text
stringlengths
1
1.02k
class_index
int64
0
10.8k
source
stringlengths
85
188
class PoolerStartLogits(nn.Module): """ Compute SQuAD start logits from sequence hidden states. Args: config ([`PretrainedConfig`]): The config used by the model, will be used to grab the `hidden_size` of the model. """ def __init__(self, config: PretrainedConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, 1) def forward( self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None ) -> torch.FloatTensor: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): The final hidden states of the model. p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked.
231
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
Returns: `torch.FloatTensor`: The start logits for SQuAD. """ x = self.dense(hidden_states).squeeze(-1) if p_mask is not None: if get_parameter_dtype(self) == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x
231
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
class PoolerEndLogits(nn.Module): """ Compute SQuAD end logits from sequence hidden states. Args: config ([`PretrainedConfig`]): The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps` to use. """ def __init__(self, config: PretrainedConfig): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dense_1 = nn.Linear(config.hidden_size, 1)
232
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
def forward( self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, p_mask: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): The final hidden states of the model. start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*): The hidden states of the first tokens for the labeled span. start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): The position of the first token for the labeled span. p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
232
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
should be masked.
232
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
<Tip> One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides `start_states`. </Tip> Returns: `torch.FloatTensor`: The end logits for SQuAD. """ assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: slen, hsz = hidden_states.shape[-2:] start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz) start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz) x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1)) x = self.activation(x) x = self.LayerNorm(x) x = self.dense_1(x).squeeze(-1)
232
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
if p_mask is not None: if get_parameter_dtype(self) == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x
232
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
class PoolerAnswerClass(nn.Module): """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. Args: config ([`PretrainedConfig`]): The config used by the model, will be used to grab the `hidden_size` of the model. """ def __init__(self, config): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)
233
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
def forward( self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None, ) -> torch.FloatTensor: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): The final hidden states of the model. start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*): The hidden states of the first tokens for the labeled span. start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): The position of the first token for the labeled span. cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Position of the CLS token for each sentence in the batch. If `None`, takes the last token. <Tip>
233
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides `start_states`. </Tip> Returns: `torch.FloatTensor`: The SQuAD 2.0 answer class. """ # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample. hsz = hidden_states.shape[-1] assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz)
233
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
if cls_index is not None: cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz) else: cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz) x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) x = self.activation(x) x = self.dense_1(x).squeeze(-1) return x
233
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
class SquadHeadOutput(ModelOutput): """ Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
234
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided): Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the top config.start_n_top start token possibilities (beam-search). start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Indices for the top config.start_n_top start token possibilities (beam-search). end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
234
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the `is_impossible` label of the answers.
234
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
""" loss: Optional[torch.FloatTensor] = None start_top_log_probs: Optional[torch.FloatTensor] = None start_top_index: Optional[torch.LongTensor] = None end_top_log_probs: Optional[torch.FloatTensor] = None end_top_index: Optional[torch.LongTensor] = None cls_logits: Optional[torch.FloatTensor] = None
234
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
class SQuADHead(nn.Module): r""" A SQuAD head inspired by XLNet. Args: config ([`PretrainedConfig`]): The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps` to use. """ def __init__(self, config): super().__init__() self.start_n_top = config.start_n_top self.end_n_top = config.end_n_top self.start_logits = PoolerStartLogits(config) self.end_logits = PoolerEndLogits(config) self.answer_class = PoolerAnswerClass(config)
235
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
@replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig) def forward( self, hidden_states: torch.FloatTensor, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None, is_impossible: Optional[torch.LongTensor] = None, p_mask: Optional[torch.FloatTensor] = None, return_dict: bool = False, ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): Final hidden states of the model on the sequence tokens. start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Positions of the first token for the labeled span. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
235
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
Positions of the last token for the labeled span. cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Position of the CLS token for each sentence in the batch. If `None`, takes the last token. is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Whether the question has a possible answer in the paragraph or not. p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. return_dict (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
235
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
Returns: """ start_logits = self.start_logits(hidden_states, p_mask=p_mask) if start_positions is not None and end_positions is not None: # If we are on multi-GPU, let's remove the dimension added by batch splitting for x in (start_positions, end_positions, cls_index, is_impossible): if x is not None and x.dim() > 1: x.squeeze_(-1) # during training, compute the end logits based on the ground truth of the start position end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) loss_fct = CrossEntropyLoss() start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2
235
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
if cls_index is not None and is_impossible is not None: # Predict answerability from the representation of CLS and START cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) loss_fct_cls = nn.BCEWithLogitsLoss() cls_loss = loss_fct_cls(cls_logits, is_impossible) # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss total_loss += cls_loss * 0.5 return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,) else: # during inference, compute the end logits based on beam search bsz, slen, hsz = hidden_states.size() start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen)
235
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
start_top_log_probs, start_top_index = torch.topk( start_log_probs, self.start_n_top, dim=-1 ) # shape (bsz, start_n_top) start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( start_states ) # shape (bsz, slen, start_n_top, hsz) p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)
235
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
end_top_log_probs, end_top_index = torch.topk( end_log_probs, self.end_n_top, dim=1 ) # shape (bsz, end_n_top, start_n_top) end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) if not return_dict: return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) else: return SquadHeadOutput( start_top_log_probs=start_top_log_probs, start_top_index=start_top_index, end_top_log_probs=end_top_log_probs, end_top_index=end_top_index, cls_logits=cls_logits, )
235
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
class SequenceSummary(nn.Module): r""" Compute a single vector summary of a sequence hidden states. Args: config ([`PretrainedConfig`]): The config used by the model. Relevant arguments in the config class of the model are (refer to the actual config class of your model for the default values it uses): - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are: - `"last"` -- Take the last token hidden state (like XLNet) - `"first"` -- Take the first token hidden state (like Bert) - `"mean"` -- Take the mean of all tokens hidden states - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2) - `"attn"` -- Not implemented now, use multi-head attention
236
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
- **summary_use_proj** (`bool`) -- Add a projection after the vector extraction. - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes (otherwise to `config.hidden_size`). - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output, another string or `None` will add no activation. - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation. - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation. """ def __init__(self, config: PretrainedConfig): super().__init__()
236
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
self.summary_type = getattr(config, "summary_type", "last") if self.summary_type == "attn": # We should use a standard multi-head attention module with absolute positional embedding for that. # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 # We can probably just use the multi-head attention module of PyTorch >=1.1.0 raise NotImplementedError self.summary = Identity() if hasattr(config, "summary_use_proj") and config.summary_use_proj: if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: num_classes = config.num_labels else: num_classes = config.hidden_size self.summary = nn.Linear(config.hidden_size, num_classes)
236
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
activation_string = getattr(config, "summary_activation", None) self.activation: Callable = get_activation(activation_string) if activation_string else Identity() self.first_dropout = Identity() if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0: self.first_dropout = nn.Dropout(config.summary_first_dropout) self.last_dropout = Identity() if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0: self.last_dropout = nn.Dropout(config.summary_last_dropout) def forward( self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None ) -> torch.FloatTensor: """ Compute a single vector summary of a sequence hidden states.
