text
stringlengths
3
14.4k
source
stringclasses
273 values
url
stringlengths
47
172
source_section
stringlengths
0
95
file_type
stringclasses
1 value
id
stringlengths
3
6
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/
.md
83_0
[[open-in-colab]] Image-to-image is similar to [text-to-image](conditional_image_generation), but in addition to a prompt, you can also pass an initial image as a starting point for the diffusion process. The initial image is encoded to latent space and noise is added to it. Then the latent diffusion model takes a prompt and the noisy latent image, predicts the added noise, and removes the predicted noise from the initial latent image to get the new latent image. Lastly, a decoder decodes the new latent image back into an image. With πŸ€— Diffusers, this is as easy as 1-2-3: 1. Load a checkpoint into the [`AutoPipelineForImage2Image`] class; this pipeline automatically handles loading the correct pipeline class based on the checkpoint: ```py import torch from diffusers import AutoPipelineForImage2Image from diffusers.utils import load_image, make_image_grid pipeline = AutoPipelineForImage2Image.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16, use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() ``` <Tip> You'll notice throughout the guide, we use [`~DiffusionPipeline.enable_model_cpu_offload`] and [`~DiffusionPipeline.enable_xformers_memory_efficient_attention`], to save memory and increase inference speed. If you're using PyTorch 2.0, then you don't need to call [`~DiffusionPipeline.enable_xformers_memory_efficient_attention`] on your pipeline because it'll already be using PyTorch 2.0's native [scaled-dot product attention](../optimization/torch2.0#scaled-dot-product-attention). </Tip> 2. Load an image to pass to the pipeline: ```py init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png") ``` 3. Pass a prompt and image to the pipeline to generate an image: ```py prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k" image = pipeline(prompt, image=init_image).images[0] make_image_grid([init_image, image], rows=1, cols=2) ``` <div class="flex gap-4"> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption> </div> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption> </div> </div>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#image-to-image
#image-to-image
.md
83_1
The most popular image-to-image models are [Stable Diffusion v1.5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5), [Stable Diffusion XL (SDXL)](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0), and [Kandinsky 2.2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder). The results from the Stable Diffusion and Kandinsky models vary due to their architecture differences and training process; you can generally expect SDXL to produce higher quality images than Stable Diffusion v1.5. Let's take a quick look at how to use each of these models and compare their results.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#popular-models
#popular-models
.md
83_2
Stable Diffusion v1.5 is a latent diffusion model initialized from an earlier checkpoint, and further finetuned for 595K steps on 512x512 images. To use this pipeline for image-to-image, you'll need to prepare an initial image to pass to the pipeline. Then you can pass a prompt and the image to the pipeline to generate a new image: ```py import torch from diffusers import AutoPipelineForImage2Image from diffusers.utils import make_image_grid, load_image pipeline = AutoPipelineForImage2Image.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # prepare image url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png" init_image = load_image(url) prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" # pass prompt and image to pipeline image = pipeline(prompt, image=init_image).images[0] make_image_grid([init_image, image], rows=1, cols=2) ``` <div class="flex gap-4"> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption> </div> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-sdv1.5.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption> </div> </div>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#stable-diffusion-v15
#stable-diffusion-v15
.md
83_3
SDXL is a more powerful version of the Stable Diffusion model. It uses a larger base model, and an additional refiner model to increase the quality of the base model's output. Read the [SDXL](sdxl) guide for a more detailed walkthrough of how to use this model, and other techniques it uses to produce high quality images. ```py import torch from diffusers import AutoPipelineForImage2Image from diffusers.utils import make_image_grid, load_image pipeline = AutoPipelineForImage2Image.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # prepare image url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-sdxl-init.png" init_image = load_image(url) prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" # pass prompt and image to pipeline image = pipeline(prompt, image=init_image, strength=0.5).images[0] make_image_grid([init_image, image], rows=1, cols=2) ``` <div class="flex gap-4"> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-sdxl-init.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption> </div> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-sdxl.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption> </div> </div>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#stable-diffusion-xl-sdxl
#stable-diffusion-xl-sdxl
.md
83_4
The Kandinsky model is different from the Stable Diffusion models because it uses an image prior model to create image embeddings. The embeddings help create a better alignment between text and images, allowing the latent diffusion model to generate better images. The simplest way to use Kandinsky 2.2 is: ```py import torch from diffusers import AutoPipelineForImage2Image from diffusers.utils import make_image_grid, load_image pipeline = AutoPipelineForImage2Image.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16, use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # prepare image url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png" init_image = load_image(url) prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" # pass prompt and image to pipeline image = pipeline(prompt, image=init_image).images[0] make_image_grid([init_image, image], rows=1, cols=2) ``` <div class="flex gap-4"> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption> </div> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-kandinsky.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption> </div> </div>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#kandinsky-22
#kandinsky-22
.md
83_5
There are several important parameters you can configure in the pipeline that'll affect the image generation process and image quality. Let's take a closer look at what these parameters do and how changing them affects the output.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#configure-pipeline-parameters
#configure-pipeline-parameters
.md
83_6
`strength` is one of the most important parameters to consider and it'll have a huge impact on your generated image. It determines how much the generated image resembles the initial image. In other words: - πŸ“ˆ a higher `strength` value gives the model more "creativity" to generate an image that's different from the initial image; a `strength` value of 1.0 means the initial image is more or less ignored - πŸ“‰ a lower `strength` value means the generated image is more similar to the initial image The `strength` and `num_inference_steps` parameters are related because `strength` determines the number of noise steps to add. For example, if the `num_inference_steps` is 50 and `strength` is 0.8, then this means adding 40 (50 * 0.8) steps of noise to the initial image and then denoising for 40 steps to get the newly generated image. ```py import torch from diffusers import AutoPipelineForImage2Image from diffusers.utils import make_image_grid, load_image pipeline = AutoPipelineForImage2Image.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # prepare image url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png" init_image = load_image(url) prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" # pass prompt and image to pipeline image = pipeline(prompt, image=init_image, strength=0.8).images[0] make_image_grid([init_image, image], rows=1, cols=2) ``` <div class="flex flex-row gap-4"> <div class="flex-1"> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-strength-0.4.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">strength = 0.4</figcaption> </div> <div class="flex-1"> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-strength-0.6.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">strength = 0.6</figcaption> </div> <div class="flex-1"> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-strength-1.0.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">strength = 1.0</figcaption> </div> </div>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#strength
#strength
.md
83_7
