text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class FlaxWav2Vec2ForPreTraining(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 30,976 | 31,141 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,800 |
class FlaxWav2Vec2Model(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 31,144 | 31,300 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,801 |
class FlaxWav2Vec2PreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 31,303 | 31,469 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,802 |
class FlaxWhisperForAudioClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 31,472 | 31,644 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,803 |
class FlaxWhisperForConditionalGeneration(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 31,647 | 31,821 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,804 |
class FlaxWhisperModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 31,824 | 31,979 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,805 |
class FlaxWhisperPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 31,982 | 32,147 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,806 |
class FlaxXGLMForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 32,150 | 32,308 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,807 |
class FlaxXGLMModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 32,311 | 32,463 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,808 |
class FlaxXGLMPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 32,466 | 32,628 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,809 |
class FlaxXLMRobertaForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 32,631 | 32,795 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,810 |
class FlaxXLMRobertaForMaskedLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 32,798 | 32,962 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,811 |
class FlaxXLMRobertaForMultipleChoice(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 32,965 | 33,135 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,812 |
class FlaxXLMRobertaForQuestionAnswering(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 33,138 | 33,311 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,813 |
class FlaxXLMRobertaForSequenceClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 33,314 | 33,492 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,814 |
class FlaxXLMRobertaForTokenClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 33,495 | 33,670 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,815 |
class FlaxXLMRobertaModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 33,673 | 33,831 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,816 |
class FlaxXLMRobertaPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
|
class_definition
| 33,834 | 34,002 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_flax_objects.py
| null | 2,817 |
class NllbMoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`NllbMoeModel`]. It is used to instantiate an
NLLB-MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the NLLB-MoE
[facebook/nllb-moe-54b](https://huggingface.co/facebook/nllb-moe-54b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the NllbMoe model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`NllbMoeModel`] or
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
second_expert_policy ( `str`, *optional*, default to `"all"`):
The policy used for the sampling the probability of being sampled to a second expert for each token.
normalize_router_prob_before_dropping (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the router probabilities before applying a mask based on the experts capacity
(capacity dropping).
batch_prioritized_routing (`bool`, *optional*, defaults to `True`):
Whether or not to orders the tokens by their router probabilities before capacity dropping. This means that
the tokens that have the highest probabilities will be routed before other tokens that might be further in
the sequence.
moe_eval_capacity_token_fraction (`float`, *optional*, defaults to 1.0):
Fraction of tokens as capacity during validation, if set to negative, uses the same as training. Should be
in range: (0.0, 1.0].
num_experts (`int`, *optional*, defaults to 128):
Number of experts for each NllbMoeSparseMlp layer.
expert_capacity (`int`, *optional*, defaults to 64):
Number of tokens that can be stored in each expert.
encoder_sparse_step (`int`, *optional*, defaults to 4):
Frequency of the sparse layers in the encoder. 4 means that one out of 4 layers will be sparse.
decoder_sparse_step (`int`, *optional*, defaults to 4):
Frequency of the sparse layers in the decoder. 4 means that one out of 4 layers will be sparse.
router_dtype (`str`, *optional*, default to `"float32"`):
The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the
*selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961).
router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`):
Whether to ignore padding tokens when routing. if `False`, the padding tokens are not routed to any
experts.
router_bias (`bool`, *optional*, defaults to `False`):
Whether or not the classifier of the router should have a bias.
moe_token_dropout (`float`, *optional*, defualt ot 0.2):
Masking rate for MoE expert output masking (EOM), which is implemented via a Dropout2d on the expert
outputs.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not to return the router logits. Only set to `True` to get the auxiliary loss when training.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from transformers import NllbMoeModel, NllbMoeConfig
>>> # Initializing a NllbMoe facebook/nllb-moe-54b style configuration
>>> configuration = NllbMoeConfig()
>>> # Initializing a model from the facebook/nllb-moe-54b style configuration
>>> model = NllbMoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "nllb-moe"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=128112,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.05,
decoder_layerdrop=0.05,
use_cache=True,
is_encoder_decoder=True,
activation_function="relu",
d_model=1024,
dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=2,
scale_embedding=True,
router_bias=False,
router_dtype="float32",
router_ignore_padding_tokens=False,
num_experts=128,
expert_capacity=64,
encoder_sparse_step=4,
decoder_sparse_step=4,
router_z_loss_coef=0.001,
router_aux_loss_coef=0.001,
second_expert_policy="all",
normalize_router_prob_before_dropping=False,
batch_prioritized_routing=False,
moe_eval_capacity_token_fraction=1.0,
moe_token_dropout=0.2,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
output_router_logits=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.router_z_loss_coef = router_z_loss_coef
self.router_aux_loss_coef = router_aux_loss_coef
self.decoder_sparse_step = decoder_sparse_step
self.encoder_sparse_step = encoder_sparse_step
self.num_experts = num_experts
self.expert_capacity = expert_capacity
self.router_bias = router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}")
self.router_dtype = router_dtype
self.router_ignore_padding_tokens = router_ignore_padding_tokens
self.batch_prioritized_routing = batch_prioritized_routing
self.second_expert_policy = second_expert_policy
self.normalize_router_prob_before_dropping = normalize_router_prob_before_dropping
self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction
self.moe_token_dropout = moe_token_dropout
self.output_router_logits = output_router_logits
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
|
class_definition
| 755 | 11,167 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/configuration_nllb_moe.py
| null | 2,818 |
class NllbMoeScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.embed_scale = embed_scale
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale
|
class_definition
| 5,186 | 5,674 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
| null | 2,819 |
class NllbMoeSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.register_buffer("weights", emb_weights, persistent=False)
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(
self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0
):
if input_ids is not None:
bsz, seq_len = input_ids.size()
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
input_ids.device
)
else:
bsz, seq_len = inputs_embeds.size()[:-1]
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
|
class_definition
| 5,772 | 9,374 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
| null | 2,820 |
class NllbMoeTop2Router(nn.Module):
"""
Router using tokens choose top-2 experts assignment.
This router uses the same mechanism as in NLLB-MoE from the fairseq repository. Items are sorted by router_probs
and then routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee
that each token is processed by an expert**, or that each expert receives at least one token.
The router combining weights are also returned to make sure that the states that are not updated will be masked.
"""
def __init__(self, config: NllbMoeConfig):
super().__init__()
self.num_experts = config.num_experts
self.expert_capacity = config.expert_capacity
self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias)
self.router_ignore_padding_tokens = config.router_ignore_padding_tokens
self.dtype = getattr(torch, config.router_dtype)
self.second_expert_policy = config.second_expert_policy
self.normalize_router_prob_before_dropping = config.normalize_router_prob_before_dropping
self.batch_prioritized_routing = config.batch_prioritized_routing
self.moe_eval_capacity_token_fraction = config.moe_eval_capacity_token_fraction
def _cast_classifier(self):
r"""
`bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an
instance of the `Linear8bitLt` class by checking special attributes.
"""
if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")):
self.classifier = self.classifier.to(self.dtype)
def normalize_router_probabilities(self, router_probs, top_1_mask, top_2_mask):
top_1_max_probs = (router_probs * top_1_mask).sum(dim=1)
top_2_max_probs = (router_probs * top_2_mask).sum(dim=1)
denom_s = torch.clamp(top_1_max_probs + top_2_max_probs, min=torch.finfo(router_probs.dtype).eps)
top_1_max_probs = top_1_max_probs / denom_s
top_2_max_probs = top_2_max_probs / denom_s
return top_1_max_probs, top_2_max_probs
def route_tokens(
self,
router_logits: torch.Tensor,
input_dtype: torch.dtype = torch.float32,
padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple:
"""
Computes the `dispatch_mask` and the `dispatch_weights` for each experts. The masks are adapted to the expert
capacity.
"""
nb_tokens = router_logits.shape[0]
# Apply Softmax and cast back to the original `dtype`
router_probs = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(input_dtype)
top_1_expert_index = torch.argmax(router_probs, dim=-1)
top_1_mask = torch.nn.functional.one_hot(top_1_expert_index, num_classes=self.num_experts)
if self.second_expert_policy == "sampling":
gumbel = torch.distributions.gumbel.Gumbel(0, 1).rsample
router_logits += gumbel(router_logits.shape).to(router_logits.device)
# replace top_1_expert_index with min values
logits_except_top_1 = router_logits.masked_fill(top_1_mask.bool(), float("-inf"))
top_2_expert_index = torch.argmax(logits_except_top_1, dim=-1)
top_2_mask = torch.nn.functional.one_hot(top_2_expert_index, num_classes=self.num_experts)
if self.normalize_router_prob_before_dropping:
top_1_max_probs, top_2_max_probs = self.normalize_router_probabilities(
router_probs, top_1_mask, top_2_mask
)
if self.second_expert_policy == "random":
top_2_max_probs = (router_probs * top_2_mask).sum(dim=1)
sampled = (2 * top_2_max_probs) > torch.rand_like(top_2_max_probs.float())
top_2_mask = top_2_mask * sampled.repeat(self.num_experts, 1).transpose(1, 0)
if padding_mask is not None and not self.router_ignore_padding_tokens:
if len(padding_mask.shape) == 4:
# only get the last causal mask
padding_mask = padding_mask[:, :, -1, :].reshape(-1)[-nb_tokens:]
non_padding = ~padding_mask.bool()
top_1_mask = top_1_mask * non_padding.unsqueeze(-1).to(top_1_mask.dtype)
top_2_mask = top_2_mask * non_padding.unsqueeze(-1).to(top_1_mask.dtype)
if self.batch_prioritized_routing:
# sort tokens based on their routing probability
# to make sure important tokens are routed, first
importance_scores = -1 * router_probs.max(dim=1)[0]
sorted_top_1_mask = top_1_mask[importance_scores.argsort(dim=0)]
sorted_cumsum1 = (torch.cumsum(sorted_top_1_mask, dim=0) - 1) * sorted_top_1_mask
locations1 = sorted_cumsum1[importance_scores.argsort(dim=0).argsort(dim=0)]
sorted_top_2_mask = top_2_mask[importance_scores.argsort(dim=0)]
sorted_cumsum2 = (torch.cumsum(sorted_top_2_mask, dim=0) - 1) * sorted_top_2_mask
locations2 = sorted_cumsum2[importance_scores.argsort(dim=0).argsort(dim=0)]
# Update 2nd's location by accounting for locations of 1st
locations2 += torch.sum(top_1_mask, dim=0, keepdim=True)
else:
locations1 = torch.cumsum(top_1_mask, dim=0) - 1
locations2 = torch.cumsum(top_2_mask, dim=0) - 1
# Update 2nd's location by accounting for locations of 1st
locations2 += torch.sum(top_1_mask, dim=0, keepdim=True)
if not self.training and self.moe_eval_capacity_token_fraction > 0:
self.expert_capacity = math.ceil(self.moe_eval_capacity_token_fraction * nb_tokens)
else:
capacity = 2 * math.ceil(nb_tokens / self.num_experts)
self.expert_capacity = capacity if self.expert_capacity is None else self.expert_capacity
# Remove locations outside capacity from ( cumsum < capacity = False will not be routed)
top_1_mask = top_1_mask * torch.lt(locations1, self.expert_capacity)
top_2_mask = top_2_mask * torch.lt(locations2, self.expert_capacity)
if not self.normalize_router_prob_before_dropping:
top_1_max_probs, top_2_max_probs = self.normalize_router_probabilities(
router_probs, top_1_mask, top_2_mask
)
# Calculate combine_weights and dispatch_mask
gates1 = top_1_max_probs[:, None] * top_1_mask
gates2 = top_2_max_probs[:, None] * top_2_mask
router_probs = gates1 + gates2
return top_1_mask, router_probs
def forward(self, hidden_states: torch.Tensor, padding_mask: Optional[torch.LongTensor] = None) -> Tuple:
r"""
The hidden states are reshaped to simplify the computation of the router probabilities (combining weights for
each experts.)
Args:
hidden_states (`torch.Tensor`):
(batch_size, sequence_length, hidden_dim) from which router probabilities are computed.
Returns:
top_1_mask (`torch.Tensor` of shape (batch_size, sequence_length)):
Index tensor of shape [batch_size, sequence_length] corresponding to the expert selected for each token
using the top1 probabilities of the router.
router_probabilities (`torch.Tensor` of shape (batch_size, sequence_length, nump_experts)):
Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each
token and expert. Used for routing tokens to experts.
router_logits (`torch.Tensor` of shape (batch_size, sequence_length))):
Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits.
This is used later for computing router z-loss.
"""
self.input_dtype = hidden_states.dtype
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.reshape((batch_size * sequence_length), hidden_dim)
hidden_states = hidden_states.to(self.dtype)
self._cast_classifier()
router_logits = self.classifier(hidden_states)
top_1_mask, router_probs = self.route_tokens(router_logits, self.input_dtype, padding_mask)
return top_1_mask, router_probs
|
class_definition
| 9,377 | 17,762 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
| null | 2,821 |
class NllbMoeDenseActDense(nn.Module):
def __init__(self, config: NllbMoeConfig, ffn_dim: int):
super().__init__()
self.fc1 = nn.Linear(config.d_model, ffn_dim)
self.fc2 = nn.Linear(ffn_dim, config.d_model)
self.dropout = nn.Dropout(config.activation_dropout)
self.act = ACT2FN[config.activation_function]
def forward(self, hidden_states):
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.fc2.weight, torch.Tensor)
and hidden_states.dtype != self.fc2.weight.dtype
and (self.fc2.weight.dtype != torch.int8 and self.fc2.weight.dtype != torch.uint8)
):
hidden_states = hidden_states.to(self.fc2.weight.dtype)
hidden_states = self.fc2(hidden_states)
return hidden_states
|
class_definition
| 17,765 | 18,680 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
| null | 2,822 |
class NllbMoeSparseMLP(nn.Module):
r"""
Implementation of the NLLB-MoE sparse MLP module.
"""
def __init__(self, config: NllbMoeConfig, ffn_dim: int, expert_class: nn.Module = NllbMoeDenseActDense):
super().__init__()
self.router = NllbMoeTop2Router(config)
self.moe_token_dropout = config.moe_token_dropout
self.token_dropout = nn.Dropout(self.moe_token_dropout)
self.num_experts = config.num_experts
self.experts = nn.ModuleDict()
for idx in range(self.num_experts):
self.experts[f"expert_{idx}"] = expert_class(config, ffn_dim)
def forward(self, hidden_states: torch.Tensor, padding_mask: Optional[torch.Tensor] = False):
r"""
The goal of this forward pass is to have the same number of operation as the equivalent `NllbMoeDenseActDense`
(mlp) layer. This means that all of the hidden states should be processed at most twice ( since we are using a
top_2 gating mecanism). This means that we keep the complexity to O(batch_size x sequence_length x hidden_dim)
instead of O(num_experts x batch_size x sequence_length x hidden_dim).
1- Get the `router_probs` from the `router`. The shape of the `router_mask` is `(batch_size X sequence_length,
num_expert)` and corresponds to the boolean version of the `router_probs`. The inputs are masked using the
`router_mask`.
2- Dispatch the hidden_states to its associated experts. The router probabilities are used to weight the
contribution of each experts when updating the masked hidden states.
Args:
hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_dim)`):
The hidden states
padding_mask (`torch.Tensor`, *optional*, defaults to `False`):
Attention mask. Can be in the causal form or not.
Returns:
hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_dim)`):
Updated hidden states
router_logits (`torch.Tensor` of shape `(batch_size, sequence_length, num_experts)`):
Needed for computing the loss
"""
batch_size, sequence_length, hidden_dim = hidden_states.shape
top_1_mask, router_probs = self.router(hidden_states, padding_mask)
router_mask = router_probs.bool()
hidden_states = hidden_states.reshape((batch_size * sequence_length), hidden_dim)
masked_hidden_states = torch.einsum("bm,be->ebm", hidden_states, router_mask)
for idx, expert in enumerate(self.experts.values()):
token_indices = router_mask[:, idx]
combining_weights = router_probs[token_indices, idx]
expert_output = expert(masked_hidden_states[idx, token_indices])
if self.moe_token_dropout > 0:
if self.training:
expert_output = self.token_dropout(expert_output)
else:
expert_output *= 1 - self.moe_token_dropout
masked_hidden_states[idx, token_indices] = torch.einsum("b,be->be", combining_weights, expert_output)
hidden_states = masked_hidden_states.sum(dim=0).reshape(batch_size, sequence_length, hidden_dim)
top_1_expert_index = torch.argmax(top_1_mask, dim=-1)
return hidden_states, (router_probs, top_1_expert_index)
|
class_definition
| 18,683 | 22,090 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
| null | 2,823 |
class NllbMoeAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[NllbMoeConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if encoder_hidden_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = encoder_hidden_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == encoder_hidden_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `encoder_hidden_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == encoder_hidden_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
|
class_definition
| 22,219 | 29,655 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
| null | 2,824 |
class NllbMoeEncoderLayer(nn.Module):
def __init__(self, config: NllbMoeConfig, is_sparse: bool = False):
super().__init__()
self.embed_dim = config.d_model
self.is_sparse = is_sparse
self.self_attn = NllbMoeAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.attn_dropout = nn.Dropout(config.dropout)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
if not self.is_sparse:
self.ffn = NllbMoeDenseActDense(config, ffn_dim=config.encoder_ffn_dim)
else:
self.ffn = NllbMoeSparseMLP(config, ffn_dim=config.encoder_ffn_dim)
self.ff_layer_norm = nn.LayerNorm(config.d_model)
self.ff_dropout = nn.Dropout(config.activation_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
output_router_logits: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`):
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.ff_layer_norm(hidden_states)
if self.is_sparse:
hidden_states, router_states = self.ffn(hidden_states, attention_mask)
else:
# router_states set to None to track which layers have None gradients.
hidden_states, router_states = self.ffn(hidden_states), None
hidden_states = self.ff_dropout(hidden_states)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
if output_router_logits:
outputs += (router_states,)
return outputs
|
class_definition
| 29,658 | 32,930 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
| null | 2,825 |
class NllbMoeDecoderLayer(nn.Module):
def __init__(self, config: NllbMoeConfig, is_sparse: bool = False):
super().__init__()
self.embed_dim = config.d_model
self.is_sparse = is_sparse
self.self_attn = NllbMoeAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.attn_dropout = nn.Dropout(config.dropout)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.cross_attention = NllbMoeAttention(
self.embed_dim, config.decoder_attention_heads, config.attention_dropout, is_decoder=True
)
self.cross_attention_layer_norm = nn.LayerNorm(self.embed_dim)
if not self.is_sparse:
self.ffn = NllbMoeDenseActDense(config, ffn_dim=config.decoder_ffn_dim)
else:
self.ffn = NllbMoeSparseMLP(config, ffn_dim=config.decoder_ffn_dim)
self.ff_layer_norm = nn.LayerNorm(config.d_model)
self.ff_dropout = nn.Dropout(config.activation_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`):
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`):
encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by
very large negative values.
layer_head_mask (`torch.FloatTensor`):
mask for attention heads in a given layer of size `(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`):
mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`):
cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.cross_attention_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attention(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
past_key_value=cross_attn_past_key_value,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value += cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.ff_layer_norm(hidden_states)
if self.is_sparse:
hidden_states, router_states = self.ffn(hidden_states, attention_mask)
else:
hidden_states, router_states = self.ffn(hidden_states), None
hidden_states = self.ff_dropout(hidden_states)
hidden_states = residual + hidden_states
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states, present_key_value)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if output_router_logits:
outputs += (router_states,)
return outputs
|
class_definition
| 32,933 | 39,074 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
| null | 2,826 |
class NllbMoePreTrainedModel(PreTrainedModel):
config_class = NllbMoeConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["NllbMoeEncoderLayer", "NllbMoeDecoderLayer"]
def _init_weights(self, module):
"""Initialize the weights"""
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 39,077 | 39,808 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
| null | 2,827 |
class NllbMoeEncoder(NllbMoePreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`NllbMoeEncoderLayer`].
