text
stringlengths
1
1.02k
class_index
int64
0
10.8k
source
stringlengths
85
188
class XCLIPTextModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,886
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XCLIPVisionModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,887
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XGLMForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,888
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XGLMModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,889
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XGLMPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,890
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,891
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,892
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMForQuestionAnsweringSimple(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,893
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,894
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,895
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,896
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,897
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMWithLMHeadModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,898
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,899
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,900
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,901
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,902
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,903
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,904
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,905
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,906
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaXLForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,907
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaXLForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,908
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaXLForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,909
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaXLForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,910
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaXLForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,911
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaXLForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,912
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaXLModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,913
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLMRobertaXLPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,914
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLNetForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,915
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLNetForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,916
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLNetForQuestionAnsweringSimple(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,917
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLNetForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,918
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLNetForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,919
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLNetLMHeadModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,920
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,921
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XLNetPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,922
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XmodForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,923
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XmodForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,924
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XmodForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,925
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XmodForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,926
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XmodForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,927
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XmodForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,928
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XmodModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,929
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class XmodPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,930
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class YolosForObjectDetection(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,931
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class YolosModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,932
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class YolosPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,933
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class YosoForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,934
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class YosoForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,935
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class YosoForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,936
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class YosoForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,937
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class YosoForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,938
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class YosoModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,939
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class YosoPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,940
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class ZambaForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,941
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class ZambaForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,942
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class ZambaModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,943
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class ZambaPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,944
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class ZoeDepthForDepthEstimation(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,945
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class ZoeDepthPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,946
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class Adafactor(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,947
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class AdamW(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,948
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class Conv1D(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,949
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class Trainer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,950
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class Seq2SeqTrainer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
1,951
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_pt_objects.py
class TFGPT2Tokenizer(metaclass=DummyObject): _backends = ["keras_nlp"] def __init__(self, *args, **kwargs): requires_backends(self, ["keras_nlp"])
1,952
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_keras_nlp_objects.py
class MusicgenMelodyFeatureExtractor(metaclass=DummyObject): _backends = ["torchaudio"] def __init__(self, *args, **kwargs): requires_backends(self, ["torchaudio"])
1,953
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_torchaudio_objects.py
class MusicgenMelodyProcessor(metaclass=DummyObject): _backends = ["torchaudio"] def __init__(self, *args, **kwargs): requires_backends(self, ["torchaudio"])
1,954
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_torchaudio_objects.py
class cached_property(property): """ Descriptor that mimics @property but caches output in member variable. From tensorflow_datasets Built-in in functools from Python 3.8. """ def __get__(self, obj, objtype=None): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") attr = "__cached_" + self.fget.__name__ cached = getattr(obj, attr, None) if cached is None: cached = self.fget(obj) setattr(obj, attr, cached) return cached
1,955
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
class ModelOutput(OrderedDict): """ Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular python dictionary. <Tip warning={true}> You can't unpack a `ModelOutput` directly. Use the [`~utils.ModelOutput.to_tuple`] method to convert it to a tuple before. </Tip> """ def __init_subclass__(cls) -> None: """Register subclasses as pytree nodes.
