text
stringlengths 1
1.02k
| class_index
int64 0
10.8k
| source
stringlengths 85
188
|
---|---|---|
def build_in_name_scope(self):
with tf.name_scope(self.name):
self.build(input_shape=None)
@property
def framework(self) -> str:
"""
:str: Identifies that this is a TensorFlow model.
"""
return "tf"
def build(self, input_shape=None):
pass # This is just here to make sure we don't call the superclass build()
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def __init__(self, config, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
if not isinstance(config, PretrainedConfig):
raise TypeError(
f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
"`PretrainedConfig`. To create a model from a pretrained model use "
f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
# Save config and origin of the pretrained weights if given in model
self.config = config
self.name_or_path = config.name_or_path
self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
self._set_save_spec(self.input_signature)
def get_config(self):
return self.config.to_dict()
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
@functools.wraps(keras.Model.fit)
def fit(self, *args, **kwargs):
args, kwargs = convert_batch_encoding(*args, **kwargs)
return super().fit(*args, **kwargs)
@functools.wraps(keras.Model.train_on_batch)
def train_on_batch(self, *args, **kwargs):
args, kwargs = convert_batch_encoding(*args, **kwargs)
return super().train_on_batch(*args, **kwargs)
@functools.wraps(keras.Model.test_on_batch)
def test_on_batch(self, *args, **kwargs):
args, kwargs = convert_batch_encoding(*args, **kwargs)
return super().test_on_batch(*args, **kwargs)
@functools.wraps(keras.Model.predict_on_batch)
def predict_on_batch(self, *args, **kwargs):
args, kwargs = convert_batch_encoding(*args, **kwargs)
return super().predict_on_batch(*args, **kwargs)
@functools.wraps(keras.Model.predict)
def predict(self, *args, **kwargs):
args, kwargs = convert_batch_encoding(*args, **kwargs)
return super().predict(*args, **kwargs)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
@functools.wraps(keras.Model.evaluate)
def evaluate(self, *args, **kwargs):
args, kwargs = convert_batch_encoding(*args, **kwargs)
return super().evaluate(*args, **kwargs)
@classmethod
def from_config(cls, config, **kwargs):
if isinstance(config, PretrainedConfig):
return cls._from_config(config, **kwargs)
return cls._from_config(cls.config_class.from_dict(config, **kwargs))
@classmethod
def _from_config(cls, config, **kwargs):
"""
All context managers that the model should be initialized under go here.
"""
return cls(config, **kwargs)
def get_head_mask(self, head_mask: tf.Tensor | None, num_hidden_layers: int) -> tf.Tensor:
"""
Prepare the head mask if needed.
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Args:
head_mask (`tf.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
num_hidden_layers (`int`):
The number of hidden layers in the model.
Returns:
`tf.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
`[None]` for each layer.
"""
if head_mask is not None:
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
else:
head_mask = [None] * num_hidden_layers
return head_mask
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
"""-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
if head_mask.shape.rank == 1:
head_mask = head_mask[None, None, :, None, None]
head_mask = tf.repeat(head_mask, repeats=num_hidden_layers, axis=0)
elif head_mask.shape.rank == 2:
head_mask = head_mask[:, None, :, None, None]
assert head_mask.shape.rank == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
head_mask = tf.cast(head_mask, tf.float32) # switch to float if need + fp16 compatibility
return head_mask
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
@tf.function
def serving(self, inputs):
"""
Args:
Method used for serving the model. Does not have a specific signature, but will be specialized as concrete
functions when saving with `save_pretrained`.
inputs (`Dict[str, tf.Tensor]`):
The input of the saved model as a dictionary of tensors.
"""
output = self.call(inputs)
return self.serving_output(output)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
@property
def input_signature(self) -> Dict[str, tf.TensorSpec]:
"""
This property should return a dict mapping input names to tf.TensorSpec objects, representing the expected
shape and dtype for model inputs. It is used for both serving and for generating dummy inputs.
"""
model_inputs = list(inspect.signature(self.call).parameters)
sig = {}
if "input_ids" in model_inputs:
if self.__class__.__name__.endswith("ForMultipleChoice"):
text_dims = 3
else:
text_dims = 2
for input_name in (
"input_ids",
"attention_mask",
"token_type_ids",
"decoder_input_ids",
"decoder_attention_mask",
):
if input_name in model_inputs:
sig[input_name] = tf.TensorSpec([None] * text_dims, tf.int32, name=input_name)
if "pixel_values" in model_inputs:
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
pixel_values_shape = [None, None, None, None]
if hasattr(self.config, "vision_config"):
vision_config = self.config.vision_config
else:
vision_config = self.config
if hasattr(vision_config, "num_channels"):
pixel_values_shape[1] = vision_config.num_channels
else:
raise NotImplementedError(
"Could not infer number of channels from config, please override input_signature to specify input shapes."
)
if hasattr(vision_config, "image_size"):
pixel_values_shape[2] = pixel_values_shape[3] = vision_config.image_size
elif hasattr(vision_config, "input_size"):
pixel_values_shape[2] = pixel_values_shape[3] = vision_config.input_size
else:
raise NotImplementedError(
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
"Could not infer input image shape from config, please override input_signature to specify input shapes."
)
sig["pixel_values"] = tf.TensorSpec(pixel_values_shape, tf.float32, name="pixel_values")
if "input_features" in model_inputs:
raise NotImplementedError("Audio models need a manually defined input_signature")
return sig
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def serving_output(self, output):
"""
Prepare the output of the saved model. Can be overridden if specific serving modifications are required.
"""
if not isinstance(output, ModelOutput):
return output
for key in output:
if key.endswith("hidden_states") and not getattr(self.config, "output_hidden_states", False):
output[key] = None
elif key.endswith("attentions") and not getattr(self.config, "output_attentions", False):
output[key] = None
elif key == "past_key_values" and not getattr(self.config, "use_cache", False):
output[key] = None
elif key == "cross_attentions" and not (
getattr(self.config, "output_attentions", False) and getattr(self.config, "add_cross_attention", False)
):
output[key] = None
if isinstance(output[key], (tuple, list)):
try:
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
output[key] = tf.convert_to_tensor(output[key])
except (ValueError, tf.errors.InvalidArgumentError):
pass # Layers may not have the same dimensions
return output
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
@classmethod
def can_generate(cls) -> bool:
"""
Returns whether this model can generate sequences with `.generate()`.