Args:
config:
NllbMoeConfig
embed_tokens (nn.Embedding):
output embedding
"""
def __init__(self, config: NllbMoeConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = NllbMoeScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = NllbMoeSinusoidalPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
self.padding_idx,
)
sparse_step = config.encoder_sparse_step
self.layers = nn.ModuleList()
for i in range(config.encoder_layers):
is_sparse = (i + 1) % sparse_step == 0 if sparse_step > 0 else False
self.layers.append(NllbMoeEncoderLayer(config, is_sparse))
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
and should not be returned during inference.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
embed_pos = self.embed_positions(input_ids, inputs_embeds)
embed_pos = embed_pos.to(inputs_embeds.device)
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_router_probs = () if output_router_logits else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
output_router_logits=output_router_logits,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if output_router_logits:
all_router_probs += (layer_outputs[-1],)
last_hidden_state = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states += (last_hidden_state,)
if not return_dict:
return tuple(
v for v in [last_hidden_state, encoder_states, all_attentions, all_router_probs] if v is not None
)
return MoEModelOutput(
last_hidden_state=last_hidden_state,
hidden_states=encoder_states,
attentions=all_attentions,
router_probs=all_router_probs,
)
|
class_definition
| 47,628 | 56,318 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
| null | 2,828 |
class NllbMoeDecoder(NllbMoePreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`NllbMoeDecoderLayer`]
Args:
config:
NllbMoeConfig
embed_tokens (nn.Embedding):
output embedding
"""
def __init__(self, config: NllbMoeConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = NllbMoeScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = NllbMoeSinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
self.padding_idx,
)
sparse_step = config.decoder_sparse_step
self.layers = nn.ModuleList()
for i in range(config.decoder_layers):
is_sparse = (i + 1) % sparse_step == 0 if sparse_step > 0 else False
self.layers.append(NllbMoeDecoderLayer(config, is_sparse))
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
and should not be returned during inference.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length)
positions = positions.to(inputs_embeds.device)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_probs = () if output_router_logits else None
all_cross_attentions = () if output_attentions else None
present_key_value_states = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
if not skip_the_layer or synced_gpus:
layer_head_mask = head_mask[idx] if head_mask is not None else None
cross_attn_layer_head_mask = cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
past_key_value = past_key_values[idx] if past_key_values is not None else None
# under fsdp or deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.forward,
hidden_states,
combined_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
continue
if use_cache:
present_key_value_states += (layer_outputs[1],)
if output_attentions:
all_self_attns += (layer_outputs[2],)
all_cross_attentions += (layer_outputs[3],)
if output_router_logits:
all_router_probs += (layer_outputs[-1],)
hidden_states = self.layer_norm(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_self_attns,
all_cross_attentions,
all_router_probs,
]
if v is not None
)
return MoEModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
router_probs=all_router_probs,
)
|
class_definition
| 56,321 | 70,491 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
| null | 2,829 |
class NllbMoeModel(NllbMoePreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: NllbMoeConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.shared = NllbMoeScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale)
self.encoder = NllbMoeEncoder(config, self.shared)
self.decoder = NllbMoeDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqMoEModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqMoEModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, NllbMoeModel
>>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts")
>>> model = SwitchTransformersModel.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for NllbMoeModel
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, MoEModelOutput):
encoder_outputs = MoEModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
router_probs=encoder_outputs[3] if len(encoder_outputs) > 3 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqMoEModelOutput(
past_key_values=decoder_outputs.past_key_values,
cross_attentions=decoder_outputs.cross_attentions,
last_hidden_state=decoder_outputs.last_hidden_state,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
decoder_hidden_states=decoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
decoder_attentions=decoder_outputs.attentions,
encoder_router_logits=encoder_outputs.router_probs,
decoder_router_logits=decoder_outputs.router_probs,
)
|
class_definition
| 70,642 | 76,800 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
| null | 2,830 |
class NllbMoeForConditionalGeneration(NllbMoePreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: NllbMoeConfig):
super().__init__(config)
self.model = NllbMoeModel(config)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
self.router_z_loss_coef = config.router_z_loss_coef
self.router_aux_loss_coef = config.router_aux_loss_coef
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqMoEOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(NLLB_MOE_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqMoEOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
loss = None
encoder_aux_loss = None
decoder_aux_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
# todo check in the config if router loss enables
if output_router_logits:
encoder_router_logits = outputs[-1]
decoder_router_logits = outputs[3 if output_attentions else 4]
# Compute the router loss (z_loss + auxiliary loss) for each router in the encoder and decoder
encoder_router_logits, encoder_expert_indexes = self._unpack_router_logits(encoder_router_logits)
encoder_aux_loss = load_balancing_loss_func(encoder_router_logits, encoder_expert_indexes)
decoder_router_logits, decoder_expert_indexes = self._unpack_router_logits(decoder_router_logits)
decoder_aux_loss = load_balancing_loss_func(decoder_router_logits, decoder_expert_indexes)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
if output_router_logits and labels is not None:
aux_loss = self.router_aux_loss_coef * (encoder_aux_loss + decoder_aux_loss)
loss = loss + aux_loss
output = (loss,) if loss is not None else ()
if not return_dict:
output += (lm_logits,)
if output_router_logits: # only return the loss if they are not None
output += (
encoder_aux_loss,
decoder_aux_loss,
*outputs[1:],
)
else:
output += outputs[1:]
return output
return Seq2SeqMoEOutput(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
cross_attentions=outputs.cross_attentions,
encoder_aux_loss=encoder_aux_loss,
decoder_aux_loss=decoder_aux_loss,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
decoder_hidden_states=outputs.decoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
decoder_attentions=outputs.decoder_attentions,
encoder_router_logits=outputs.encoder_router_logits,
decoder_router_logits=outputs.decoder_router_logits,
)
def _unpack_router_logits(self, router_outputs):
total_router_logits = []
total_expert_indexes = []
for router_output in router_outputs:
if router_output is not None:
router_logits, expert_indexes = router_output
total_router_logits.append(router_logits)
total_expert_indexes.append(expert_indexes)
total_router_logits = torch.cat(total_router_logits, dim=1) if len(total_router_logits) > 0 else None
total_expert_indexes = torch.stack(total_expert_indexes, dim=1) if len(total_expert_indexes) > 0 else None
return total_router_logits, total_expert_indexes
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
|
class_definition
| 76,940 | 84,433 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/nllb_moe/modeling_nllb_moe.py
| null | 2,831 |
class SEWDNoLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
|
class_definition
| 10,430 | 11,155 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,832 |
class SEWDLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.activation(hidden_states)
return hidden_states
|
class_definition
| 11,266 | 12,241 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,833 |
class SEWDGroupNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
|
class_definition
| 12,352 | 13,245 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,834 |
class SEWDPositionalConvEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups,
stride=config.squeeze_factor,
)
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
self.conv = weight_norm(self.conv, name="weight", dim=2)
if hasattr(self.conv, "parametrizations"):
weight_g = self.conv.parametrizations.weight.original0
weight_v = self.conv.parametrizations.weight.original1
else:
weight_g = self.conv.weight_g
weight_v = self.conv.weight_v
deepspeed.zero.register_external_parameter(self, weight_v)
deepspeed.zero.register_external_parameter(self, weight_g)
else:
self.conv = weight_norm(self.conv, name="weight", dim=2)
self.padding = SEWDSamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
|
class_definition
| 13,341 | 15,059 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,835 |
class SEWDSamePadLayer(nn.Module):
def __init__(self, num_conv_pos_embeddings):
super().__init__()
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def forward(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
return hidden_states
|
class_definition
| 15,163 | 15,524 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,836 |
class SEWDUpsampling(nn.Module):
def __init__(self, config):
super().__init__()
self.projection = nn.Linear(config.hidden_size, config.hidden_size * config.squeeze_factor)
self.activation = ACT2FN[config.feat_extract_activation]
self.squeeze_factor = config.squeeze_factor
def forward(self, hidden_states):
hidden_states = self.projection(hidden_states)
hidden_states = self.activation(hidden_states)
if self.squeeze_factor > 1:
# transform embedding channels to sequence length
bsz, src_len, src_embed_dim = hidden_states.size()
tgt_len = src_len * self.squeeze_factor
tgt_embed_dim = src_embed_dim // self.squeeze_factor
hidden_states = hidden_states.reshape(bsz, src_len, self.squeeze_factor, tgt_embed_dim)
hidden_states = hidden_states.reshape(bsz, tgt_len, tgt_embed_dim)
return hidden_states
|
class_definition
| 15,607 | 16,552 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,837 |
class SEWDFeatureEncoder(nn.Module):
"""Construct the features from raw audio waveform"""
def __init__(self, config):
super().__init__()
if config.feat_extract_norm == "group":
conv_layers = [SEWDGroupNormConvLayer(config, layer_id=0)] + [
SEWDNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1)
]
elif config.feat_extract_norm == "layer":
conv_layers = [SEWDLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)]
else:
raise ValueError(
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
)
self.conv_layers = nn.ModuleList(conv_layers)
self.gradient_checkpointing = False
self._requires_grad = True
def _freeze_parameters(self):
for param in self.parameters():
param.requires_grad = False
self._requires_grad = False
def forward(self, input_values):
hidden_states = input_values[:, None]
# make sure hidden_states require grad for gradient_checkpointing
if self._requires_grad and self.training:
hidden_states.requires_grad = True
for conv_layer in self.conv_layers:
if self._requires_grad and self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
conv_layer.__call__,
hidden_states,
)
else:
hidden_states = conv_layer(hidden_states)
return hidden_states
|
class_definition
| 16,659 | 18,347 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,838 |
class SEWDFeatureExtractor(SEWDFeatureEncoder):
def __init__(self, config):
super().__init__(config)
warnings.warn(
f"The class `{self.__class__.__name__}` has been depreciated "
"and will be removed in Transformers v5. "
f"Use `{self.__class__.__bases__[0].__name__}` instead.",
FutureWarning,
)
|
class_definition
| 18,350 | 18,722 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,839 |
class ContextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
self.dropout = StableDropout(config.pooler_dropout)
self.config = config
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
context_token = hidden_states[:, 0]
context_token = self.dropout(context_token)
pooled_output = self.dense(context_token)
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
return pooled_output
@property
def output_dim(self):
return self.config.hidden_size
|
class_definition
| 18,725 | 19,469 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,840 |
class XSoftmax(torch.autograd.Function):
"""
Masked Softmax which is optimized for saving memory
Args:
input (`torch.tensor`): The input tensor that will apply softmax.
mask (`torch.IntTensor`):
The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
dim (int): The dimension that will apply softmax
Example:
```python
>>> import torch
>>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
>>> # Make a tensor
>>> x = torch.randn([4, 20, 100])
>>> # Create a mask
>>> mask = (x > 0).int()
>>> # Specify the dimension to apply softmax
>>> dim = -1
>>> y = XSoftmax.apply(x, mask, dim)
```"""
@staticmethod
def forward(ctx, input, mask, dim):
ctx.dim = dim
rmask = ~(mask.to(torch.bool))
output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
output = torch.softmax(output, ctx.dim)
output.masked_fill_(rmask, 0)
ctx.save_for_backward(output)
return output
@staticmethod
def backward(ctx, grad_output):
(output,) = ctx.saved_tensors
inputGrad = softmax_backward_data(ctx, grad_output, output, ctx.dim, output)
return inputGrad, None, None
@staticmethod
def symbolic(g, self, mask, dim):
import torch.onnx.symbolic_helper as sym_help
from torch.onnx.symbolic_opset9 import masked_fill, softmax
mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
r_mask = g.op(
"Cast",
g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
to_i=sym_help.cast_pytorch_to_onnx["Bool"],
)
output = masked_fill(
g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
)
output = softmax(g, output, dim)
return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))
|
class_definition
| 19,472 | 21,565 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,841 |
class DropoutContext:
def __init__(self):
self.dropout = 0
self.mask = None
self.scale = 1
self.reuse_mask = True
|
class_definition
| 21,568 | 21,717 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,842 |
class XDropout(torch.autograd.Function):
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
@staticmethod
def forward(ctx, input, local_ctx):
mask, dropout = get_mask(input, local_ctx)
ctx.scale = 1.0 / (1 - dropout)
if dropout > 0:
ctx.save_for_backward(mask)
return input.masked_fill(mask, 0) * ctx.scale
else:
return input
@staticmethod
def backward(ctx, grad_output):
if ctx.scale > 1:
(mask,) = ctx.saved_tensors
return grad_output.masked_fill(mask, 0) * ctx.scale, None
else:
return grad_output, None
@staticmethod
def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value:
from torch.onnx import symbolic_opset12
dropout_p = local_ctx
if isinstance(local_ctx, DropoutContext):
dropout_p = local_ctx.dropout
# StableDropout only calls this function when training.
train = True
# TODO: We should check if the opset_version being used to export
# is > 12 here, but there's no good way to do that. As-is, if the
# opset_version < 12, export will fail with a CheckerError.
# Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like:
# if opset_version < 12:
# return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train)
return symbolic_opset12.dropout(g, input, dropout_p, train)
|
class_definition
| 21,720 | 23,317 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,843 |
class StableDropout(nn.Module):
"""
Optimized dropout module for stabilizing the training
Args:
drop_prob (float): the dropout probabilities
"""
def __init__(self, drop_prob):
super().__init__()
self.drop_prob = drop_prob
self.count = 0
self.context_stack = None
def forward(self, x):
"""
Call the module
Args:
x (`torch.tensor`): The input tensor to apply dropout
"""
if self.training and self.drop_prob > 0:
return XDropout.apply(x, self.get_context())
return x
def clear_context(self):
self.count = 0
self.context_stack = None
def init_context(self, reuse_mask=True, scale=1):
if self.context_stack is None:
self.context_stack = []
self.count = 0
for c in self.context_stack:
c.reuse_mask = reuse_mask
c.scale = scale
def get_context(self):
if self.context_stack is not None:
if self.count >= len(self.context_stack):
self.context_stack.append(DropoutContext())
ctx = self.context_stack[self.count]
ctx.dropout = self.drop_prob
self.count += 1
return ctx
else:
return self.drop_prob
|
class_definition
| 23,320 | 24,640 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,844 |
class SEWDSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = nn.Dropout(config.activation_dropout)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 24,643 | 25,197 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,845 |
class DisentangledSelfAttention(nn.Module):
"""
Disentangled self-attention module
Parameters:
config (`DebertaV2Config`):
A model config class instance with the configuration to build a new model. The schema is similar to
*BertConfig*, for more details, please refer [`DebertaV2Config`]
"""
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
_attention_head_size = config.hidden_size // config.num_attention_heads
self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.share_att_key = getattr(config, "share_att_key", False)
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.position_buckets = getattr(config, "position_buckets", -1)
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.pos_ebd_size = self.max_relative_positions
if self.position_buckets > 0:
self.pos_ebd_size = self.position_buckets
self.pos_dropout = StableDropout(config.activation_dropout)
if not self.share_att_key:
if "c2p" in self.pos_att_type:
self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
if "p2c" in self.pos_att_type:
self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = StableDropout(config.attention_dropout)
def transpose_for_scores(self, x, attention_heads):
new_x_shape = x.size()[:-1] + (attention_heads, -1)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
def forward(
self,
hidden_states,
attention_mask,
output_attentions=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
):
"""
Call the module
Args:
hidden_states (`torch.FloatTensor`):
Input states to the module usually the output from previous layer, it will be the Q,K and V in
*Attention(Q,K,V)*
attention_mask (`torch.BoolTensor`):
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
th token.
output_attentions (`bool`, *optional*):
Whether return the attention matrix.
query_states (`torch.FloatTensor`, *optional*):
The *Q* state in *Attention(Q,K,V)*.
relative_pos (`torch.LongTensor`):
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
values ranging in [*-max_relative_positions*, *max_relative_positions*].
rel_embeddings (`torch.FloatTensor`):
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
\\text{max_relative_positions}\\), *hidden_size*].
