text
stringlengths
1
1.02k
class_index
int64
0
10.8k
source
stringlengths
85
188
# same for min length if generation_config.min_new_tokens is not None: if not has_default_min_length: logger.warning( f"Both `min_new_tokens` (={generation_config.min_new_tokens}) and `min_length`(=" f"{generation_config.min_length}) seem to have been set. `min_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.min_length = generation_config.min_new_tokens + input_ids_length elif ( model_input_name == "inputs_embeds" and input_ids_length != inputs_tensor.shape[1] and not self.config.is_encoder_decoder ): generation_config.min_length = max(generation_config.min_length - inputs_tensor.shape[1], 0) return generation_config
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _prepare_generation_config( self, generation_config: Optional[GenerationConfig], **kwargs: Dict ) -> Tuple[GenerationConfig, Dict]: """ Prepares the base generation config, then applies any generation configuration options from kwargs. This function handles retrocompatibility with respect to configuration files. """ # TODO joao: when we can detect `fullgraph=True` in `torch.compile` (https://github.com/pytorch/pytorch/pull/120400) # replace `is_torchdynamo_compiling` by the corresponding check. As it is, we are being too restrictive with # the parameterization in `fullgraph=False` so as to enable `fullgraph=True`.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# priority: `generation_config` argument > `model.generation_config` (the default generation config) using_model_generation_config = False if generation_config is None: # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior, # the following conditions must be met # 1) the generation config must have been created from the model config (`_from_model_config` field); # 2) the generation config must have seen no modification since its creation (the hash is the same); # 3) there are non-default generation parameters in the model config. # 4) the user must have set new generation parameters in the model config. # NOTE: `torch.compile` can't compile `hash`, this legacy support is disabled with compilation. if ( not is_torchdynamo_compiling() and self.generation_config._from_model_config # 1)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
and self.generation_config._original_object_hash == hash(self.generation_config) # 2) and len(self.config._get_non_default_generation_parameters()) > 0 # 3) ): new_generation_config = GenerationConfig.from_model_config(self.config) if new_generation_config != self.generation_config: # 4) warnings.warn( "You have modified the pretrained model configuration to control generation. This is a" " deprecated strategy to control generation and will be removed in v5." " Please use and modify the model generation configuration (see" " https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )", UserWarning, ) self.generation_config = new_generation_config
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
generation_config = self.generation_config using_model_generation_config = True
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# `torch.compile` can't compile `copy.deepcopy`, arguments in `kwargs` that are part of `generation_config` # will mutate the object with `.update`. As such, passing these arguments through `kwargs` is disabled -- an # exception will be raised in `_validate_model_kwargs` if not is_torchdynamo_compiling(): generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # If `generation_config` is provided, let's fallback ALL special tokens to the default values for the model if not using_model_generation_config: if generation_config.bos_token_id is None: generation_config.bos_token_id = self.generation_config.bos_token_id if generation_config.eos_token_id is None: generation_config.eos_token_id = self.generation_config.eos_token_id if generation_config.pad_token_id is None:
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
generation_config.pad_token_id = self.generation_config.pad_token_id if generation_config.decoder_start_token_id is None: generation_config.decoder_start_token_id = self.generation_config.decoder_start_token_id else: model_kwargs = kwargs
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
return generation_config, model_kwargs def _get_initial_cache_position(self, input_ids, model_kwargs): """Calculates `cache_position` for the pre-fill stage based on `input_ids` and optionally past length""" # `torch.compile`-friendly `torch.arange` from a shape -- the lines below are equivalent to `torch.arange` if "inputs_embeds" in model_kwargs and not self.config.is_encoder_decoder: cache_position = torch.ones_like(model_kwargs["inputs_embeds"][0, :, 0], dtype=torch.int64).cumsum(0) - 1 elif "decoder_inputs_embeds" in model_kwargs and self.config.is_encoder_decoder: cache_position = ( torch.ones_like(model_kwargs["decoder_inputs_embeds"][0, :, 0], dtype=torch.int64).cumsum(0) - 1 ) else: cache_position = torch.ones_like(input_ids[0, :], dtype=torch.int64).cumsum(0) - 1
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
past_length = 0 if model_kwargs.get("past_key_values") is not None: cache = model_kwargs["past_key_values"] past_length = 0 if not isinstance(cache, Cache): past_length = cache[0][0].shape[2] elif hasattr(cache, "get_seq_length") and cache.get_seq_length() is not None: past_length = cache.get_seq_length() # TODO(joao): this is not torch.compile-friendly, find a work-around. If the cache is not empty, # end-to-end compilation will yield bad results because `cache_position` will be incorrect. if not is_torchdynamo_compiling(): cache_position = cache_position[past_length:] model_kwargs["cache_position"] = cache_position return model_kwargs