The `guidance_scale` parameter is used to control how closely aligned the generated image and text prompt are. A higher `guidance_scale` value means your generated image is more aligned with the prompt, while a lower `guidance_scale` value means your generated image has more space to deviate from the prompt. You can combine `guidance_scale` with `strength` for even more precise control over how expressive the model is. For example, combine a high `strength + guidance_scale` for maximum creativity or use a combination of low `strength` and low `guidance_scale` to generate an image that resembles the initial image but is not as strictly bound to the prompt. ```py import torch from diffusers import AutoPipelineForImage2Image from diffusers.utils import make_image_grid, load_image pipeline = AutoPipelineForImage2Image.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # prepare image url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png" init_image = load_image(url) prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" # pass prompt and image to pipeline image = pipeline(prompt, image=init_image, guidance_scale=8.0).images[0] make_image_grid([init_image, image], rows=1, cols=2) ``` <div class="flex flex-row gap-4"> <div class="flex-1"> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-guidance-0.1.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">guidance_scale = 0.1</figcaption> </div> <div class="flex-1"> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-guidance-3.0.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">guidance_scale = 5.0</figcaption> </div> <div class="flex-1"> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-guidance-7.5.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">guidance_scale = 10.0</figcaption> </div> </div>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#guidance-scale
#guidance-scale
.md
83_8
A negative prompt conditions the model to *not* include things in an image, and it can be used to improve image quality or modify an image. For example, you can improve image quality by including negative prompts like "poor details" or "blurry" to encourage the model to generate a higher quality image. Or you can modify an image by specifying things to exclude from an image. ```py import torch from diffusers import AutoPipelineForImage2Image from diffusers.utils import make_image_grid, load_image pipeline = AutoPipelineForImage2Image.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # prepare image url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png" init_image = load_image(url) prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" negative_prompt = "ugly, deformed, disfigured, poor details, bad anatomy" # pass prompt and image to pipeline image = pipeline(prompt, negative_prompt=negative_prompt, image=init_image).images[0] make_image_grid([init_image, image], rows=1, cols=2) ``` <div class="flex flex-row gap-4"> <div class="flex-1"> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-negative-1.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">negative_prompt = "ugly, deformed, disfigured, poor details, bad anatomy"</figcaption> </div> <div class="flex-1"> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-negative-2.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">negative_prompt = "jungle"</figcaption> </div> </div>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#negative-prompt
#negative-prompt
.md
83_9
There are some other interesting ways you can use an image-to-image pipeline aside from just generating an image (although that is pretty cool too). You can take it a step further and chain it with other pipelines.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#chained-image-to-image-pipelines
#chained-image-to-image-pipelines
.md
83_10
Chaining a text-to-image and image-to-image pipeline allows you to generate an image from text and use the generated image as the initial image for the image-to-image pipeline. This is useful if you want to generate an image entirely from scratch. For example, let's chain a Stable Diffusion and a Kandinsky model. Start by generating an image with the text-to-image pipeline: ```py from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image import torch from diffusers.utils import make_image_grid pipeline = AutoPipelineForText2Image.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() text2image = pipeline("Astronaut in a jungle, cold color palette, muted colors, detailed, 8k").images[0] text2image ``` Now you can pass this generated image to the image-to-image pipeline: ```py pipeline = AutoPipelineForImage2Image.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16, use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() image2image = pipeline("Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", image=text2image).images[0] make_image_grid([text2image, image2image], rows=1, cols=2) ```
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#text-to-image-to-image
#text-to-image-to-image
.md
83_11
You can also chain multiple image-to-image pipelines together to create more interesting images. This can be useful for iteratively performing style transfer on an image, generating short GIFs, restoring color to an image, or restoring missing areas of an image. Start by generating an image: ```py import torch from diffusers import AutoPipelineForImage2Image from diffusers.utils import make_image_grid, load_image pipeline = AutoPipelineForImage2Image.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # prepare image url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png" init_image = load_image(url) prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" # pass prompt and image to pipeline image = pipeline(prompt, image=init_image, output_type="latent").images[0] ``` <Tip> It is important to specify `output_type="latent"` in the pipeline to keep all the outputs in latent space to avoid an unnecessary decode-encode step. This only works if the chained pipelines are using the same VAE. </Tip> Pass the latent output from this pipeline to the next pipeline to generate an image in a [comic book art style](https://huggingface.co/ogkalu/Comic-Diffusion): ```py pipeline = AutoPipelineForImage2Image.from_pretrained( "ogkalu/Comic-Diffusion", torch_dtype=torch.float16 ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # need to include the token "charliebo artstyle" in the prompt to use this checkpoint image = pipeline("Astronaut in a jungle, charliebo artstyle", image=image, output_type="latent").images[0] ``` Repeat one more time to generate the final image in a [pixel art style](https://huggingface.co/kohbanye/pixel-art-style): ```py pipeline = AutoPipelineForImage2Image.from_pretrained( "kohbanye/pixel-art-style", torch_dtype=torch.float16 ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # need to include the token "pixelartstyle" in the prompt to use this checkpoint image = pipeline("Astronaut in a jungle, pixelartstyle", image=image).images[0] make_image_grid([init_image, image], rows=1, cols=2) ```
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#image-to-image-to-image
#image-to-image-to-image
.md
83_12
Another way you can chain your image-to-image pipeline is with an upscaler and super-resolution pipeline to really increase the level of details in an image. Start with an image-to-image pipeline: ```py import torch from diffusers import AutoPipelineForImage2Image from diffusers.utils import make_image_grid, load_image pipeline = AutoPipelineForImage2Image.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # prepare image url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png" init_image = load_image(url) prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" # pass prompt and image to pipeline image_1 = pipeline(prompt, image=init_image, output_type="latent").images[0] ``` <Tip> It is important to specify `output_type="latent"` in the pipeline to keep all the outputs in *latent* space to avoid an unnecessary decode-encode step. This only works if the chained pipelines are using the same VAE. </Tip> Chain it to an upscaler pipeline to increase the image resolution: ```py from diffusers import StableDiffusionLatentUpscalePipeline upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) upscaler.enable_model_cpu_offload() upscaler.enable_xformers_memory_efficient_attention() image_2 = upscaler(prompt, image=image_1, output_type="latent").images[0] ``` Finally, chain it to a super-resolution pipeline to further enhance the resolution: ```py from diffusers import StableDiffusionUpscalePipeline super_res = StableDiffusionUpscalePipeline.from_pretrained( "stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) super_res.enable_model_cpu_offload() super_res.enable_xformers_memory_efficient_attention() image_3 = super_res(prompt, image=image_2).images[0] make_image_grid([init_image, image_3.resize((512, 512))], rows=1, cols=2) ```
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#image-to-upscaler-to-super-resolution
#image-to-upscaler-to-super-resolution
.md
83_13
Trying to generate an image that looks exactly the way you want can be difficult, which is why controlled generation techniques and models are so useful. While you can use the `negative_prompt` to partially control image generation, there are more robust methods like prompt weighting and ControlNets.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#control-image-generation
#control-image-generation
.md
83_14