1,956
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
This is necessary to synchronize gradients when using `torch.nn.parallel.DistributedDataParallel` with `static_graph=True` with modules that output `ModelOutput` subclasses. """ if is_torch_available(): if version.parse(get_torch_version()) >= version.parse("2.2"): _torch_pytree.register_pytree_node( cls, _model_output_flatten, partial(_model_output_unflatten, output_type=cls), serialized_type_name=f"{cls.__module__}.{cls.__name__}", ) else: _torch_pytree._register_pytree_node( cls, _model_output_flatten, partial(_model_output_unflatten, output_type=cls), ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs)
1,956
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
# Subclasses of ModelOutput must use the @dataclass decorator # This check is done in __init__ because the @dataclass decorator operates after __init_subclass__ # issubclass() would return True for issubclass(ModelOutput, ModelOutput) when False is needed # Just need to check that the current class is not ModelOutput is_modeloutput_subclass = self.__class__ != ModelOutput if is_modeloutput_subclass and not is_dataclass(self): raise TypeError( f"{self.__module__}.{self.__class__.__name__} is not a dataclasss." " This is a subclass of ModelOutput and so must use the @dataclass decorator." ) def __post_init__(self): """Check the ModelOutput dataclass. Only occurs if @dataclass decorator has been used. """ class_fields = fields(self)
1,956
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
# Safety and consistency checks if not len(class_fields): raise ValueError(f"{self.__class__.__name__} has no fields.") if not all(field.default is None for field in class_fields[1:]): raise ValueError(f"{self.__class__.__name__} should not have more than one required field.") first_field = getattr(self, class_fields[0].name) other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(first_field): if isinstance(first_field, dict): iterator = first_field.items() first_field_iterator = True else: try: iterator = iter(first_field) first_field_iterator = True except TypeError: first_field_iterator = False
1,956
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
# if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(iterator): if ( not isinstance(element, (list, tuple)) or not len(element) == 2 or not isinstance(element[0], str) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute self[class_fields[0].name] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break
1,956
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
setattr(self, element[0], element[1]) if element[1] is not None: self[element[0]] = element[1] elif first_field is not None: self[class_fields[0].name] = first_field else: for field in class_fields: v = getattr(self, field.name) if v is not None: self[field.name] = v
1,956
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
def __delitem__(self, *args, **kwargs): raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") def setdefault(self, *args, **kwargs): raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") def pop(self, *args, **kwargs): raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") def update(self, *args, **kwargs): raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") def __getitem__(self, k): if isinstance(k, str): inner_dict = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self, name, value): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(name, value) super().__setattr__(name, value)
1,956
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
def __setitem__(self, key, value): # Will raise a KeyException if needed super().__setitem__(key, value) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(key, value) def __reduce__(self): if not is_dataclass(self): return super().__reduce__() callable, _args, *remaining = super().__reduce__() args = tuple(getattr(self, field.name) for field in fields(self)) return callable, args, *remaining def to_tuple(self) -> Tuple[Any]: """ Convert self to a tuple containing all the attributes/keys that are not `None`. """ return tuple(self[k] for k in self.keys())
1,956
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
class ExplicitEnum(str, Enum): """ Enum with more explicit error message for missing values. """ @classmethod def _missing_(cls, value): raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._value2member_map_.keys())}" )
1,957
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
class PaddingStrategy(ExplicitEnum): """ Possible values for the `padding` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an IDE. """ LONGEST = "longest" MAX_LENGTH = "max_length" DO_NOT_PAD = "do_not_pad"
1,958
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
class TensorType(ExplicitEnum): """ Possible values for the `return_tensors` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an IDE. """ PYTORCH = "pt" TENSORFLOW = "tf" NUMPY = "np" JAX = "jax" MLX = "mlx"
1,959
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
class ContextManagers: """ Wrapper for `contextlib.ExitStack` which enters a collection of context managers. Adaptation of `ContextManagers` in the `fastcore` library. """ def __init__(self, context_managers: List[ContextManager]): self.context_managers = context_managers self.stack = ExitStack() def __enter__(self): for context_manager in self.context_managers: self.stack.enter_context(context_manager) def __exit__(self, *args, **kwargs): self.stack.__exit__(*args, **kwargs)
1,960
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
class LossKwargs(TypedDict, total=False): """ Keyword arguments to be passed to the loss function Attributes: num_items_in_batch (`int`, *optional*): Number of items in the batch. It is recommended to pass it when you are doing gradient accumulation. """ num_items_in_batch: Optional[int]
1,961
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/generic.py
class ImageProcessingMixin(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,962
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class BaseImageProcessor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,963
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class ImageFeatureExtractionMixin(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,964
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class AriaImageProcessor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,965
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class BeitFeatureExtractor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,966
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class BeitImageProcessor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,967
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class BitImageProcessor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,968
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class BlipImageProcessor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,969
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class BridgeTowerImageProcessor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,970
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class ChameleonImageProcessor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,971
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class ChineseCLIPFeatureExtractor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,972
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class ChineseCLIPImageProcessor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,973
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class CLIPFeatureExtractor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,974
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class CLIPImageProcessor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,975
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class ConditionalDetrFeatureExtractor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,976
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class ConditionalDetrImageProcessor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,977
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py
class ConvNextFeatureExtractor(metaclass=DummyObject): _backends = ["vision"] def __init__(self, *args, **kwargs): requires_backends(self, ["vision"])
1,978
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_vision_objects.py