Returns:
`bool`: Whether this model can generate sequences with `.generate()`.
"""
# Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
# Alternativelly, the model can also have a custom `generate` function.
if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
return False
return True
def get_input_embeddings(self) -> keras.layers.Layer:
"""
Returns the model's input embeddings layer.
Returns:
`tf.Variable`: The embeddings layer mapping vocabulary to hidden states.
"""
main_layer = getattr(self, self.base_model_prefix, self)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if main_layer is not self:
return main_layer.get_input_embeddings()
else:
raise NotImplementedError
def _save_checkpoint(self, checkpoint_dir, epoch):
if not os.path.isdir(checkpoint_dir):
os.mkdir(checkpoint_dir)
# We avoid tf.train.checkpoint or saving weights in TF format, even though that includes optimizer
# state for us, because it requires special handling for objects like custom losses, which we use
# internally and which users are likely to use too
weights_path = os.path.join(checkpoint_dir, "weights.h5")
self.save_weights(weights_path)
extra_data = {"epoch": epoch, "optimizer_state": self.optimizer.get_weights()}
extra_data_path = os.path.join(checkpoint_dir, "extra_data.pickle")
with open(extra_data_path, "wb") as f:
pickle.dump(extra_data, f)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def prepare_tf_dataset(
self,
dataset: "datasets.Dataset", # noqa:F821
batch_size: int = 8,
shuffle: bool = True,
tokenizer: Optional["PreTrainedTokenizerBase"] = None,
collate_fn: Optional[Callable] = None,
collate_fn_args: Optional[Dict[str, Any]] = None,
drop_remainder: Optional[bool] = None,
prefetch: bool = True,
):
"""
Wraps a HuggingFace [`~datasets.Dataset`] as a `tf.data.Dataset` with collation and batching. This method is
designed to create a "ready-to-use" dataset that can be passed directly to Keras methods like `fit()` without
further modification. The method will drop columns from the dataset if they don't match input names for the
model. If you want to specify the column names to return rather than using the names that match this model, we
recommend using `Dataset.to_tf_dataset()` instead.
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Args:
dataset (`Any`):
A [~`datasets.Dataset`] to be wrapped as a `tf.data.Dataset`.
batch_size (`int`, *optional*, defaults to 8):
The size of batches to return.
shuffle (`bool`, defaults to `True`):
Whether to return samples from the dataset in random order. Usually `True` for training datasets and
`False` for validation/test datasets.
tokenizer ([`PreTrainedTokenizerBase`], *optional*):
A `PreTrainedTokenizer` that will be used to pad samples to create batches. Has no effect if a specific
`collate_fn` is passed instead.
collate_fn (`Callable`, *optional*):
A function that collates samples from the dataset into a single batch. Defaults to
`DefaultDataCollator` if no `tokenizer` is supplied or `DataCollatorWithPadding` if a `tokenizer` is
passed.
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
collate_fn_args (`Dict[str, Any]`, *optional*):
A dict of arguments to pass to the `collate_fn` alongside the list of samples.
drop_remainder (`bool`, *optional*):
Whether to drop the final batch, if the batch_size does not evenly divide the dataset length. Defaults
to the same setting as `shuffle`.
prefetch (`bool`, defaults to `True`):
Whether to add prefetching to the end of the `tf.data` pipeline. This is almost always beneficial for
performance, but can be disabled in edge cases.
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Returns:
`Dataset`: A `tf.data.Dataset` which is ready to pass to the Keras API.
"""
requires_backends(self, ["datasets"])
import datasets
if collate_fn is None:
if tokenizer is None:
collate_fn = DefaultDataCollator(return_tensors="np")
else:
collate_fn = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="np")
if collate_fn_args is None:
collate_fn_args = {}
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if not isinstance(dataset, datasets.Dataset):
raise TypeError("Dataset argument should be a datasets.Dataset!")
model_inputs = list(inspect.signature(self.call).parameters)
model_labels = find_labels(self.__class__)
if "cols_to_retain" in list(inspect.signature(dataset._get_output_signature).parameters.keys()):
output_signature, _ = dataset._get_output_signature(
dataset,
batch_size=None,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
cols_to_retain=model_inputs,
)
else:
# TODO Matt: This is a workaround for older versions of datasets that are missing the `cols_to_retain`
# argument. We should remove this once the minimum supported version of datasets is > 2.3.2
unwanted_columns = [
feature
for feature in dataset.features
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if feature not in model_inputs and feature not in ("label_ids", "label")
]
dataset = dataset.remove_columns(unwanted_columns)
output_signature, _ = dataset._get_output_signature(
dataset, batch_size=None, collate_fn=collate_fn, collate_fn_args=collate_fn_args
)
output_columns = list(output_signature.keys())
feature_cols = [col for col in output_columns if col in model_inputs and col not in model_labels]
label_cols = [col for col in output_columns if col in model_labels]
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# Backwards compatibility for older versions of datasets. Previously, if `columns` or `label_cols`
# were a single element list, the returned element spec would be a single element. Now, passing [feature]
# will return a dict structure {"feature": feature}, and passing a single string will return a single element.
feature_cols = feature_cols[0] if len(feature_cols) == 1 else feature_cols
label_cols = label_cols[0] if len(label_cols) == 1 else label_cols
if drop_remainder is None:
drop_remainder = shuffle
tf_dataset = dataset.to_tf_dataset(
columns=feature_cols,
label_cols=label_cols,
batch_size=batch_size,
shuffle=shuffle,
drop_remainder=drop_remainder,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
prefetch=prefetch,
)
return tf_dataset
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def compile(
self,
optimizer="rmsprop",
loss="auto_with_warning",
metrics=None,
loss_weights=None,
weighted_metrics=None,
run_eagerly=None,
steps_per_execution=None,
**kwargs,
):
"""
This is a thin wrapper that sets the model's loss output head as the loss if the user does not specify a loss
function themselves.
"""
if loss in ("auto_with_warning", "passthrough"): # "passthrough" for workflow backward compatibility
logger.info(
"No loss specified in compile() - the model's internal loss computation will be used as the "
"loss. Don't panic - this is a common way to train TensorFlow models in Transformers! "
"To disable this behaviour please pass a loss argument, or explicitly pass "
"`loss=None` if you do not want your model to compute a loss. You can also specify `loss='auto'` to "
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
"get the internal loss without printing this info string."