"""
if query_states is None:
query_states = hidden_states
query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)
rel_att = None
# Take the dot product between "query" and "key" to get the raw attention scores.
scale_factor = 1
if "c2p" in self.pos_att_type:
scale_factor += 1
if "p2c" in self.pos_att_type:
scale_factor += 1
scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)
attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2) / scale.to(dtype=query_layer.dtype))
if self.relative_attention:
rel_embeddings = self.pos_dropout(rel_embeddings)
rel_att = self.disentangled_attention_bias(
query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
)
if rel_att is not None:
attention_scores = attention_scores + rel_att
attention_scores = attention_scores
attention_scores = attention_scores.view(
-1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1)
)
# bsz x height x length x dimension
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
attention_probs = self.dropout(attention_probs)
context_layer = torch.bmm(
attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer
)
context_layer = (
context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1))
.permute(0, 2, 1, 3)
.contiguous()
)
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
context_layer = context_layer.view(new_context_layer_shape)
if output_attentions:
return (context_layer, attention_probs)
else:
return context_layer
def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
if relative_pos is None:
q = query_layer.size(-2)
relative_pos = build_relative_position(
q,
key_layer.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
device=query_layer.device,
)
if relative_pos.dim() == 2:
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
elif relative_pos.dim() == 3:
relative_pos = relative_pos.unsqueeze(1)
# bsz x height x query x key
elif relative_pos.dim() != 4:
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
att_span = self.pos_ebd_size
relative_pos = relative_pos.long().to(query_layer.device)
rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0)
if self.share_att_key:
pos_query_layer = self.transpose_for_scores(
self.query_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat(
query_layer.size(0) // self.num_attention_heads, 1, 1
)
else:
if "c2p" in self.pos_att_type:
pos_key_layer = self.transpose_for_scores(
self.pos_key_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1)
if "p2c" in self.pos_att_type:
pos_query_layer = self.transpose_for_scores(
self.pos_query_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1)
score = 0
# content->position
if "c2p" in self.pos_att_type:
scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor)
c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
c2p_att = torch.gather(
c2p_att,
dim=-1,
index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]),
)
score += c2p_att / scale.to(dtype=c2p_att.dtype)
# position->content
if "p2c" in self.pos_att_type:
scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor)
if key_layer.size(-2) != query_layer.size(-2):
r_pos = build_relative_position(
key_layer.size(-2),
key_layer.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
device=query_layer.device,
)
r_pos = r_pos.unsqueeze(0)
else:
r_pos = relative_pos
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
p2c_att = torch.gather(
p2c_att,
dim=-1,
index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]),
).transpose(-1, -2)
score += p2c_att / scale.to(dtype=p2c_att.dtype)
return score
|
class_definition
| 25,200 | 35,330 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,846 |
class SEWDAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = DisentangledSelfAttention(config)
self.output = SEWDSelfOutput(config)
self.config = config
def forward(
self,
hidden_states,
attention_mask,
output_attentions=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
):
self_output = self.self(
hidden_states,
attention_mask,
output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
if output_attentions:
self_output, att_matrix = self_output
if query_states is None:
query_states = hidden_states
attention_output = self.output(self_output, query_states)
if output_attentions:
return (attention_output, att_matrix)
else:
return attention_output
|
class_definition
| 35,333 | 36,354 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,847 |
class SEWDIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
|
class_definition
| 36,443 | 37,008 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,848 |
class SEWDOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = nn.Dropout(config.activation_dropout)
self.config = config
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 37,011 | 37,596 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,849 |
class SEWDLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = SEWDAttention(config)
self.intermediate = SEWDIntermediate(config)
self.output = SEWDOutput(config)
def forward(
self,
hidden_states,
attention_mask,
query_states=None,
relative_pos=None,
rel_embeddings=None,
output_attentions=False,
):
attention_output = self.attention(
hidden_states,
attention_mask,
output_attentions=output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
if output_attentions:
attention_output, att_matrix = attention_output
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
if output_attentions:
return (layer_output, att_matrix)
else:
return layer_output
|
class_definition
| 37,599 | 38,658 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,850 |
class ConvLayer(nn.Module):
def __init__(self, config):
super().__init__()
kernel_size = getattr(config, "conv_kernel_size", 3)
groups = getattr(config, "conv_groups", 1)
self.conv_act = getattr(config, "conv_act", "tanh")
self.conv = nn.Conv1d(
config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups
)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
def forward(self, hidden_states, residual_states, input_mask):
out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous()
rmask = (1 - input_mask).bool()
out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
out = ACT2FN[self.conv_act](self.dropout(out))
layer_norm_input = residual_states + out
output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
if input_mask is None:
output_states = output
else:
if input_mask.dim() != layer_norm_input.dim():
if input_mask.dim() == 4:
input_mask = input_mask.squeeze(1).squeeze(1)
input_mask = input_mask.unsqueeze(2)
input_mask = input_mask.to(output.dtype)
output_states = output * input_mask
return output_states
|
class_definition
| 38,661 | 40,127 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,851 |
class SEWDTransformerEncoder(nn.Module):
"""Modified BertEncoder with relative position bias support"""
def __init__(self, config):
super().__init__()
self.layer = nn.ModuleList([SEWDLayer(config) for _ in range(config.num_hidden_layers)])
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.position_buckets = getattr(config, "position_buckets", -1)
pos_ebd_size = self.max_relative_positions * 2
if self.position_buckets > 0:
pos_ebd_size = self.position_buckets * 2
self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
if "layer_norm" in self.norm_rel_ebd:
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
self.gradient_checkpointing = False
def get_rel_embedding(self):
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
rel_embeddings = self.LayerNorm(rel_embeddings)
return rel_embeddings
def get_attention_mask(self, attention_mask):
if attention_mask.dim() <= 2:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
elif attention_mask.dim() == 3:
attention_mask = attention_mask.unsqueeze(1)
return attention_mask
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
if self.relative_attention and relative_pos is None:
q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
relative_pos = build_relative_position(
q,
hidden_states.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
device=hidden_states.device,
)
return relative_pos
def forward(
self,
hidden_states,
attention_mask,
output_hidden_states=True,
output_attentions=False,
query_states=None,
relative_pos=None,
return_dict=True,
):
if attention_mask.dim() <= 2:
input_mask = attention_mask
else:
input_mask = attention_mask.sum(-2) > 0
attention_mask = self.get_attention_mask(attention_mask)
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[0]
else:
next_kv = hidden_states
rel_embeddings = self.get_rel_embedding()
output_states = next_kv
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (output_states,)
if self.gradient_checkpointing and self.training:
output_states = self._gradient_checkpointing_func(
layer_module.__call__,
next_kv,
attention_mask,
query_states,
relative_pos,
rel_embeddings,
output_attentions,
)
else:
output_states = layer_module(
next_kv,
attention_mask,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
output_attentions=output_attentions,
)
if output_attentions:
output_states, att_m = output_states
if i == 0 and self.conv is not None:
output_states = self.conv(hidden_states, output_states, input_mask)
if query_states is not None:
query_states = output_states
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
else:
next_kv = output_states
if output_attentions:
all_attentions = all_attentions + (att_m,)
if output_hidden_states:
all_hidden_states = all_hidden_states + (output_states,)
if not return_dict:
return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
)
|
class_definition
| 40,130 | 45,451 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,852 |
class SEWDEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = SEWDPositionalConvEmbedding(config)
self.pool = nn.AvgPool1d(config.squeeze_factor, config.squeeze_factor)
self.encoder = SEWDTransformerEncoder(config)
self.upsample = SEWDUpsampling(config)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
max_encoder_length = hidden_states.shape[1] // self.config.squeeze_factor
if attention_mask is None:
attention_mask = torch.ones(
(hidden_states.shape[0], max_encoder_length), dtype=torch.long, device=hidden_states.device
)
else:
# make sure padded tokens output 0
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_attention_mask.bool()] = 0.0
input_lengths = (attention_mask.long()).sum(-1)
# apply pooling formula to get real output_lengths
output_lengths = input_lengths // self.config.squeeze_factor
attention_ids = (
torch.arange(0, max_encoder_length, device=output_lengths.device)
.view(1, -1)
.expand(output_lengths.shape[0], -1)
)
attention_mask = (attention_ids < output_lengths.view(-1, 1)).long()
n_input_timesteps = hidden_states.shape[1]
hidden_states = hidden_states.transpose(1, 2)
position_embeddings = self.pos_conv_embed(hidden_states)
pooled_hidden_states = self.pool(hidden_states)
min_length = min(position_embeddings.size(-1), pooled_hidden_states.size(-1))
hidden_states = pooled_hidden_states[..., :min_length] + position_embeddings[..., :min_length]
hidden_states = hidden_states.transpose(1, 2)
encoder_outputs = self.encoder(hidden_states, attention_mask, output_hidden_states, output_attentions)
hidden_states = self.upsample(encoder_outputs.last_hidden_state)
if hidden_states.shape[1] < n_input_timesteps:
hidden_states = nn.functional.pad(hidden_states, (0, 0, 0, n_input_timesteps - hidden_states.shape[1]))
if not return_dict:
return tuple(
v for v in [hidden_states, encoder_outputs.hidden_states, encoder_outputs.attentions] if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 45,454 | 48,314 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,853 |
class SEWDPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SEWDConfig
base_model_prefix = "sew-d"
main_input_name = "input_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, SEWDPositionalConvEmbedding):
nn.init.normal_(
module.conv.weight,
mean=0,
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
)
nn.init.constant_(module.conv.bias, 0)
elif isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
if is_deepspeed_zero3_enabled():
import deepspeed
if hasattr(module, "weight_v") and hasattr(module, "weight_g"):
with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0):
nn.init.kaiming_normal_(module.weight.data)
else:
with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0):
nn.init.kaiming_normal_(module.weight.data)
else:
nn.init.kaiming_normal_(module.weight.data)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None:
module.bias.data.zero_()
def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
return input_lengths
def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor):
output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
batch_size = attention_mask.shape[0]
attention_mask = torch.zeros(
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values before the output lengths idxs are attended to
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
return attention_mask
|
class_definition
| 48,317 | 51,906 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,854 |
class SEWDModel(SEWDPreTrainedModel):
def __init__(self, config: SEWDConfig):
super().__init__(config)
self.config = config
self.feature_extractor = SEWDFeatureEncoder(config)
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.feature_layer_norm_eps)
self.project_features = config.conv_dim[-1] != config.hidden_size
if self.project_features:
self.feature_projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
self.feature_dropout = nn.Dropout(config.feat_proj_dropout)
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_())
self.encoder = SEWDEncoder(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
def _mask_hidden_states(
self,
hidden_states: torch.FloatTensor,
mask_time_indices: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
# generate indices & apply SpecAugment along time axis
batch_size, sequence_length, hidden_size = hidden_states.size()
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
elif self.config.mask_time_prob > 0 and self.training:
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
hidden_states[mask_feature_indices] = 0
return hidden_states
@add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
extract_features = self.layer_norm(extract_features)
if self.project_features:
extract_features = self.feature_projection(extract_features)
hidden_states = self.feature_dropout(extract_features)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if not return_dict:
return (hidden_states,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 54,755 | 60,248 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,855 |
class SEWDForCTC(SEWDPreTrainedModel):
def __init__(self, config, target_lang: Optional[str] = None):
super().__init__(config)
self.sew_d = SEWDModel(config)
self.dropout = nn.Dropout(config.final_dropout)
self.target_lang = target_lang
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `SEWDForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
output_hidden_size = (
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
)
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def tie_weights(self):
"""
This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
passing `target_lang=...` to `from_pretrained(...)`.
This method is **not** supposed to be called by the user and is prone to be changed in the future.
"""
# Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
# correctly load adapter layers for SEWD so that we do not have to introduce a new API to
# [`PreTrainedModel`]. While slightly hacky, SEWD never has to tie input and output embeddings, so that it is
# ok to repurpose this function here.
target_lang = self.target_lang
if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
logger.info("By default `target_lang` is set to 'eng'.")
elif target_lang is not None:
self.load_adapter(target_lang, force_load=True)
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.sew_d.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.sew_d.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_CTC_EXPECTED_OUTPUT,
expected_loss=_CTC_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
config.vocab_size - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None and labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
outputs = self.sew_d(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
)
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.config.pad_token_id,
reduction=self.config.ctc_loss_reduction,
zero_infinity=self.config.ctc_zero_infinity,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
|
class_definition
| 60,545 | 67,325 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,856 |
class SEWDForSequenceClassification(SEWDPreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Sequence classification does not support the use of SEWD adapters (config.add_adapter=True)"
)
self.sew_d = SEWDModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.sew_d.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.sew_d.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_SEQ_CLASS_CHECKPOINT,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.sew_d(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
if attention_mask is None:
pooled_output = hidden_states.mean(dim=1)
else:
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
expand_padding_mask = padding_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_padding_mask] = 0.0
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 67,689 | 72,761 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/modeling_sew_d.py
| null | 2,857 |
class SEWDConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SEWDModel`]. It is used to instantiate a SEW-D
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the SEW-D
[asapp/sew-d-tiny-100k](https://huggingface.co/asapp/sew-d-tiny-100k) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32):
Vocabulary size of the SEW-D model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`SEWD`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
squeeze_factor (`int`, *optional*, defaults to 2):
Sequence length downsampling factor after the encoder and upsampling factor after the transformer.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
position_buckets (`int`, *optional*, defaults to 256):
The maximum size of relative position embeddings.
share_att_key (`bool`, *optional*, defaults to `True`):
Whether to share attention key with c2p and p2c.
relative_attention (`bool`, *optional*, defaults to `True`):
Whether to use relative position encoding.
pos_att_type (`Tuple[str]`, *optional*, defaults to `("p2c", "c2p")`):
The type of relative position attention, it can be a combination of `("p2c", "c2p")`, e.g. `("p2c")`,
`("p2c", "c2p")`, `("p2c", "c2p")`.
norm_rel_ebd (`str`, *optional*, defaults to `"layer_norm"`):
Whether to use layer norm in relative embedding (`"layer_norm"` if yes)
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_python"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"`, `"gelu_python"` and `"gelu_new"` are supported.
hidden_dropout (`float`, *optional*, defaults to 0.1):
Deprecated. Not used by the model and will be removed in a future version.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
final_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the final projection layer of [`SEWDForCTC`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-7):
The epsilon used by the layer normalization layers in the transformer encoder.
feature_layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization after the feature encoder.
feat_extract_norm (`str`, *optional*, defaults to `"group"`):
The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
convolutional layers.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the feature encoder.
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
conv_bias (`bool`, *optional*, defaults to `False`):
Whether the 1D convolutional layers have a bias.
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
embeddings layer.
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
Number of groups of 1D convolutional positional embeddings layer.
apply_spec_augment (`bool`, *optional*, defaults to `True`):
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition](https://arxiv.org/abs/1904.08779).
mask_time_prob (`float`, *optional*, defaults to 0.05):
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2),:
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
mask_feature_prob (`float`, *optional*, defaults to 0.0):
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
step, irrespectively of `mask_feature_prob`. Only relevant if
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
diversity_loss_weight (`int`, *optional*, defaults to 0.1):
The weight of the codebook diversity loss component.
ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
instance of [`SEWDForCTC`].
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
of [`SEWDForCTC`].
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
instance of [`Wav2Vec2ForSequenceClassification`].
classifier_proj_size (`int`, *optional*, defaults to 256):
Dimensionality of the projection before token mean-pooling for classification.
Example:
```python
>>> from transformers import SEWDConfig, SEWDModel
>>> # Initializing a SEW-D asapp/sew-d-tiny-100k style configuration
>>> configuration = SEWDConfig()
>>> # Initializing a model (with random weights) from the asapp/sew-d-tiny-100k style configuration
>>> model = SEWDModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "sew-d"
def __init__(
self,
vocab_size=32,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
squeeze_factor=2,
max_position_embeddings=512,
position_buckets=256,
share_att_key=True,
relative_attention=True,
pos_att_type=("p2c", "c2p"),
norm_rel_ebd="layer_norm",
hidden_act="gelu_python",
hidden_dropout=0.1,
activation_dropout=0.1,
attention_dropout=0.1,
feat_proj_dropout=0.0,
final_dropout=0.1,
initializer_range=0.02,
layer_norm_eps=1e-7,
feature_layer_norm_eps=1e-5,
feat_extract_norm="group",
feat_extract_activation="gelu",
conv_dim=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512),
conv_stride=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1),
conv_kernel=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1),
conv_bias=False,
num_conv_pos_embeddings=128,
num_conv_pos_embedding_groups=16,
apply_spec_augment=True,
mask_time_prob=0.05,
mask_time_length=10,
mask_time_min_masks=2,
mask_feature_prob=0.0,
mask_feature_length=10,
mask_feature_min_masks=0,
ctc_loss_reduction="mean",
ctc_zero_infinity=False,
use_weighted_layer_sum=False,
classifier_proj_size=256,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_activation = feat_extract_activation
self.conv_dim = list(conv_dim)
self.conv_stride = list(conv_stride)
self.conv_kernel = list(conv_kernel)
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_feat_extract_layers = len(self.conv_dim)
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.squeeze_factor = squeeze_factor
self.max_position_embeddings = max_position_embeddings
self.position_buckets = position_buckets
self.share_att_key = share_att_key
self.relative_attention = relative_attention
self.norm_rel_ebd = norm_rel_ebd
self.pos_att_type = list(pos_att_type)
self.hidden_act = hidden_act
self.num_attention_heads = num_attention_heads
self._hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.feat_proj_dropout = feat_proj_dropout
self.final_dropout = final_dropout
self.layer_norm_eps = layer_norm_eps
self.feature_layer_norm_eps = feature_layer_norm_eps
self.initializer_range = initializer_range
self.vocab_size = vocab_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. "
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, "
f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride) "
f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`."
)
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
self.apply_spec_augment = apply_spec_augment
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.mask_time_min_masks = mask_time_min_masks
self.mask_feature_prob = mask_feature_prob
self.mask_feature_length = mask_feature_length
self.mask_feature_min_masks = mask_feature_min_masks
# ctc loss
self.ctc_loss_reduction = ctc_loss_reduction
self.ctc_zero_infinity = ctc_zero_infinity
# sequence classification
self.use_weighted_layer_sum = use_weighted_layer_sum
self.classifier_proj_size = classifier_proj_size
@property
def inputs_to_logits_ratio(self):
return functools.reduce(operator.mul, self.conv_stride, 1)
def to_dict(self):
"""
Serializes this instance to a Python dictionary.