236
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
Args: hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`): The hidden states of the last layer. cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*): Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
236
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
Returns: `torch.FloatTensor`: The summary of the sequence hidden states. """ if self.summary_type == "last": output = hidden_states[:, -1] elif self.summary_type == "first": output = hidden_states[:, 0] elif self.summary_type == "mean": output = hidden_states.mean(dim=1) elif self.summary_type == "cls_index": if cls_index is None: cls_index = torch.full_like( hidden_states[..., :1, :], hidden_states.shape[-2] - 1, dtype=torch.long, ) else: cls_index = cls_index.unsqueeze(-1).unsqueeze(-1) cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),)) # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
236
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size) elif self.summary_type == "attn": raise NotImplementedError
236
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
output = self.first_dropout(output) output = self.summary(output) output = self.activation(output) output = self.last_dropout(output) return output
236
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_utils.py
class AffineTransformed(TransformedDistribution): def __init__(self, base_distribution: Distribution, loc=None, scale=None, event_dim=0): self.scale = 1.0 if scale is None else scale self.loc = 0.0 if loc is None else loc super().__init__(base_distribution, [AffineTransform(loc=self.loc, scale=self.scale, event_dim=event_dim)]) @property def mean(self): """ Returns the mean of the distribution. """ return self.base_dist.mean * self.scale + self.loc @property def variance(self): """ Returns the variance of the distribution. """ return self.base_dist.variance * self.scale**2 @property def stddev(self): """ Returns the standard deviation of the distribution. """ return self.variance.sqrt()
237
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/time_series_utils.py
class ParameterProjection(nn.Module): def __init__( self, in_features: int, args_dim: Dict[str, int], domain_map: Callable[..., Tuple[torch.Tensor]], **kwargs ) -> None: super().__init__(**kwargs) self.args_dim = args_dim self.proj = nn.ModuleList([nn.Linear(in_features, dim) for dim in args_dim.values()]) self.domain_map = domain_map def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]: params_unbounded = [proj(x) for proj in self.proj] return self.domain_map(*params_unbounded)
238
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/time_series_utils.py
class LambdaLayer(nn.Module): def __init__(self, function): super().__init__() self.function = function def forward(self, x, *args): return self.function(x, *args)
239
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/time_series_utils.py
class DistributionOutput: distribution_class: type in_features: int args_dim: Dict[str, int] def __init__(self, dim: int = 1) -> None: self.dim = dim self.args_dim = {k: dim * self.args_dim[k] for k in self.args_dim} def _base_distribution(self, distr_args): if self.dim == 1: return self.distribution_class(*distr_args) else: return Independent(self.distribution_class(*distr_args), 1) def distribution( self, distr_args, loc: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None, ) -> Distribution: distr = self._base_distribution(distr_args) if loc is None and scale is None: return distr else: return AffineTransformed(distr, loc=loc, scale=scale, event_dim=self.event_dim)
240
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/time_series_utils.py
@property def event_shape(self) -> Tuple: r""" Shape of each individual event contemplated by the distributions that this object constructs. """ return () if self.dim == 1 else (self.dim,) @property def event_dim(self) -> int: r""" Number of event dimensions, i.e., length of the `event_shape` tuple, of the distributions that this object constructs. """ return len(self.event_shape) @property def value_in_support(self) -> float: r""" A float that will have a valid numeric value when computing the log-loss of the corresponding distribution. By default 0.0. This value will be used when padding data series. """ return 0.0
240
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/time_series_utils.py
def get_parameter_projection(self, in_features: int) -> nn.Module: r""" Return the parameter projection layer that maps the input to the appropriate parameters of the distribution. """ return ParameterProjection( in_features=in_features, args_dim=self.args_dim, domain_map=LambdaLayer(self.domain_map), ) def domain_map(self, *args: torch.Tensor): r""" Converts arguments to the right shape and domain. The domain depends on the type of distribution, while the correct shape is obtained by reshaping the trailing axis in such a way that the returned tensors define a distribution of the right event_shape. """ raise NotImplementedError()
240
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/time_series_utils.py
@staticmethod def squareplus(x: torch.Tensor) -> torch.Tensor: r""" Helper to map inputs to the positive orthant by applying the square-plus operation. Reference: https://twitter.com/jon_barron/status/1387167648669048833 """ return (x + torch.sqrt(torch.square(x) + 4.0)) / 2.0
240
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/time_series_utils.py
class StudentTOutput(DistributionOutput): """ Student-T distribution output class. """ args_dim: Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} distribution_class: type = StudentT @classmethod def domain_map(cls, df: torch.Tensor, loc: torch.Tensor, scale: torch.Tensor): scale = cls.squareplus(scale).clamp_min(torch.finfo(scale.dtype).eps) df = 2.0 + cls.squareplus(df) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1)
241
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/time_series_utils.py
class NormalOutput(DistributionOutput): """ Normal distribution output class. """ args_dim: Dict[str, int] = {"loc": 1, "scale": 1} distribution_class: type = Normal @classmethod def domain_map(cls, loc: torch.Tensor, scale: torch.Tensor): scale = cls.squareplus(scale).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1)