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _get_cache( self, cache_implementation: str, batch_size: int, max_cache_len: int, device: torch.device, model_kwargs ) -> Cache: """ Sets a cache for `generate`, that will persist across calls. A new cache will only be initialized a new `generate` call requires a larger cache or uses a different batch size. Returns the resulting cache object. """ cache_cls: Cache = NEED_SETUP_CACHE_CLASSES_MAPPING[cache_implementation] requires_cross_attention_cache = ( self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None ) if hasattr(self, "_cache"): cache_to_check = self._cache.self_attention_cache if requires_cross_attention_cache else self._cache if cache_implementation == "sliding_window": max_cache_len = min(self.config.sliding_window, max_cache_len)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
need_new_cache = ( not hasattr(self, "_cache") or (not isinstance(cache_to_check, cache_cls)) or cache_to_check.max_batch_size != batch_size ) if cache_implementation != "mamba": need_new_cache = need_new_cache or cache_to_check.max_cache_len < max_cache_len if requires_cross_attention_cache and hasattr(self, "_cache"): need_new_cache = ( need_new_cache or self._cache.cross_attention_cache.max_cache_len != model_kwargs["encoder_outputs"][0].shape[1] )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if need_new_cache: if hasattr(self.config, "_pre_quantization_dtype"): cache_dtype = self.config._pre_quantization_dtype else: if not is_torchdynamo_compiling(): cache_dtype = self.dtype else: # NOTE: self.dtype is not compatible with torch.compile, as it calls `self.parameters()`. # Workaround: trust the lm_head, whose attribute name is somewhat consistent across generative # models. May cause trobles with non-text modalities. cache_dtype = self.get_output_embeddings().weight.dtype
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def get_layer_device_map(execution_device_map: Optional[dict] = None): num_hidden_layers = self.config.get_text_config().num_hidden_layers if execution_device_map is None: return None elif len(execution_device_map) == 1 and "" in execution_device_map: return {idx: execution_device_map[""] for idx in range(num_hidden_layers)} layer_device_map = {} for layer in execution_device_map: for idx in range(num_hidden_layers): if f".{idx}." in f"{layer}.": layer_device_map[idx] = execution_device_map[layer] break for idx in range(num_hidden_layers): if idx not in layer_device_map: raise RuntimeError(f"layer {idx} has not been mapped to a device.") return layer_device_map
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
execution_device_map = None # Taken from dispatch_model from accelerate. # This is needed here if we don't want to make changes in accelerate in order to save execution_device # For offloaded case, we need to get the execution device, not just the device where it is offloaded if hasattr(self, "hf_device_map"): if set(self.hf_device_map.values()) == {"cpu"} or set(self.hf_device_map.values()) == {"cpu", "disk"}: main_device = "cpu" else: main_device = [d for d in self.hf_device_map.values() if d not in ["cpu", "disk"]][0] execution_device_map = { name: main_device if device in ["cpu", "disk"] else device for name, device in self.hf_device_map.items() } layer_device_map = get_layer_device_map(execution_device_map)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
cache_kwargs = { "config": self.config.get_text_config(), "max_batch_size": batch_size, "max_cache_len": max_cache_len, "device": device, "dtype": cache_dtype, "layer_device_map": layer_device_map, } self._cache = cache_cls(**cache_kwargs) if requires_cross_attention_cache: encoder_kwargs = cache_kwargs.copy() encoder_kwargs["max_cache_len"] = model_kwargs["encoder_outputs"][0].shape[1] self._cache = EncoderDecoderCache(self._cache, cache_cls(**encoder_kwargs)) else: self._cache.reset() return self._cache
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _supports_default_dynamic_cache(self) -> bool: """ Return `True` if current model can use a `DynamicCache` instance when initializing the `past_key_values`. This is mostly the same as `_supports_cache_class` attribute, but add exception for `Jamba` model which uses its own `HybridMambaAttentionDynamicCache` and do not need to initialize the Cache in advance in order to save memory (because no back and forth `to_legacy_cache` and `from_legacy_cache` will be performed for `HybridMambaAttentionDynamicCache`). """ return ( self._supports_cache_class and "jamba" not in self.__class__.__name__.lower() and "zamba" not in self.__class__.__name__.lower() and "bamba" not in self.__class__.__name__.lower() )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _prepare_cache_for_generation( self, generation_config: GenerationConfig, model_kwargs: Dict, assistant_model: "PreTrainedModel", batch_size: int, max_cache_length: int, device: torch.device, ) -> bool: """ Prepares the cache for generation (if applicable), given `generate`'s parameterization. If a cache is instantiated, writes it to `model_kwargs`, under the name expected by the model. """ cache_name = "past_key_values" if "mamba" not in self.__class__.__name__.lower() else "cache_params" requires_cross_attention_cache = ( self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Quick escape route 1: if the user specifies a cache, we only need to: # a) check for conflicting `generate` arguments # b) convert to the new cache format (if the user passes a legacy cache and model supports it) user_defined_cache = model_kwargs.get(cache_name) if user_defined_cache is not None: if generation_config.cache_implementation is not None: raise ValueError( f"Passing both `cache_implementation` (used to initialize certain caches) and `{cache_name}` (a " "Cache object) is unsupported. Please use only one of the two." ) if isinstance(user_defined_cache, tuple) and self._supports_default_dynamic_cache(): model_kwargs[cache_name] = ( DynamicCache.from_legacy_cache(user_defined_cache) if not requires_cross_attention_cache else EncoderDecoderCache.from_legacy_cache(user_defined_cache)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
) return
