n_inner] del input_buffer fine_input = fine_input.transpose(1, 2)[:, :, n_history:] if n_remove_from_end > 0: fine_input = fine_input[:, :, :-n_remove_from_end] if fine_input.shape[-1] != coarse_output.shape[-2]: raise ValueError("input and output should have the same seq_len") return fine_input
class_definition
50,219
68,823
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
null
2,897
class BarkModel(BarkPreTrainedModel): config_class = BarkConfig def __init__(self, config): super().__init__(config) self.semantic = BarkSemanticModel(config.semantic_config) self.coarse_acoustics = BarkCoarseModel(config.coarse_acoustics_config) self.fine_acoustics = BarkFineModel(config.fine_acoustics_config) self.codec_model = AutoModel.from_config(config.codec_config) self.config = config @property def device(self) -> torch.device: """ `torch.device`: The device on which the module is (assuming that all the module parameters are on the same device). """ # for bark_model, device must be verified on its sub-models # if has _hf_hook, has been offloaded so the device has to be found in the hook if not hasattr(self.semantic, "_hf_hook"): return get_parameter_device(self) for module in self.semantic.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) def enable_cpu_offload(self, gpu_id: Optional[int] = 0): r""" Offloads all sub-models to CPU using accelerate, reducing memory usage with a low impact on performance. This method moves one whole sub-model at a time to the GPU when it is used, and the sub-model remains in GPU until the next sub-model runs. Args: gpu_id (`int`, *optional*, defaults to 0): GPU id on which the sub-models will be loaded and offloaded. """ if is_accelerate_available(): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate`.") device = torch.device(f"cuda:{gpu_id}") if self.device.type != "cpu": self.to("cpu") torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) # this layer is used outside the first foward pass of semantic so need to be loaded before semantic self.semantic.input_embeds_layer, _ = cpu_offload_with_hook(self.semantic.input_embeds_layer, device) hook = None for cpu_offloaded_model in [ self.semantic, self.coarse_acoustics, self.fine_acoustics, ]: _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) self.fine_acoustics_hook = hook _, hook = cpu_offload_with_hook(self.codec_model, device, prev_module_hook=hook) # We'll offload the last model manually. self.codec_model_hook = hook def codec_decode(self, fine_output, output_lengths=None): """Turn quantized audio codes into audio array using encodec.""" fine_output = fine_output.transpose(0, 1) emb = self.codec_model.quantizer.decode(fine_output) if output_lengths is not None: # encodec uses LSTMs which behaves differently with appended padding # decoding with encodec takes around 0.1% of the total generation time # to keep generation quality, we break batching out = [sample[:, :l].unsqueeze(0) for (sample, l) in zip(emb, output_lengths)] audio_arr = [self.codec_model.decoder(sample).squeeze() for sample in out] else: out = self.codec_model.decoder(emb) audio_arr = out.squeeze(1) # squeeze the codebook dimension return audio_arr @torch.no_grad() def generate( self, input_ids: Optional[torch.Tensor] = None, history_prompt: Optional[Dict[str, torch.Tensor]] = None, return_output_lengths: Optional[bool] = None, **kwargs, ) -> torch.LongTensor: """ Generates audio from an input prompt and an additional optional `Bark` speaker prompt. Args: input_ids (`Optional[torch.Tensor]` of shape (batch_size, seq_len), *optional*): Input ids. Will be truncated up to 256 tokens. Note that the output audios will be as long as the longest generation among the batch. history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*): Optional `Bark` speaker prompt. Note that for now, this model takes only one speaker prompt per batch. kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments are of two types: - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model. - With a *semantic_*, *coarse_*, *fine_* prefix, they will be input for the `generate` method of the semantic, coarse and fine respectively. It has the priority over the keywords without a prefix. This means you can, for example, specify a generation strategy for all sub-models except one. return_output_lengths (`bool`, *optional*): Whether or not to return the waveform lengths. Useful when batching. Returns: By default: - **audio_waveform** (`torch.Tensor` of shape (batch_size, seq_len)): Generated audio waveform. When `return_output_lengths=True`: Returns a tuple made of: - **audio_waveform** (`torch.Tensor` of shape (batch_size, seq_len)): Generated audio waveform. - **output_lengths** (`torch.Tensor` of shape (batch_size)): The length of each waveform in the batch Example: ```python >>> from transformers import AutoProcessor, BarkModel >>> processor = AutoProcessor.from_pretrained("suno/bark-small") >>> model = BarkModel.from_pretrained("suno/bark-small") >>> # To add a voice preset, you can pass `voice_preset` to `BarkProcessor.__call__(...)