242
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/time_series_utils.py
class NegativeBinomialOutput(DistributionOutput): """ Negative Binomial distribution output class. """ args_dim: Dict[str, int] = {"total_count": 1, "logits": 1} distribution_class: type = NegativeBinomial @classmethod def domain_map(cls, total_count: torch.Tensor, logits: torch.Tensor): total_count = cls.squareplus(total_count) return total_count.squeeze(-1), logits.squeeze(-1) def _base_distribution(self, distr_args) -> Distribution: total_count, logits = distr_args if self.dim == 1: return self.distribution_class(total_count=total_count, logits=logits) else: return Independent(self.distribution_class(total_count=total_count, logits=logits), 1)
243
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/time_series_utils.py
# Overwrites the parent class method. We cannot scale using the affine # transformation since negative binomial should return integers. Instead # we scale the parameters. def distribution( self, distr_args, loc: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None ) -> Distribution: total_count, logits = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
243
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/time_series_utils.py
class Trainer: """ Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 🤗 Transformers. Args: model ([`PreTrainedModel`] or `torch.nn.Module`, *optional*): The model to train, evaluate or use for predictions. If not provided, a `model_init` must be passed. <Tip> [`Trainer`] is optimized to work with the [`PreTrainedModel`] provided by the library. You can still use your own models defined as `torch.nn.Module` as long as they work the same way as the 🤗 Transformers models. </Tip>
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
args ([`TrainingArguments`], *optional*): The arguments to tweak for training. Will default to a basic instance of [`TrainingArguments`] with the `output_dir` set to a directory named *tmp_trainer* in the current directory if not provided. data_collator (`DataCollator`, *optional*): The function to use to form a batch from a list of elements of `train_dataset` or `eval_dataset`. Will default to [`default_data_collator`] if no `processing_class` is provided, an instance of [`DataCollatorWithPadding`] otherwise if the processing_class is a feature extractor or tokenizer. train_dataset (Union[`torch.utils.data.Dataset`, `torch.utils.data.IterableDataset`, `datasets.Dataset`], *optional*): The dataset to use for training. If it is a [`~datasets.Dataset`], columns not accepted by the `model.forward()` method are automatically removed.
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
Note that if it's a `torch.utils.data.IterableDataset` with some randomization and you are training in a distributed fashion, your iterable dataset should either use a internal attribute `generator` that is a `torch.Generator` for the randomization that must be identical on all processes (and the Trainer will manually set the seed of this `generator` at each epoch) or have a `set_epoch()` method that internally sets the seed of the RNGs used. eval_dataset (Union[`torch.utils.data.Dataset`, Dict[str, `torch.utils.data.Dataset`, `datasets.Dataset`]), *optional*): The dataset to use for evaluation. If it is a [`~datasets.Dataset`], columns not accepted by the `model.forward()` method are automatically removed. If it is a dictionary, it will evaluate on each dataset prepending the dictionary key to the metric name.
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): Processing class used to process the data. If provided, will be used to automatically process the inputs for the model, and it will be saved along the model to make it easier to rerun an interrupted training or reuse the fine-tuned model. This supercedes the `tokenizer` argument, which is now deprecated. model_init (`Callable[[], PreTrainedModel]`, *optional*): A function that instantiates the model to be used. If provided, each call to [`~Trainer.train`] will start from a new instance of the model as given by this function.
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
The function may have zero argument, or a single one containing the optuna/Ray Tune/SigOpt trial object, to be able to choose different architectures according to hyper parameters (such as layer count, sizes of inner layers, dropout probabilities etc). compute_loss_func (`Callable`, *optional*): A function that accepts the raw model outputs, labels, and the number of items in the entire accumulated batch (batch_size * gradient_accumulation_steps) and returns the loss. For example, see the default [loss function](https://github.com/huggingface/transformers/blob/052e652d6d53c2b26ffde87e039b723949a53493/src/transformers/trainer.py#L3618) used by [`Trainer`]. compute_metrics (`Callable[[EvalPrediction], Dict]`, *optional*): The function that will be used to compute metrics at evaluation. Must take a [`EvalPrediction`] and return
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
a dictionary string to metric values. *Note* When passing TrainingArgs with `batch_eval_metrics` set to `True`, your compute_metrics function must take a boolean `compute_result` argument. This will be triggered after the last eval batch to signal that the function needs to calculate and return the global summary statistics rather than accumulating the batch-level statistics callbacks (List of [`TrainerCallback`], *optional*): A list of callbacks to customize the training loop. Will add those to the list of default callbacks detailed in [here](callback).
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
If you want to remove one of the default callbacks used, use the [`Trainer.remove_callback`] method. optimizers (`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`): A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`. optimizer_cls_and_kwargs (`Tuple[Type[torch.optim.Optimizer], Dict[str, Any]]`, *optional*): A tuple containing the optimizer class and keyword arguments to use. Overrides `optim` and `optim_args` in `args`. Incompatible with the `optimizers` argument.