"""
output = super().to_dict()
output["hidden_dropout"] = output.pop("_hidden_dropout")
return output
|
class_definition
| 831 | 16,147 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/sew_d/configuration_sew_d.py
| null | 2,858 |
class TableTransformerDecoderOutput(BaseModelOutputWithCrossAttentions):
"""
Base class for outputs of the TABLE_TRANSFORMER decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions,
namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them
gone through a layernorm. This is useful when training the model with auxiliary decoding losses.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
"""
intermediate_hidden_states: Optional[torch.FloatTensor] = None
|
class_definition
| 1,745 | 4,143 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,859 |
class TableTransformerModelOutput(Seq2SeqModelOutput):
"""
Base class for outputs of the TABLE_TRANSFORMER encoder-decoder model. This class adds one attribute to Seq2SeqModelOutput,
namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them
gone through a layernorm. This is useful when training the model with auxiliary decoding losses.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
"""
intermediate_hidden_states: Optional[torch.FloatTensor] = None
|
class_definition
| 4,278 | 7,793 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,860 |
class TableTransformerObjectDetectionOutput(ModelOutput):
"""
Output type of [`TableTransformerForObjectDetection`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
scale-invariant IoU loss.
loss_dict (`Dict`, *optional*):
A dictionary containing the individual losses. Useful for logging.
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
Classification logits (including no-object) for all queries.
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
possible padding). You can use [`~TableTransformerImageProcessor.post_process_object_detection`] to retrieve the
unnormalized bounding boxes.
auxiliary_outputs (`list[Dict]`, *optional*):
Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: torch.FloatTensor = None
pred_boxes: torch.FloatTensor = None
auxiliary_outputs: Optional[List[Dict]] = None
last_hidden_state: Optional[torch.FloatTensor] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
class_definition
| 7,953 | 12,938 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,861 |
class TableTransformerFrozenBatchNorm2d(nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
torchvision.models.resnet[18,34,50,101] produce nans.
"""
def __init__(self, n):
super().__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x):
# move reshapes to the beginning
# to make it user-friendly
weight = self.weight.reshape(1, -1, 1, 1)
bias = self.bias.reshape(1, -1, 1, 1)
running_var = self.running_var.reshape(1, -1, 1, 1)
running_mean = self.running_mean.reshape(1, -1, 1, 1)
epsilon = 1e-5
scale = weight * (running_var + epsilon).rsqrt()
bias = bias - running_mean * scale
return x * scale + bias
|
class_definition
| 13,044 | 14,568 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,862 |
class TableTransformerConvEncoder(nn.Module):
"""
Convolutional backbone, using either the AutoBackbone API or one from the timm library.
nn.BatchNorm2d layers are replaced by TableTransformerFrozenBatchNorm2d as defined above.
"""
def __init__(self, config):
super().__init__()
self.config = config
# For backwards compatibility we have to use the timm library directly instead of the AutoBackbone API
if config.use_timm_backbone:
# We default to values which were previously hard-coded. This enables configurability from the config
# using backbone arguments, while keeping the default behavior the same.
requires_backends(self, ["timm"])
kwargs = getattr(config, "backbone_kwargs", {})
kwargs = {} if kwargs is None else kwargs.copy()
out_indices = kwargs.pop("out_indices", (1, 2, 3, 4))
num_channels = kwargs.pop("in_chans", config.num_channels)
if config.dilation:
kwargs["output_stride"] = kwargs.get("output_stride", 16)
backbone = create_model(
config.backbone,
pretrained=config.use_pretrained_backbone,
features_only=True,
out_indices=out_indices,
in_chans=num_channels,
**kwargs,
)
else:
backbone = load_backbone(config)
# replace batch norm by frozen batch norm
with torch.no_grad():
replace_batch_norm(backbone)
self.model = backbone
self.intermediate_channel_sizes = (
self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels
)
backbone_model_type = None
if config.backbone is not None:
backbone_model_type = config.backbone
elif config.backbone_config is not None:
backbone_model_type = config.backbone_config.model_type
else:
raise ValueError("Either `backbone` or `backbone_config` should be provided in the config")
if "resnet" in backbone_model_type:
for name, parameter in self.model.named_parameters():
if config.use_timm_backbone:
if "layer2" not in name and "layer3" not in name and "layer4" not in name:
parameter.requires_grad_(False)
else:
if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name:
parameter.requires_grad_(False)
def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
# send pixel_values through the model to get list of feature maps
features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps
out = []
for feature_map in features:
# downsample pixel_mask to match shape of corresponding feature_map
mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
out.append((feature_map, mask))
return out
|
class_definition
| 15,610 | 18,789 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,863 |
class TableTransformerConvModel(nn.Module):
"""
This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder.
"""
def __init__(self, conv_encoder, position_embedding):
super().__init__()
self.conv_encoder = conv_encoder
self.position_embedding = position_embedding
def forward(self, pixel_values, pixel_mask):
# send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples
out = self.conv_encoder(pixel_values, pixel_mask)
pos = []
for feature_map, mask in out:
# position encoding
pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype))
return out, pos
|
class_definition
| 18,887 | 19,650 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,864 |
class TableTransformerSinePositionEmbedding(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
need paper, generalized to work on images.
"""
def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.embedding_dim = embedding_dim
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, pixel_values, pixel_mask):
if pixel_mask is None:
raise ValueError("No pixel mask provided")
y_embed = pixel_mask.cumsum(1, dtype=torch.float32)
x_embed = pixel_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale
dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float()
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
|
class_definition
| 19,760 | 21,476 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,865 |
class TableTransformerLearnedPositionEmbedding(nn.Module):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, embedding_dim=256):
super().__init__()
self.row_embeddings = nn.Embedding(50, embedding_dim)
self.column_embeddings = nn.Embedding(50, embedding_dim)
def forward(self, pixel_values, pixel_mask=None):
height, width = pixel_values.shape[-2:]
width_values = torch.arange(width, device=pixel_values.device)
height_values = torch.arange(height, device=pixel_values.device)
x_emb = self.column_embeddings(width_values)
y_emb = self.row_embeddings(height_values)
pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
pos = pos.permute(2, 0, 1)
pos = pos.unsqueeze(0)
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
return pos
|
class_definition
| 21,589 | 22,542 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,866 |
class TableTransformerAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper.
Here, we add position embeddings to the queries and keys (as explained in the TABLE_TRANSFORMER paper).
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if self.head_dim * num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor]):
return tensor if object_queries is None else tensor + object_queries
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
object_queries: Optional[torch.Tensor] = None,
key_value_states: Optional[torch.Tensor] = None,
spatial_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size, target_len, embed_dim = hidden_states.size()
# add position embeddings to the hidden states before projecting to queries and keys
if object_queries is not None:
hidden_states_original = hidden_states
hidden_states = self.with_pos_embed(hidden_states, object_queries)
# add key-value position embeddings to the key value states
if spatial_position_embeddings is not None:
key_value_states_original = key_value_states
key_value_states = self.with_pos_embed(key_value_states, spatial_position_embeddings)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, batch_size)
value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
source_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, target_len, source_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
|
class_definition
| 23,294 | 29,194 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,867 |
class TableTransformerEncoderLayer(nn.Module):
# Copied from transformers.models.detr.modeling_detr.DetrEncoderLayer.__init__ with Detr->TableTransformer
def __init__(self, config: TableTransformerConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = TableTransformerAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
object_queries: torch.Tensor = None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
object_queries (`torch.FloatTensor`, *optional*): object queries, to be added to hidden_states.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
object_queries=object_queries,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if self.training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 29,197 | 32,356 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,868 |
class TableTransformerDecoderLayer(nn.Module):
# Copied from transformers.models.detr.modeling_detr.DetrDecoderLayer.__init__ with Detr->TableTransformer
def __init__(self, config: TableTransformerConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = TableTransformerAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = TableTransformerAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
object_queries: Optional[torch.Tensor] = None,
query_position_embeddings: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
object_queries (`torch.FloatTensor`, *optional*):
object queries that are added to the queries and keys
in the cross-attention layer.
query_position_embeddings (`torch.FloatTensor`, *optional*):
object queries that are added to the queries and keys
in the self-attention layer.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
object_queries=query_position_embeddings,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
object_queries=query_position_embeddings,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
spatial_position_embeddings=object_queries,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
# Fully Connected
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
|
class_definition
| 32,359 | 37,221 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,869 |
class TableTransformerPreTrainedModel(PreTrainedModel):
config_class = TableTransformerConfig
base_model_prefix = "model"
main_input_name = "pixel_values"
_no_split_modules = [
r"TableTransformerConvEncoder",
r"TableTransformerEncoderLayer",
r"TableTransformerDecoderLayer",
]
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, TableTransformerLearnedPositionEmbedding):
nn.init.uniform_(module.row_embeddings.weight)
nn.init.uniform_(module.column_embeddings.weight)
if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 37,224 | 38,399 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,870 |
class TableTransformerEncoder(TableTransformerPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`TableTransformerEncoderLayer`].
The encoder updates the flattened feature map through multiple self-attention layers.
Small tweak for Table Transformer:
- object_queries are added to the forward pass.
Args:
config: TableTransformerConfig
"""
def __init__(self, config: TableTransformerConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.layers = nn.ModuleList([TableTransformerEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm = nn.LayerNorm(config.d_model)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
inputs_embeds=None,
attention_mask=None,
object_queries=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
- 1 for pixel features that are real (i.e. **not masked**),
- 0 for pixel features that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Position embeddings that are added to the queries and keys in each self-attention layer.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = inputs_embeds
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
# we add object_queries as extra input to the encoder_layer
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
object_queries=object_queries,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
hidden_states = self.layernorm(hidden_states)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
|
class_definition
| 41,748 | 46,619 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,871 |
class TableTransformerDecoder(TableTransformerPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TableTransformerDecoderLayer`].
The decoder updates the query embeddings through multiple self-attention and cross-attention layers.
Some small tweaks for TABLE_TRANSFORMER:
- object_queries and query_position_embeddings are added to the forward pass.
- if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers.
Args:
config: TableTransformerConfig
"""
def __init__(self, config: TableTransformerConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.layers = nn.ModuleList([TableTransformerDecoderLayer(config) for _ in range(config.decoder_layers)])
# in TABLE_TRANSFORMER, the decoder uses layernorm after the last decoder layer output
self.layernorm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
inputs_embeds=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
object_queries=None,
query_position_embeddings=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The query embeddings that are passed into the decoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`:
- 1 for queries that are **not masked**,
- 0 for queries that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Object queries that are added to the queries and keys in each cross-attention layer.
query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
, *optional*): Position embeddings that are added to the values and keys in each self-attention layer.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None:
hidden_states = inputs_embeds
input_shape = inputs_embeds.size()[:-1]
combined_attention_mask = None
if attention_mask is not None and combined_attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
combined_attention_mask = combined_attention_mask + _prepare_4d_attention_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# optional intermediate hidden states
intermediate = () if self.config.auxiliary_loss else None
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
combined_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
object_queries=object_queries,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if self.config.auxiliary_loss:
hidden_states = self.layernorm(hidden_states)
intermediate += (hidden_states,)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# finally, apply layernorm
hidden_states = self.layernorm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
# stack intermediate decoder activations
if self.config.auxiliary_loss:
intermediate = torch.stack(intermediate)
if not return_dict:
return tuple(
v
for v in [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, intermediate]
if v is not None
)
return TableTransformerDecoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
intermediate_hidden_states=intermediate,
)
|
class_definition
| 46,739 | 54,731 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,872 |
class TableTransformerModel(TableTransformerPreTrainedModel):
# Copied from transformers.models.detr.modeling_detr.DetrModel.__init__ with Detr->TableTransformer
def __init__(self, config: TableTransformerConfig):
super().__init__(config)
# Create backbone + positional encoding
backbone = TableTransformerConvEncoder(config)
object_queries = build_position_encoding(config)
self.backbone = TableTransformerConvModel(backbone, object_queries)
# Create projection layer
self.input_projection = nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1)
self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model)
self.encoder = TableTransformerEncoder(config)
self.decoder = TableTransformerDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def freeze_backbone(self):
for name, param in self.backbone.conv_encoder.model.named_parameters():
param.requires_grad_(False)
def unfreeze_backbone(self):
for name, param in self.backbone.conv_encoder.model.named_parameters():
param.requires_grad_(True)
@add_start_docstrings_to_model_forward(TABLE_TRANSFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TableTransformerModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.FloatTensor] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], TableTransformerModelOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TableTransformerModel
>>> from huggingface_hub import hf_hub_download
>>> from PIL import Image
>>> file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png")
>>> image = Image.open(file_path).convert("RGB")
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection")
>>> model = TableTransformerModel.from_pretrained("microsoft/table-transformer-detection")
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> # the last hidden states are the final query embeddings of the Transformer decoder
>>> # these are of shape (batch_size, num_queries, hidden_size)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 15, 256]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_channels, height, width = pixel_values.shape
device = pixel_values.device
if pixel_mask is None:
pixel_mask = torch.ones(((batch_size, height, width)), device=device)
# First, sent pixel_values + pixel_mask through Backbone to obtain the features
# pixel_values should be of shape (batch_size, num_channels, height, width)
# pixel_mask should be of shape (batch_size, height, width)
features, position_embeddings_list = self.backbone(pixel_values, pixel_mask)
# get final feature map and downsampled mask
feature_map, mask = features[-1]
if mask is None:
raise ValueError("Backbone does not return downsampled pixel mask")
# Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
projected_feature_map = self.input_projection(feature_map)
# Third, flatten the feature map + object queries of shape NxCxHxW to NxCxHW, and permute it to NxHWxC
# In other words, turn their shape into (batch_size, sequence_length, hidden_size)
flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1)
object_queries = position_embeddings_list[-1].flatten(2).permute(0, 2, 1)
flattened_mask = mask.flatten(1)
# Fourth, sent flattened_features + flattened_mask + object queries through encoder
# flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size)
# flattened_mask is a Tensor of shape (batch_size, heigth*width)
if encoder_outputs is None:
encoder_outputs = self.encoder(
inputs_embeds=flattened_features,
attention_mask=flattened_mask,
object_queries=object_queries,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# Fifth, sent query embeddings + object queries through the decoder (which is conditioned on the encoder output)
query_position_embeddings = self.query_position_embeddings.weight.unsqueeze(0).repeat(batch_size, 1, 1)
queries = torch.zeros_like(query_position_embeddings)
# decoder outputs consists of (dec_features, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
inputs_embeds=queries,
attention_mask=None,
object_queries=object_queries,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=flattened_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return TableTransformerModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
)
|
class_definition
| 54,978 | 62,528 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,873 |
class TableTransformerForObjectDetection(TableTransformerPreTrainedModel):
# Copied from transformers.models.detr.modeling_detr.DetrForObjectDetection.__init__ with Detr->TableTransformer
def __init__(self, config: TableTransformerConfig):
super().__init__(config)
# DETR encoder-decoder model
self.model = TableTransformerModel(config)
# Object detection heads
self.class_labels_classifier = nn.Linear(
config.d_model, config.num_labels + 1
) # We add one for the "no object" class
self.bbox_predictor = TableTransformerMLPPredictionHead(
input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(TABLE_TRANSFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TableTransformerObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.FloatTensor] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[List[Dict]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], TableTransformerObjectDetectionOutput]:
r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
Returns:
Examples:
```python
>>> from huggingface_hub import hf_hub_download
>>> from transformers import AutoImageProcessor, TableTransformerForObjectDetection
>>> import torch
>>> from PIL import Image
>>> file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png")
>>> image = Image.open(file_path).convert("RGB")
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection")
>>> model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> target_sizes = torch.tensor([image.size[::-1]])
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[
... 0
... ]
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
... box = [round(i, 2) for i in box.tolist()]
... print(
... f"Detected {model.config.id2label[label.item()]} with confidence "
... f"{round(score.item(), 3)} at location {box}"
... )
Detected table with confidence 1.0 at location [202.1, 210.59, 1119.22, 385.09]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# First, sent images through TABLE_TRANSFORMER base model to obtain encoder + decoder outputs
outputs = self.model(
pixel_values,
pixel_mask=pixel_mask,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# class logits + predicted bounding boxes
logits = self.class_labels_classifier(sequence_output)
pred_boxes = self.bbox_predictor(sequence_output).sigmoid()
loss, loss_dict, auxiliary_outputs = None, None, None
if labels is not None:
outputs_class, outputs_coord = None, None
if self.config.auxiliary_loss:
intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4]
outputs_class = self.class_labels_classifier(intermediate)
outputs_coord = self.bbox_predictor(intermediate).sigmoid()
loss, loss_dict, auxiliary_outputs = self.loss_function(
logits, labels, self.device, pred_boxes, self.config, outputs_class, outputs_coord
)
if not return_dict:
if auxiliary_outputs is not None:
output = (logits, pred_boxes) + auxiliary_outputs + outputs
else:
output = (logits, pred_boxes) + outputs
return ((loss, loss_dict) + output) if loss is not None else output
return TableTransformerObjectDetectionOutput(
loss=loss,
loss_dict=loss_dict,
logits=logits,
pred_boxes=pred_boxes,
auxiliary_outputs=auxiliary_outputs,
last_hidden_state=outputs.last_hidden_state,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
|
class_definition
| 62,773 | 68,976 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,874 |
class TableTransformerMLPPredictionHead(nn.Module):
"""
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
height and width of a bounding box w.r.t. an image.