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Quick escape route 2: if the user specifies no cache is to be used. (conflicting arguments are handled in # `generation_config.validate()`) if generation_config.use_cache is False: return # Quick escape route 3: model that only supports legacy caches = nothing to prepare if not self._supports_default_dynamic_cache(): if generation_config.cache_implementation is not None: warnings.warn( "This model does not support `Cache` instances, it only supports the legacy cache format (tuple " f"of tuples). `cache_implementation` (set to {generation_config.cache_implementation}) will be " "ignored.", UserWarning, ) return # Otherwise we NEED to prepare a cache, based on `generation_config.cache_implementation`
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# TODO(joao): support static caches in assisted generation. assisted generation needs to roll back caches, # which is only supported in dynamic caches atm if assistant_model is not None and generation_config.cache_implementation is not None: logger.warning_once( "An assistant model is provided, using a dynamic cache instead of a cache of type=" f"'{generation_config.cache_implementation}'." ) generation_config.cache_implementation = None
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if generation_config.cache_implementation is not None: if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING: if generation_config.cache_implementation == "static" and not self._supports_static_cache: raise ValueError( "This model does not support `cache_implementation='static'`. Please check the following " "issue: https://github.com/huggingface/transformers/issues/28981" ) model_kwargs[cache_name] = self._get_cache( cache_implementation=generation_config.cache_implementation, batch_size=max(generation_config.num_beams, generation_config.num_return_sequences) * batch_size, max_cache_len=max_cache_length, device=device, model_kwargs=model_kwargs, ) elif generation_config.cache_implementation == "quantized":
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if not self._supports_quantized_cache: raise ValueError( "This model does not support the quantized cache. If you want your model to support quantized " "cache, please open an issue and tag @zucchini-nlp." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
cache_config = ( generation_config.cache_config if generation_config.cache_config is not None else QuantizedCacheConfig() ) cache_class = QUANT_BACKEND_CLASSES_MAPPING[cache_config.backend] if cache_config.backend == "quanto" and not is_optimum_quanto_available(): raise ImportError( "You need to install optimum-quanto in order to use KV cache quantization with optimum-quanto backend. " "Please install it via with `pip install optimum-quanto`" ) elif cache_config.backend == "HQQ" and not is_hqq_available(): raise ImportError( "You need to install `HQQ` in order to use KV cache quantization with HQQ backend. " "Please install it via with `pip install hqq`" )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
model_kwargs[cache_name] = cache_class(cache_config) elif generation_config.cache_implementation == "offloaded": model_kwargs[cache_name] = OffloadedCache() # Use DynamicCache() instance by default. This will avoid back and forth from legacy format that # keeps copying the cache thus using much more memory else: model_kwargs[cache_name] = ( DynamicCache() if not requires_cross_attention_cache else EncoderDecoderCache(DynamicCache(), DynamicCache()) ) def _supports_num_logits_to_keep(self) -> bool: """ Return True if the current model supports the keyword argument `num_logits_to_keep` in forward() to save memory. Checking it in this way allows to avoid using a new model attribute. """ return "num_logits_to_keep" in set(inspect.signature(self.forward).parameters.keys())
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _prepare_special_tokens( self, generation_config: GenerationConfig, kwargs_has_attention_mask: Optional[bool] = None, device: Optional[Union[torch.device, str]] = None, ): """ Prepares the special tokens for generation, overwriting the generation config with their processed versions converted to tensor. Note that `generation_config` is changed in place and stops being serializable after this method is called. That is no problem if called within `generate` (`generation_config` is a local copy that doesn't leave the function). However, if called outside `generate`, consider creating a copy of `generation_config` first. """ # Convert special tokens to tensors def _tensor_or_none(token, device=None): if token is None: return token
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
device = device if device is not None else self.device if isinstance(token, torch.Tensor): return token.to(device) return torch.tensor(token, device=device, dtype=torch.long) bos_token_tensor = _tensor_or_none(generation_config.bos_token_id, device=device) eos_token_tensor = _tensor_or_none(generation_config.eos_token_id, device=device) pad_token_tensor = _tensor_or_none(generation_config.pad_token_id, device=device) decoder_start_token_tensor = _tensor_or_none(generation_config.decoder_start_token_id, device=device) # for BC we also try to get `decoder_start_token_id` or `bos_token_id` (#30892) if self.config.is_encoder_decoder: decoder_start_token_tensor = ( decoder_start_token_tensor if decoder_start_token_tensor is not None else bos_token_tensor )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# We can have more than one eos token. Always treat it as a 1D tensor (when it exists). if eos_token_tensor is not None and eos_token_tensor.ndim == 0: eos_token_tensor = eos_token_tensor.unsqueeze(0) # Set pad token if unset (and there are conditions to do so) if pad_token_tensor is None and eos_token_tensor is not None: if not is_torchdynamo_compiling(): if kwargs_has_attention_mask is not None and not kwargs_has_attention_mask: logger.warning( "The attention mask and the pad token id were not set. As a consequence, you may observe " "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." ) pad_token_tensor = eos_token_tensor[0] logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{pad_token_tensor} for open-end generation.")