)
loss = "auto"
if loss == "auto":
loss = dummy_loss
self._using_dummy_loss = True
else:
self._using_dummy_loss = False
parent_args = list(inspect.signature(keras.Model.compile).parameters.keys())
# This argument got renamed, we need to support both versions
if "steps_per_execution" in parent_args:
super().compile(
optimizer=optimizer,
loss=loss,
metrics=metrics,
loss_weights=loss_weights,
weighted_metrics=weighted_metrics,
run_eagerly=run_eagerly,
steps_per_execution=steps_per_execution,
**kwargs,
)
else:
super().compile(
optimizer=optimizer,
loss=loss,
metrics=metrics,
loss_weights=loss_weights,
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
weighted_metrics=weighted_metrics,
run_eagerly=run_eagerly,
experimental_steps_per_execution=steps_per_execution,
**kwargs,
)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def compute_loss(self, *args, **kwargs):
if hasattr(keras.Model, "compute_loss"):
# This will be true in TF 2.8 or greater
return super().compute_loss(*args, **kwargs)
else:
warnings.warn(
"The old compute_loss method is deprecated as it conflicts with the Keras compute_loss "
"method added in TF 2.8. If you want the original HF compute_loss, please call "
"hf_compute_loss() instead. From TF versions >= 2.8, or Transformers versions >= 5, "
"calling compute_loss() will get the Keras method instead.",
FutureWarning,
)
return self.hf_compute_loss(*args, **kwargs)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def get_label_to_output_name_mapping(self):
arg_names = list(inspect.signature(self.call).parameters)
if self._label_to_output_map is not None:
return self._label_to_output_map
elif "start_positions" in arg_names:
return {"start_positions": "start_logits", "end_positions": "end_logits"}
elif "sentence_order_label" in arg_names:
return {"labels": "prediction_logits", "sentence_order_label": "sop_logits"}
elif "next_sentence_label" in arg_names:
return {"labels": "prediction_logits", "next_sentence_label": "seq_relationship_logits"}
elif "mc_labels" in arg_names:
return {"labels": "logits", "mc_labels": "mc_logits"}
else:
return {}
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def train_step(self, data):
"""
A modification of Keras's default `train_step` that correctly handles matching outputs to labels for our models
and supports directly training on the loss output head. In addition, it ensures input keys are copied to the
labels where appropriate. It will also copy label keys into the input dict when using the dummy loss, to ensure
that they are available to the model during the forward pass.
"""
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# We hardcode the most common renamings; models with weirder names can set `self._label_to_output_map`
arg_names = list(inspect.signature(self.call).parameters)
label_kwargs = find_labels(self.__class__)
label_to_output = self.get_label_to_output_name_mapping()
output_to_label = {val: key for key, val in label_to_output.items()}
if not self._using_dummy_loss and parse(tf.__version__) < parse("2.11.0"):
# Newer TF train steps leave this out
data = expand_1d(data)
x, y, sample_weight = keras.utils.unpack_x_y_sample_weight(data)
# If the inputs are mutable dictionaries, make a shallow copy of them because we will modify
# them during input/label pre-processing. This avoids surprising the user by wrecking their data.
# In addition, modifying mutable Python inputs makes XLA compilation impossible.
if isinstance(x, dict):
x = x.copy()
if isinstance(y, dict):
y = y.copy()
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# When using a dummy loss, we ensure that separate labels are copied to the correct model arguments,
# if those keys are not already present in the input dict
if self._using_dummy_loss and y is not None:
# If y is a tensor and the model only has one label-like input, map y to that input
if len(label_kwargs) == 1 and isinstance(y, tf.Tensor):
if isinstance(x, tf.Tensor):
x = {arg_names[0]: x}
label_kwarg = next(iter(label_kwargs))
if label_kwarg not in x:
x[label_kwarg] = y
# Otherwise, copy keys from y to x as long as they weren't already present in x
elif isinstance(y, dict):
if isinstance(x, tf.Tensor):
x = {arg_names[0]: x}
for key, val in y.items():
if key in arg_names and key not in x:
x[key] = val
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
elif output_to_label.get(key, None) in arg_names and key not in x:
x[output_to_label[key]] = val
if y is None:
y = {key: val for key, val in x.items() if key in label_kwargs}
if not y and not self._using_dummy_loss:
raise ValueError("Could not find label column(s) in input dict and no separate labels were provided!")
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if isinstance(y, dict):
# Rename labels at this point to match output heads
y = {label_to_output.get(key, key): val for key, val in y.items()}
# Run forward pass.
with tf.GradientTape() as tape:
if self._using_dummy_loss and "return_loss" in arg_names:
y_pred = self(x, training=True, return_loss=True)
else:
y_pred = self(x, training=True)
if self._using_dummy_loss:
loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses)
else:
loss = None
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# This next block matches outputs to label keys. Tensorflow's standard method for doing this
# can get very confused if any of the keys contain nested values (e.g. lists/tuples of Tensors)
if isinstance(y, dict) and len(y) == 1:
if list(y.keys())[0] in y_pred.keys():
y_pred = y_pred[list(y.keys())[0]]
elif list(y_pred.keys())[0] == "loss":
y_pred = y_pred[1]
else:
y_pred = y_pred[0]
_, y = y.popitem()
elif isinstance(y, dict):
# If the labels are a dict, match keys from the output by name
y_pred = {key: val for key, val in y_pred.items() if key in y}
elif isinstance(y, tuple) or isinstance(y, list):
# If the labels are a tuple/list, match keys to the output by order, skipping the loss.
if list(y_pred.keys())[0] == "loss":
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
y_pred = y_pred.to_tuple()[1:]
else:
y_pred = y_pred.to_tuple()
y_pred = y_pred[: len(y)] # Remove unused fields in case those cause problems
else:
# If the labels are a single tensor, match them to the first non-loss tensor in the output
if list(y_pred.keys())[0] == "loss":
y_pred = y_pred[1]
else:
y_pred = y_pred[0]
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if loss is None:
loss = self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses)
# Run backwards pass.
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
self.compiled_metrics.update_state(y, y_pred, sample_weight)
# Collect metrics to return
return_metrics = {}
for metric in self.metrics:
result = metric.result()
if isinstance(result, dict):
return_metrics.update(result)
else:
return_metrics[metric.name] = result
return return_metrics
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def test_step(self, data):
"""
A modification of Keras's default `train_step` that correctly handles matching outputs to labels for our models
and supports directly training on the loss output head. In addition, it ensures input keys are copied to the
labels where appropriate. It will also copy label keys into the input dict when using the dummy loss, to ensure
that they are available to the model during the forward pass.