Copied from https://github.com/facebookresearch/table_transformer/blob/master/models/table_transformer.py
"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
|
class_definition
| 69,106 | 69,917 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/modeling_table_transformer.py
| null | 2,875 |
class TableTransformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TableTransformerModel`]. It is used to
instantiate a Table Transformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Table Transformer
[microsoft/table-transformer-detection](https://huggingface.co/microsoft/table-transformer-detection) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
use_timm_backbone (`bool`, *optional*, defaults to `True`):
Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
API.
backbone_config (`PretrainedConfig` or `dict`, *optional*):
The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
case it will default to `ResNetConfig()`.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
num_queries (`int`, *optional*, defaults to 100):
Number of object queries, i.e. detection slots. This is the maximal number of objects
[`TableTransformerModel`] can detect in a single image. For COCO, we recommend 100 queries.
d_model (`int`, *optional*, defaults to 256):
Dimension of the layers.
encoder_layers (`int`, *optional*, defaults to 6):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 6):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
init_xavier_std (`float`, *optional*, defaults to 1):
The scaling factor used for the Xavier initialization gain in the HM Attention map module.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
auxiliary_loss (`bool`, *optional*, defaults to `False`):
Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
position_embedding_type (`str`, *optional*, defaults to `"sine"`):
Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
backbone (`str`, *optional*):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, `True`):
Whether to use pretrained weights for the backbone.
backbone_kwargs (`dict`, *optional*):
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
dilation (`bool`, *optional*, defaults to `False`):
Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
`use_timm_backbone` = `True`.
class_cost (`float`, *optional*, defaults to 1):
Relative weight of the classification error in the Hungarian matching cost.
bbox_cost (`float`, *optional*, defaults to 5):
Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
giou_cost (`float`, *optional*, defaults to 2):
Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
mask_loss_coefficient (`float`, *optional*, defaults to 1):
Relative weight of the Focal loss in the panoptic segmentation loss.
dice_loss_coefficient (`float`, *optional*, defaults to 1):
Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
bbox_loss_coefficient (`float`, *optional*, defaults to 5):
Relative weight of the L1 bounding box loss in the object detection loss.
giou_loss_coefficient (`float`, *optional*, defaults to 2):
Relative weight of the generalized IoU loss in the object detection loss.
eos_coefficient (`float`, *optional*, defaults to 0.1):
Relative classification weight of the 'no-object' class in the object detection loss.
Examples:
```python
>>> from transformers import TableTransformerModel, TableTransformerConfig
>>> # Initializing a Table Transformer microsoft/table-transformer-detection style configuration
>>> configuration = TableTransformerConfig()
>>> # Initializing a model from the microsoft/table-transformer-detection style configuration
>>> model = TableTransformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "table-transformer"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
# Copied from transformers.models.detr.configuration_detr.DetrConfig.__init__
def __init__(
self,
use_timm_backbone=True,
backbone_config=None,
num_channels=3,
num_queries=100,
encoder_layers=6,
encoder_ffn_dim=2048,
encoder_attention_heads=8,
decoder_layers=6,
decoder_ffn_dim=2048,
decoder_attention_heads=8,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
is_encoder_decoder=True,
activation_function="relu",
d_model=256,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
init_xavier_std=1.0,
auxiliary_loss=False,
position_embedding_type="sine",
backbone="resnet50",
use_pretrained_backbone=True,
backbone_kwargs=None,
dilation=False,
class_cost=1,
bbox_cost=5,
giou_cost=2,
mask_loss_coefficient=1,
dice_loss_coefficient=1,
bbox_loss_coefficient=5,
giou_loss_coefficient=2,
eos_coefficient=0.1,
**kwargs,
):
# We default to values which were previously hard-coded in the model. This enables configurability of the config
# while keeping the default behavior the same.
if use_timm_backbone and backbone_kwargs is None:
backbone_kwargs = {}
if dilation:
backbone_kwargs["output_stride"] = 16
backbone_kwargs["out_indices"] = [1, 2, 3, 4]
backbone_kwargs["in_chans"] = num_channels
# Backwards compatibility
elif not use_timm_backbone and backbone in (None, "resnet50"):
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"])
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.get("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
backbone = None
# set timm attributes to None
dilation = None
verify_backbone_config_arguments(
use_timm_backbone=use_timm_backbone,
use_pretrained_backbone=use_pretrained_backbone,
backbone=backbone,
backbone_config=backbone_config,
backbone_kwargs=backbone_kwargs,
)
self.use_timm_backbone = use_timm_backbone
self.backbone_config = backbone_config
self.num_channels = num_channels
self.num_queries = num_queries
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.init_xavier_std = init_xavier_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.num_hidden_layers = encoder_layers
self.auxiliary_loss = auxiliary_loss
self.position_embedding_type = position_embedding_type
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.backbone_kwargs = backbone_kwargs
self.dilation = dilation
# Hungarian matcher
self.class_cost = class_cost
self.bbox_cost = bbox_cost
self.giou_cost = giou_cost
# Loss coefficients
self.mask_loss_coefficient = mask_loss_coefficient
self.dice_loss_coefficient = dice_loss_coefficient
self.bbox_loss_coefficient = bbox_loss_coefficient
self.giou_loss_coefficient = giou_loss_coefficient
self.eos_coefficient = eos_coefficient
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
@property
def num_attention_heads(self) -> int:
return self.encoder_attention_heads
@property
def hidden_size(self) -> int:
return self.d_model
|
class_definition
| 1,018 | 12,698 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/configuration_table_transformer.py
| null | 2,876 |
class TableTransformerOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-5
@property
def default_onnx_opset(self) -> int:
return 12
|
class_definition
| 12,774 | 13,303 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/table_transformer/configuration_table_transformer.py
| null | 2,877 |
class BarkSemanticGenerationConfig(GenerationConfig):
model_type = "semantic"
def __init__(
self,
eos_token_id=10_000,
renormalize_logits=True,
max_new_tokens=768,
output_scores=False,
return_dict_in_generate=False,
output_hidden_states=False,
output_attentions=False,
temperature=1.0,
do_sample=False,
text_encoding_offset=10_048,
text_pad_token=129_595,
semantic_infer_token=129_599,
semantic_vocab_size=10_000,
max_input_semantic_length=256,
semantic_rate_hz=49.9,
min_eos_p=None,
**kwargs,
):
"""Class that holds a generation configuration for [`BarkSemanticModel`].
This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the
documentation from [`GenerationConfig`] for more information.
Args:
eos_token_id (`int`, *optional*, defaults to 10_000):
The id of the *end-of-sequence* token.
renormalize_logits (`bool`, *optional*, defaults to `True`):
Whether to renormalize the logits after applying all the logits processors (including the
custom ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the
score logits are normalized but some logit processors break the normalization.
max_new_tokens (`int`, *optional*, defaults to 768):
The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
temperature (`float`, *optional*, defaults to 1.0):
The value used to modulate the next token probabilities.
do_sample (`bool`, *optional*, defaults to `False`):
Whether or not to use sampling ; use greedy decoding otherwise.
text_encoding_offset (`int`, *optional*, defaults to 10_048):
Text encoding offset.
text_pad_token (`int`, *optional*, defaults to 129_595):
Text pad token.
semantic_infer_token (`int`, *optional*, defaults to 129_599):
Semantic infer token.
semantic_vocab_size (`int`, *optional*, defaults to 10_000):
Semantic vocab size.
max_input_semantic_length (`int`, *optional*, defaults to 256):
Max length of semantic input vector.
semantic_rate_hz (`float`, *optional*, defaults to 49.9):
Semantic rate in Hertz.
min_eos_p (`float`, *optional*):
Minimum threshold of the probability of the EOS token for it to be sampled. This is an early stopping
strategy to mitigate potential unwanted generations at the end of a prompt. The original implementation
suggests a default value of 0.2.
"""
super().__init__(
temperature=temperature,
do_sample=do_sample,
eos_token_id=eos_token_id,
renormalize_logits=renormalize_logits,
max_new_tokens=max_new_tokens,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
**kwargs,
)
self.text_encoding_offset = text_encoding_offset
self.text_pad_token = text_pad_token
self.semantic_pad_token = eos_token_id
self.semantic_infer_token = semantic_infer_token
self.semantic_vocab_size = semantic_vocab_size
self.max_input_semantic_length = max_input_semantic_length
self.semantic_rate_hz = semantic_rate_hz
self.min_eos_p = min_eos_p
|
class_definition
| 864 | 5,488 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/generation_configuration_bark.py
| null | 2,878 |
class BarkCoarseGenerationConfig(GenerationConfig):
model_type = "coarse_acoustics"
def __init__(
self,
renormalize_logits=True,
output_scores=False,
return_dict_in_generate=False,
output_hidden_states=False,
output_attentions=False,
temperature=1.0,
do_sample=False,
coarse_semantic_pad_token=12_048,
coarse_rate_hz=75,
n_coarse_codebooks=2,
coarse_infer_token=12_050,
max_coarse_input_length=256,
max_coarse_history: int = 630,
sliding_window_len: int = 60,
**kwargs,
):
"""Class that holds a generation configuration for [`BarkCoarseModel`].
This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the
documentation from [`GenerationConfig`] for more information.
Args:
renormalize_logits (`bool`, *optional*, defaults to `True`):
Whether to renormalize the logits after applying all the logits processors (including the
custom ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the
score logits are normalized but some logit processors break the normalization.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
temperature (`float`, *optional*, defaults to 1.0):
The value used to modulate the next token probabilities.
do_sample (`bool`, *optional*, defaults to `False`):
Whether or not to use sampling ; use greedy decoding otherwise.
coarse_semantic_pad_token (`int`, *optional*, defaults to 12_048):
Coarse semantic pad token.
coarse_rate_hz (`int`, *optional*, defaults to 75):
Coarse rate in Hertz.
n_coarse_codebooks (`int`, *optional*, defaults to 2):
Number of coarse codebooks.
coarse_infer_token (`int`, *optional*, defaults to 12_050):
Coarse infer token.
max_coarse_input_length (`int`, *optional*, defaults to 256):
Max length of input coarse vector.
max_coarse_history (`int`, *optional*, defaults to 630):
Max length of the output of the coarse acoustics model used in the fine generation step.
sliding_window_len (`int`, *optional*, defaults to 60):
The coarse generation step uses a sliding window to generate raw audio.
"""
super().__init__(
temperature=temperature,
do_sample=do_sample,
renormalize_logits=renormalize_logits,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
**kwargs,
)
self.coarse_semantic_pad_token = coarse_semantic_pad_token
self.coarse_rate_hz = coarse_rate_hz
self.n_coarse_codebooks = n_coarse_codebooks
self.coarse_infer_token = coarse_infer_token
self.max_coarse_input_length = max_coarse_input_length
self.max_coarse_history = max_coarse_history
self.sliding_window_len = sliding_window_len
|
class_definition
| 5,491 | 9,567 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/generation_configuration_bark.py
| null | 2,879 |
class BarkFineGenerationConfig(GenerationConfig):
model_type = "fine_acoustics"
def __init__(
self,
temperature=1.0,
max_fine_history_length=512,
max_fine_input_length=1024,
n_fine_codebooks=8,
**kwargs,
):
"""Class that holds a generation configuration for [`BarkFineModel`].
[`BarkFineModel`] is an autoencoder model, so should not usually be used for generation. However, under the
hood, it uses `temperature` when used by [`BarkModel`]
This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the
documentation from [`GenerationConfig`] for more information.
Args:
temperature (`float`, *optional*):
The value used to modulate the next token probabilities.
max_fine_history_length (`int`, *optional*, defaults to 512):
Max length of the fine history vector.
max_fine_input_length (`int`, *optional*, defaults to 1024):
Max length of fine input vector.
n_fine_codebooks (`int`, *optional*, defaults to 8):
Number of codebooks used.
"""
super().__init__(temperature=temperature)
self.max_fine_history_length = max_fine_history_length
self.max_fine_input_length = max_fine_input_length
self.n_fine_codebooks = n_fine_codebooks
def validate(self, **kwargs):
"""
Overrides GenerationConfig.validate because BarkFineGenerationConfig don't use any parameters outside
temperature.
"""
pass
|
class_definition
| 9,570 | 11,215 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/generation_configuration_bark.py
| null | 2,880 |
class BarkGenerationConfig(GenerationConfig):
model_type = "bark"
is_composition = True
# TODO (joao): nested from_dict
def __init__(
self,
semantic_config: Dict = None,
coarse_acoustics_config: Dict = None,
fine_acoustics_config: Dict = None,
sample_rate=24_000,
codebook_size=1024,
**kwargs,
):
"""Class that holds a generation configuration for [`BarkModel`].
The [`BarkModel`] does not have a `generate` method, but uses this class to generate speeches with a nested
[`BarkGenerationConfig`] which uses [`BarkSemanticGenerationConfig`], [`BarkCoarseGenerationConfig`],
[`BarkFineGenerationConfig`].
This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the
documentation from [`GenerationConfig`] for more information.
Args:
semantic_config (`Dict`, *optional*):
Semantic generation configuration.
coarse_acoustics_config (`Dict`, *optional*):
Coarse generation configuration.
fine_acoustics_config (`Dict`, *optional*):
Fine generation configuration.
sample_rate (`int`, *optional*, defaults to 24_000):
Sample rate.
codebook_size (`int`, *optional*, defaults to 1024):
Vector length for each codebook.
"""
if semantic_config is None:
semantic_config = {}
logger.info("semantic_config is None. initializing the semantic model with default values.")
if coarse_acoustics_config is None:
coarse_acoustics_config = {}
logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.")
if fine_acoustics_config is None:
fine_acoustics_config = {}
logger.info("fine_acoustics_config is None. initializing the fine model with default values.")
self.semantic_config = BarkSemanticGenerationConfig(**semantic_config)
self.coarse_acoustics_config = BarkCoarseGenerationConfig(**coarse_acoustics_config)
self.fine_acoustics_config = BarkFineGenerationConfig(**fine_acoustics_config)
self.sample_rate = sample_rate
self.codebook_size = codebook_size
@classmethod
def from_sub_model_configs(
cls,
semantic_config: BarkSemanticGenerationConfig,
coarse_acoustics_config: BarkCoarseGenerationConfig,
fine_acoustics_config: BarkFineGenerationConfig,
**kwargs,
):
r"""
Instantiate a [`BarkGenerationConfig`] (or a derived class) from bark sub-models generation configuration.
Returns:
[`BarkGenerationConfig`]: An instance of a configuration object
"""
return cls(
semantic_config=semantic_config.to_dict(),
coarse_acoustics_config=coarse_acoustics_config.to_dict(),
fine_acoustics_config=fine_acoustics_config.to_dict(),
**kwargs,
)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["semantic_config"] = self.semantic_config.to_dict()
output["coarse_acoustics_config"] = self.coarse_acoustics_config.to_dict()
output["fine_acoustics_config"] = self.fine_acoustics_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
|
class_definition
| 11,218 | 14,946 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/generation_configuration_bark.py
| null | 2,881 |
class BarkProcessor(ProcessorMixin):
r"""
Constructs a Bark processor which wraps a text tokenizer and optional Bark voice presets into a single processor.
Args:
tokenizer ([`PreTrainedTokenizer`]):
An instance of [`PreTrainedTokenizer`].
speaker_embeddings (`Dict[Dict[str]]`, *optional*):
Optional nested speaker embeddings dictionary. The first level contains voice preset names (e.g
`"en_speaker_4"`). The second level contains `"semantic_prompt"`, `"coarse_prompt"` and `"fine_prompt"`
embeddings. The values correspond to the path of the corresponding `np.ndarray`. See
[here](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c) for
a list of `voice_preset_names`.
"""
tokenizer_class = "AutoTokenizer"
attributes = ["tokenizer"]
preset_shape = {
"semantic_prompt": 1,
"coarse_prompt": 2,
"fine_prompt": 2,
}
def __init__(self, tokenizer, speaker_embeddings=None):
super().__init__(tokenizer)
self.speaker_embeddings = speaker_embeddings
@classmethod
def from_pretrained(
cls, pretrained_processor_name_or_path, speaker_embeddings_dict_path="speaker_embeddings_path.json", **kwargs
):
r"""
Instantiate a Bark processor associated with a pretrained model.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained [`BarkProcessor`] hosted inside a model repo on
huggingface.co.
- a path to a *directory* containing a processor saved using the [`~BarkProcessor.save_pretrained`]
method, e.g., `./my_model_directory/`.
speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`):
The name of the `.json` file containing the speaker_embeddings dictionnary located in
`pretrained_model_name_or_path`. If `None`, no speaker_embeddings is loaded.
**kwargs
Additional keyword arguments passed along to both
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`].
"""
if speaker_embeddings_dict_path is not None:
speaker_embeddings_path = get_file_from_repo(
pretrained_processor_name_or_path,
speaker_embeddings_dict_path,
subfolder=kwargs.pop("subfolder", None),
cache_dir=kwargs.pop("cache_dir", None),
force_download=kwargs.pop("force_download", False),
proxies=kwargs.pop("proxies", None),
resume_download=kwargs.pop("resume_download", None),
local_files_only=kwargs.pop("local_files_only", False),
token=kwargs.pop("use_auth_token", None),
revision=kwargs.pop("revision", None),
)
if speaker_embeddings_path is None:
logger.warning(
f"""`{os.path.join(pretrained_processor_name_or_path,speaker_embeddings_dict_path)}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`."""
)
speaker_embeddings = None
else:
with open(speaker_embeddings_path) as speaker_embeddings_json:
speaker_embeddings = json.load(speaker_embeddings_json)
else:
speaker_embeddings = None
tokenizer = AutoTokenizer.from_pretrained(pretrained_processor_name_or_path, **kwargs)
return cls(tokenizer=tokenizer, speaker_embeddings=speaker_embeddings)
def save_pretrained(
self,
save_directory,
speaker_embeddings_dict_path="speaker_embeddings_path.json",
speaker_embeddings_directory="speaker_embeddings",
push_to_hub: bool = False,
**kwargs,
):
"""
Saves the attributes of this processor (tokenizer...) in the specified directory so that it can be reloaded
using the [`~BarkProcessor.from_pretrained`] method.