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Sanity checks/warnings if self.config.is_encoder_decoder and decoder_start_token_tensor is None: raise ValueError( "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation." ) if not is_torchdynamo_compiling(): # Checks that depend on tensor-dependent control flow if ( eos_token_tensor is not None and isin_mps_friendly(elements=eos_token_tensor, test_elements=pad_token_tensor).any() ): if kwargs_has_attention_mask is not None and not kwargs_has_attention_mask: logger.warning_once( "The attention mask is not set and cannot be inferred from input because pad token is same as " "eos token. As a consequence, you may observe unexpected behavior. Please pass your input's " "`attention_mask` to obtain reliable results." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if eos_token_tensor is not None and ( torch.is_floating_point(eos_token_tensor) or (eos_token_tensor < 0).any() ): logger.warning( f"`eos_token_id` should consist of positive integers, but is {eos_token_tensor}. Your generation " "will not stop until the maximum length is reached. Depending on other flags, it may even crash." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Update generation config with the updated special tokens tensors # NOTE: this must be written into a different attribute name than the one holding the original special tokens # (in their non-tensor form), in order to enable end-to-end compilation. See # https://pytorch.org/docs/stable/torch.compiler_cudagraph_trees.html#limitations generation_config._bos_token_tensor = bos_token_tensor generation_config._eos_token_tensor = eos_token_tensor generation_config._pad_token_tensor = pad_token_tensor generation_config._decoder_start_token_tensor = decoder_start_token_tensor
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
@torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, synced_gpus: Optional[bool] = None, assistant_model: Optional["PreTrainedModel"] = None, streamer: Optional["BaseStreamer"] = None, negative_prompt_ids: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, **kwargs, ) -> Union[GenerateOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head. <Tip warning={true}>
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](../generation_strategies). </Tip>
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config ([`~generation.GenerationConfig`], *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which has the following loading
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complements the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
generation config an error is thrown. If your stopping criteria depends on the `scores` input, make sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. This feature is intended for advanced users. prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful for constrained generation conditioned on the prefix, as described in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904).
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
synced_gpus (`bool`, *optional*): Whether to continue running the while loop until max_length. Unless overridden, this flag will be set to `True` if using `FullyShardedDataParallel` or DeepSpeed ZeRO Stage 3 with multiple GPUs to avoid deadlocking if one GPU finishes generating before other GPUs. Otherwise, defaults to `False`. assistant_model (`PreTrainedModel`, *optional*): An assistant model that can be used to accelerate generation. The assistant model must have the exact same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistant model is much faster than running generation with the model you're calling generate from. As such, the assistant model should be much smaller. streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
through `streamer.put(token_ids)` and the streamer is responsible for any further processing. negative_prompt_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): The negative prompt needed for some processors such as CFG. The batch size must match the input batch size. This is an experimental feature, subject to breaking API changes in future versions. negative_prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Attention_mask for `negative_prompt_ids`. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generation_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.LongTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateDecoderOnlyOutput`], - [`~generation.GenerateBeamDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call self._validate_model_class() tokenizer = kwargs.pop("tokenizer", None) # Pull this out first, we only use it for stopping criteria assistant_tokenizer = kwargs.pop("assistant_tokenizer", None) # only used for assisted generation generation_config, model_kwargs = self._prepare_generation_config(generation_config, **kwargs) self._validate_model_kwargs(model_kwargs.copy()) self._validate_assistant(assistant_model, tokenizer, assistant_tokenizer) # 2. Set generation parameters if not already defined if synced_gpus is None: synced_gpus = (is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)) and dist.get_world_size() > 1
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys()) requires_attention_mask = "encoder_outputs" not in model_kwargs kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None # 3. Define model inputs inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = inputs_tensor.shape[0] device = inputs_tensor.device self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=device)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# decoder-only models must use left-padding for batched generation. if not self.config.is_encoder_decoder and not is_torchdynamo_compiling(): # If `input_ids` was given, check if the last id in any sequence is `pad_token_id` # Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off. if ( generation_config._pad_token_tensor is not None and batch_size > 1 and len(inputs_tensor.shape) == 2 and torch.sum(inputs_tensor[:, -1] == generation_config._pad_token_tensor) > 0 ): logger.warning( "A decoder-only architecture is being used, but right-padding was detected! For correct " "generation results, please set `padding_side='left'` when initializing the tokenizer." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 4. Define other model kwargs # decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are # generating the first new token or not, and we only want to use the embeddings for the first new token) if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds": generation_config.use_cache = True if not kwargs_has_attention_mask and requires_attention_mask and accepts_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( inputs_tensor, generation_config, model_kwargs ) elif kwargs_has_attention_mask: # TODO (joao): generalize this check with other types of inputs if model_input_name == "input_ids" and len(model_kwargs["attention_mask"].shape) > 2: raise ValueError("`attention_mask` passed to `generate` must be 2D.")