"""
# We hardcode the most common renamings; models with weirder names can set `self._label_to_output_map`
arg_names = list(inspect.signature(self.call).parameters)
label_kwargs = find_labels(self.__class__)
label_to_output = self.get_label_to_output_name_mapping()
output_to_label = {val: key for key, val in label_to_output.items()}
if not self._using_dummy_loss and parse(tf.__version__) < parse("2.11.0"):
# Newer versions leave this out
data = expand_1d(data)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
x, y, sample_weight = keras.utils.unpack_x_y_sample_weight(data)
# If the inputs are mutable dictionaries, make a shallow copy of them because we will modify
# them during input/label pre-processing. This avoids surprising the user by wrecking their data.
# In addition, modifying mutable Python inputs makes XLA compilation impossible.
if isinstance(x, dict):
x = x.copy()
if isinstance(y, dict):
y = y.copy()
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# When using a dummy loss, we ensure that separate labels are copied to the correct model arguments,
# if those keys are not already present in the input dict
if self._using_dummy_loss and y is not None:
arg_names = list(inspect.signature(self.call).parameters)
# If y is a tensor and the model only has one label-like input, map y to that input
if len(label_kwargs) == 1 and isinstance(y, tf.Tensor):
if isinstance(x, tf.Tensor):
x = {arg_names[0]: x}
label_kwarg = next(iter(label_kwargs))
if label_kwarg not in x:
x[label_kwarg] = y
# Otherwise, copy keys from y to x as long as they weren't already present in x
elif isinstance(y, dict):
if isinstance(x, tf.Tensor):
x = {arg_names[0]: x}
for key, val in y.items():
if key in arg_names and key not in x:
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
x[key] = val
elif output_to_label.get(key, None) in arg_names and key not in x:
x[output_to_label[key]] = val
if y is None:
y = {key: val for key, val in x.items() if key in label_kwargs}
if not y and not self._using_dummy_loss:
raise ValueError("Could not find label column(s) in input dict and no separate labels were provided!")
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if isinstance(y, dict):
# Rename labels at this point to match output heads
y = {label_to_output.get(key, key): val for key, val in y.items()}
# Run forward pass.
if self._using_dummy_loss and "return_loss" in arg_names:
y_pred = self(x, return_loss=True, training=False)
else:
y_pred = self(x, training=False)
if self._using_dummy_loss:
loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses)
else:
loss = None
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# This next block matches outputs to label keys. Tensorflow's standard method for doing this
# can get very confused if any of the keys contain nested values (e.g. lists/tuples of Tensors)
if isinstance(y, dict) and len(y) == 1:
if list(y.keys())[0] in y_pred.keys():
y_pred = y_pred[list(y.keys())[0]]
elif list(y_pred.keys())[0] == "loss":
y_pred = y_pred[1]
else:
y_pred = y_pred[0]
_, y = y.popitem()
elif isinstance(y, dict):
# If the labels are a dict, match keys from the output by name
y_pred = {key: val for key, val in y_pred.items() if key in y}
elif isinstance(y, tuple) or isinstance(y, list):
# If the labels are a tuple/list, match keys to the output by order, skipping the loss.
if list(y_pred.keys())[0] == "loss":
y_pred = y_pred.to_tuple()[1:]
else:
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
y_pred = y_pred.to_tuple()
y_pred = y_pred[: len(y)] # Remove unused fields in case those cause problems
else:
# If the labels are a single tensor, match them to the first non-loss tensor in the output
if list(y_pred.keys())[0] == "loss":
y_pred = y_pred[1]
else:
y_pred = y_pred[0]
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if loss is None:
loss = self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses)
self.compiled_metrics.update_state(y, y_pred, sample_weight)
# Collect metrics to return
return_metrics = {}
for metric in self.metrics:
result = metric.result()
if isinstance(result, dict):
return_metrics.update(result)
else:
return_metrics[metric.name] = result
return return_metrics
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def create_model_card(
self,
output_dir,
model_name: str,
language: Optional[str] = None,
license: Optional[str] = None,
tags: Optional[str] = None,
finetuned_from: Optional[str] = None,
tasks: Optional[str] = None,
dataset_tags: Optional[Union[str, List[str]]] = None,
dataset: Optional[Union[str, List[str]]] = None,
dataset_args: Optional[Union[str, List[str]]] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Args:
output_dir (`str` or `os.PathLike`):
The folder in which to create the model card.
model_name (`str`, *optional*):
The name of the model.
language (`str`, *optional*):
The language of the model (if applicable)
license (`str`, *optional*):
The license of the model. Will default to the license of the pretrained model used, if the original
model given to the `Trainer` comes from a repo on the Hub.
tags (`str` or `List[str]`, *optional*):
Some tags to be included in the metadata of the model card.
finetuned_from (`str`, *optional*):
The name of the model used to fine-tune this one (if applicable). Will default to the name of the repo
of the original model given to the `Trainer` (if it comes from the Hub).
tasks (`str` or `List[str]`, *optional*):
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
One or several task identifiers, to be included in the metadata of the model card.
dataset_tags (`str` or `List[str]`, *optional*):
One or several dataset tags, to be included in the metadata of the model card.
dataset (`str` or `List[str]`, *optional*):
One or several dataset identifiers, to be included in the metadata of the model card.
dataset_args (`str` or `List[str]`, *optional*):
One or several dataset arguments, to be included in the metadata of the model card.
"""
# Avoids a circular import by doing this when necessary.
from .modelcard import TrainingSummary # tests_ignore
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
training_summary = TrainingSummary.from_keras(
self,
keras_history=self.history,
language=language,
license=license,
tags=tags,
model_name=model_name,
finetuned_from=finetuned_from,
tasks=tasks,
dataset_tags=dataset_tags,
dataset=dataset,
dataset_args=dataset_args,
)
model_card = training_summary.to_model_card()
with open(os.path.join(output_dir, "README.md"), "w") as f:
f.write(model_card)
def set_input_embeddings(self, value):
"""
Set model's input embeddings
Args:
value (`tf.Variable`):
The new weights mapping hidden states to vocabulary.