Args:
save_directory (`str` or `os.PathLike`):
Directory where the tokenizer files and the speaker embeddings will be saved (directory will be created
if it does not exist).
speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`):
The name of the `.json` file that will contains the speaker_embeddings nested path dictionnary, if it
exists, and that will be located in `pretrained_model_name_or_path/speaker_embeddings_directory`.
speaker_embeddings_directory (`str`, *optional*, defaults to `"speaker_embeddings/"`):
The name of the folder in which the speaker_embeddings arrays will be saved.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs:
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(save_directory, speaker_embeddings_directory, "v2"), exist_ok=True)
embeddings_dict = {}
embeddings_dict["repo_or_path"] = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
voice_preset = self._load_voice_preset(prompt_key)
tmp_dict = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["repo_or_path"], speaker_embeddings_directory, f"{prompt_key}_{key}"
),
voice_preset[key],
allow_pickle=False,
)
tmp_dict[key] = os.path.join(speaker_embeddings_directory, f"{prompt_key}_{key}.npy")
embeddings_dict[prompt_key] = tmp_dict
with open(os.path.join(save_directory, speaker_embeddings_dict_path), "w") as fp:
json.dump(embeddings_dict, fp)
super().save_pretrained(save_directory, push_to_hub, **kwargs)
def _load_voice_preset(self, voice_preset: str = None, **kwargs):
voice_preset_paths = self.speaker_embeddings[voice_preset]
voice_preset_dict = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]."
)
path = get_file_from_repo(
self.speaker_embeddings.get("repo_or_path", "/"),
voice_preset_paths[key],
subfolder=kwargs.pop("subfolder", None),
cache_dir=kwargs.pop("cache_dir", None),
force_download=kwargs.pop("force_download", False),
proxies=kwargs.pop("proxies", None),
resume_download=kwargs.pop("resume_download", None),
local_files_only=kwargs.pop("local_files_only", False),
token=kwargs.pop("use_auth_token", None),
revision=kwargs.pop("revision", None),
)
if path is None:
raise ValueError(
f"""`{os.path.join(self.speaker_embeddings.get("repo_or_path", "/"),voice_preset_paths[key])}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings."""
)
voice_preset_dict[key] = np.load(path)
return voice_preset_dict
def _validate_voice_preset_dict(self, voice_preset: Optional[dict] = None):
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(f"Voice preset unrecognized, missing {key} as a key.")
if not isinstance(voice_preset[key], np.ndarray):
raise TypeError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
if len(voice_preset[key].shape) != self.preset_shape[key]:
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
def __call__(
self,
text=None,
voice_preset=None,
return_tensors="pt",
max_length=256,
add_special_tokens=False,
return_attention_mask=True,
return_token_type_ids=False,
**kwargs,
):
"""
Main method to prepare for the model one or several sequences(s). This method forwards the `text` and `kwargs`
arguments to the AutoTokenizer's [`~AutoTokenizer.__call__`] to encode the text. The method also proposes a
voice preset which is a dictionary of arrays that conditions `Bark`'s output. `kwargs` arguments are forwarded
to the tokenizer and to `cached_file` method if `voice_preset` is a valid filename.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
voice_preset (`str`, `Dict[np.ndarray]`):
The voice preset, i.e the speaker embeddings. It can either be a valid voice_preset name, e.g
`"en_speaker_1"`, or directly a dictionnary of `np.ndarray` embeddings for each submodel of `Bark`. Or
it can be a valid file name of a local `.npz` single voice preset.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
Returns:
Tuple([`BatchEncoding`], [`BatchFeature`]): A tuple composed of a [`BatchEncoding`], i.e the output of the
`tokenizer` and a [`BatchFeature`], i.e the voice preset with the right tensors type.
"""
if voice_preset is not None and not isinstance(voice_preset, dict):
if (
isinstance(voice_preset, str)
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
voice_preset = self._load_voice_preset(voice_preset)
else:
if isinstance(voice_preset, str) and not voice_preset.endswith(".npz"):
voice_preset = voice_preset + ".npz"
voice_preset = np.load(voice_preset)
if voice_preset is not None:
self._validate_voice_preset_dict(voice_preset, **kwargs)
voice_preset = BatchFeature(data=voice_preset, tensor_type=return_tensors)
encoded_text = self.tokenizer(
text,
return_tensors=return_tensors,
padding="max_length",
max_length=max_length,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
add_special_tokens=add_special_tokens,
**kwargs,
)
if voice_preset is not None:
encoded_text["history_prompt"] = voice_preset
return encoded_text
|
class_definition
| 1,003 | 13,309 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/processing_bark.py
| null | 2,882 |
class BarkSubModelConfig(PretrainedConfig):
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
"vocab_size": "input_vocab_size",
"window_size": "block_size",
}
def __init__(
self,
block_size=1024,
input_vocab_size=10_048,
output_vocab_size=10_048,
num_layers=12,
num_heads=12,
hidden_size=768,
dropout=0.0,
bias=True, # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
initializer_range=0.02,
use_cache=True,
**kwargs,
):
self.block_size = block_size
self.input_vocab_size = input_vocab_size
self.output_vocab_size = output_vocab_size
self.num_layers = num_layers
self.num_heads = num_heads
self.hidden_size = hidden_size
self.dropout = dropout
self.bias = bias
self.use_cache = use_cache
self.initializer_range = initializer_range
super().__init__(**kwargs)
|
class_definition
| 3,506 | 4,624 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/configuration_bark.py
| null | 2,883 |
class BarkSemanticConfig(BarkSubModelConfig):
model_type = "semantic"
base_config_key = "semantic_config"
|
class_definition
| 5,206 | 5,319 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/configuration_bark.py
| null | 2,884 |
class BarkCoarseConfig(BarkSubModelConfig):
model_type = "coarse_acoustics"
base_config_key = "coarse_acoustics_config"
|
class_definition
| 5,889 | 6,016 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/configuration_bark.py
| null | 2,885 |
class BarkFineConfig(BarkSubModelConfig):
model_type = "fine_acoustics"
base_config_key = "fine_acoustics_config"
def __init__(self, tie_word_embeddings=True, n_codes_total=8, n_codes_given=1, **kwargs):
self.n_codes_total = n_codes_total
self.n_codes_given = n_codes_given
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
class_definition
| 6,920 | 7,299 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/configuration_bark.py
| null | 2,886 |
class BarkConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`BarkModel`]. It is used to instantiate a Bark
model according to the specified sub-models configurations, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark
[suno/bark](https://huggingface.co/suno/bark) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
semantic_config ([`BarkSemanticConfig`], *optional*):
Configuration of the underlying semantic sub-model.
coarse_acoustics_config ([`BarkCoarseConfig`], *optional*):
Configuration of the underlying coarse acoustics sub-model.
fine_acoustics_config ([`BarkFineConfig`], *optional*):
Configuration of the underlying fine acoustics sub-model.
codec_config ([`AutoConfig`], *optional*):
Configuration of the underlying codec sub-model.
Example:
```python
>>> from transformers import (
... BarkSemanticConfig,
... BarkCoarseConfig,
... BarkFineConfig,
... BarkModel,
... BarkConfig,
... AutoConfig,
... )
>>> # Initializing Bark sub-modules configurations.
>>> semantic_config = BarkSemanticConfig()
>>> coarse_acoustics_config = BarkCoarseConfig()
>>> fine_acoustics_config = BarkFineConfig()
>>> codec_config = AutoConfig.from_pretrained("facebook/encodec_24khz")
>>> # Initializing a Bark module style configuration
>>> configuration = BarkConfig.from_sub_model_configs(
... semantic_config, coarse_acoustics_config, fine_acoustics_config, codec_config
... )
>>> # Initializing a model (with random weights)
>>> model = BarkModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "bark"
sub_configs = {
"semantic_config": BarkSemanticConfig,
"coarse_acoustics_config": BarkCoarseConfig,
"fine_acoustics_config": BarkFineConfig,
"codec_config": AutoConfig,
}
def __init__(
self,
semantic_config: Dict = None,
coarse_acoustics_config: Dict = None,
fine_acoustics_config: Dict = None,
codec_config: Dict = None,
initializer_range=0.02,
**kwargs,
):
if semantic_config is None:
semantic_config = {}
logger.info("semantic_config is None. initializing the semantic model with default values.")
if coarse_acoustics_config is None:
coarse_acoustics_config = {}
logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.")
if fine_acoustics_config is None:
fine_acoustics_config = {}
logger.info("fine_acoustics_config is None. initializing the fine model with default values.")
if codec_config is None:
codec_config = {}
logger.info("codec_config is None. initializing the codec model with default values.")
self.semantic_config = BarkSemanticConfig(**semantic_config)
self.coarse_acoustics_config = BarkCoarseConfig(**coarse_acoustics_config)
self.fine_acoustics_config = BarkFineConfig(**fine_acoustics_config)
codec_model_type = codec_config["model_type"] if "model_type" in codec_config else "encodec"
self.codec_config = CONFIG_MAPPING[codec_model_type](**codec_config)
self.initializer_range = initializer_range
super().__init__(**kwargs)
@classmethod
def from_sub_model_configs(
cls,
semantic_config: BarkSemanticConfig,
coarse_acoustics_config: BarkCoarseConfig,
fine_acoustics_config: BarkFineConfig,
codec_config: PretrainedConfig,
**kwargs,
):
r"""
Instantiate a [`BarkConfig`] (or a derived class) from bark sub-models configuration.
Returns:
[`BarkConfig`]: An instance of a configuration object
"""
return cls(
semantic_config=semantic_config.to_dict(),
coarse_acoustics_config=coarse_acoustics_config.to_dict(),
fine_acoustics_config=fine_acoustics_config.to_dict(),
codec_config=codec_config.to_dict(),
**kwargs,
)
|
class_definition
| 7,302 | 11,807 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/configuration_bark.py
| null | 2,887 |
class BarkSelfAttention(nn.Module):
# adapted from GPTNeoSelfAttention and Bark code
# BarkSelfAttention can have two attention type, i.e full attention or causal attention
def __init__(self, config, is_causal=False):
super().__init__()
# regularization
self.dropout = config.dropout
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.embed_dim = config.hidden_size
self.num_heads = config.num_heads
self.head_dim = self.embed_dim // self.num_heads
if config.hidden_size % config.num_heads != 0:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
# key, query, value projections for all heads, but in a batch
self.att_proj = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.bias)
# output projection
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=config.bias)
self.is_causal = is_causal
if is_causal:
block_size = config.block_size
bias = torch.tril(torch.ones((block_size, block_size), dtype=bool)).view(1, 1, block_size, block_size)
self.register_buffer("bias", bias)
# Copied from transformers.models.gpt_neo.modeling_gpt_neo.GPTNeoSelfAttention._split_heads
def _split_heads(self, tensor, num_heads, attn_head_size):
"""
Splits hidden_size dim into attn_head_size and num_heads
"""
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(new_shape)
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
def _merge_heads(self, tensor, num_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden_size
"""
# re-assemble all head outputs side by side
# (batch, num_heads, seq_len, attn_head_size) -> (batch, seq_len, num_heads*attn_head_size)
tensor = tensor.transpose(1, 2).contiguous()
tensor = tensor.view(tensor.size()[:-2] + (num_heads * attn_head_size,))
return tensor
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
# unlike GPTNeo's SelfAttention, divide by the square root of the dimension of the query and the key
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * (1.0 / math.sqrt(self.head_dim))
if self.is_causal:
query_length, key_length = query.size(-2), key.size(-2)
# fill the upper left part of the attention weights with inf
attn_weights = attn_weights.masked_fill(
self.bias[:, :, key_length - query_length : key_length, :key_length] == 0,
torch.finfo(attn_weights.dtype).min,
)
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_weights = attn_weights.to(value.dtype)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
# (batch, num_heads, seq_len, seq_len) x (batch, num_heads, seq_len, attn_head_size)
# -> (batch, num_heads, seq_len, attn_head_size)
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def forward(
self,
hidden_states,
attention_mask=None,
past_key_values=None,
head_mask=None,
use_cache=False,
output_attentions=False,
):
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
query, key, value = self.att_proj(hidden_states).split(self.embed_dim, dim=2)
query = self._split_heads(query, self.num_heads, self.head_dim)
key = self._split_heads(key, self.num_heads, self.head_dim)
value = self._split_heads(value, self.num_heads, self.head_dim)
if past_key_values is not None:
past_key = past_key_values[0]
past_value = past_key_values[1]
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
if use_cache is True:
present = (key, value)
else:
present = None
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 1,983 | 6,996 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
| null | 2,888 |
class BarkSelfFlashAttention2(BarkSelfAttention):
"""
Bark flash attention module. This module inherits from `BarkSelfAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def _split_heads(self, tensor, num_heads, attn_head_size):
"""
Splits hidden_size dim into attn_head_size and num_heads
"""
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(new_shape)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim - (batch, seq_length, head, head_features)
return tensor
def _merge_heads(self, tensor, num_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden_size
"""
# re-assemble all head outputs side by side
# (batch, seq_len, num_heads, attn_head_size) -> (batch, seq_len, num_heads*attn_head_size)
tensor = tensor.view(tensor.size()[:-2] + (num_heads * attn_head_size,))
return tensor
def forward(
self,
hidden_states,
attention_mask=None,
past_key_values=None,
head_mask=None,
use_cache=False,
output_attentions=False,
):
batch_size, query_len, _ = hidden_states.size()
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
query, key, value = self.att_proj(hidden_states).split(self.embed_dim, dim=2)
query = self._split_heads(query, self.num_heads, self.head_dim)
key = self._split_heads(key, self.num_heads, self.head_dim)
value = self._split_heads(value, self.num_heads, self.head_dim)
if past_key_values is not None:
# (batch, head, seq_length, head_features) -> (batch, seq_length, head, head_features)
past_key = past_key_values[0].transpose(1, 2)
past_value = past_key_values[1].transpose(1, 2)
# and merge on seq_length
key = torch.cat((past_key, key), dim=1)
value = torch.cat((past_value, value), dim=1)
if use_cache is True:
# (batch, head, seq_length, head_features)
present = (key.transpose(1, 2), value.transpose(1, 2))
else:
present = None
attn_output = _flash_attention_forward(
query,
key,
value,
attention_mask,
query_len,
dropout=self.dropout if self.training else 0.0,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
attn_weights = None
outputs += (attn_weights,)
return outputs
|
class_definition
| 6,999 | 10,885 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
| null | 2,889 |
class BarkLayerNorm(nn.Module):
"""LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False."""
def __init__(self, hidden_size, bias=True):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size)) if bias else None
def forward(self, input):
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, eps=1e-5)
|
class_definition
| 11,001 | 11,454 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
| null | 2,890 |
class BarkMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.in_proj = nn.Linear(config.hidden_size, 4 * config.hidden_size, bias=config.bias)
self.out_proj = nn.Linear(4 * config.hidden_size, config.hidden_size, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
self.gelu = nn.GELU()
def forward(self, hidden_states):
hidden_states = self.in_proj(hidden_states)
hidden_states = self.gelu(hidden_states)
hidden_states = self.out_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
|
class_definition
| 11,457 | 12,086 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
| null | 2,891 |
class BarkBlock(nn.Module):
def __init__(self, config, is_causal=False):
super().__init__()
if is_causal:
# if causal, uses handmade LayerNorm, so that the layerNorm bias is optional
# this handmade layerNorm is used to stick with Bark choice of leaving optional bias in
# AutoRegressive models (corresponding to the "Text" and the "Coarse" modules)
self.layernorm_1 = BarkLayerNorm(config.hidden_size, bias=config.bias)
self.layernorm_2 = BarkLayerNorm(config.hidden_size, bias=config.bias)
else:
self.layernorm_1 = nn.LayerNorm(config.hidden_size)
self.layernorm_2 = nn.LayerNorm(config.hidden_size)
self.attn = BARK_ATTENTION_CLASSES[config._attn_implementation](config, is_causal=is_causal)
self.mlp = BarkMLP(config)
def forward(
self,
hidden_states,
past_key_values=None,
attention_mask=None,
head_mask=None,
use_cache=False,
output_attentions=False,
):
intermediary_hidden_states = self.layernorm_1(hidden_states)
attn_outputs = self.attn(
intermediary_hidden_states,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0] # output_attn: output, present_key_values, (attn_weights)
outputs = attn_outputs[1:]
intermediary_hidden_states = hidden_states + attn_output
intermediary_hidden_states = intermediary_hidden_states + self.mlp(
self.layernorm_2(intermediary_hidden_states)
)
if use_cache:
outputs = (intermediary_hidden_states,) + outputs
else:
outputs = (intermediary_hidden_states,) + outputs[1:]
return outputs # hidden_states, ((present), attentions)
|
class_definition
| 12,089 | 14,074 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
| null | 2,892 |
class BarkPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BarkConfig
supports_gradient_checkpointing = False
_supports_flash_attn_2 = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear,)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
@property
def device(self) -> torch.device:
"""
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
device).
"""
# if has _hf_hook, has been offloaded so the device has to be found in the hook
if not hasattr(self, "_hf_hook"):
return get_parameter_device(self)
for module in self.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return get_parameter_device(self)
|
class_definition
| 14,077 | 16,020 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
| null | 2,893 |
class BarkCausalModel(BarkPreTrainedModel, GenerationMixin):
config_class = BarkSubModelConfig
def __init__(self, config):
super().__init__(config)
self.config = config
# initialize as an autoregressive GPT-like model
self.input_embeds_layer = nn.Embedding(config.input_vocab_size, config.hidden_size)
self.position_embeds_layer = nn.Embedding(config.block_size, config.hidden_size)
self.drop = nn.Dropout(config.dropout)
self.layers = nn.ModuleList([BarkBlock(config, is_causal=True) for _ in range(config.num_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.layernorm_final = BarkLayerNorm(config.hidden_size, bias=config.bias)
self.lm_head = nn.Linear(config.hidden_size, config.output_vocab_size, bias=False)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.input_embeds_layer
def set_input_embeddings(self, new_embeddings):
self.input_embeds_layer = new_embeddings
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
# Overwritten -- bark has a model-specific hack
input_embeds = kwargs.get("input_embeds", None)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if past_key_values is not None:
# Omit tokens covered by past_key_values
seq_len = input_ids.shape[1]
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
# input_embeds have already been used and is not required anymore
input_embeds = None
else:
if input_embeds is not None and kwargs.get("use_cache"):
seq_len = input_embeds.shape[1]
else:
seq_len = input_ids.shape[1]
# ensure that attention_mask and position_ids shapes are aligned with the weird Bark hack of reducing
# sequence length on the first forward pass
if attention_mask is not None:
attention_mask = attention_mask[:, :seq_len]
if position_ids is not None:
position_ids = position_ids[:, :seq_len]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
else:
position_ids = None
if input_embeds is not None and kwargs.get("use_cache"):
return {
"input_ids": None,
"input_embeds": input_embeds,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
}
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
}
@add_start_docstrings_to_model_forward(BARK_CAUSAL_MODEL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
input_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
loss = None
if labels is not None:
raise NotImplementedError(
"Training is not implemented yet for Bark - ensure you do not pass `labels` to the model."