Prompt weighting allows you to scale the representation of each concept in a prompt. For example, in a prompt like "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", you can choose to increase or decrease the embeddings of "astronaut" and "jungle". The [Compel](https://github.com/damian0815/compel) library provides a simple syntax for adjusting prompt weights and generating the embeddings. You can learn how to create the embeddings in the [Prompt weighting](weighted_prompts) guide. [`AutoPipelineForImage2Image`] has a `prompt_embeds` (and `negative_prompt_embeds` if you're using a negative prompt) parameter where you can pass the embeddings which replaces the `prompt` parameter. ```py from diffusers import AutoPipelineForImage2Image import torch pipeline = AutoPipelineForImage2Image.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() image = pipeline(prompt_embeds=prompt_embeds, # generated from Compel negative_prompt_embeds=negative_prompt_embeds, # generated from Compel image=init_image, ).images[0] ```
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#prompt-weighting
#prompt-weighting
.md
83_15
ControlNets provide a more flexible and accurate way to control image generation because you can use an additional conditioning image. The conditioning image can be a canny image, depth map, image segmentation, and even scribbles! Whatever type of conditioning image you choose, the ControlNet generates an image that preserves the information in it. For example, let's condition an image with a depth map to keep the spatial information in the image. ```py from diffusers.utils import load_image, make_image_grid # prepare image url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png" init_image = load_image(url) init_image = init_image.resize((958, 960)) # resize to depth image dimensions depth_image = load_image("https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png") make_image_grid([init_image, depth_image], rows=1, cols=2) ``` Load a ControlNet model conditioned on depth maps and the [`AutoPipelineForImage2Image`]: ```py from diffusers import ControlNetModel, AutoPipelineForImage2Image import torch controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11f1p_sd15_depth", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipeline = AutoPipelineForImage2Image.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() ``` Now generate a new image conditioned on the depth map, initial image, and prompt: ```py prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" image_control_net = pipeline(prompt, image=init_image, control_image=depth_image).images[0] make_image_grid([init_image, depth_image, image_control_net], rows=1, cols=3) ``` <div class="flex flex-row gap-4"> <div class="flex-1"> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption> </div> <div class="flex-1"> <img class="rounded-xl" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">depth image</figcaption> </div> <div class="flex-1"> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-controlnet.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">ControlNet image</figcaption> </div> </div> Let's apply a new [style](https://huggingface.co/nitrosocke/elden-ring-diffusion) to the image generated from the ControlNet by chaining it with an image-to-image pipeline: ```py pipeline = AutoPipelineForImage2Image.from_pretrained( "nitrosocke/elden-ring-diffusion", torch_dtype=torch.float16, ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() prompt = "elden ring style astronaut in a jungle" # include the token "elden ring style" in the prompt negative_prompt = "ugly, deformed, disfigured, poor details, bad anatomy" image_elden_ring = pipeline(prompt, negative_prompt=negative_prompt, image=image_control_net, strength=0.45, guidance_scale=10.5).images[0] make_image_grid([init_image, depth_image, image_control_net, image_elden_ring], rows=2, cols=2) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-elden-ring.png"> </div>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#controlnet
#controlnet
.md
83_16
Running diffusion models is computationally expensive and intensive, but with a few optimization tricks, it is entirely possible to run them on consumer and free-tier GPUs. For example, you can use a more memory-efficient form of attention such as PyTorch 2.0's [scaled-dot product attention](../optimization/torch2.0#scaled-dot-product-attention) or [xFormers](../optimization/xformers) (you can use one or the other, but there's no need to use both). You can also offload the model to the GPU while the other pipeline components wait on the CPU. ```diff + pipeline.enable_model_cpu_offload() + pipeline.enable_xformers_memory_efficient_attention() ``` With [`torch.compile`](../optimization/torch2.0#torchcompile), you can boost your inference speed even more by wrapping your UNet with it: ```py pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True) ``` To learn more, take a look at the [Reduce memory usage](../optimization/memory) and [Torch 2.0](../optimization/torch2.0) guides.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/img2img.md
https://huggingface.co/docs/diffusers/en/using-diffusers/img2img/#optimize
#optimize
.md
83_17
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/unconditional_image_generation.md
https://huggingface.co/docs/diffusers/en/using-diffusers/unconditional_image_generation/
.md
84_0
[[open-in-colab]] Unconditional image generation generates images that look like a random sample from the training data the model was trained on because the denoising process is not guided by any additional context like text or image. To get started, use the [`DiffusionPipeline`] to load the [anton-l/ddpm-butterflies-128](https://huggingface.co/anton-l/ddpm-butterflies-128) checkpoint to generate images of butterflies. The [`DiffusionPipeline`] downloads and caches all the model components required to generate an image. ```py from diffusers import DiffusionPipeline generator = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128").to("cuda") image = generator().images[0] image ``` <Tip> Want to generate images of something else? Take a look at the training [guide](../training/unconditional_training) to learn how to train a model to generate your own images. </Tip> The output image is a [`PIL.Image`](https://pillow.readthedocs.io/en/stable/reference/Image.html?highlight=image#the-image-class) object that can be saved: ```py image.save("generated_image.png") ``` You can also try experimenting with the `num_inference_steps` parameter, which controls the number of denoising steps. More denoising steps typically produce higher quality images, but it'll take longer to generate. Feel free to play around with this parameter to see how it affects the image quality. ```py image = generator(num_inference_steps=100).images[0] image ``` Try out the Space below to generate an image of a butterfly! <iframe src="https://stevhliu-unconditional-image-generation.hf.space" frameborder="0" width="850" height="500" ></iframe>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/unconditional_image_generation.md
https://huggingface.co/docs/diffusers/en/using-diffusers/unconditional_image_generation/#unconditional-image-generation
#unconditional-image-generation
.md
84_1
Diffusers' pipelines can be used as an inference engine for a server. It supports concurrent and multithreaded requests to generate images that may be requested by multiple users at the same time. This guide will show you how to use the [`StableDiffusion3Pipeline`] in a server, but feel free to use any pipeline you want. Start by navigating to the `examples/server` folder and installing all of the dependencies. ```py pip install . pip install -f requirements.txt ``` Launch the server with the following command. ```py python server.py ``` The server is accessed at http://localhost:8000. You can curl this model with the following command. ``` curl -X POST -H "Content-Type: application/json" --data '{"model": "something", "prompt": "a kitten in front of a fireplace"}' http://localhost:8000/v1/images/generations ``` If you need to upgrade some dependencies, you can use either [pip-tools](https://github.com/jazzband/pip-tools) or [uv](https://github.com/astral-sh/uv). For example, upgrade the dependencies with `uv` using the following command. ``` uv pip compile requirements.in -o requirements.txt ``` The server is built with [FastAPI](https://fastapi.tiangolo.com/async/). The endpoint for `v1/images/generations` is shown below. ```py @app.post("/v1/images/generations") async def generate_image(image_input: TextToImageInput): try: loop = asyncio.get_event_loop() scheduler = shared_pipeline.pipeline.scheduler.from_config(shared_pipeline.pipeline.scheduler.config) pipeline = StableDiffusion3Pipeline.from_pipe(shared_pipeline.pipeline, scheduler=scheduler) generator = torch.Generator(device="cuda") generator.manual_seed(random.randint(0, 10000000)) output = await loop.run_in_executor(None, lambda: pipeline(image_input.prompt, generator = generator)) logger.info(f"output: {output}") image_url = save_image(output.images[0]) return {"data": [{"url": image_url}]} except Exception as e: if isinstance(e, HTTPException): raise e elif hasattr(e, 'message'): raise HTTPException(status_code=500, detail=e.message + traceback.format_exc()) raise HTTPException(status_code=500, detail=str(e) + traceback.format_exc()) ``` The `generate_image` function is defined as asynchronous with the [async](https://fastapi.tiangolo.com/async/) keyword so that FastAPI knows that whatever is happening in this function won't necessarily return a result right away. Once it hits some point in the function that it needs to await some other [Task](https://docs.python.org/3/library/asyncio-task.html#asyncio.Task), the main thread goes back to answering other HTTP requests. This is shown in the code below with the [await](https://fastapi.tiangolo.com/async/#async-and-await) keyword. ```py output = await loop.run_in_executor(None, lambda: pipeline(image_input.prompt, generator = generator)) ``` At this point, the execution of the pipeline function is placed onto a [new thread](https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_in_executor), and the main thread performs other things until a result is returned from the `pipeline`. Another important aspect of this implementation is creating a `pipeline` from `shared_pipeline`. The goal behind this is to avoid loading the underlying model more than once onto the GPU while still allowing for each new request that is running on a separate thread to have its own generator and scheduler. The scheduler, in particular, is not thread-safe, and it will cause errors like: `IndexError: index 21 is out of bounds for dimension 0 with size 21` if you try to use the same scheduler across multiple threads.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/using-diffusers/create_a_server.md
https://huggingface.co/docs/diffusers/en/using-diffusers/create_a_server/#create-a-server
#create-a-server
.md
85_0
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/advanced_inference/outpaint.md
https://huggingface.co/docs/diffusers/en/advanced_inference/outpaint/
.md
86_0
Outpainting extends an image beyond its original boundaries, allowing you to add, replace, or modify visual elements in an image while preserving the original image. Like [inpainting](../using-diffusers/inpaint), you want to fill the white area (in this case, the area outside of the original image) with new visual elements while keeping the original image (represented by a mask of black pixels). There are a couple of ways to outpaint, such as with a [ControlNet](https://hf.co/blog/OzzyGT/outpainting-controlnet) or with [Differential Diffusion](https://hf.co/blog/OzzyGT/outpainting-differential-diffusion). This guide will show you how to outpaint with an inpainting model, ControlNet, and a ZoeDepth estimator. Before you begin, make sure you have the [controlnet_aux](https://github.com/huggingface/controlnet_aux) library installed so you can use the ZoeDepth estimator. ```py !pip install -q controlnet_aux ```
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/advanced_inference/outpaint.md
https://huggingface.co/docs/diffusers/en/advanced_inference/outpaint/#outpainting
#outpainting
.md
86_1
Start by picking an image to outpaint with and remove the background with a Space like [BRIA-RMBG-1.4](https://hf.co/spaces/briaai/BRIA-RMBG-1.4). <iframe src="https://briaai-bria-rmbg-1-4.hf.space" frameborder="0" width="850" height="450" ></iframe> For example, remove the background from this image of a pair of shoes. <div class="flex flex-row gap-4"> <div class="flex-1"> <img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/original-jordan.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">original image</figcaption> </div> <div class="flex-1"> <img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/no-background-jordan.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">background removed</figcaption> </div> </div> [Stable Diffusion XL (SDXL)](../using-diffusers/sdxl) models work best with 1024x1024 images, but you can resize the image to any size as long as your hardware has enough memory to support it. The transparent background in the image should also be replaced with a white background. Create a function (like the one below) that scales and pastes the image onto a white background. ```py import random import requests import torch from controlnet_aux import ZoeDetector from PIL import Image, ImageOps from diffusers import ( AutoencoderKL, ControlNetModel, StableDiffusionXLControlNetPipeline, StableDiffusionXLInpaintPipeline, ) def scale_and_paste(original_image): aspect_ratio = original_image.width / original_image.height if original_image.width > original_image.height: new_width = 1024 new_height = round(new_width / aspect_ratio) else: new_height = 1024 new_width = round(new_height * aspect_ratio) resized_original = original_image.resize((new_width, new_height), Image.LANCZOS) white_background = Image.new("RGBA", (1024, 1024), "white") x = (1024 - new_width) // 2 y = (1024 - new_height) // 2 white_background.paste(resized_original, (x, y), resized_original) return resized_original, white_background original_image = Image.open( requests.get( "https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/no-background-jordan.png", stream=True, ).raw ).convert("RGBA") resized_img, white_bg_image = scale_and_paste(original_image) ``` To avoid adding unwanted extra details, use the ZoeDepth estimator to provide additional guidance during generation and to ensure the shoes remain consistent with the original image. ```py zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators") image_zoe = zoe(white_bg_image, detect_resolution=512, image_resolution=1024) image_zoe ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/zoedepth-jordan.png"/> </div>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/advanced_inference/outpaint.md
https://huggingface.co/docs/diffusers/en/advanced_inference/outpaint/#image-preparation
#image-preparation
.md
86_2
Once your image is ready, you can generate content in the white area around the shoes with [controlnet-inpaint-dreamer-sdxl](https://hf.co/destitech/controlnet-inpaint-dreamer-sdxl), a SDXL ControlNet trained for inpainting. Load the inpainting ControlNet, ZoeDepth model, VAE and pass them to the [`StableDiffusionXLControlNetPipeline`]. Then you can create an optional `generate_image` function (for convenience) to outpaint an initial image. ```py controlnets = [ ControlNetModel.from_pretrained( "destitech/controlnet-inpaint-dreamer-sdxl", torch_dtype=torch.float16, variant="fp16" ), ControlNetModel.from_pretrained( "diffusers/controlnet-zoe-depth-sdxl-1.0", torch_dtype=torch.float16 ), ] vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda") pipeline = StableDiffusionXLControlNetPipeline.from_pretrained( "SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, variant="fp16", controlnet=controlnets, vae=vae ).to("cuda") def generate_image(prompt, negative_prompt, inpaint_image, zoe_image, seed: int = None): if seed is None: seed = random.randint(0, 2**32 - 1) generator = torch.Generator(device="cpu").manual_seed(seed) image = pipeline( prompt, negative_prompt=negative_prompt, image=[inpaint_image, zoe_image], guidance_scale=6.5, num_inference_steps=25, generator=generator, controlnet_conditioning_scale=[0.5, 0.8], control_guidance_end=[0.9, 0.6], ).images[0] return image prompt = "nike air jordans on a basketball court" negative_prompt = "" temp_image = generate_image(prompt, negative_prompt, white_bg_image, image_zoe, 908097) ``` Paste the original image over the initial outpainted image. You'll improve the outpainted background in a later step. ```py x = (1024 - resized_img.width) // 2 y = (1024 - resized_img.height) // 2 temp_image.paste(resized_img, (x, y), resized_img) temp_image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/initial-outpaint.png"/> </div> > [!TIP] > Now is a good time to free up some memory if you're running low! > > ```py > pipeline=None > torch.cuda.empty_cache() > ``` Now that you have an initial outpainted image, load the [`StableDiffusionXLInpaintPipeline`] with the [RealVisXL](https://hf.co/SG161222/RealVisXL_V4.0) model to generate the final outpainted image with better quality. ```py pipeline = StableDiffusionXLInpaintPipeline.from_pretrained( "OzzyGT/RealVisXL_V4.0_inpainting", torch_dtype=torch.float16, variant="fp16", vae=vae, ).to("cuda") ``` Prepare a mask for the final outpainted image. To create a more natural transition between the original image and the outpainted background, blur the mask to help it blend better. ```py mask = Image.new("L", temp_image.size) mask.paste(resized_img.split()[3], (x, y)) mask = ImageOps.invert(mask) final_mask = mask.point(lambda p: p > 128 and 255) mask_blurred = pipeline.mask_processor.blur(final_mask, blur_factor=20) mask_blurred ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/blurred-mask.png"/> </div> Create a better prompt and pass it to the `generate_outpaint` function to generate the final outpainted image. Again, paste the original image over the final outpainted background. ```py def generate_outpaint(prompt, negative_prompt, image, mask, seed: int = None): if seed is None: seed = random.randint(0, 2**32 - 1) generator = torch.Generator(device="cpu").manual_seed(seed) image = pipeline( prompt, negative_prompt=negative_prompt, image=image, mask_image=mask, guidance_scale=10.0, strength=0.8, num_inference_steps=30, generator=generator, ).images[0] return image prompt = "high quality photo of nike air jordans on a basketball court, highly detailed" negative_prompt = "" final_image = generate_outpaint(prompt, negative_prompt, temp_image, mask_blurred, 7688778) x = (1024 - resized_img.width) // 2 y = (1024 - resized_img.height) // 2 final_image.paste(resized_img, (x, y), resized_img) final_image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/final-outpaint.png"/> </div>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/advanced_inference/outpaint.md