"""
main_layer = getattr(self, self.base_model_prefix)
if main_layer is None:
raise NotImplementedError("The model does not implements the base_model_prefix attribute.")
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
try:
main_layer.set_input_embeddings(value)
except AttributeError:
logger.info("Building the model")
self.build_in_name_scope()
main_layer.set_input_embeddings(value)
def get_output_embeddings(self) -> Union[None, keras.layers.Layer]:
"""
Returns the model's output embeddings
Returns:
`tf.Variable`: The new weights mapping vocabulary to hidden states.
"""
if self.get_lm_head() is not None:
lm_head = self.get_lm_head()
try:
return lm_head.get_output_embeddings()
except AttributeError:
logger.info("Building the model")
self.build_in_name_scope()
return lm_head().get_output_embeddings()
return None # Overwrite for models with output embeddings
def set_output_embeddings(self, value):
"""
Set model's output embeddings
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Args:
value (`tf.Variable`):
The new weights mapping hidden states to vocabulary.
"""
if self.get_lm_head() is not None:
lm_head = self.get_lm_head()
try:
lm_head.set_output_embeddings(value)
except AttributeError:
logger.info("Building the model")
self.build_in_name_scope()
lm_head.set_output_embeddings(value)
def get_output_layer_with_bias(self) -> Union[None, keras.layers.Layer]:
"""
Get the layer that handles a bias attribute in case the model has an LM head with weights tied to the
embeddings
Return:
`keras.layers.Layer`: The layer that handles the bias, None if not an LM model.
"""
warnings.warn(
"The method get_output_layer_with_bias is deprecated. Please use `get_lm_head` instead.", FutureWarning
)
return self.get_lm_head()
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def get_prefix_bias_name(self) -> Union[None, str]:
"""
Get the concatenated _prefix name of the bias from the model name to the parent layer
Return:
`str`: The _prefix name of the bias.
"""
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return None
def get_bias(self) -> Union[None, Dict[str, tf.Variable]]:
"""
Dict of bias attached to an LM head. The key represents the name of the bias attribute.
Return:
`tf.Variable`: The weights representing the bias, None if not an LM model.
"""
if self.get_lm_head() is not None:
lm_head = self.get_lm_head()
try:
return lm_head.get_bias()
except AttributeError:
self.build_in_name_scope()
return lm_head.get_bias()
return None
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def set_bias(self, value):
"""
Set all the bias in the LM head.
Args:
value (`Dict[tf.Variable]`):
All the new bias attached to an LM head.
"""
if self.get_lm_head() is not None:
lm_head = self.get_lm_head()
try:
lm_head.set_bias(value)
except AttributeError:
self.build_in_name_scope()
lm_head.set_bias(value)
def get_lm_head(self) -> keras.layers.Layer:
"""
The LM Head layer. This method must be overwritten by all the models that have a lm head.
Return:
`keras.layers.Layer`: The LM head layer if the model has one, None if not.
"""
return None
def resize_token_embeddings(
self, new_num_tokens: Optional[int] = None
) -> Union[keras.layers.Embedding, tf.Variable]:
"""
Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
Arguments:
new_num_tokens (`int`, *optional*):
The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
returns a pointer to the input tokens without doing anything.
Return:
`tf.Variable` or `keras.layers.Embedding`: Pointer to the input tokens of the model.
"""
# TODO (joao): flagged for replacement (by `_v2_resized_token_embeddings`) due to embeddings refactor
# Run the new code path if the model has a keras embeddings layer
if isinstance(self.get_input_embeddings(), keras.layers.Embedding):
return self._v2_resized_token_embeddings(new_num_tokens)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if new_num_tokens is None or new_num_tokens == self.config.vocab_size:
return self._get_word_embedding_weight(self.get_input_embeddings())
model_embeds = self._resize_token_embeddings(new_num_tokens)
# Update base model and current model config
self.config.vocab_size = new_num_tokens
return model_embeds
def _v2_resized_token_embeddings(self, new_num_tokens: Optional[int] = None) -> keras.layers.Embedding:
"""
Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
Arguments:
new_num_tokens (`int`, *optional*):
The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
returns a pointer to the input tokens without doing anything.
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Return:
`keras.layers.Embedding`: Pointer to the input tokens of the model.
"""
if new_num_tokens is None or new_num_tokens == self.config.vocab_size:
return self.get_input_embeddings()
model_embeds = self._v2_resize_token_embeddings(new_num_tokens)
# Update base model and current model config
self.config.vocab_size = new_num_tokens
return model_embeds
def _get_word_embedding_weight(model, embedding_layer):
# TODO (joao): flagged for delection due to embeddings refactor
# If the variable holds the weights themselves, return them
if isinstance(embedding_layer, tf.Tensor):
return embedding_layer
# Otherwise, try to get them from the layer's attributes
embeds = getattr(embedding_layer, "weight", None)
if embeds is not None:
return embeds
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
embeds = getattr(embedding_layer, "decoder", None)
if embeds is not None:
return embeds
# The reason why the attributes don't exist might be
# because the model is not built, so retry getting
# the argument after building the model
model.build_in_name_scope()
embeds = getattr(embedding_layer, "weight", None)
if embeds is not None:
return embeds
embeds = getattr(embedding_layer, "decoder", None)
if embeds is not None:
return embeds
return None
def _resize_token_embeddings(self, new_num_tokens):
# TODO (joao): flagged for replacement (by `_v2_resize_token_embeddings`) due to embeddings refactor
old_embeddings = self._get_word_embedding_weight(self.get_input_embeddings())
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# if word embeddings are not tied, make sure that lm head bias is resized as well
if self.get_bias() is not None:
old_lm_head_bias = self.get_bias()
new_lm_head_bias = self._get_resized_lm_head_bias(old_lm_head_bias, new_num_tokens)
self.set_bias(new_lm_head_bias)
# if word embeddings are not tied, make sure that lm head decoder is resized as well
if self.get_output_embeddings() is not None:
old_lm_head_decoder = self._get_word_embedding_weight(self.get_output_embeddings())
new_lm_head_decoder = self._get_resized_lm_head_decoder(old_lm_head_decoder, new_num_tokens)
self.set_output_embeddings(new_lm_head_decoder)
self.set_input_embeddings(new_embeddings)
return self.get_input_embeddings()
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def _v2_resize_token_embeddings(self, new_num_tokens):
old_embeddings = self.get_input_embeddings()
new_embeddings = self._v2_get_resized_embeddings(old_embeddings, new_num_tokens)
self.set_input_embeddings(new_embeddings)
# If word embeddings are not tied, make sure that lm head bias is resized as well
if self.get_bias() is not None:
old_lm_head_bias = self.get_bias()
new_lm_head_bias = self._v2_get_resized_lm_head_bias(old_lm_head_bias, new_num_tokens)
self.set_bias(new_lm_head_bias)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# If word embeddings are not tied, make sure that lm head decoder is resized as well.