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
Unlike `optimizers`, this argument avoids the need to place model parameters on the correct devices before initializing the Trainer. preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`, *optional*): A function that preprocess the logits right before caching them at each evaluation step. Must take two tensors, the logits and the labels, and return the logits once processed as desired. The modifications made by this function will be reflected in the predictions received by `compute_metrics`. Note that the labels (second parameter) will be `None` if the dataset does not have them. Important attributes:
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
- **model** -- Always points to the core model. If using a transformers model, it will be a [`PreTrainedModel`] subclass. - **model_wrapped** -- Always points to the most external model in case one or more other modules wrap the original model. This is the model that should be used for the forward pass. For example, under `DeepSpeed`, the inner model is wrapped in `DeepSpeed` and then again in `torch.nn.DistributedDataParallel`. If the inner model hasn't been wrapped, then `self.model_wrapped` is the same as `self.model`. - **is_model_parallel** -- Whether or not a model has been switched to a model parallel mode (different from data parallelism, this means some of the model layers are split on different GPUs). - **place_model_on_device** -- Whether or not to automatically place the model on the device - it will be set to `False` if model parallel or deepspeed is used, or if the default
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
`TrainingArguments.place_model_on_device` is overridden to return `False` . - **is_in_train** -- Whether or not a model is currently running `train` (e.g. when `evaluate` is called while in `train`)
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
""" # Those are used as methods of the Trainer in examples. from .trainer_pt_utils import _get_learning_rate, log_metrics, metrics_format, save_metrics, save_state
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
@deprecate_kwarg("tokenizer", new_name="processing_class", version="5.0.0", raise_if_both_names=True) def __init__( self, model: Union[PreTrainedModel, nn.Module] = None, args: TrainingArguments = None, data_collator: Optional[DataCollator] = None, train_dataset: Optional[Union[Dataset, IterableDataset, "datasets.Dataset"]] = None, eval_dataset: Optional[Union[Dataset, Dict[str, Dataset], "datasets.Dataset"]] = None, processing_class: Optional[ Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] ] = None, model_init: Optional[Callable[[], PreTrainedModel]] = None, compute_loss_func: Optional[Callable] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, callbacks: Optional[List[TrainerCallback]] = None, optimizers: Tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None),
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
optimizer_cls_and_kwargs: Optional[Tuple[Type[torch.optim.Optimizer], Dict[str, Any]]] = None, preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, ): if args is None: output_dir = "tmp_trainer" logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.") args = TrainingArguments(output_dir=output_dir) if args.batch_eval_metrics and compute_metrics is not None: if "compute_result" not in inspect.signature(compute_metrics).parameters.keys(): raise ValueError( "When using `batch_eval_metrics`, your `compute_metrics` function must take a `compute_result`" " boolean argument which will be triggered after the last batch of the eval set to signal that the" " summary statistics should be returned by the function." )
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
if args.eval_strategy is not None and args.eval_strategy != "no" and eval_dataset is None: raise ValueError( f"You have set `args.eval_strategy` to {args.eval_strategy} but you didn't pass an `eval_dataset` to `Trainer`. Either set `args.eval_strategy` to `no` or pass an `eval_dataset`. " ) if args.save_strategy == SaveStrategy.BEST or args.load_best_model_at_end: if args.metric_for_best_model is None: raise ValueError( "`args.metric_for_best_model` must be provided when using 'best' save_strategy or if `args.load_best_model_at_end` is set to `True`." )
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
self.args = args self.compute_loss_func = compute_loss_func # Seed must be set before instantiating the model when using model enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed) self.hp_name = None self.deepspeed = None self.is_in_train = False self.create_accelerator_and_postprocess() # memory metrics - must set up as early as possible self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics) self._memory_tracker.start() # set the correct log level depending on the node log_level = args.get_process_log_level() logging.set_verbosity(log_level) # force device and distributed setup init explicitly args._setup_devices
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
if model is None: if model_init is not None: self.model_init = model_init model = self.call_model_init() else: raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument") else: if model_init is not None: warnings.warn( "`Trainer` requires either a `model` or `model_init` argument, but not both. `model_init` will" " overwrite your model when calling the `train` method. This will become a fatal error in the next" " release.", FutureWarning, ) self.model_init = model_init
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
if model.__class__.__name__ in MODEL_MAPPING_NAMES: raise ValueError( f"The model you have picked ({model.__class__.__name__}) cannot be used as is for training: it only " "computes hidden states and does not accept any labels. You should choose a model with a head " "suitable for your task like any of the `AutoModelForXxx` listed at " "https://huggingface.co/docs/transformers/model_doc/auto" ) if getattr(model, "is_parallelizable", False) and getattr(model, "model_parallel", False): self.is_model_parallel = True else: self.is_model_parallel = False
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
if getattr(model, "hf_device_map", None) is not None: devices = [device for device in set(model.hf_device_map.values()) if device not in ["cpu", "disk"]] if len(devices) > 1: self.is_model_parallel = True elif len(devices) == 1: self.is_model_parallel = self.args.device != torch.device(devices[0]) else: self.is_model_parallel = False # warn users if self.is_model_parallel: logger.info( "You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set" " to `True` to avoid any unexpected behavior such as device placement mismatching." ) if self.args.use_liger_kernel: if is_liger_kernel_available(): from liger_kernel.transformers import _apply_liger_kernel_to_instance
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