https://huggingface.co/docs/diffusers/en/advanced_inference/outpaint/#outpaint
#outpaint
.md
86_3
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/outputs.md
https://huggingface.co/docs/diffusers/en/api/outputs/
.md
87_0
All model outputs are subclasses of [`~utils.BaseOutput`], data structures containing all the information returned by the model. The outputs can also be used as tuples or dictionaries. For example: ```python from diffusers import DDIMPipeline pipeline = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32") outputs = pipeline() ``` The `outputs` object is a [`~pipelines.ImagePipelineOutput`] which means it has an image attribute. You can access each attribute as you normally would or with a keyword lookup, and if that attribute is not returned by the model, you will get `None`: ```python outputs.images outputs["images"] ``` When considering the `outputs` object as a tuple, it only considers the attributes that don't have `None` values. For instance, retrieving an image by indexing into it returns the tuple `(outputs.images)`: ```python outputs[:1] ``` <Tip> To check a specific pipeline or model output, refer to its corresponding API documentation. </Tip>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/outputs.md
https://huggingface.co/docs/diffusers/en/api/outputs/#outputs
#outputs
.md
87_1
BaseOutput Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular Python dictionary. <Tip warning={true}> You can't unpack a [`BaseOutput`] directly. Use the [`~utils.BaseOutput.to_tuple`] method to convert it to a tuple first. </Tip> - to_tuple
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/outputs.md
https://huggingface.co/docs/diffusers/en/api/outputs/#baseoutput
#baseoutput
.md
87_2
ImagePipelineOutput Output class for image pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, num_channels)`.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/outputs.md
https://huggingface.co/docs/diffusers/en/api/outputs/#imagepipelineoutput
#imagepipelineoutput
.md
87_3
[[autodoc]] FlaxImagePipelineOutput: No module named 'flax'
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/outputs.md
https://huggingface.co/docs/diffusers/en/api/outputs/#flaximagepipelineoutput
#flaximagepipelineoutput
.md
87_4
AudioPipelineOutput Output class for audio pipelines. Args: audios (`np.ndarray`) List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/outputs.md
https://huggingface.co/docs/diffusers/en/api/outputs/#audiopipelineoutput
#audiopipelineoutput
.md
87_5
ImageTextPipelineOutput Output class for joint image-text pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, num_channels)`. text (`List[str]` or `List[List[str]]`) List of generated text strings of length `batch_size` or a list of list of strings whose outer list has length `batch_size`.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/outputs.md
https://huggingface.co/docs/diffusers/en/api/outputs/#imagetextpipelineoutput
#imagetextpipelineoutput
.md
87_6
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/
.md
88_0
An attention processor is a class for applying different types of attention mechanisms.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#attention-processor
#attention-processor
.md
88_1
AttnProcessor Default processor for performing attention-related computations. AttnProcessor Default processor for performing attention-related computations. 2_0 AttnAddedKVProcessor Processor for performing attention-related computations with extra learnable key and value matrices for the text encoder. AttnAddedKVProcessor Processor for performing attention-related computations with extra learnable key and value matrices for the text encoder. 2_0 AttnProcessor Default processor for performing attention-related computations. NPU FusedAttnProcessor2_0 Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses fused projection layers. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is currently πŸ§ͺ experimental in nature and can change in future. </Tip>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#attnprocessor
#attnprocessor
.md
88_2
AllegroAttnProcessor2_0 Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the Allegro model. It applies a normalization layer and rotary embedding on the query and key vector.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#allegro
#allegro
.md
88_3
AuraFlowAttnProcessor2_0 Attention processor used typically in processing Aura Flow. FusedAuraFlowAttnProcessor2_0 Attention processor used typically in processing Aura Flow with fused projections.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#auraflow
#auraflow
.md
88_4
CogVideoXAttnProcessor2_0 Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on query and key vectors, but does not include spatial normalization. FusedCogVideoXAttnProcessor2_0 Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on query and key vectors, but does not include spatial normalization.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#cogvideox
#cogvideox
.md
88_5
CrossFrameAttnProcessor Cross frame attention processor. Each frame attends the first frame. Args: batch_size: The number that represents actual batch size, other than the frames. For example, calling unet with a single prompt and num_images_per_prompt=1, batch_size should be equal to 2, due to classifier-free guidance.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#crossframeattnprocessor
#crossframeattnprocessor
.md
88_6
CustomDiffusionAttnProcessor Processor for implementing attention for the Custom Diffusion method. Args: train_kv (`bool`, defaults to `True`): Whether to newly train the key and value matrices corresponding to the text features. train_q_out (`bool`, defaults to `True`): Whether to newly train query matrices corresponding to the latent image features. hidden_size (`int`, *optional*, defaults to `None`): The hidden size of the attention layer. cross_attention_dim (`int`, *optional*, defaults to `None`): The number of channels in the `encoder_hidden_states`. out_bias (`bool`, defaults to `True`): Whether to include the bias parameter in `train_q_out`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. CustomDiffusionAttnProcessor Processor for implementing attention for the Custom Diffusion method. Args: train_kv (`bool`, defaults to `True`): Whether to newly train the key and value matrices corresponding to the text features. train_q_out (`bool`, defaults to `True`): Whether to newly train query matrices corresponding to the latent image features. hidden_size (`int`, *optional*, defaults to `None`): The hidden size of the attention layer. cross_attention_dim (`int`, *optional*, defaults to `None`): The number of channels in the `encoder_hidden_states`. out_bias (`bool`, defaults to `True`): Whether to include the bias parameter in `train_q_out`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. 2_0 CustomDiffusionXFormersAttnProcessor Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method. Args: train_kv (`bool`, defaults to `True`): Whether to newly train the key and value matrices corresponding to the text features. train_q_out (`bool`, defaults to `True`): Whether to newly train query matrices corresponding to the latent image features. hidden_size (`int`, *optional*, defaults to `None`): The hidden size of the attention layer. cross_attention_dim (`int`, *optional*, defaults to `None`): The number of channels in the `encoder_hidden_states`. out_bias (`bool`, defaults to `True`): Whether to include the bias parameter in `train_q_out`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#custom-diffusion
#custom-diffusion
.md
88_7
FluxAttnProcessor2_0 Attention processor used typically in processing the SD3-like self-attention projections. FusedFluxAttnProcessor2_0 Attention processor used typically in processing the SD3-like self-attention projections. FluxSingleAttnProcessor2_0 Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#flux
#flux
.md
88_8
HunyuanAttnProcessor2_0 Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector. FusedHunyuanAttnProcessor2_0 Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0) with fused projection layers. This is used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector. PAGHunyuanAttnProcessor2_0 Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the HunyuanDiT model. It applies a normalization layer and rotary embedding on query and key vector. This variant of the processor employs [Pertubed Attention Guidance](https://arxiv.org/abs/2403.17377). PAGCFGHunyuanAttnProcessor2_0 Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the HunyuanDiT model. It applies a normalization layer and rotary embedding on query and key vector. This variant of the processor employs [Pertubed Attention Guidance](https://arxiv.org/abs/2403.17377).