tied_weights = self.get_input_embeddings() == self.get_output_embeddings()
if self.get_output_embeddings() is not None and not tied_weights:
old_lm_head_decoder = self._get_word_embedding_weight(self.get_output_embeddings())
# TODO (joao): this one probably needs a v2 version with other models
new_lm_head_decoder = self._get_resized_lm_head_decoder(old_lm_head_decoder, new_num_tokens)
self.set_output_embeddings(new_lm_head_decoder)
return self.get_input_embeddings()
def _get_resized_lm_head_bias(self, old_lm_head_bias, new_num_tokens):
"""
Build a resized bias from the old ones. Increasing the size will add newly initialized vectors at the end.
Reducing the size will remove vectors from the end
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Args:
old_lm_head_bias (`tf.Variable`):
Old lm head bias to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the linear matrix.
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
vectors from the end. If not provided or `None`, just returns None
Return:
`tf.Variable`: Pointer to the resized bias.
"""
# TODO (joao): flagged for replacement (by `_v2_get_resized_lm_head_bias`) due to embeddings refactor
new_lm_head_bias = {}
for attr, weight in old_lm_head_bias.items():
first_dim, old_num_tokens = (None, shape_list(weight)[0]) if tf.rank(weight) == 1 else shape_list(weight)
size_diff = new_num_tokens - old_num_tokens
final_shape = [new_num_tokens] if first_dim is None else [first_dim, new_num_tokens]
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# initialize new bias
if tf.math.greater(size_diff, 0):
padding_shape = [[0, size_diff]] if first_dim is None else [[0, 0], [0, size_diff]]
current_bias = tf.pad(weight.value(), tf.convert_to_tensor(padding_shape), constant_values=-1)
num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
mask_shape = [num_tokens_to_copy] if first_dim is None else [1, num_tokens_to_copy]
bias_mask = tf.fill(tf.convert_to_tensor(mask_shape), True)
bias_mask = tf.pad(bias_mask, tf.convert_to_tensor(padding_shape), constant_values=False)
else:
slice_from = [0] if first_dim is None else [0, 0]
current_bias = tf.slice(
weight.value(), tf.convert_to_tensor(slice_from), tf.convert_to_tensor(final_shape)
)
bias_mask = tf.fill(tf.convert_to_tensor(final_shape), True)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
new_bias = self.add_weight(
shape=final_shape,
initializer="zeros",
trainable=True,
name=weight.name.split(":")[0],
)
init_bias = tf.where(bias_mask, current_bias, new_bias.value())
new_bias.assign(init_bias)
new_lm_head_bias[attr] = new_bias
return new_lm_head_bias
def _v2_get_resized_lm_head_bias(
self, old_lm_head_bias: Dict[str, tf.Variable], new_num_tokens: int
) -> Dict[str, tf.Tensor]:
"""
Build a resized bias from the old ones. Increasing the size will add newly initialized vectors at the end.
Reducing the size will remove vectors from the end
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Args:
old_lm_head_bias (`Dict[str, tf.Variable]`):
Old lm head bias to be resized.
new_num_tokens (`int`):
New number of tokens in the linear matrix. Increasing the size will add newly initialized vectors at
the end. Reducing the size will remove vectors from the end.
Return:
`tf.Tensor`: Values for the resized bias.
"""
new_lm_head_bias = {}
for attr, weight in old_lm_head_bias.items():
# Determine the size difference (depending on the shape)
first_dim, old_num_tokens = (None, shape_list(weight)[0]) if tf.rank(weight) == 1 else shape_list(weight)
size_diff = new_num_tokens - old_num_tokens
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# Copy the old bias values to the new bias
if old_num_tokens > new_num_tokens:
new_bias = weight.value()[..., :new_num_tokens]
else:
padding_shape = [[0, size_diff]] if first_dim is None else [[0, 0], [0, size_diff]]
new_bias = tf.pad(weight.value(), tf.convert_to_tensor(padding_shape))
new_lm_head_bias[attr] = new_bias
return new_lm_head_bias
def _get_resized_lm_head_decoder(self, old_lm_head_decoder, new_num_tokens):
"""
Build a resized decoder from the old ones. Increasing the size will add newly initialized vectors at the end.
Reducing the size will remove vectors from the end
Args:
old_lm_head_decoder (`tf.Variable`):
Old lm head decoder to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the linear matrix.
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
vectors from the end. If not provided or `None`, just returns None
Return:
`tf.Variable`: Pointer to the resized decoder or None if the output embeddings are different from the input
ones.
"""
new_lm_head_decoder = old_lm_head_decoder
is_input_output_equals = tf.reduce_any(
self._get_word_embedding_weight(self.get_input_embeddings()) == old_lm_head_decoder
)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if old_lm_head_decoder is not None and not is_input_output_equals:
old_embedding_dim = shape_list(old_lm_head_decoder)[1]
decoder_mask, current_decoder = init_copy_embeddings(old_lm_head_decoder, new_num_tokens)
new_lm_head_decoder = self.add_weight(
shape=(new_num_tokens, old_embedding_dim),
initializer="zeros",
trainable=True,
name=old_lm_head_decoder.name.split(":")[0],
)
init_decoder = tf.where(decoder_mask, current_decoder, new_lm_head_decoder.value())
new_lm_head_decoder.assign(init_decoder)
return new_lm_head_decoder
def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None) -> tf.Variable:
"""
Build a resized Embedding weights from a provided token Embedding weights. Increasing the size will add newly
initialized vectors at the end. Reducing the size will remove vectors from the end
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Args:
old_embeddings (`tf.Variable`):
Old embeddings to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the embedding matrix.