` >>> voice_preset = "v2/en_speaker_6" >>> inputs = processor("Hello, my dog is cute, I need him in my life", voice_preset=voice_preset) >>> audio_array = model.generate(**inputs, semantic_max_new_tokens=100) >>> audio_array = audio_array.cpu().numpy().squeeze() ``` """ # TODO (joao):workaround until nested generation config is compatible with PreTrained Model # todo: dict semantic_generation_config = BarkSemanticGenerationConfig(**self.generation_config.semantic_config) coarse_generation_config = BarkCoarseGenerationConfig(**self.generation_config.coarse_acoustics_config) fine_generation_config = BarkFineGenerationConfig(**self.generation_config.fine_acoustics_config) kwargs_semantic = { # if "attention_mask" is set, it should not be passed to CoarseModel and FineModel "attention_mask": kwargs.pop("attention_mask", None), "min_eos_p": kwargs.pop("min_eos_p", None), } kwargs_coarse = {} kwargs_fine = {} for key, value in kwargs.items(): if key.startswith("semantic_"): key = key[len("semantic_") :] kwargs_semantic[key] = value elif key.startswith("coarse_"): key = key[len("coarse_") :] kwargs_coarse[key] = value elif key.startswith("fine_"): key = key[len("fine_") :] kwargs_fine[key] = value else: # If the key is already in a specific config, then it's been set with a # submodules specific value and we don't override if key not in kwargs_semantic: kwargs_semantic[key] = value if key not in kwargs_coarse: kwargs_coarse[key] = value if key not in kwargs_fine: kwargs_fine[key] = value # 1. Generate from the semantic model if "generation_config" in kwargs_semantic: kwargs_semantic.pop("generation_config") semantic_output = self.semantic.generate( input_ids, history_prompt=history_prompt, semantic_generation_config=semantic_generation_config, **kwargs_semantic, ) # 2. Generate from the coarse model if "generation_config" in kwargs_coarse: kwargs_coarse.pop("generation_config") coarse_output = self.coarse_acoustics.generate( semantic_output, history_prompt=history_prompt, semantic_generation_config=semantic_generation_config, coarse_generation_config=coarse_generation_config, codebook_size=self.generation_config.codebook_size, return_output_lengths=return_output_lengths, **kwargs_coarse, ) output_lengths = None if return_output_lengths: coarse_output, output_lengths = coarse_output # (batch_size, seq_len*coarse_codebooks) -> (batch_size, seq_len) output_lengths = output_lengths // coarse_generation_config.n_coarse_codebooks # 3. "generate" from the fine model if "generation_config" in kwargs_fine: kwargs_fine.pop("generation_config") output = self.fine_acoustics.generate( coarse_output, history_prompt=history_prompt, semantic_generation_config=semantic_generation_config, coarse_generation_config=coarse_generation_config, fine_generation_config=fine_generation_config, codebook_size=self.generation_config.codebook_size, **kwargs_fine, ) if getattr(self, "fine_acoustics_hook", None) is not None: # Manually offload fine_acoustics to CPU # and load codec_model to GPU # since bark doesn't use codec_model forward pass self.fine_acoustics_hook.offload() self.codec_model = self.codec_model.to(self.device) # 4. Decode the output and generate audio array audio = self.codec_decode(output, output_lengths) if getattr(self, "codec_model_hook", None) is not None: # Offload codec_model to CPU self.codec_model_hook.offload() if return_output_lengths: output_lengths = [len(sample) for sample in audio] audio = nn.utils.rnn.pad_sequence(audio, batch_first=True, padding_value=0) return audio, output_lengths return audio @classmethod def _check_and_enable_flash_attn_2( cls, config, torch_dtype: Optional[torch.dtype] = None, device_map: Optional[Union[str, Dict[str, int]]] = None, hard_check_only: bool = False, check_device_map: bool = False, ): """ `_check_and_enable_flash_attn_2` originally don't expand flash attention enabling to the model sub-configurations. We override the original method to make sure that Bark sub-models are using Flash Attention if necessary. If you don't know about Flash Attention, check out the official repository of flash attention: https://github.com/Dao-AILab/flash-attention For using Flash Attention 1.0 you can do it directly via the `BetterTransformer` API, have a look at this specific section of the documentation to learn more about it: https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#decoder-models The method checks if the current setup is compatible with Flash Attention as it requires the model to be in half precision and not ran on CPU. If all checks pass and `hard_check_only` is False, the method will set the config attribute `_attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module """ config = super()._check_and_enable_flash_attn_2( config, torch_dtype, device_map, hard_check_only=hard_check_only, check_device_map=check_device_map ) config.semantic_config._attn_implementation = config._attn_implementation config.coarse_acoustics_config._attn_implementation = config._attn_implementation config.fine_acoustics_config._attn_implementation = config._attn_implementation return config
class_definition
69,967
82,449
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
null
2,898
class TFConvNextV2DropPath(keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path: float, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x: tf.Tensor, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x
class_definition
1,949
2,668
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnextv2/modeling_tf_convnextv2.py
null
2,899