)
# Verify if input_embeds already exists
# then compute embeddings.
if input_ids is not None and input_embeds is not None:
raise ValueError("You cannot specify both input_ids and input_embeds at the same time")
elif input_embeds is not None and past_key_values is None:
# we want to return the input_embeds in priority so that it is in line with a weird hack
# of Bark which concatenate two bits of the input_embeds on the first forward pass of the semantic model
pass
elif input_ids is not None:
input_embeds = self.input_embeds_layer(input_ids) # token embeddings of shape (b, t, n_embd)
elif input_embeds is not None:
pass
else:
raise ValueError("You have to specify either input_ids or input_embeds")
input_shape = input_embeds.size()[:-1]
batch_size = input_embeds.shape[0]
seq_length = input_shape[-1]
device = input_ids.device if input_ids is not None else input_embeds.device
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.layers))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0) # shape (1, seq_length)
position_embeds = self.position_embeds_layer(position_ids) # position embeddings of shape (1, t, n_embd)
# Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
if self._use_flash_attention_2:
attention_mask = attention_mask if 0 in attention_mask else None
else:
attention_mask = attention_mask.view(batch_size, -1)
# [bsz, to_seq_length] -> [bsz, 1, 1, to_seq_length]
# from_seq_length is 1 to easily broadcast
attention_mask = _prepare_4d_attention_mask(attention_mask, input_embeds.dtype, tgt_len=1)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x num_heads x N x N
# head_mask has shape num_layers x batch x num_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
hidden_states = self.drop(input_embeds + position_embeds)
output_shape = input_shape + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
present_key_values = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (block, past_layer_key_values) in enumerate(zip(self.layers, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
None,
attention_mask,
head_mask[i],
use_cache,
output_attentions,
)
else:
outputs = block(
hidden_states,
past_key_values=past_layer_key_values,
attention_mask=attention_mask,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache:
present_key_values = present_key_values + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.layernorm_final(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
logits = self.lm_head(hidden_states)
if not return_dict:
return tuple(
v for v in [None, logits, present_key_values, all_hidden_states, all_self_attentions] if v is not None
)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
@staticmethod
def _reorder_cache(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
# Necessary for beam_search
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past_key_values
)
|
class_definition
| 24,166 | 35,008 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
| null | 2,894 |
class BarkSemanticModel(BarkCausalModel):
base_model_prefix = "semantic"
config_class = BarkSemanticConfig
def generate(
self,
input_ids: torch.Tensor,
semantic_generation_config: BarkSemanticGenerationConfig = None,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.LongTensor:
"""
Generates text semantic tokens from an input prompt and an additional optional `Bark` speaker prompt.
Args:
input_ids (`Optional[torch.Tensor]` of shape (batch_size, seq_len), *optional*):
Input ids, i.e tokenized input sentences. Will be truncated up to
semantic_generation_config.max_input_semantic_length tokens. Note that the output audios will be as
long as the longest generation among the batch.
semantic_generation_config (`BarkSemanticGenerationConfig`):
Generation config indicating how to generate the semantic tokens.
history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
Optional `Bark` speaker prompt.
attention_mask (`Optional[torch.Tensor]`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Returns:
torch.LongTensor: Output semantic tokens.
"""
if semantic_generation_config is None:
raise ValueError("`semantic_generation_config` has to be provided")
batch_size = input_ids.shape[0]
max_input_semantic_length = semantic_generation_config.max_input_semantic_length
input_ids = input_ids + semantic_generation_config.text_encoding_offset
if attention_mask is not None:
input_ids = input_ids.masked_fill((1 - attention_mask).bool(), semantic_generation_config.text_pad_token)
if history_prompt is not None:
semantic_history = history_prompt["semantic_prompt"][-max_input_semantic_length:]
semantic_history = nn.functional.pad(
semantic_history,
(0, max_input_semantic_length - len(semantic_history)),
value=semantic_generation_config.semantic_pad_token,
mode="constant",
)
else:
semantic_history = torch.tensor(
[semantic_generation_config.semantic_pad_token] * max_input_semantic_length, dtype=torch.int
).to(self.device)
semantic_history = torch.repeat_interleave(semantic_history[None], batch_size, dim=0)
infer_array = torch.tensor(
[[semantic_generation_config.semantic_infer_token]] * batch_size, dtype=torch.int
).to(self.device)
input_embeds = torch.cat(
[
self.input_embeds_layer(input_ids[:, :max_input_semantic_length])
+ self.input_embeds_layer(semantic_history[:, : max_input_semantic_length + 1]),
self.input_embeds_layer(infer_array),
],
dim=1,
)
tokens_to_suppress = list(
range(semantic_generation_config.semantic_vocab_size, semantic_generation_config.semantic_pad_token)
)
tokens_to_suppress.extend(
list(range(semantic_generation_config.semantic_pad_token + 1, self.config.output_vocab_size))
)
suppress_tokens_logits_processor = SuppressTokensLogitsProcessor(tokens_to_suppress, device=input_ids.device)
min_eos_p = kwargs.get("min_eos_p", semantic_generation_config.min_eos_p)
early_stopping_logits_processor = BarkEosPrioritizerLogitsProcessor(
eos_token_id=semantic_generation_config.eos_token_id, min_eos_p=min_eos_p, device=input_ids.device
)
# pass input_ids in order to stay consistent with the transformers generate method even though it is not used
# (except to get the input seq_len - that's why we keep the first 257 tokens)
semantic_output = super().generate(
torch.ones((batch_size, max_input_semantic_length + 1), dtype=torch.int).to(self.device),
input_embeds=input_embeds,
logits_processor=[suppress_tokens_logits_processor, early_stopping_logits_processor],
generation_config=semantic_generation_config,
**kwargs,
) # size: 10048
# take the generated semantic tokens
semantic_output = semantic_output[:, max_input_semantic_length + 1 :]
return semantic_output
|
class_definition
| 35,281 | 40,053 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
| null | 2,895 |
class BarkCoarseModel(BarkCausalModel):
base_model_prefix = "coarse_acoustics"
config_class = BarkCoarseConfig
def preprocess_histories(
self,
max_coarse_history: int,
semantic_to_coarse_ratio: int,
batch_size: int,
semantic_generation_config: int,
codebook_size: int,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
):
"""
Preprocess the optional `Bark` speaker prompts before `self.generate`.
Args:
max_coarse_history (`int`):
Maximum size of coarse tokens used.
semantic_to_coarse_ratio (`int`):
Ratio of semantic to coarse frequency
batch_size (`int`):
Batch size, i.e the number of samples.
semantic_generation_config (`BarkSemanticGenerationConfig`):
Generation config indicating how to generate the semantic tokens.
codebook_size (`int`):
Codebook channel size, i.e. the size of the output vocabulary per codebook channel.
history_prompt (`Optional[Dict[str,torch.Tensor]]`):
Optional `Bark` speaker prompt.
Returns: Returns:
`tuple(torch.FloatTensor)`:
- **x_semantic_history** (`torch.FloatTensor` -- Processed semantic speaker prompt.
- **x_coarse_history** (`torch.FloatTensor`) -- Processed coarse speaker prompt.
"""
if history_prompt is not None:
x_semantic_history = torch.repeat_interleave(history_prompt["semantic_prompt"][None], batch_size, dim=0)
# clone to avoid modifying history_prompt.coarse_prompt
x_coarse_history = history_prompt["coarse_prompt"].clone()
# offset x_coarse_history
if codebook_size is not None:
for n in range(1, x_coarse_history.shape[0]):
# offset
x_coarse_history[n, :] += codebook_size * n
# flatten x_coarse_history
x_coarse_history = torch.transpose(x_coarse_history, 0, 1).reshape(-1)
x_coarse_history = x_coarse_history + semantic_generation_config.semantic_vocab_size
x_coarse_history = torch.repeat_interleave(x_coarse_history[None], batch_size, dim=0)
# e.g: after SEMANTIC_VOCAB_SIZE (10000), 1024 tokens dedicated to first codebook, 1024 next tokens
# dedicated to second codebook.
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
# trim histories correctly
n_semantic_hist_provided = min(
[
max_semantic_history,
x_semantic_history.shape[1] - x_semantic_history.shape[1] % 2,
int(np.floor(x_coarse_history.shape[1] / semantic_to_coarse_ratio)),
]
)
n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio))
x_semantic_history = x_semantic_history[:, -n_semantic_hist_provided:].int()
x_coarse_history = x_coarse_history[:, -n_coarse_hist_provided:].int()
# bit of a hack for time alignment (sounds better) - from Bark original implementation
x_coarse_history = x_coarse_history[:, :-2]
else:
# shape: (batch_size, 0)
x_semantic_history = torch.tensor([[]] * batch_size, dtype=torch.int).to(self.device)
x_coarse_history = torch.tensor([[]] * batch_size, dtype=torch.int).to(self.device)
return x_semantic_history, x_coarse_history
def generate(
self,
semantic_output: torch.Tensor,
semantic_generation_config: BarkSemanticGenerationConfig = None,
coarse_generation_config: BarkCoarseGenerationConfig = None,
codebook_size: int = 1024,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
return_output_lengths: Optional[bool] = None,
**kwargs,
) -> Union[torch.LongTensor, Tuple[torch.LongTensor, torch.LongTensor]]:
"""
Generates coarse acoustics tokens from input text semantic tokens and an additional optional `Bark` speaker
prompt.
Args:
semantic_output (`torch.Tensor` of shape (batch_size, seq_len), *optional*):
Input text semantic ids, i.e the output of `BarkSemanticModel.generate`.
semantic_generation_config (`BarkSemanticGenerationConfig`):
Generation config indicating how to generate the semantic tokens.
coarse_generation_config (`BarkCoarseGenerationConfig`):
Generation config indicating how to generate the coarse tokens.
codebook_size (`int`, *optional*, defaults to 1024):
Codebook channel size, i.e. the size of the output vocabulary per codebook channel.
history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
Optional `Bark` speaker prompt.
return_output_lengths (`bool`, *optional*):
Whether or not to return the output lengths. Useful when batching.
Returns:
By default:
torch.LongTensor: Output coarse acoustics tokens.
If `return_output_lengths=True`:
`Tuple(torch.Tensor, torch.Tensor): The output coarse acoustics tokens, and the length of each sample
of the batch.
"""
if semantic_generation_config is None:
raise ValueError("`semantic_generation_config` has to be provided")
if coarse_generation_config is None:
raise ValueError("`coarse_generation_config` has to be provided")
max_coarse_input_length = coarse_generation_config.max_coarse_input_length
max_coarse_history = coarse_generation_config.max_coarse_history
sliding_window_len = coarse_generation_config.sliding_window_len
# replace semantic_pad_token (eos_tok and pad_tok here) with coarse_semantic_pad_token i.e the pad_token
# used in the next model
semantic_output.masked_fill_(
semantic_output == semantic_generation_config.semantic_pad_token,
coarse_generation_config.coarse_semantic_pad_token,
)
semantic_to_coarse_ratio = (
coarse_generation_config.coarse_rate_hz
/ semantic_generation_config.semantic_rate_hz
* coarse_generation_config.n_coarse_codebooks
)
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
output_lengths = (semantic_output != coarse_generation_config.coarse_semantic_pad_token).sum(1)
output_lengths = torch.floor(
output_lengths * semantic_to_coarse_ratio / coarse_generation_config.n_coarse_codebooks
)
output_lengths = torch.round(output_lengths * coarse_generation_config.n_coarse_codebooks).int()
max_generated_len = torch.max(output_lengths).item()
batch_size = semantic_output.shape[0]
x_semantic_history, x_coarse = self.preprocess_histories(
history_prompt=history_prompt,
max_coarse_history=max_coarse_history,
semantic_to_coarse_ratio=semantic_to_coarse_ratio,
batch_size=batch_size,
semantic_generation_config=semantic_generation_config,
codebook_size=codebook_size,
)
base_semantic_idx = x_semantic_history.shape[1]
semantic_output = torch.hstack([x_semantic_history, semantic_output])
n_window_steps = int(np.ceil(max_generated_len / sliding_window_len))
total_generated_len = 0
len_coarse_history = x_coarse.shape[1]
for _ in range(n_window_steps):
semantic_idx = base_semantic_idx + int(round(total_generated_len / semantic_to_coarse_ratio))
# pad from right side
input_coarse = semantic_output[:, np.max([0, semantic_idx - max_semantic_history]) :]
input_coarse = input_coarse[:, :max_coarse_input_length]
input_coarse = F.pad(
input_coarse,
(0, max_coarse_input_length - input_coarse.shape[-1]),
"constant",
coarse_generation_config.coarse_semantic_pad_token,
)
input_coarse = torch.hstack(
[
input_coarse,
torch.tensor([[coarse_generation_config.coarse_infer_token]] * batch_size).to(self.device),
x_coarse[:, -max_coarse_history:],
]
)
alternatingLogitsProcessor = AlternatingCodebooksLogitsProcessor(
input_coarse.shape[1],
semantic_generation_config.semantic_vocab_size,
codebook_size,
)
output_coarse = super().generate(
input_coarse,
logits_processor=[alternatingLogitsProcessor],
max_new_tokens=min(sliding_window_len, max_generated_len - total_generated_len),
generation_config=coarse_generation_config,
**kwargs,
)
input_coarse_len = input_coarse.shape[1]
x_coarse = torch.hstack([x_coarse, output_coarse[:, input_coarse_len:]])
total_generated_len = x_coarse.shape[1] - len_coarse_history
del output_coarse
coarse_output = x_coarse[:, len_coarse_history:]
if return_output_lengths:
return coarse_output, output_lengths
return coarse_output
|
class_definition
| 40,338 | 49,954 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
| null | 2,896 |
class BarkFineModel(BarkPreTrainedModel):
base_model_prefix = "fine_acoustics"
config_class = BarkFineConfig
main_input_name = "codebook_idx"
def __init__(self, config):
# non-causal gpt-like model with one embedding layer and one lm_head for each codebook of Encodec
super().__init__(config)
self.config = config
# initialize a modified non causal GPT-like model
# note that for there is one embedding layer and one lm_head for each codebook of Encodec
self.input_embeds_layers = nn.ModuleList(
[nn.Embedding(config.input_vocab_size, config.hidden_size) for _ in range(config.n_codes_total)]
)
self.position_embeds_layer = nn.Embedding(config.block_size, config.hidden_size)
self.drop = nn.Dropout(config.dropout)
self.layers = nn.ModuleList([BarkBlock(config, is_causal=False) for _ in range(config.num_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.layernorm_final = nn.LayerNorm(config.hidden_size)
self.lm_heads = nn.ModuleList(
[
nn.Linear(config.hidden_size, config.output_vocab_size, bias=False)
for _ in range(config.n_codes_given, config.n_codes_total)
]
)
self.gradient_checkpointing = False
self.n_codes_total = config.n_codes_total
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
# one embedding layers for each codebook
return self.input_embeds_layers
def set_input_embeddings(self, new_embeddings):
# one embedding layers for each codebook
self.input_embeds_layers = new_embeddings
def get_output_embeddings(self):
# one lm_head for each codebook
return self.lm_heads
def set_output_embeddings(self, new_output_embeddings):
# one lm_head for each codebook
self.lm_heads = new_output_embeddings
def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
old_embeddings_list = self.get_input_embeddings()
new_embeddings_list = nn.ModuleList(
[
self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)
for old_embeddings in old_embeddings_list
]
)
self.set_input_embeddings(new_embeddings_list)
new_num_tokens = new_embeddings_list[0].weight.shape[0]
# if word embeddings are not tied, make sure that lm head is resized as well
if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
old_lm_head_list = self.get_output_embeddings()
new_lm_head_list = nn.ModuleList(
[self._get_resized_lm_head(old_lm_head, new_num_tokens) for old_lm_head in old_lm_head_list]
)
self.set_output_embeddings(new_lm_head_list)
return self.get_input_embeddings()
def resize_token_embeddings(
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
) -> nn.Embedding:
"""
Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
Arguments:
new_num_tokens (`int`, *optional*):
The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
pad_to_multiple_of (`int`, *optional*):
If set will pad the embedding matrix to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
details about this, or help on choosing the correct value for resizing, refer to this guide:
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
Return:
`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
"""
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
if new_num_tokens is None and pad_to_multiple_of is None:
return model_embeds
# Update base model and current model config
self.config.output_vocab_size = model_embeds[0].weight.shape[0]
self.config.vocab_size = model_embeds[0].weight.shape[0]
self.output_vocab_size = model_embeds[0].weight.shape[0]
self.vocab_size = model_embeds[0].weight.shape[0]
# Tie weights again if needed
self.tie_weights()
return model_embeds
def _tie_weights(self):
if getattr(self.config, "tie_word_embeddings", True):
self._tied_weights_keys = []
output_embeddings = self.get_output_embeddings()
input_embeddings = self.get_input_embeddings()
for i in range(self.config.n_codes_total - self.config.n_codes_given):
# self.input_embeds_layers[i + 1].weight = self.lm_heads[i].weight
self._tie_or_clone_weights(output_embeddings[i], input_embeddings[i + 1])
self._tied_weights_keys.append(f"lm_heads.{i}.weight")
def tie_weights(self):
"""
Tie the weights between the input embeddings list and the output embeddings list.
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
weights instead.