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs: # if model is encoder decoder encoder_outputs are created and added to `model_kwargs` model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation( inputs_tensor, model_kwargs, model_input_name, generation_config ) # 5. Prepare `input_ids` which will be used for auto-regressive generation if self.config.is_encoder_decoder: input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( batch_size=batch_size, model_input_name=model_input_name, model_kwargs=model_kwargs, decoder_start_token_id=generation_config._decoder_start_token_tensor, device=inputs_tensor.device, ) else: input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if generation_config.token_healing: input_ids = self.heal_tokens(input_ids, tokenizer) if streamer is not None: streamer.put(input_ids.cpu()) # 6. Prepare `max_length` depending on other stopping criteria. input_ids_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None generation_config = self._prepare_generated_length( generation_config=generation_config, has_default_max_length=has_default_max_length, has_default_min_length=has_default_min_length, model_input_name=model_input_name, inputs_tensor=inputs_tensor, input_ids_length=input_ids_length, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# If the model supports `num_logits_to_keep` in forward(), set it to 1 to avoid computing the whole # logit matrix. This can save a lot of memory during the first forward pass. Note that assisted decoding # dynamically overrides this value as it can need more than the last token logits if self._supports_num_logits_to_keep() and "num_logits_to_keep" not in model_kwargs: model_kwargs["num_logits_to_keep"] = 1 self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 7. Prepare the cache. # - `model_kwargs` may be updated in place with a cache as defined by the parameters in `generation_config`. # - different models have a different cache name expected by the model (default = "past_key_values") # - `max_length`, prepared above, is used to determine the maximum cache length max_cache_length = generation_config.max_length if ( inputs_tensor.shape[1] != input_ids_length and model_input_name == "inputs_embeds" and not self.config.is_encoder_decoder ): max_cache_length += inputs_tensor.shape[1] self._prepare_cache_for_generation( generation_config, model_kwargs, assistant_model, batch_size, max_cache_length, device ) # 8. determine generation mode generation_mode = generation_config.get_generation_mode(assistant_model)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if streamer is not None and (generation_config.num_beams > 1): raise ValueError( "`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1." ) if not is_torchdynamo_compiling() and self.device.type != input_ids.device.type: warnings.warn( "You are calling .generate() with the `input_ids` being on a device type different" f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model" f" is on {self.device.type}. You may experience unexpected behaviors or slower generation." " Please make sure that you have put `input_ids` to the" f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before" " running `.generate()`.", UserWarning, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 9. prepare logits processors and stopping criteria prepared_logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_length, encoder_input_ids=inputs_tensor, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, logits_processor=logits_processor, device=inputs_tensor.device, model_kwargs=model_kwargs, negative_prompt_ids=negative_prompt_ids, negative_prompt_attention_mask=negative_prompt_attention_mask, ) prepared_stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria, tokenizer=tokenizer, **kwargs ) # Set model_kwargs `use_cache` so we can use it later in forward runs model_kwargs["use_cache"] = generation_config.use_cache
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 10. go into different generation modes if generation_mode == GenerationMode.ASSISTED_GENERATION: if generation_config.num_return_sequences > 1: raise ValueError( "num_return_sequences has to be 1 when doing assisted generate, " f"but is {generation_config.num_return_sequences}." ) if batch_size > 1: raise ValueError("assisted generate is only supported for batch_size = 1") if not model_kwargs["use_cache"]: raise ValueError("assisted generate requires `use_cache=True`") if generation_config.cache_implementation in ["static", "hybrid", "sliding_window"]: raise ValueError("assisted generate is not supported with Static cache classes`") if self._is_stateful: # In assisted generation we need the ability to confirm whether the model would pick certain tokens,
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# which is not possible with stateful models (they can't reset to a previous subset of generated text) raise ValueError( f"assisted generation is not supported with stateful models, such as {self.__class__.__name__}" )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 11. Get the candidate generator, given the parameterization candidate_generator = self._get_candidate_generator( generation_config=generation_config, input_ids=input_ids, inputs_tensor=inputs_tensor, assistant_model=assistant_model, logits_processor=logits_processor, target_tokenizer=tokenizer, assistant_tokenizer=assistant_tokenizer, model_kwargs=model_kwargs, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 12. run assisted generate result = self._assisted_decoding( input_ids, candidate_generator=candidate_generator, logits_processor=prepared_logits_processor, stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) elif generation_mode == GenerationMode.DOLA_GENERATION: if self._is_stateful: # DoLa decoding was not designed for stateful models, and would require some changes raise ValueError( f"dola decoding is not supported with stateful models, such as {self.__class__.__name__}" ) result = self._dola_decoding( input_ids, dola_layers=generation_config.dola_layers, logits_processor=prepared_logits_processor,
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
elif generation_mode == GenerationMode.CONTRASTIVE_SEARCH: if not model_kwargs["use_cache"]: raise ValueError("Contrastive search requires `use_cache=True`") if self._is_stateful: # Just like assisted generation, we need to be able to rollback to a previous state (see comment above) raise ValueError( f"contrastive search is not supported with stateful models, such as {self.__class__.__name__}" ) result = self._contrastive_search( input_ids, logits_processor=prepared_logits_processor, stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