if isinstance(model, PreTrainedModel): # Patch the model with liger kernels. Use the default kernel configurations. _apply_liger_kernel_to_instance(model=model) elif hasattr(model, "get_base_model") and isinstance(model.get_base_model(), PreTrainedModel): # Patch the base model with liger kernels where model is a PeftModel. Use the default kernel configurations. _apply_liger_kernel_to_instance(model=model.get_base_model()) else: logger.warning( "The model is not an instance of PreTrainedModel. No liger kernels will be applied." ) else: raise ImportError( "You have set `use_liger_kernel` to `True` but liger-kernel >= 0.3.0 is not available. " "Please install it with `pip install liger-kernel`" )
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
_is_quantized_and_base_model = getattr(model, "is_quantized", False) and not getattr( model, "_hf_peft_config_loaded", False ) _quantization_method_supports_training = ( getattr(model, "hf_quantizer", None) is not None and model.hf_quantizer.is_trainable ) _is_model_quantized_and_qat_trainable = getattr(model, "hf_quantizer", None) is not None and getattr( model.hf_quantizer, "is_qat_trainable", False ) # Filter out quantized + compiled models if _is_quantized_and_base_model and hasattr(model, "_orig_mod"): raise ValueError( "You cannot fine-tune quantized model with `torch.compile()` make sure to pass a non-compiled model when fine-tuning a quantized model with PEFT" )
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
# At this stage the model is already loaded if _is_quantized_and_base_model and not _is_peft_model(model) and not _is_model_quantized_and_qat_trainable: raise ValueError( "You cannot perform fine-tuning on purely quantized models. Please attach trainable adapters on top of" " the quantized model to correctly perform fine-tuning. Please see: https://huggingface.co/docs/transformers/peft" " for more details" ) elif _is_quantized_and_base_model and not _quantization_method_supports_training: raise ValueError( f"The model you are trying to fine-tune is quantized with {model.hf_quantizer.quantization_config.quant_method}" " but that quantization method do not support training. Please open an issue on GitHub: https://github.com/huggingface/transformers" f" to request the support for training support for {model.hf_quantizer.quantization_config.quant_method}"
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
)
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
self.is_fsdp_xla_enabled = args.fsdp_config["xla"] if len(args.fsdp) > 0: if self.is_deepspeed_enabled: raise ValueError( "Using --fsdp xxx together with --deepspeed is not possible, deactivate one of those flags." ) if not args.fsdp_config["xla"] and args.parallel_mode != ParallelMode.DISTRIBUTED: raise ValueError("Using fsdp only works in distributed training.")
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
# one place to sort out whether to place the model on device or not # postpone switching model to cuda when: # 1. MP - since we are trying to fit a much bigger than 1 gpu model # 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway, # and we only use deepspeed for training at the moment # 3. full bf16 or fp16 eval - since the model needs to be cast to the right dtype first # 4. FSDP - same as MP self.place_model_on_device = args.place_model_on_device if ( self.is_model_parallel or self.is_deepspeed_enabled or ((args.fp16_full_eval or args.bf16_full_eval) and not args.do_train) or self.is_fsdp_xla_enabled or self.is_fsdp_enabled ): self.place_model_on_device = False
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
default_collator = ( DataCollatorWithPadding(processing_class) if processing_class is not None and isinstance(processing_class, (PreTrainedTokenizerBase, SequenceFeatureExtractor)) else default_data_collator ) self.data_collator = data_collator if data_collator is not None else default_collator self.train_dataset = train_dataset self.eval_dataset = eval_dataset self.processing_class = processing_class # Bnb Quantized models doesn't support `.to` operation. if ( self.place_model_on_device and not getattr(model, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES ): self._move_model_to_device(model, args.device) # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs if self.is_model_parallel: self.args._n_gpu = 1
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
# later use `self.model is self.model_wrapped` to check if it's wrapped or not self.model_wrapped = model self.model = model # Just in case the model was wrapped outside of the `Trainer` unwrapped_model = self.accelerator.unwrap_model(model) model_forward = ( unwrapped_model.forward if not _is_peft_model(unwrapped_model) else unwrapped_model.get_base_model().forward ) forward_params = inspect.signature(model_forward).parameters # Check if the model has explicit setup for loss kwargs, # if not, check if `**kwargs` are in model.forward if hasattr(model, "accepts_loss_kwargs"): self.model_accepts_loss_kwargs = model.accepts_loss_kwargs else: self.model_accepts_loss_kwargs = any( k.kind == inspect.Parameter.VAR_KEYWORD for k in forward_params.values() ) self.neftune_noise_alpha = args.neftune_noise_alpha
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
self.compute_metrics = compute_metrics self.preprocess_logits_for_metrics = preprocess_logits_for_metrics self.optimizer, self.lr_scheduler = optimizers self.optimizer_cls_and_kwargs = optimizer_cls_and_kwargs if self.optimizer_cls_and_kwargs is not None and self.optimizer is not None: raise RuntimeError("Passing both `optimizers` and `optimizer_cls_and_kwargs` arguments is incompatible.") if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None): raise RuntimeError( "Passing a `model_init` is incompatible with providing the `optimizers` argument. " "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method." ) if is_torch_xla_available() and self.optimizer is not None: for param in self.model.parameters(): model_device = param.device break
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
for param_group in self.optimizer.param_groups: if len(param_group["params"]) > 0: optimizer_device = param_group["params"][0].device break if model_device != optimizer_device: raise ValueError( "The model and the optimizer parameters are not on the same device, which probably means you" " created an optimizer around your model **before** putting on the device and passing it to the" " `Trainer`. Make sure the lines `import torch_xla.core.xla_model as xm` and" " `model.to(xm.xla_device())` is performed before the optimizer creation in your script." ) if (self.is_fsdp_xla_enabled or self.is_fsdp_enabled) and ( self.optimizer is not None or self.lr_scheduler is not None ): raise RuntimeError( "Passing `optimizers` is not allowed if PyTorch FSDP is enabled. "
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
"You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method." ) default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to) callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks self.callback_handler = CallbackHandler( callbacks, self.model, self.processing_class, self.optimizer, self.lr_scheduler ) self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