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#hunyuan
#hunyuan
.md
88_9
PAGIdentitySelfAttnProcessor2_0 Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0). PAG reference: https://arxiv.org/abs/2403.17377 PAGCFGIdentitySelfAttnProcessor2_0 Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0). PAG reference: https://arxiv.org/abs/2403.17377
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#identityselfattnprocessor20
#identityselfattnprocessor20
.md
88_10
IPAdapterAttnProcessor Attention processor for Multiple IP-Adapters. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or List[`float`], defaults to 1.0): the weight scale of image prompt. IPAdapterAttnProcessor Attention processor for Multiple IP-Adapters. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or List[`float`], defaults to 1.0): the weight scale of image prompt. 2_0 SD3IPAdapterJointAttnProcessor2_0 Attention processor for IP-Adapter used typically in processing the SD3-like self-attention projections, with additional image-based information and timestep embeddings. Args: hidden_size (`int`): The number of hidden channels. ip_hidden_states_dim (`int`): The image feature dimension. head_dim (`int`): The number of head channels. timesteps_emb_dim (`int`, defaults to 1280): The number of input channels for timestep embedding. scale (`float`, defaults to 0.5): IP-Adapter scale.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#ip-adapter
#ip-adapter
.md
88_11
JointAttnProcessor2_0 Attention processor used typically in processing the SD3-like self-attention projections. PAGJointAttnProcessor2_0 Attention processor used typically in processing the SD3-like self-attention projections. PAGCFGJointAttnProcessor2_0 Attention processor used typically in processing the SD3-like self-attention projections. FusedJointAttnProcessor2_0 Attention processor used typically in processing the SD3-like self-attention projections.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#jointattnprocessor20
#jointattnprocessor20
.md
88_12
LoRAAttnProcessor Processor for implementing attention with LoRA. LoRAAttnProcessor Processor for implementing attention with LoRA. 2_0 LoRAAttnAddedKVProcessor Processor for implementing attention with LoRA with extra learnable key and value matrices for the text encoder. LoRAXFormersAttnProcessor Processor for implementing attention with LoRA using xFormers.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#lora
#lora
.md
88_13
LuminaAttnProcessor2_0 Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the LuminaNextDiT model. It applies a s normalization layer and rotary embedding on query and key vector.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#lumina-t2x
#lumina-t2x
.md
88_14
MochiAttnProcessor2_0 Attention processor used in Mochi. MochiVaeAttnProcessor2_0 Attention processor used in Mochi VAE.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#mochi
#mochi
.md
88_15
SanaLinearAttnProcessor2_0 Processor for implementing scaled dot-product linear attention. SanaMultiscaleAttnProcessor2_0 Processor for implementing multiscale quadratic attention. PAGCFGSanaLinearAttnProcessor2_0 Processor for implementing scaled dot-product linear attention. PAGIdentitySanaLinearAttnProcessor2_0 Processor for implementing scaled dot-product linear attention.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#sana
#sana
.md
88_16
StableAudioAttnProcessor2_0 Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the Stable Audio model. It applies rotary embedding on query and key vector, and allows MHA, GQA or MQA.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#stable-audio
#stable-audio
.md
88_17
SlicedAttnProcessor Processor for implementing sliced attention. Args: slice_size (`int`, *optional*): The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and `attention_head_dim` must be a multiple of the `slice_size`. SlicedAttnAddedKVProcessor Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder. Args: slice_size (`int`, *optional*): The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and `attention_head_dim` must be a multiple of the `slice_size`.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#slicedattnprocessor
#slicedattnprocessor
.md
88_18
XFormersAttnProcessor Processor for implementing memory efficient attention using xFormers. Args: attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. XFormersAttnAddedKVProcessor Processor for implementing memory efficient attention using xFormers. Args: attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#xformersattnprocessor
#xformersattnprocessor
.md
88_19
XLAFlashAttnProcessor2_0 Processor for implementing scaled dot-product attention with pallas flash attention kernel if using `torch_xla`.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/attnprocessor.md
https://huggingface.co/docs/diffusers/en/api/attnprocessor/#xlaflashattnprocessor20
#xlaflashattnprocessor20
.md
88_20
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/normalization.md
https://huggingface.co/docs/diffusers/en/api/normalization/
.md
89_0
Customized normalization layers for supporting various models in πŸ€— Diffusers.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/normalization.md
https://huggingface.co/docs/diffusers/en/api/normalization/#normalization-layers
#normalization-layers
.md
89_1
AdaLayerNorm Norm layer modified to incorporate timestep embeddings. Parameters: embedding_dim (`int`): The size of each embedding vector. num_embeddings (`int`, *optional*): The size of the embeddings dictionary. output_dim (`int`, *optional*): norm_elementwise_affine (`bool`, defaults to `False): norm_eps (`bool`, defaults to `False`): chunk_dim (`int`, defaults to `0`):
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/normalization.md
https://huggingface.co/docs/diffusers/en/api/normalization/#adalayernorm
#adalayernorm
.md
89_2
AdaLayerNorm Norm layer modified to incorporate timestep embeddings. Parameters: embedding_dim (`int`): The size of each embedding vector. num_embeddings (`int`, *optional*): The size of the embeddings dictionary. output_dim (`int`, *optional*): norm_elementwise_affine (`bool`, defaults to `False): norm_eps (`bool`, defaults to `False`): chunk_dim (`int`, defaults to `0`): Zero
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/normalization.md
https://huggingface.co/docs/diffusers/en/api/normalization/#adalayernormzero
#adalayernormzero
.md
89_3
AdaLayerNorm Norm layer modified to incorporate timestep embeddings. Parameters: embedding_dim (`int`): The size of each embedding vector. num_embeddings (`int`, *optional*): The size of the embeddings dictionary. output_dim (`int`, *optional*): norm_elementwise_affine (`bool`, defaults to `False): norm_eps (`bool`, defaults to `False`): chunk_dim (`int`, defaults to `0`): Single
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/normalization.md
https://huggingface.co/docs/diffusers/en/api/normalization/#adalayernormsingle
#adalayernormsingle
.md
89_4
AdaGroupNorm GroupNorm layer modified to incorporate timestep embeddings. Parameters: embedding_dim (`int`): The size of each embedding vector. num_embeddings (`int`): The size of the embeddings dictionary. num_groups (`int`): The number of groups to separate the channels into. act_fn (`str`, *optional*, defaults to `None`): The activation function to use. eps (`float`, *optional*, defaults to `1e-5`): The epsilon value to use for numerical stability.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/normalization.md
https://huggingface.co/docs/diffusers/en/api/normalization/#adagroupnorm
#adagroupnorm
.md
89_5
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/utilities.md
https://huggingface.co/docs/diffusers/en/api/utilities/
.md
90_0
Utility and helper functions for working with πŸ€— Diffusers.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/utilities.md
https://huggingface.co/docs/diffusers/en/api/utilities/#utilities
#utilities
.md
90_1
numpy_to_pil Convert a numpy image or a batch of images to a PIL image.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/utilities.md
https://huggingface.co/docs/diffusers/en/api/utilities/#numpytopil
#numpytopil
.md
90_2
pt_to_pil Convert a torch image to a PIL image.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/utilities.md
https://huggingface.co/docs/diffusers/en/api/utilities/#pttopil
#pttopil
.md
90_3
load_image Loads `image` to a PIL Image. Args: image (`str` or `PIL.Image.Image`): The image to convert to the PIL Image format. convert_method (Callable[[PIL.Image.Image], PIL.Image.Image], *optional*): A conversion method to apply to the image after loading it. When set to `None` the image will be converted "RGB". Returns: `PIL.Image.Image`: A PIL Image.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/utilities.md
https://huggingface.co/docs/diffusers/en/api/utilities/#loadimage
#loadimage
.md
90_4
export_to_gif
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/utilities.md
https://huggingface.co/docs/diffusers/en/api/utilities/#exporttogif