elif generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH): # 11. expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 12. run sample (it degenerates to greedy search when `generation_config.do_sample=False`) result = self._sample( input_ids, logits_processor=prepared_logits_processor, stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
elif generation_mode in (GenerationMode.BEAM_SAMPLE, GenerationMode.BEAM_SEARCH): # 11. prepare beam search scorer beam_scorer = BeamSearchScorer( batch_size=batch_size, num_beams=generation_config.num_beams, device=inputs_tensor.device, length_penalty=generation_config.length_penalty, do_early_stopping=generation_config.early_stopping, num_beam_hyps_to_keep=generation_config.num_return_sequences, max_length=generation_config.max_length, ) # 12. interleave input_ids with `num_beams` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_beams, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 13. run beam sample result = self._beam_search( input_ids, beam_scorer, logits_processor=prepared_logits_processor, stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, **model_kwargs, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
elif generation_mode == GenerationMode.GROUP_BEAM_SEARCH: # 11. prepare beam search scorer beam_scorer = BeamSearchScorer( batch_size=batch_size, num_beams=generation_config.num_beams, device=inputs_tensor.device, length_penalty=generation_config.length_penalty, do_early_stopping=generation_config.early_stopping, num_beam_hyps_to_keep=generation_config.num_return_sequences, num_beam_groups=generation_config.num_beam_groups, max_length=generation_config.max_length, ) # 12. interleave input_ids with `num_beams` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_beams, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 13. run beam search result = self._group_beam_search( input_ids, beam_scorer, logits_processor=prepared_logits_processor, stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, **model_kwargs, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
elif generation_mode == GenerationMode.CONSTRAINED_BEAM_SEARCH: final_constraints = [] if generation_config.constraints is not None: final_constraints = generation_config.constraints if generation_config.force_words_ids is not None: def typeerror(): raise ValueError( "`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]` " f"of positive integers, but is {generation_config.force_words_ids}." ) if ( not isinstance(generation_config.force_words_ids, list) or len(generation_config.force_words_ids) == 0 ): typeerror()
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
for word_ids in generation_config.force_words_ids: if isinstance(word_ids[0], list): if not isinstance(word_ids, list) or len(word_ids) == 0: typeerror() if any(not isinstance(token_ids, list) for token_ids in word_ids): typeerror() if any( any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids) for token_ids in word_ids ): typeerror() constraint = DisjunctiveConstraint(word_ids) else: if not isinstance(word_ids, list) or len(word_ids) == 0: typeerror() if any((not isinstance(token_id, int) or token_id < 0) for token_id in word_ids): typeerror()
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
constraint = PhrasalConstraint(word_ids) final_constraints.append(constraint)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 11. prepare beam search scorer constrained_beam_scorer = ConstrainedBeamSearchScorer( constraints=final_constraints, batch_size=batch_size, num_beams=generation_config.num_beams, device=inputs_tensor.device, length_penalty=generation_config.length_penalty, do_early_stopping=generation_config.early_stopping, num_beam_hyps_to_keep=generation_config.num_return_sequences, max_length=generation_config.max_length, ) # 12. interleave input_ids with `num_beams` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_beams, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 13. run beam search
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
result = self._constrained_beam_search( input_ids, constrained_beam_scorer=constrained_beam_scorer, logits_processor=prepared_logits_processor, stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, **model_kwargs, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Convert to legacy cache format if requested if ( generation_config.return_legacy_cache is True and not is_torchdynamo_compiling() and hasattr(result, "past_key_values") and getattr(result.past_key_values, "to_legacy_cache") is not None ): result.past_key_values = result.past_key_values.to_legacy_cache() return result
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _has_unfinished_sequences( self, this_peer_finished: bool, synced_gpus: bool, device: torch.device, cur_len: Optional[int] = None, max_length: Optional[int] = None, ) -> bool: """ Returns whether there are still unfinished sequences in the device. The existence of unfinished sequences is fed through `this_peer_finished`. ZeRO stage 3-friendly. """ # torch.compile does not support data-dependent control flow. This is a workaround to allow torch.compile, # although we lose the ability to stop when all sequences return an EOS token (and other stopping criteria) # TODO (joao): remove this when torch's support for control flow is not experimental (https://pytorch.org/docs/stable/generated/torch.cond.html) if is_torchdynamo_compiling(): return cur_len < max_length else: if synced_gpus:
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence. # The following logic allows an early break if all peers finished generating their sequence this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(device) # send 0.0 if we finished, 1.0 otherwise dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM) # did all peers finish? the reduced sum will be 0.0 then if this_peer_finished_flag.item() == 0.0: return False elif this_peer_finished: return False return True
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def heal_tokens( self, input_ids: torch.LongTensor, tokenizer: Optional["PreTrainedTokenizerBase"] = None ) -> torch.LongTensor: r""" Generates sequences of token ids for models with a language modeling head. Parameters: input_ids (`torch.LongTensor`): The sequence used as a prompt for the generation. tokenizer (`PreTrainedTokenizerBase`, *optional*): The tokenizer used to decode the input ids. Return: `torch.LongTensor` where each sequence has its tail token replaced with its appropriate extension. """ if tokenizer is None: raise ValueError( " When generating with token healing, you must pass the model's tokenizer to the `tokenizer` " "argument of `generate`." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