# Will be set to True by `self._setup_loggers()` on first call to `self.log()`. self._loggers_initialized = False # Create distant repo and output directory if needed self.hub_model_id = None if self.args.push_to_hub: self.init_hf_repo() if self.args.should_save: os.makedirs(self.args.output_dir, exist_ok=True) if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)): raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).") if args.max_steps > 0 and args.num_train_epochs > 0: logger.info("max_steps is given, it will override any value given in num_train_epochs")
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
if train_dataset is not None and not has_length(train_dataset) and args.max_steps <= 0: raise ValueError( "The train_dataset does not implement __len__, max_steps has to be specified. " "The number of steps needs to be known in advance for the learning rate scheduler." ) if ( train_dataset is not None and isinstance(train_dataset, torch.utils.data.IterableDataset) and args.group_by_length ): raise ValueError("the `--group_by_length` option is only available for `Dataset`, not `IterableDataset") self._signature_columns = None # Mixed precision setup self.use_apex = False self.use_cpu_amp = False
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
# Mixed precision setup for SageMaker Model Parallel if is_sagemaker_mp_enabled(): # BF16 + model parallelism in SageMaker: currently not supported, raise an error if args.bf16: raise ValueError("SageMaker Model Parallelism does not support BF16 yet. Please use FP16 instead ")
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
if IS_SAGEMAKER_MP_POST_1_10: # When there's mismatch between SMP config and trainer argument, use SMP config as truth if args.fp16 != smp.state.cfg.fp16: logger.warning( f"FP16 provided in SM_HP_MP_PARAMETERS is {smp.state.cfg.fp16}, " f"but FP16 provided in trainer argument is {args.fp16}, " f"setting to {smp.state.cfg.fp16}" ) args.fp16 = smp.state.cfg.fp16 else: # smp < 1.10 does not support fp16 in trainer. if hasattr(smp.state.cfg, "fp16"): logger.warning( f"FP16 provided in SM_HP_MP_PARAMETERS is {smp.state.cfg.fp16}, " "but SageMaker Model Parallelism < 1.10 does not support FP16 in trainer." ) if (args.fp16 or args.bf16) and args.half_precision_backend == "auto":
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
if args.device == torch.device("cpu"): if args.fp16: if not is_torch_greater_or_equal_than_2_3: raise ValueError("Tried to use `fp16` but it is not supported on cpu") else: args.half_precision_backend = "cpu_amp" logger.info(f"Using {args.half_precision_backend} half precision backend")
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
if (args.fp16 or args.bf16) and not (self.is_deepspeed_enabled or is_sagemaker_mp_enabled()): # deepspeed and SageMaker Model Parallel manage their own half precision if args.half_precision_backend == "cpu_amp": self.use_cpu_amp = True self.amp_dtype = torch.bfloat16 elif args.half_precision_backend == "apex": if not is_apex_available(): raise ImportError( "Using FP16 with APEX but APEX is not installed, please refer to" " https://www.github.com/nvidia/apex." ) self.use_apex = True # Label smoothing if self.args.label_smoothing_factor != 0: self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor) else: self.label_smoother = None self.control = TrainerControl()
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
self.state = TrainerState( is_local_process_zero=self.is_local_process_zero(), is_world_process_zero=self.is_world_process_zero(), stateful_callbacks=[ cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState) ], ) # Internal variable to count flos in each process, will be accumulated in `self.state.total_flos` then # returned to 0 every time flos need to be logged self.current_flos = 0 self.hp_search_backend = None default_label_names = find_labels(self.model.__class__) self.label_names = default_label_names if self.args.label_names is None else self.args.label_names self.can_return_loss = can_return_loss(self.model.__class__) self.control = self.callback_handler.on_init_end(self.args, self.state, self.control)
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
# Internal variables to help with automatic batch size reduction self._train_batch_size = args.train_batch_size self._created_lr_scheduler = False # very last self._memory_tracker.stop_and_update_metrics() # torch.compile if args.torch_compile and not is_torch_compile_available(): raise RuntimeError("Using torch.compile requires PyTorch 2.0 or higher.")
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
self.is_fsdp_xla_v2_enabled = args.fsdp_config.get("xla_fsdp_v2", False) if self.is_fsdp_xla_v2_enabled: if not IS_XLA_FSDPV2_POST_2_2: raise ValueError("FSDPv2 requires `torch_xla` 2.2 or higher.") # Prepare the SPMD mesh that is going to be used by the data loader and the FSDPv2 wrapper. # Tensor axis is just a placeholder where it will not be used in FSDPv2. num_devices = xr.global_runtime_device_count() xs.set_global_mesh(xs.Mesh(np.array(range(num_devices)), (num_devices, 1), axis_names=("fsdp", "tensor"))) self.is_fsdp_xla_v1_enabled = self.is_fsdp_xla_enabled and not self.is_fsdp_xla_v2_enabled @property def tokenizer(self) -> Optional[PreTrainedTokenizerBase]: logger.warning("Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead.") return self.processing_class
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
@tokenizer.setter def tokenizer(self, processing_class) -> None: logger.warning( "Trainer.tokenizer is now deprecated. You should use `Trainer.processing_class = processing_class` instead." ) self.processing_class = processing_class def _activate_neftune(self, model): r""" Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914 """ unwrapped_model = self.accelerator.unwrap_model(model) if _is_peft_model(unwrapped_model): embeddings = unwrapped_model.base_model.model.get_input_embeddings() else: embeddings = unwrapped_model.get_input_embeddings() del unwrapped_model embeddings.neftune_noise_alpha = self.neftune_noise_alpha hook_handle = embeddings.register_forward_hook(neftune_post_forward_hook) self.neftune_hook_handle = hook_handle return model
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
def _deactivate_neftune(self, model): """ Deactivates the neftune method. Make sure to call `_activate_neftune` first. """ if not hasattr(self, "neftune_hook_handle"): raise ValueError("Neftune is not activated make sure to call `trainer._activate_neftune()` first") unwrapped_model = self.accelerator.unwrap_model(model) if _is_peft_model(unwrapped_model): embeddings = unwrapped_model.base_model.model.get_input_embeddings() else: embeddings = unwrapped_model.get_input_embeddings() self.neftune_hook_handle.remove() del embeddings.neftune_noise_alpha, unwrapped_model def add_callback(self, callback): """ Add a callback to the current list of [`~transformers.TrainerCallback`].