#exporttogif
.md
90_5
export_to_video
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/utilities.md
https://huggingface.co/docs/diffusers/en/api/utilities/#exporttovideo
#exporttovideo
.md
90_6
make_image_grid Prepares a single grid of images. Useful for visualization purposes.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/utilities.md
https://huggingface.co/docs/diffusers/en/api/utilities/#makeimagegrid
#makeimagegrid
.md
90_7
randn_tensor A helper function to create random tensors on the desired `device` with the desired `dtype`. When passing a list of generators, you can seed each batch size individually. If CPU generators are passed, the tensor is always created on the CPU.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/utilities.md
https://huggingface.co/docs/diffusers/en/api/utilities/#randntensor
#randntensor
.md
90_8
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/configuration.md
https://huggingface.co/docs/diffusers/en/api/configuration/
.md
91_0
Schedulers from [`~schedulers.scheduling_utils.SchedulerMixin`] and models from [`ModelMixin`] inherit from [`ConfigMixin`] which stores all the parameters that are passed to their respective `__init__` methods in a JSON-configuration file. <Tip> To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `huggingface-cli login`. </Tip>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/configuration.md
https://huggingface.co/docs/diffusers/en/api/configuration/#configuration
#configuration
.md
91_1
ConfigMixin Base class for all configuration classes. All configuration parameters are stored under `self.config`. Also provides the [`~ConfigMixin.from_config`] and [`~ConfigMixin.save_config`] methods for loading, downloading, and saving classes that inherit from [`ConfigMixin`]. Class attributes: - **config_name** (`str`) -- A filename under which the config should stored when calling [`~ConfigMixin.save_config`] (should be overridden by parent class). - **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be overridden by subclass). - **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass). - **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the `init` function should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by subclass). - load_config - from_config - save_config - to_json_file - to_json_string
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/configuration.md
https://huggingface.co/docs/diffusers/en/api/configuration/#configmixin
#configmixin
.md
91_2
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/internal_classes_overview.md
https://huggingface.co/docs/diffusers/en/api/internal_classes_overview/
.md
92_0
The APIs in this section are more experimental and prone to breaking changes. Most of them are used internally for development, but they may also be useful to you if you're interested in building a diffusion model with some custom parts or if you're interested in some of our helper utilities for working with πŸ€— Diffusers.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/internal_classes_overview.md
https://huggingface.co/docs/diffusers/en/api/internal_classes_overview/#overview
#overview
.md
92_1
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/logging.md
https://huggingface.co/docs/diffusers/en/api/logging/
.md
93_0
πŸ€— Diffusers has a centralized logging system to easily manage the verbosity of the library. The default verbosity is set to `WARNING`. To change the verbosity level, use one of the direct setters. For instance, to change the verbosity to the `INFO` level. ```python import diffusers diffusers.logging.set_verbosity_info() ``` You can also use the environment variable `DIFFUSERS_VERBOSITY` to override the default verbosity. You can set it to one of the following: `debug`, `info`, `warning`, `error`, `critical`. For example: ```bash DIFFUSERS_VERBOSITY=error ./myprogram.py ``` Additionally, some `warnings` can be disabled by setting the environment variable `DIFFUSERS_NO_ADVISORY_WARNINGS` to a true value, like `1`. This disables any warning logged by [`logger.warning_advice`]. For example: ```bash DIFFUSERS_NO_ADVISORY_WARNINGS=1 ./myprogram.py ``` Here is an example of how to use the same logger as the library in your own module or script: ```python from diffusers.utils import logging logging.set_verbosity_info() logger = logging.get_logger("diffusers") logger.info("INFO") logger.warning("WARN") ``` All methods of the logging module are documented below. The main methods are [`logging.get_verbosity`] to get the current level of verbosity in the logger and [`logging.set_verbosity`] to set the verbosity to the level of your choice. In order from the least verbose to the most verbose: | Method | Integer value | Description | |----------------------------------------------------------:|--------------:|----------------------------------------------------:| | `diffusers.logging.CRITICAL` or `diffusers.logging.FATAL` | 50 | only report the most critical errors | | `diffusers.logging.ERROR` | 40 | only report errors | | `diffusers.logging.WARNING` or `diffusers.logging.WARN` | 30 | only report errors and warnings (default) | | `diffusers.logging.INFO` | 20 | only report errors, warnings, and basic information | | `diffusers.logging.DEBUG` | 10 | report all information | By default, `tqdm` progress bars are displayed during model download. [`logging.disable_progress_bar`] and [`logging.enable_progress_bar`] are used to enable or disable this behavior.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/logging.md
https://huggingface.co/docs/diffusers/en/api/logging/#logging
#logging
.md
93_1
set_verbosity_error Set the verbosity to the `ERROR` level. set_verbosity_warning Set the verbosity to the `WARNING` level. set_verbosity_info Set the verbosity to the `INFO` level. set_verbosity_debug Set the verbosity to the `DEBUG` level.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/logging.md
https://huggingface.co/docs/diffusers/en/api/logging/#base-setters
#base-setters
.md
93_2
get_verbosity Return the current level for the πŸ€— Diffusers' root logger as an `int`. Returns: `int`: Logging level integers which can be one of: - `50`: `diffusers.logging.CRITICAL` or `diffusers.logging.FATAL` - `40`: `diffusers.logging.ERROR` - `30`: `diffusers.logging.WARNING` or `diffusers.logging.WARN` - `20`: `diffusers.logging.INFO` - `10`: `diffusers.logging.DEBUG` set_verbosity Set the verbosity level for the πŸ€— Diffusers' root logger. Args: verbosity (`int`): Logging level which can be one of: - `diffusers.logging.CRITICAL` or `diffusers.logging.FATAL` - `diffusers.logging.ERROR` - `diffusers.logging.WARNING` or `diffusers.logging.WARN` - `diffusers.logging.INFO` - `diffusers.logging.DEBUG` get_logger Return a logger with the specified name. This function is not supposed to be directly accessed unless you are writing a custom diffusers module. enable_default_handler Enable the default handler of the πŸ€— Diffusers' root logger. disable_default_handler Disable the default handler of the πŸ€— Diffusers' root logger. enable_explicit_format Enable explicit formatting for every πŸ€— Diffusers' logger. The explicit formatter is as follows: ``` [LEVELNAME|FILENAME|LINE NUMBER] TIME >> MESSAGE ``` All handlers currently bound to the root logger are affected by this method. reset_format Resets the formatting for πŸ€— Diffusers' loggers. All handlers currently bound to the root logger are affected by this method. enable_progress_bar Enable tqdm progress bar. disable_progress_bar Disable tqdm progress bar.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/logging.md
https://huggingface.co/docs/diffusers/en/api/logging/#other-functions
#other-functions
.md
93_3
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/image_processor.md
https://huggingface.co/docs/diffusers/en/api/image_processor/
.md
94_0
The [`VaeImageProcessor`] provides a unified API for [`StableDiffusionPipeline`]s to prepare image inputs for VAE encoding and post-processing outputs once they're decoded. This includes transformations such as resizing, normalization, and conversion between PIL Image, PyTorch, and NumPy arrays. All pipelines with [`VaeImageProcessor`] accept PIL Image, PyTorch tensor, or NumPy arrays as image inputs and return outputs based on the `output_type` argument by the user. You can pass encoded image latents directly to the pipeline and return latents from the pipeline as a specific output with the `output_type` argument (for example `output_type="latent"`). This allows you to take the generated latents from one pipeline and pass it to another pipeline as input without leaving the latent space. It also makes it much easier to use multiple pipelines together by passing PyTorch tensors directly between different pipelines.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/image_processor.md
https://huggingface.co/docs/diffusers/en/api/image_processor/#vae-image-processor
#vae-image-processor
.md
94_1