bos_token_id, pad_token_id = tokenizer.bos_token_id, tokenizer.pad_token_id vocab_trie = ExtensionsTrie(tokenizer.get_vocab()) generation_config = GenerationConfig(max_new_tokens=1, pad_token_id=pad_token_id) # assumption: leading/trailing whitespace is not meaningful, so the prompts are # stripped before re-tokenizing to desensitize generation to whitespace artefacts prompts = [p.strip() for p in tokenizer.batch_decode(input_ids, skip_special_tokens=True)] input_ids = tokenizer( prompts, return_tensors="pt", padding=True, ).input_ids.to(input_ids.device) # replace bos with pad to not condition healing on it input_ids = torch.where(input_ids == bos_token_id, pad_token_id, input_ids) """ the latter code assumes the input_ids is not empty, input_id has to be checked if contains elements """ if input_ids.numel() == 0: return input_ids
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
tail_ids = input_ids[:, -1].tolist() space_tok = tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids(" "))[0] # tail tokens are used for a prefix search, thus, whitespaces are replaced with # their tokenization (e.g. 'Ġ') to enable search for tokens prefixed with a whitespace tail_toks = (tokenizer.decode(t).replace(" ", space_tok) for t in tail_ids) for batch_idx, (tail_id, tail_tok) in enumerate(zip(tail_ids, tail_toks)): batch_ids = input_ids[batch_idx] if torch.all(batch_ids == pad_token_id).item(): continue # skip empty sequences (all pad ids)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# apply bias for alternatives (extensions) to the tail token """ seq_bias key has to be tuple with int so have to use tokenizer function to convert str to int """ seq_bias = { (tokenizer.convert_tokens_to_ids(alt_tok),): 10.0 for alt_tok in vocab_trie.extensions(prefix=tail_tok) } if len(seq_bias) == 1: continue # skip if there are no token alternatives to heal with # slightly favor original token to limit aggressive healing e.g. 'http' -> 'https' seq_bias[(tail_id,)] += 1.0 generation_config.update(sequence_bias=seq_bias) trimmed_ids = batch_ids[:-1] """ the latter code assumes trimmed_ids is not empty so have to check the its element count """ if trimmed_ids.numel() == 0: continue
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# if the prompt is a single (non-pad) token, regenerate from bos if len(batch_ids[batch_ids != pad_token_id]) == 1: trimmed_ids[-1] = bos_token_id input_ids[batch_idx] = self.generate(trimmed_ids.unsqueeze(0), generation_config=generation_config) return input_ids
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _dola_decoding( self, input_ids: torch.LongTensor, dola_layers: Union[str, List[int]], logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, streamer: "BaseStreamer", **model_kwargs, ) -> Union[GenerateNonBeamOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head using **dola decoding** and can be used for decoder-only text models. The method is based on the paper "DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models" (https://arxiv.org/abs/2309.03883) in ICLR 2024.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. dola_layers (`Union[str, List[int]]`): The candidate layers used in contrasting layers of DoLa. It can be either 1) 'low' or 'high', which means the lower part or higher part of the model layers, respectively, or 2) a list of layer indices to be used for candidate layers. The 0-th layer is the word embedding layer of the model. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`, *optional*):
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. model_kwargs: Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
If model is an encoder-decoder model the kwargs should include `encoder_outputs`.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Return: [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ if self.config.is_encoder_decoder: raise ValueError("DoLa decoding is only available for decoder-only models.") # init values
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
pad_token_id = generation_config._pad_token_tensor output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria) do_sample = generation_config.do_sample
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # keep track of which sequences are already finished batch_size = input_ids.shape[0] unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) this_peer_finished = False
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# prepare layers for DoLa decoding final_layer = self.config.get_text_config().num_hidden_layers # if the model has tied word embeddings, we skip the word embeddings (0-th) layer and start from the 2nd layer, # as the early exit from word embeddings will become identity function # if the model is really shallow (<=2 layers), we use the 1st layer if it's not the final layer and the 0-th # layer otherwise. Notice that DoLa does not help shallow models much. if not self.config.tie_word_embeddings: start_layer = 0 elif final_layer > 2: start_layer = 2 elif final_layer == 2: start_layer = 1 else: start_layer = 0
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# For `N`-layer models with `N <= 40` layers, the layers of `range(0, N // 2, 2)` and `range(N // 2, N, 2)` # are used for `'low'` and `'high'` layers, respectively. # For models with `N > 40` layers, the layers of `range(0, 20, 2)` and `range(N - 20, N, 2)` are used for # `'low'` and `'high'` layers, respectively. if isinstance(dola_layers, str) and dola_layers == "low": if start_layer == final_layer // 2: candidate_premature_layers = [start_layer] else: candidate_premature_layers = ( list(range(start_layer, final_layer // 2, 2)) if final_layer <= 40 else list(range(start_layer, 20, 2)) ) elif isinstance(dola_layers, str) and dola_layers == "high": candidate_premature_layers = ( list(range(final_layer // 2, final_layer, 2)) if final_layer <= 40
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
else list(range(final_layer - 20, final_layer, 2)) ) # Set the `dola_layers` to a list of integers for layer indices to contrast manually specified layers. elif isinstance(dola_layers, list): candidate_premature_layers = [i for i in dola_layers if i < final_layer] else: raise ValueError("dola_layers must be either 'low', 'high' or a list of integers.")