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
`tf.Variable` module of the model without doing anything.
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Return:
`tf.Variable`: Pointer to the resized Embedding Module or the old Embedding Module if `new_num_tokens` is
`None`
"""
# TODO (joao): flagged for replacement (by `_v2_get_resized_embeddings`) due to embeddings refactor
old_embedding_dim = shape_list(old_embeddings)[1]
init_range = getattr(self.config, "initializer_range", 0.02)
embeddings_mask, current_embeddings = init_copy_embeddings(old_embeddings, new_num_tokens)
new_embeddings = self.add_weight(
name=old_embeddings.name.split(":")[0],
shape=[new_num_tokens, old_embedding_dim],
initializer=get_initializer(init_range),
dtype=tf.float32,
)
init_embeddings = tf.where(embeddings_mask, current_embeddings, new_embeddings.value())
new_embeddings.assign(init_embeddings)
return new_embeddings
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def _v2_get_resized_embeddings(
self, old_embeddings: keras.layers.Embedding, new_num_tokens: int
) -> keras.layers.Embedding:
"""
Build a resized Embedding layer from a provided Embedding layer. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end.
Args:
old_embeddings (`keras.layers.Embedding`):
Old embeddings to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the embedding matrix.
Return:
`keras.layers.Embedding`: Resized Embedding layer.
"""
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# Get the initialization range for the embeddings
init_range = 0.02 # default value
potential_initialization_variable_names = [
"initializer_range", # most common
"initializer_factor", # e.g. T5
"init_std", # e.g BART
]
for var_name in potential_initialization_variable_names:
if hasattr(self.config, var_name):
init_range = getattr(self.config, var_name)
# Get a new (initialized) embeddings layer
new_embeddings = keras.layers.Embedding(
input_dim=new_num_tokens,
output_dim=old_embeddings.output_dim,
embeddings_initializer=keras.initializers.TruncatedNormal(stddev=init_range),
name=old_embeddings.embeddings.name[:-13], # exact same scoped name except "/embeddings:0"
)
new_embeddings(tf.constant([[0]]))
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# Copy the old embeddings to the new embeddings
if old_embeddings.input_dim >= new_num_tokens:
init_embeddings = old_embeddings.embeddings[:new_num_tokens]
else:
init_embeddings = tf.concat(
[old_embeddings.embeddings, new_embeddings.embeddings[old_embeddings.input_dim :]], axis=0
)
new_embeddings.embeddings.assign(init_embeddings)
return new_embeddings
def prune_heads(self, heads_to_prune):
"""
Prunes heads of the base model.
Arguments:
heads_to_prune (`Dict[int, List[int]]`):
Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
layer 1 and heads 2 and 3 on layer 2.
"""
raise NotImplementedError
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
def save_pretrained(
self,
save_directory,
saved_model=False,
version=1,
push_to_hub=False,
signatures=None,
max_shard_size: Union[int, str] = "5GB",
create_pr: bool = False,
safe_serialization: bool = False,
token: Optional[Union[str, bool]] = None,
**kwargs,
):
"""
Save a model and its configuration file to a directory, so that it can be re-loaded using the
[`~TFPreTrainedModel.from_pretrained`] class method.
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Arguments:
save_directory (`str`):
Directory to which to save. Will be created if it doesn't exist.
saved_model (`bool`, *optional*, defaults to `False`):
If the model has to be saved in saved model format as well or not.
version (`int`, *optional*, defaults to 1):
The version of the saved model. A saved model needs to be versioned in order to be properly loaded by
TensorFlow Serving as detailed in the official documentation
https://www.tensorflow.org/tfx/serving/serving_basic
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
signatures (`dict` or `tf.function`, *optional*):
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Model's signature used for serving. This will be passed to the `signatures` argument of model.save().
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
<Tip warning={true}>
If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
which will be bigger than `max_shard_size`.
</Tip>
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
create_pr (`bool`, *optional*, defaults to `False`):
Whether or not to create a PR with the uploaded files or directly commit.
safe_serialization (`bool`, *optional*, defaults to `False`):
Whether to save the model using `safetensors` or the traditional TensorFlow way (that uses `h5`).
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
use_auth_token = kwargs.pop("use_auth_token", None)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
if token is not None:
kwargs["token"] = token
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
os.makedirs(save_directory, exist_ok=True)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = self._create_repo(repo_id, **kwargs)
files_timestamps = self._get_files_timestamps(save_directory)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if saved_model:
# If `torch_dtype` is in the config with a torch dtype class as the value, we need to change it to string.
# (Although TF doesn't care about this attribute, we can't just remove it or set it to `None`.)
if getattr(self.config, "torch_dtype", None) is not None and not isinstance(self.config.torch_dtype, str):
self.config.torch_dtype = str(self.config.torch_dtype).split(".")[1]
if signatures is None:
serving_default = self.serving.get_concrete_function(self.input_signature)
if any(spec.dtype == tf.int32 for spec in self.input_signature.values()):
int64_spec = {
key: tf.TensorSpec(
shape=spec.shape, dtype=tf.int64 if spec.dtype == tf.int32 else spec.dtype, name=spec.name
)
for key, spec in self.input_signature.items()
}
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
int64_serving = self.serving.get_concrete_function(int64_spec)
signatures = {"serving_default": serving_default, "int64_serving": int64_serving}
else:
signatures = serving_default
saved_model_dir = os.path.join(save_directory, "saved_model", str(version))
self.save(saved_model_dir, include_optimizer=False, signatures=signatures)
logger.info(f"Saved model created in {saved_model_dir}")
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# Save configuration file
self.config.architectures = [self.__class__.__name__[2:]]
# If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
# loaded from the Hub.
if self._auto_class is not None:
custom_object_save(self, save_directory, config=self.config)
self.config.save_pretrained(save_directory)
if self.can_generate():
self.generation_config.save_pretrained(save_directory)
# If we save using the predefined names, we can load using `from_pretrained`
weights_name = SAFE_WEIGHTS_NAME if safe_serialization else TF2_WEIGHTS_NAME
output_model_file = os.path.join(save_directory, weights_name)
shards, index = tf_shard_checkpoint(self.weights, max_shard_size, weights_name=weights_name)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# Clean the folder from a previous save
for filename in os.listdir(save_directory):
full_filename = os.path.join(save_directory, filename)
# If we have a shard file that is not going to be replaced, we delete it, but only from the main process
# in distributed settings to avoid race conditions.
weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
if (
filename.startswith(weights_no_suffix)
and os.path.isfile(full_filename)
and filename not in shards.keys()
):
os.remove(full_filename)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if index is None:
if safe_serialization:
state_dict = {strip_model_name_and_prefix(w.name): w.value() for w in self.weights}
safe_save_file(state_dict, output_model_file, metadata={"format": "tf"})
else:
self.save_weights(output_model_file)
logger.info(f"Model weights saved in {output_model_file}")
else:
save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else TF2_WEIGHTS_INDEX_NAME
save_index_file = os.path.join(save_directory, save_index_file)
# Save the index as well
with open(save_index_file, "w", encoding="utf-8") as index_file:
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
index_file.write(content)
logger.info(
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
f"index located at {save_index_file}."