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
Args: callback (`type` or [`~transformers.TrainerCallback]`): A [`~transformers.TrainerCallback`] class or an instance of a [`~transformers.TrainerCallback`]. In the first case, will instantiate a member of that class. """ self.callback_handler.add_callback(callback) def pop_callback(self, callback): """ Remove a callback from the current list of [`~transformers.TrainerCallback`] and returns it. If the callback is not found, returns `None` (and no error is raised). Args: callback (`type` or [`~transformers.TrainerCallback]`): A [`~transformers.TrainerCallback`] class or an instance of a [`~transformers.TrainerCallback`]. In the first case, will pop the first member of that class found in the list of callbacks.
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
Returns: [`~transformers.TrainerCallback`]: The callback removed, if found. """ return self.callback_handler.pop_callback(callback) def remove_callback(self, callback): """ Remove a callback from the current list of [`~transformers.TrainerCallback`]. Args: callback (`type` or [`~transformers.TrainerCallback]`): A [`~transformers.TrainerCallback`] class or an instance of a [`~transformers.TrainerCallback`]. In the first case, will remove the first member of that class found in the list of callbacks. """ self.callback_handler.remove_callback(callback) def _move_model_to_device(self, model, device): model = model.to(device) # Moving a model to an XLA device disconnects the tied weights, so we have to retie them. if self.args.parallel_mode == ParallelMode.TPU and hasattr(model, "tie_weights"): model.tie_weights()
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
def _set_signature_columns_if_needed(self): if self._signature_columns is None: # Inspect model forward signature to keep only the arguments it accepts. model_to_inspect = self.model if _is_peft_model(self.model): if hasattr(self.model, "get_base_model"): model_to_inspect = self.model.get_base_model() else: # PeftMixedModel do not provide a `get_base_model` method model_to_inspect = self.model.base_model.model signature = inspect.signature(model_to_inspect.forward) self._signature_columns = list(signature.parameters.keys()) # Labels may be named label or label_ids, the default data collator handles that. self._signature_columns += list(set(["label", "label_ids"] + self.label_names))
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None): if not self.args.remove_unused_columns: return dataset self._set_signature_columns_if_needed() signature_columns = self._signature_columns ignored_columns = list(set(dataset.column_names) - set(signature_columns)) if len(ignored_columns) > 0: dset_description = "" if description is None else f"in the {description} set" logger.info( f"The following columns {dset_description} don't have a corresponding argument in " f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}." f" If {', '.join(ignored_columns)} are not expected by `{self.model.__class__.__name__}.forward`, " " you can safely ignore this message." )
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
columns = [k for k in signature_columns if k in dataset.column_names] if len(columns) == 0: raise ValueError( "No columns in the dataset match the model's forward method signature. " f"The following columns have been ignored: [{', '.join(ignored_columns)}]. " "Please check the dataset and model. You may need to set `remove_unused_columns=False` in `TrainingArguments`." ) if version.parse(datasets.__version__) < version.parse("1.4.0"): dataset.set_format( type=dataset.format["type"], columns=columns, format_kwargs=dataset.format["format_kwargs"] ) return dataset else: return dataset.remove_columns(ignored_columns)
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
def _get_collator_with_removed_columns( self, data_collator: Callable, description: Optional[str] = None ) -> Callable: """Wrap the data collator in a callable removing unused columns.""" if not self.args.remove_unused_columns: return data_collator self._set_signature_columns_if_needed() signature_columns = self._signature_columns remove_columns_collator = RemoveColumnsCollator( data_collator=data_collator, signature_columns=signature_columns, logger=logger, description=description, model_name=self.model.__class__.__name__, ) return remove_columns_collator def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]: if self.train_dataset is None or not has_length(self.train_dataset): return None
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
# Build the sampler. if self.args.group_by_length: if is_datasets_available() and isinstance(self.train_dataset, datasets.Dataset): lengths = ( self.train_dataset[self.args.length_column_name] if self.args.length_column_name in self.train_dataset.column_names else None ) else: lengths = None model_input_name = ( self.processing_class.model_input_names[0] if self.processing_class is not None else None ) return LengthGroupedSampler( self.args.train_batch_size * self.args.gradient_accumulation_steps, dataset=self.train_dataset, lengths=lengths, model_input_name=model_input_name, ) else: return RandomSampler(self.train_dataset)
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
def get_train_dataloader(self) -> DataLoader: """ Returns the training [`~torch.utils.data.DataLoader`]. Will use no sampler if `train_dataset` does not implement `__len__`, a random sampler (adapted to distributed training if necessary) otherwise. Subclass and override this method if you want to inject some custom behavior. """ if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") train_dataset = self.train_dataset data_collator = self.data_collator if is_datasets_available() and isinstance(train_dataset, datasets.Dataset): train_dataset = self._remove_unused_columns(train_dataset, description="training") else: data_collator = self._get_collator_with_removed_columns(data_collator, description="training")
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
dataloader_params = { "batch_size": self._train_batch_size, "collate_fn": data_collator, "num_workers": self.args.dataloader_num_workers, "pin_memory": self.args.dataloader_pin_memory, "persistent_workers": self.args.dataloader_persistent_workers, } if not isinstance(train_dataset, torch.utils.data.IterableDataset): dataloader_params["sampler"] = self._get_train_sampler() dataloader_params["drop_last"] = self.args.dataloader_drop_last dataloader_params["worker_init_fn"] = seed_worker dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params)) def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.Sampler]: if eval_dataset is None or not has_length(eval_dataset): return None # Build the sampler.