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
lm_head = self.get_output_embeddings() if lm_head is None: raise ValueError("DoLa is not supported for models that don't have output embeddings.") while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): # prepare model inputs model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) # forward pass to get next token outputs = self( **model_inputs, return_dict=True, output_attentions=output_attentions, output_hidden_states=True, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# .float() is needed to retain precision for later logits manipulations final_layer_next_token_logits = outputs.logits[:, -1, :].detach().clone().float() final_logits = outputs.logits[:, -1, :].float() candidate_premature_logits = {} for candidate_premature_layer in candidate_premature_layers: candidate_premature_logits[candidate_premature_layer] = lm_head( outputs.hidden_states[candidate_premature_layer][:, -1, :] ).to(final_logits.device) # synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, ) if synced_gpus and this_peer_finished: continue
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
next_token_logits = _dola_select_contrast( candidate_premature_layers, candidate_premature_logits, final_logits ) next_token_logits = next_token_logits.to(input_ids.device) # pre-process distribution next_token_scores = logits_processor(input_ids, next_token_logits) # Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_scores: scores += (next_token_scores,) if output_logits: raw_logits += (final_layer_next_token_logits,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) ) if self.config.is_encoder_decoder: cross_attentions += (outputs.cross_attentions,)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,) ) if do_sample: # sample probs = nn.functional.softmax(next_token_scores, dim=-1) next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) else: # argmax next_tokens = torch.argmax(next_token_scores, dim=-1) # finished sentences should have their next token be a padding token if has_eos_stopping_criteria: next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# update generated ids, model inputs, and length for next step input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) if streamer is not None: streamer.put(next_tokens.cpu()) # stop when each sentence is finished unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores) this_peer_finished = unfinished_sequences.max() == 0 if streamer is not None: streamer.end() if return_dict_in_generate: return GenerateDecoderOnlyOutput( sequences=input_ids, scores=scores, logits=raw_logits, attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return input_ids
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
@torch.no_grad() def _contrastive_search( self, input_ids: torch.LongTensor, logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, streamer: Optional["BaseStreamer"], **model_kwargs, ) -> Union[GenerateNonBeamOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head using **contrastive search** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`): An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. model_kwargs: Additional model specific keyword arguments will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Return: [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ # init values has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria) top_k = generation_config.top_k penalty_alpha = generation_config.penalty_alpha pad_token_id = generation_config._pad_token_tensor output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
return_dict_in_generate = generation_config.return_dict_in_generate sequential = generation_config.low_memory
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# init attention / hidden states / scores tuples raw_logits = () if (return_dict_in_generate and output_logits) else None scores = () if (return_dict_in_generate and output_scores) else None decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # if model is an encoder-decoder, retrieve encoder attention weights and hidden states if return_dict_in_generate and self.config.is_encoder_decoder: encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# keep track of which sequences are already finished batch_size = input_ids.shape[0] unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) # Create cosine_matrix_mask based on the attention_mask cosine_matrix_mask = torch.ones_like(input_ids, dtype=torch.long) if self.config.is_encoder_decoder: if "decoder_attention_mask" in model_kwargs and model_kwargs["decoder_attention_mask"] is not None: cosine_matrix_mask = model_kwargs["decoder_attention_mask"] else: cosine_matrix_mask = model_kwargs["attention_mask"] cosine_matrix_mask = cosine_matrix_mask.repeat_interleave(top_k, dim=0) this_peer_finished = False
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): # if the first step in the loop, encode all the prefix and obtain: (1) past_key_values; # (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step if model_kwargs.get("past_key_values") is None or ( isinstance(model_kwargs["past_key_values"], (Cache, EncoderDecoderCache)) and model_kwargs["past_key_values"].get_seq_length() == 0 ): # prepare inputs model_kwargs["use_cache"] = True model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save # the `encoder_outputs` outputs = self( **model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions ) # last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with # previous tokens) if self.config.is_encoder_decoder: last_hidden_states = outputs.decoder_hidden_states[-1] else: last_hidden_states = outputs.hidden_states[-1]
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# next logit for contrastive search to select top-k candidate tokens # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for this first iteration # (the clone itself is always small) # .float() is needed to retain precision for later logits manipulations logit_for_next_step = outputs.logits[:, -1, :].clone().float() logit_for_next_step = logit_for_next_step.to(input_ids.device) model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if not sequential: # Expands model inputs top_k times, for batched forward passes (akin to beam search). _, model_kwargs = self._expand_inputs_for_generation( expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
past_key_values = model_kwargs.get("past_key_values") if past_key_values is None: raise ValueError( f"{self.__class__.__name__} does not support caching and therefore **can't** be used " "for contrastive search." ) elif ( not isinstance(past_key_values[0], (tuple, torch.Tensor)) or past_key_values[0][0].shape[0] != batch_size ): raise ValueError( f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be " "used for contrastive search without further modifications." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py