)
for shard_file, shard in shards.items():
if safe_serialization:
shard_state_dict = {strip_model_name_and_prefix(w.name): w.value() for w in shard}
safe_save_file(
shard_state_dict, os.path.join(save_directory, shard_file), metadata={"format": "tf"}
)
else:
with h5py.File(os.path.join(save_directory, shard_file), mode="w") as shard_file:
layers = []
for layer in sorted(shard, key=lambda x: x.name):
if "model." in layer.name or len(layer.name.split("/")) == 1:
layer_name = layer.name
else:
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
layer_name = "/".join(layer.name.split("/")[1:])
param_dset = shard_file.create_dataset(
layer_name, layer.numpy().shape, dtype=layer.numpy().dtype
)
param_dset[:] = layer.numpy()
layers.append(layer_name.encode("utf8"))
save_attributes_to_hdf5_group(shard_file, "layer_names", layers)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if push_to_hub:
self._upload_modified_files(
save_directory,
repo_id,
files_timestamps,
commit_message=commit_message,
token=token,
)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
*model_args,
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
ignore_mismatched_sizes: bool = False,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
use_safetensors: bool = None,
**kwargs,
):
r"""
Instantiate a pretrained TF 2.0 model from a pre-trained model configuration.
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
task.
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
weights are discarded.
Parameters:
pretrained_model_name_or_path (`str`, *optional*):
Can be either:
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this
case, `from_pt` should be set to `True` and a configuration object should be provided as `config`
argument. This loading path is slower than converting the PyTorch model in a TensorFlow model
using the provided conversion scripts and loading the TensorFlow model afterwards.
- `None` if you are both providing the configuration and state dictionary (resp. with keyword
arguments `config` and `state_dict`).
model_args (sequence of positional arguments, *optional*):
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
All remaining positional arguments will be passed to the underlying model's `__init__` method.
config (`Union[PretrainedConfig, str]`, *optional*):
Can be either:
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
- an instance of a class derived from [`PretrainedConfig`],
- a string valid as input to [`~PretrainedConfig.from_pretrained`].
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
- The model is a model provided by the library (loaded with the *model id* string of a pretrained
model).
- The model was saved using [`~TFPreTrainedModel.save_pretrained`] and is reloaded by supplying the
save directory.
- The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
configuration JSON file named *config.json* is found in the directory.
from_pt (`bool`, *optional*, defaults to `False`):
Load the model weights from a PyTorch state_dict save file (see docstring of
`pretrained_model_name_or_path` argument).
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
checkpoint with 3 labels).
cache_dir (`str`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies:
(`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g.,
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`): Whether ot not to also return a
dictionary containing missing keys, unexpected keys and error messages.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether or not to only look at local files (e.g., not try downloading the model).
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
<Tip>
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>"`.
</Tip>
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
mirror (`str`, *optional*):
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
Please refer to the mirror site for more information.
subfolder (`str`, *optional*, defaults to `""`):
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
specify the folder name here.
tf_to_pt_weight_rename (`Callable`, *optional*):
A function that is called to transform the names of weights during the PyTorch to TensorFlow
crossloading process. This is not necessary for most models, but is useful to allow composite models to
be crossloaded correctly.
use_safetensors (`bool`, *optional*, defaults to `None`):
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors`
is not installed, it will be set to `False`.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or
automatically loaded:
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the
underlying model's `__init__` method (we assume all relevant updates to the configuration have
already been done)
- If a configuration is not provided, `kwargs` will be first passed to the configuration class
initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
corresponds to a configuration attribute will be used to override said attribute with the
supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
will be passed to the underlying model's `__init__` function.
Examples:
```python
>>> from transformers import BertConfig, TFBertModel
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFBertModel.from_pretrained("google-bert/bert-base-uncased")
>>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
>>> model = TFBertModel.from_pretrained("./test/saved_model/")
>>> # Update configuration during loading.
>>> model = TFBertModel.from_pretrained("google-bert/bert-base-uncased", output_attentions=True)
>>> assert model.config.output_attentions == True
>>> # Loading from a Pytorch model file instead of a TensorFlow checkpoint (slower, for example purposes, not runnable).
>>> config = BertConfig.from_json_file("./pt_model/my_pt_model_config.json")
>>> model = TFBertModel.from_pretrained("./pt_model/my_pytorch_model.bin", from_pt=True, config=config)
```"""
from_pt = kwargs.pop("from_pt", False)
resume_download = kwargs.pop("resume_download", None)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
proxies = kwargs.pop("proxies", None)
output_loading_info = kwargs.pop("output_loading_info", False)
use_auth_token = kwargs.pop("use_auth_token", None)
trust_remote_code = kwargs.pop("trust_remote_code", None)
_ = kwargs.pop("mirror", None)
load_weight_prefix = kwargs.pop("load_weight_prefix", None)
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
subfolder = kwargs.pop("subfolder", "")
commit_hash = kwargs.pop("_commit_hash", None)
tf_to_pt_weight_rename = kwargs.pop("tf_to_pt_weight_rename", None)
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
# Not relevant for TF models
_ = kwargs.pop("adapter_kwargs", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
if trust_remote_code is True:
logger.warning(
"The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
" ignored."
)
user_agent = {"file_type": "model", "framework": "tensorflow", "from_auto_class": from_auto_class}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
if use_safetensors is None and not is_safetensors_available():
use_safetensors = False
| 281 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_utils.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.