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
# Deprecated code if self.args.use_legacy_prediction_loop: if is_torch_xla_available(): return SequentialDistributedSampler( eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal() ) elif is_sagemaker_mp_enabled(): return SequentialDistributedSampler( eval_dataset, num_replicas=smp.dp_size(), rank=smp.dp_rank(), batch_size=self.args.per_device_eval_batch_size, ) else: return SequentialSampler(eval_dataset)
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
if self.args.group_by_length: if is_datasets_available() and isinstance(eval_dataset, datasets.Dataset): lengths = ( eval_dataset[self.args.length_column_name] if self.args.length_column_name in eval_dataset.column_names else None ) else: lengths = None model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None return LengthGroupedSampler( self.args.eval_batch_size, dataset=eval_dataset, lengths=lengths, model_input_name=model_input_name, ) if self.args.world_size <= 1: return SequentialSampler(eval_dataset) else: return None
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
def get_eval_dataloader(self, eval_dataset: Optional[Union[str, Dataset]] = None) -> DataLoader: """ Returns the evaluation [`~torch.utils.data.DataLoader`]. Subclass and override this method if you want to inject some custom behavior. Args: eval_dataset (`str` or `torch.utils.data.Dataset`, *optional*): If a `str`, will use `self.eval_dataset[eval_dataset]` as the evaluation dataset. If a `Dataset`, will override `self.eval_dataset` and must implement `__len__`. If it is a [`~datasets.Dataset`], columns not accepted by the `model.forward()` method are automatically removed. """ if eval_dataset is None and self.eval_dataset is None: raise ValueError("Trainer: evaluation requires an eval_dataset.")
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
# If we have persistent workers, don't do a fork bomb especially as eval datasets # don't change during training dataloader_key = eval_dataset if isinstance(eval_dataset, str) else "eval" if ( hasattr(self, "_eval_dataloaders") and dataloader_key in self._eval_dataloaders and self.args.dataloader_persistent_workers ): return self.accelerator.prepare(self._eval_dataloaders[dataloader_key]) eval_dataset = ( self.eval_dataset[eval_dataset] if isinstance(eval_dataset, str) else eval_dataset if eval_dataset is not None else self.eval_dataset ) data_collator = self.data_collator
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
if is_datasets_available() and isinstance(eval_dataset, datasets.Dataset): eval_dataset = self._remove_unused_columns(eval_dataset, description="evaluation") else: data_collator = self._get_collator_with_removed_columns(data_collator, description="evaluation") dataloader_params = { "batch_size": self.args.eval_batch_size, "collate_fn": data_collator, "num_workers": self.args.dataloader_num_workers, "pin_memory": self.args.dataloader_pin_memory, "persistent_workers": self.args.dataloader_persistent_workers, } if not isinstance(eval_dataset, torch.utils.data.IterableDataset): dataloader_params["sampler"] = self._get_eval_sampler(eval_dataset) dataloader_params["drop_last"] = self.args.dataloader_drop_last dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
# accelerator.free_memory() will destroy the references, so # we need to store the non-prepared version eval_dataloader = DataLoader(eval_dataset, **dataloader_params) if self.args.dataloader_persistent_workers: if hasattr(self, "_eval_dataloaders"): self._eval_dataloaders[dataloader_key] = eval_dataloader else: self._eval_dataloaders = {dataloader_key: eval_dataloader} return self.accelerator.prepare(eval_dataloader) def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader: """ Returns the test [`~torch.utils.data.DataLoader`]. Subclass and override this method if you want to inject some custom behavior.
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
Args: test_dataset (`torch.utils.data.Dataset`, *optional*): The test dataset to use. If it is a [`~datasets.Dataset`], columns not accepted by the `model.forward()` method are automatically removed. It must implement `__len__`. """ data_collator = self.data_collator if is_datasets_available() and isinstance(test_dataset, datasets.Dataset): test_dataset = self._remove_unused_columns(test_dataset, description="test") else: data_collator = self._get_collator_with_removed_columns(data_collator, description="test") dataloader_params = { "batch_size": self.args.eval_batch_size, "collate_fn": data_collator, "num_workers": self.args.dataloader_num_workers, "pin_memory": self.args.dataloader_pin_memory, "persistent_workers": self.args.dataloader_persistent_workers, }
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
if not isinstance(test_dataset, torch.utils.data.IterableDataset): dataloader_params["sampler"] = self._get_eval_sampler(test_dataset) dataloader_params["drop_last"] = self.args.dataloader_drop_last dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor # We use the same batch_size as for eval. return self.accelerator.prepare(DataLoader(test_dataset, **dataloader_params)) def create_optimizer_and_scheduler(self, num_training_steps: int): """ Setup the optimizer and the learning rate scheduler.
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through `optimizers`, or subclass and override this method (or `create_optimizer` and/or `create_scheduler`) in a subclass. """ self.create_optimizer() if IS_SAGEMAKER_MP_POST_1_10 and smp.state.cfg.fp16: # If smp >= 1.10 and fp16 is enabled, we unwrap the optimizer optimizer = self.optimizer.optimizer else: optimizer = self.optimizer self.create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer) def get_decay_parameter_names(self, model) -> List[str]: """ Get all parameter names that weight decay will be applied to
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py
Note that some models implement their own layernorm instead of calling nn.LayerNorm, weight decay could still apply to those modules since this function only filter out instance of nn.LayerNorm """ decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS) decay_parameters = [name for name in decay_parameters if "bias" not in name] return decay_parameters def create_optimizer(self): """ Setup the optimizer. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through `optimizers`, or subclass and override this method in a subclass. """ opt_model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
244
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/trainer.py