"""
if getattr(self.config, "tie_word_embeddings", True):
self._tied_weights_keys = []
output_embeddings = self.get_output_embeddings()
input_embeddings = self.get_input_embeddings()
for i in range(self.config.n_codes_total - self.config.n_codes_given):
# self.input_embeds_layers[i + 1].weight = self.lm_heads[i].weight
self._tie_or_clone_weights(output_embeddings[i], input_embeddings[i + 1])
self._tied_weights_keys.append(f"lm_heads.{i}.weight")
for module in self.modules():
if hasattr(module, "_tie_weights"):
module._tie_weights()
@add_start_docstrings_to_model_forward(BARK_FINE_INPUTS_DOCSTRING)
def forward(
self,
codebook_idx: int, # an additionnal idx corresponding to the id of the codebook that will be predicted
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
input_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
loss = None
if labels is not None:
raise NotImplementedError("Training is not implemented yet")
if codebook_idx == 0:
raise ValueError("Cannot predict 0th codebook - 0th codebook should be predicted by the coarse model")
if input_ids is not None and input_embeds is not None:
raise ValueError("You cannot specify both input_ids and input_embeds at the same time")
if input_ids is None and input_embeds is None:
raise ValueError("You have to specify either input_ids or input_embeds")
if input_ids is not None:
# the input_embeddings are the sum of the j previous codebooks embeddings before
# the current codebook_idx codebook
# forward the GPT model itself
input_embeds = [
input_embeds_layer(input_ids[:, :, i]).unsqueeze(-1)
for i, input_embeds_layer in enumerate(self.input_embeds_layers)
] # token embeddings of shape (b, t, n_embd)
input_embeds = torch.cat(input_embeds, dim=-1)
input_embeds = input_embeds[:, :, :, : codebook_idx + 1].sum(dim=-1)
input_shape = input_embeds.size()[:-1]
batch_size = input_embeds.shape[0]
seq_length = input_shape[1]
device = input_ids.device if input_ids is not None else input_embeds.device
if position_ids is None:
position_ids = torch.arange(0, seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0) # shape (1, seq_length)
position_embeds = self.position_embeds_layer(position_ids) # position embeddings of shape (1, t, n_embd)
# Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
if self._use_flash_attention_2:
attention_mask = attention_mask if 0 in attention_mask else None
else:
# [bsz, to_seq_length] -> [bsz, 1, 1, to_seq_length]
# from_seq_length is 1 to easily broadcast
attention_mask = _prepare_4d_attention_mask(attention_mask, input_embeds.dtype, tgt_len=1)
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
hidden_states = self.drop(input_embeds + position_embeds)
output_shape = input_shape + (hidden_states.size(-1),)
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, block in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = block(
hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[i],
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[1],)
hidden_states = self.layernorm_final(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
logits = self.lm_heads[codebook_idx - self.config.n_codes_given](hidden_states)
if not return_dict:
return tuple(v for v in [None, logits, all_hidden_states, all_self_attentions] if v is not None)
return MaskedLMOutput(
loss=loss,
logits=logits,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def generate(
self,
coarse_output: torch.Tensor,
semantic_generation_config: BarkSemanticGenerationConfig = None,
coarse_generation_config: BarkCoarseGenerationConfig = None,
fine_generation_config: BarkFineGenerationConfig = None,
codebook_size: int = 1024,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
**kwargs,
) -> torch.LongTensor:
"""
Generates fine acoustics tokens from input coarse acoustics tokens and an additional optional `Bark` speaker
prompt.
Args:
coarse_output (`torch.Tensor` of shape (batch_size, seq_len)):
Input coarse acoustics ids, i.e the output of `BarkCoarseModel.generate`.
semantic_generation_config (`BarkSemanticGenerationConfig`):
Generation config indicating how to generate the semantic tokens.
coarse_generation_config (`BarkCoarseGenerationConfig`):
Generation config indicating how to generate the coarse tokens.
fine_generation_config (`BarkFineGenerationConfig`):
Generation config indicating how to generate the fine tokens.
codebook_size (`int`, *optional*, defaults to 1024):
Codebook channel size, i.e. the size of the output vocabulary per codebook channel.
history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
Optional `Bark` speaker prompt.
Returns:
torch.LongTensor: Output fine acoustics tokens.
"""
if semantic_generation_config is None:
raise ValueError("`semantic_generation_config` has to be provided")
if coarse_generation_config is None:
raise ValueError("`coarse_generation_config` has to be provided")
if fine_generation_config is None:
raise ValueError("`fine_generation_config` has to be provided")
# since we don't really use GenerationConfig through the fine model (autoencoder)
# and since only temperature is used from the classic GenerationConfig parameters
# manually impose the kwargs priority over the generation config
temperature = kwargs.get("temperature", fine_generation_config.temperature)
max_fine_history_length = fine_generation_config.max_fine_history_length
max_fine_input_length = fine_generation_config.max_fine_input_length
# shape: (batch, n_coarse_codebooks * seq_len)
# new_shape: (batch, seq_len, n_coarse_codebooks)
coarse_output = coarse_output.view(coarse_output.shape[0], -1, coarse_generation_config.n_coarse_codebooks)
# brings ids into the range [0, codebook_size -1]
coarse_output = torch.remainder(coarse_output - semantic_generation_config.semantic_vocab_size, codebook_size)
batch_size = coarse_output.shape[0]
if history_prompt is not None:
x_fine_history = torch.repeat_interleave(history_prompt["fine_prompt"].T[None], batch_size, dim=0)
# transpose to get to shape (seq_len, n_fine_codebooks)
else:
x_fine_history = None
n_coarse = coarse_generation_config.n_coarse_codebooks
# pad the last 6th codebooks
fine_input = F.pad(
coarse_output,
(0, fine_generation_config.n_fine_codebooks - n_coarse),
"constant",
codebook_size,
)
# prepend history if available (max max_fine_history_length)
if x_fine_history is not None:
fine_input = torch.cat([x_fine_history[:, -max_fine_history_length:, :], fine_input], dim=1)
# len of the fine_history that has been added to fine_input
n_history = x_fine_history[:, -max_fine_history_length:, :].shape[1]
else:
n_history = 0
n_remove_from_end = 0
# need to pad if too short (since non-causal model)
if fine_input.shape[1] < max_fine_input_length:
n_remove_from_end = max_fine_input_length - fine_input.shape[1]
fine_input = F.pad(fine_input, (0, 0, 0, n_remove_from_end), mode="constant", value=codebook_size)
# we can be lazy about fractional loop and just keep overwriting codebooks.
# seems that coarse_output.shape[1] - (max_fine_input_length - n_history) is equal to minus n_remove_from_end
# So if we needed to pad because too short, n_loops is always 1 (because n_remove_from_end > 0)
# If not, we loop over at least twice.
n_loops = (coarse_output.shape[1] - (max_fine_input_length - n_history)) / max_fine_history_length
n_loops = int(np.ceil(n_loops))
n_loops = max(0, n_loops) + 1
for n_outer in range(n_loops):
start_idx = min([n_outer * max_fine_history_length, fine_input.shape[1] - max_fine_input_length])
start_fill_idx = min(
[n_history + n_outer * max_fine_history_length, fine_input.shape[1] - max_fine_history_length]
)
rel_start_fill_idx = start_fill_idx - start_idx
input_buffer = fine_input[:, start_idx : start_idx + max_fine_input_length, :]
for n_inner in range(n_coarse, fine_generation_config.n_fine_codebooks):
logits = self.forward(n_inner, input_buffer).logits
if temperature is None or temperature == 1.0:
relevant_logits = logits[:, rel_start_fill_idx:, :codebook_size]
codebook_preds = torch.argmax(relevant_logits, -1)
else:
relevant_logits = logits[:, :, :codebook_size] / temperature
# apply softmax
probs = F.softmax(relevant_logits, dim=-1)[:, rel_start_fill_idx:max_fine_input_length]
# reshape to 2D: (batch_size, seq_len, codebook_size) -> (batch_size*seq_len, codebook_size)
probs = probs.reshape((-1, codebook_size))
# multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len)
codebook_preds = torch.multinomial(probs, num_samples=1).view(batch_size, -1)
codebook_preds = codebook_preds.to(torch.int32)
input_buffer[:, rel_start_fill_idx:, n_inner] = codebook_preds
del logits, codebook_preds
# transfer into fine_input
for n_inner in range(n_coarse, fine_generation_config.n_fine_codebooks):
fine_input[
:, start_fill_idx : start_fill_idx + (max_fine_input_length - rel_start_fill_idx), n_inner
] = input_buffer[:, rel_start_fill_idx:, n_inner]
del input_buffer
fine_input = fine_input.transpose(1, 2)[:, :, n_history:]
if n_remove_from_end > 0:
fine_input = fine_input[:, :, :-n_remove_from_end]
if fine_input.shape[-1] != coarse_output.shape[-2]:
raise ValueError("input and output should have the same seq_len")
return fine_input
|
class_definition
| 50,219 | 68,823 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
| null | 2,897 |
class BarkModel(BarkPreTrainedModel):
config_class = BarkConfig
def __init__(self, config):
super().__init__(config)
self.semantic = BarkSemanticModel(config.semantic_config)
self.coarse_acoustics = BarkCoarseModel(config.coarse_acoustics_config)
self.fine_acoustics = BarkFineModel(config.fine_acoustics_config)
self.codec_model = AutoModel.from_config(config.codec_config)
self.config = config
@property
def device(self) -> torch.device:
"""
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
device).
"""
# for bark_model, device must be verified on its sub-models
# if has _hf_hook, has been offloaded so the device has to be found in the hook
if not hasattr(self.semantic, "_hf_hook"):
return get_parameter_device(self)
for module in self.semantic.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
def enable_cpu_offload(self, gpu_id: Optional[int] = 0):
r"""
Offloads all sub-models to CPU using accelerate, reducing memory usage with a low impact on performance. This
method moves one whole sub-model at a time to the GPU when it is used, and the sub-model remains in GPU until
the next sub-model runs.
Args:
gpu_id (`int`, *optional*, defaults to 0):
GPU id on which the sub-models will be loaded and offloaded.
"""
if is_accelerate_available():
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate`.")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu")
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
# this layer is used outside the first foward pass of semantic so need to be loaded before semantic
self.semantic.input_embeds_layer, _ = cpu_offload_with_hook(self.semantic.input_embeds_layer, device)
hook = None
for cpu_offloaded_model in [
self.semantic,
self.coarse_acoustics,
self.fine_acoustics,
]:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
self.fine_acoustics_hook = hook
_, hook = cpu_offload_with_hook(self.codec_model, device, prev_module_hook=hook)
# We'll offload the last model manually.
self.codec_model_hook = hook
def codec_decode(self, fine_output, output_lengths=None):
"""Turn quantized audio codes into audio array using encodec."""
fine_output = fine_output.transpose(0, 1)
emb = self.codec_model.quantizer.decode(fine_output)
if output_lengths is not None:
# encodec uses LSTMs which behaves differently with appended padding
# decoding with encodec takes around 0.1% of the total generation time
# to keep generation quality, we break batching
out = [sample[:, :l].unsqueeze(0) for (sample, l) in zip(emb, output_lengths)]
audio_arr = [self.codec_model.decoder(sample).squeeze() for sample in out]
else:
out = self.codec_model.decoder(emb)
audio_arr = out.squeeze(1) # squeeze the codebook dimension
return audio_arr
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.Tensor] = None,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
return_output_lengths: Optional[bool] = None,
**kwargs,
) -> torch.LongTensor:
"""
Generates audio from an input prompt and an additional optional `Bark` speaker prompt.
Args:
input_ids (`Optional[torch.Tensor]` of shape (batch_size, seq_len), *optional*):
Input ids. Will be truncated up to 256 tokens. Note that the output audios will be as long as the
longest generation among the batch.
history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
Optional `Bark` speaker prompt. Note that for now, this model takes only one speaker prompt per batch.
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model.
- With a *semantic_*, *coarse_*, *fine_* prefix, they will be input for the `generate` method of the
semantic, coarse and fine respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for all sub-models except one.
return_output_lengths (`bool`, *optional*):
Whether or not to return the waveform lengths. Useful when batching.
Returns:
By default:
- **audio_waveform** (`torch.Tensor` of shape (batch_size, seq_len)): Generated audio waveform.
When `return_output_lengths=True`:
Returns a tuple made of:
- **audio_waveform** (`torch.Tensor` of shape (batch_size, seq_len)): Generated audio waveform.
- **output_lengths** (`torch.Tensor` of shape (batch_size)): The length of each waveform in the batch
Example:
```python
>>> from transformers import AutoProcessor, BarkModel
>>> processor = AutoProcessor.from_pretrained("suno/bark-small")
>>> model = BarkModel.from_pretrained("suno/bark-small")
>>> # To add a voice preset, you can pass `voice_preset` to `BarkProcessor.__call__(...)`
>>> voice_preset = "v2/en_speaker_6"
>>> inputs = processor("Hello, my dog is cute, I need him in my life", voice_preset=voice_preset)
>>> audio_array = model.generate(**inputs, semantic_max_new_tokens=100)
>>> audio_array = audio_array.cpu().numpy().squeeze()
```
"""
# TODO (joao):workaround until nested generation config is compatible with PreTrained Model
# todo: dict
semantic_generation_config = BarkSemanticGenerationConfig(**self.generation_config.semantic_config)
coarse_generation_config = BarkCoarseGenerationConfig(**self.generation_config.coarse_acoustics_config)
fine_generation_config = BarkFineGenerationConfig(**self.generation_config.fine_acoustics_config)
kwargs_semantic = {
# if "attention_mask" is set, it should not be passed to CoarseModel and FineModel
"attention_mask": kwargs.pop("attention_mask", None),
"min_eos_p": kwargs.pop("min_eos_p", None),
}
kwargs_coarse = {}
kwargs_fine = {}
for key, value in kwargs.items():
if key.startswith("semantic_"):
key = key[len("semantic_") :]
kwargs_semantic[key] = value
elif key.startswith("coarse_"):
key = key[len("coarse_") :]
kwargs_coarse[key] = value
elif key.startswith("fine_"):
key = key[len("fine_") :]
kwargs_fine[key] = value
else:
# If the key is already in a specific config, then it's been set with a
# submodules specific value and we don't override
if key not in kwargs_semantic:
kwargs_semantic[key] = value
if key not in kwargs_coarse:
kwargs_coarse[key] = value
if key not in kwargs_fine:
kwargs_fine[key] = value
# 1. Generate from the semantic model
if "generation_config" in kwargs_semantic:
kwargs_semantic.pop("generation_config")
semantic_output = self.semantic.generate(
input_ids,
history_prompt=history_prompt,
semantic_generation_config=semantic_generation_config,
**kwargs_semantic,
)
# 2. Generate from the coarse model
if "generation_config" in kwargs_coarse:
kwargs_coarse.pop("generation_config")
coarse_output = self.coarse_acoustics.generate(
semantic_output,
history_prompt=history_prompt,
semantic_generation_config=semantic_generation_config,
coarse_generation_config=coarse_generation_config,
codebook_size=self.generation_config.codebook_size,
return_output_lengths=return_output_lengths,
**kwargs_coarse,
)
output_lengths = None
if return_output_lengths:
coarse_output, output_lengths = coarse_output
# (batch_size, seq_len*coarse_codebooks) -> (batch_size, seq_len)
output_lengths = output_lengths // coarse_generation_config.n_coarse_codebooks
# 3. "generate" from the fine model
if "generation_config" in kwargs_fine:
kwargs_fine.pop("generation_config")
output = self.fine_acoustics.generate(
coarse_output,
history_prompt=history_prompt,
semantic_generation_config=semantic_generation_config,
coarse_generation_config=coarse_generation_config,
fine_generation_config=fine_generation_config,
codebook_size=self.generation_config.codebook_size,
**kwargs_fine,
)
if getattr(self, "fine_acoustics_hook", None) is not None:
# Manually offload fine_acoustics to CPU
# and load codec_model to GPU
# since bark doesn't use codec_model forward pass
self.fine_acoustics_hook.offload()
self.codec_model = self.codec_model.to(self.device)
# 4. Decode the output and generate audio array
audio = self.codec_decode(output, output_lengths)
if getattr(self, "codec_model_hook", None) is not None:
# Offload codec_model to CPU
self.codec_model_hook.offload()
if return_output_lengths:
output_lengths = [len(sample) for sample in audio]
audio = nn.utils.rnn.pad_sequence(audio, batch_first=True, padding_value=0)
return audio, output_lengths
return audio
@classmethod
def _check_and_enable_flash_attn_2(
cls,
config,
torch_dtype: Optional[torch.dtype] = None,
device_map: Optional[Union[str, Dict[str, int]]] = None,
hard_check_only: bool = False,
check_device_map: bool = False,
):
"""
`_check_and_enable_flash_attn_2` originally don't expand flash attention enabling to the model
sub-configurations. We override the original method to make sure that Bark sub-models are using Flash Attention
if necessary.
If you don't know about Flash Attention, check out the official repository of flash attention:
https://github.com/Dao-AILab/flash-attention
For using Flash Attention 1.0 you can do it directly via the `BetterTransformer` API, have a look at this
specific section of the documentation to learn more about it:
https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#decoder-models
The method checks if the current setup is compatible with Flash Attention as it requires the model to be in
half precision and not ran on CPU.
If all checks pass and `hard_check_only` is False, the method will set the config attribute `_attn_implementation` to "flash_attention_2" so that the model
can initialize the correct attention module
"""
config = super()._check_and_enable_flash_attn_2(
config, torch_dtype, device_map, hard_check_only=hard_check_only, check_device_map=check_device_map
)
config.semantic_config._attn_implementation = config._attn_implementation
config.coarse_acoustics_config._attn_implementation = config._attn_implementation
config.fine_acoustics_config._attn_implementation = config._attn_implementation
return config
|
class_definition
| 69,967 | 82,449 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bark/modeling_bark.py
| null | 2,898 |
class TFConvNextV2DropPath(keras.layers.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
References:
(1) github.com:rwightman/pytorch-image-models
"""
def __init__(self, drop_path: float, **kwargs):
super().__init__(**kwargs)
self.drop_path = drop_path
def call(self, x: tf.Tensor, training=None):
if training:
keep_prob = 1 - self.drop_path
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
random_tensor = tf.floor(random_tensor)
return (x / keep_prob) * random_tensor
return x
|
class_definition
| 1,949 | 2,668 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnextv2/modeling_tf_convnextv2.py
| null | 2,899 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.