VaeImageProcessor Image processor for VAE. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method. vae_scale_factor (`int`, *optional*, defaults to `8`): VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. resample (`str`, *optional*, defaults to `lanczos`): Resampling filter to use when resizing the image. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image to [-1,1]. do_binarize (`bool`, *optional*, defaults to `False`): Whether to binarize the image to 0/1. do_convert_rgb (`bool`, *optional*, defaults to be `False`): Whether to convert the images to RGB format. do_convert_grayscale (`bool`, *optional*, defaults to be `False`): Whether to convert the images to grayscale format.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/image_processor.md
https://huggingface.co/docs/diffusers/en/api/image_processor/#vaeimageprocessor
#vaeimageprocessor
.md
94_2
The [`VaeImageProcessorLDM3D`] accepts RGB and depth inputs and returns RGB and depth outputs. VaeImageProcessor Image processor for VAE. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method. vae_scale_factor (`int`, *optional*, defaults to `8`): VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. resample (`str`, *optional*, defaults to `lanczos`): Resampling filter to use when resizing the image. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image to [-1,1]. do_binarize (`bool`, *optional*, defaults to `False`): Whether to binarize the image to 0/1. do_convert_rgb (`bool`, *optional*, defaults to be `False`): Whether to convert the images to RGB format. do_convert_grayscale (`bool`, *optional*, defaults to be `False`): Whether to convert the images to grayscale format. LDM3D
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/image_processor.md
https://huggingface.co/docs/diffusers/en/api/image_processor/#vaeimageprocessorldm3d
#vaeimageprocessorldm3d
.md
94_3
PixArtImageProcessor Image processor for PixArt image resize and crop. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method. vae_scale_factor (`int`, *optional*, defaults to `8`): VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. resample (`str`, *optional*, defaults to `lanczos`): Resampling filter to use when resizing the image. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image to [-1,1]. do_binarize (`bool`, *optional*, defaults to `False`): Whether to binarize the image to 0/1. do_convert_rgb (`bool`, *optional*, defaults to be `False`): Whether to convert the images to RGB format. do_convert_grayscale (`bool`, *optional*, defaults to be `False`): Whether to convert the images to grayscale format.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/image_processor.md
https://huggingface.co/docs/diffusers/en/api/image_processor/#pixartimageprocessor
#pixartimageprocessor
.md
94_4
IPAdapterMaskProcessor Image processor for IP Adapter image masks. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. vae_scale_factor (`int`, *optional*, defaults to `8`): VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. resample (`str`, *optional*, defaults to `lanczos`): Resampling filter to use when resizing the image. do_normalize (`bool`, *optional*, defaults to `False`): Whether to normalize the image to [-1,1]. do_binarize (`bool`, *optional*, defaults to `True`): Whether to binarize the image to 0/1. do_convert_grayscale (`bool`, *optional*, defaults to be `True`): Whether to convert the images to grayscale format.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/image_processor.md
https://huggingface.co/docs/diffusers/en/api/image_processor/#ipadaptermaskprocessor
#ipadaptermaskprocessor
.md
94_5
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/quantization.md
https://huggingface.co/docs/diffusers/en/api/quantization/
.md
95_0
Quantization techniques reduce memory and computational costs by representing weights and activations with lower-precision data types like 8-bit integers (int8). This enables loading larger models you normally wouldn't be able to fit into memory, and speeding up inference. Diffusers supports 8-bit and 4-bit quantization with [bitsandbytes](https://huggingface.co/docs/bitsandbytes/en/index). Quantization techniques that aren't supported in Transformers can be added with the [`DiffusersQuantizer`] class. <Tip> Learn how to quantize models in the [Quantization](../quantization/overview) guide. </Tip>
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/quantization.md
https://huggingface.co/docs/diffusers/en/api/quantization/#quantization
#quantization
.md
95_1
BitsAndBytesConfig This is a wrapper class about all possible attributes and features that you can play with a model that has been loaded using `bitsandbytes`. This replaces `load_in_8bit` or `load_in_4bit`therefore both options are mutually exclusive. Currently only supports `LLM.int8()`, `FP4`, and `NF4` quantization. If more methods are added to `bitsandbytes`, then more arguments will be added to this class. Args: load_in_8bit (`bool`, *optional*, defaults to `False`): This flag is used to enable 8-bit quantization with LLM.int8(). load_in_4bit (`bool`, *optional*, defaults to `False`): This flag is used to enable 4-bit quantization by replacing the Linear layers with FP4/NF4 layers from `bitsandbytes`. llm_int8_threshold (`float`, *optional*, defaults to 6.0): This corresponds to the outlier threshold for outlier detection as described in `LLM.int8() : 8-bit Matrix Multiplication for Transformers at Scale` paper: https://arxiv.org/abs/2208.07339 Any hidden states value that is above this threshold will be considered an outlier and the operation on those values will be done in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but there are some exceptional systematic outliers that are very differently distributed for large models. These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6, but a lower threshold might be needed for more unstable models (small models, fine-tuning). llm_int8_skip_modules (`List[str]`, *optional*): An explicit list of the modules that we do not want to convert in 8-bit. This is useful for models such as Jukebox that has several heads in different places and not necessarily at the last position. For example for `CausalLM` models, the last `lm_head` is typically kept in its original `dtype`. llm_int8_enable_fp32_cpu_offload (`bool`, *optional*, defaults to `False`): This flag is used for advanced use cases and users that are aware of this feature. If you want to split your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use this flag. This is useful for offloading large models such as `google/flan-t5-xxl`. Note that the int8 operations will not be run on CPU. llm_int8_has_fp16_weight (`bool`, *optional*, defaults to `False`): This flag runs LLM.int8() with 16-bit main weights. This is useful for fine-tuning as the weights do not have to be converted back and forth for the backward pass. bnb_4bit_compute_dtype (`torch.dtype` or str, *optional*, defaults to `torch.float32`): This sets the computational type which might be different than the input type. For example, inputs might be fp32, but computation can be set to bf16 for speedups. bnb_4bit_quant_type (`str`, *optional*, defaults to `"fp4"`): This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types which are specified by `fp4` or `nf4`. bnb_4bit_use_double_quant (`bool`, *optional*, defaults to `False`): This flag is used for nested quantization where the quantization constants from the first quantization are quantized again. bnb_4bit_quant_storage (`torch.dtype` or str, *optional*, defaults to `torch.uint8`): This sets the storage type to pack the quanitzed 4-bit prarams. kwargs (`Dict[str, Any]`, *optional*): Additional parameters from which to initialize the configuration object.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/quantization.md
https://huggingface.co/docs/diffusers/en/api/quantization/#bitsandbytesconfig
#bitsandbytesconfig
.md
95_2
GGUFQuantizationConfig This is a config class for GGUF Quantization techniques. Args: compute_dtype: (`torch.dtype`, defaults to `torch.float32`): This sets the computational type which might be different than the input type. For example, inputs might be fp32, but computation can be set to bf16 for speedups.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/quantization.md
https://huggingface.co/docs/diffusers/en/api/quantization/#ggufquantizationconfig
#ggufquantizationconfig
.md
95_3
TorchAoConfig This is a config class for torchao quantization/sparsity techniques. Args: quant_type (`str`): The type of quantization we want to use, currently supporting: - **Integer quantization:** - Full function names: `int4_weight_only`, `int8_dynamic_activation_int4_weight`, `int8_weight_only`, `int8_dynamic_activation_int8_weight` - Shorthands: `int4wo`, `int4dq`, `int8wo`, `int8dq` - **Floating point 8-bit quantization:** - Full function names: `float8_weight_only`, `float8_dynamic_activation_float8_weight`, `float8_static_activation_float8_weight` - Shorthands: `float8wo`, `float8wo_e5m2`, `float8wo_e4m3`, `float8dq`, `float8dq_e4m3`, `float8_e4m3_tensor`, `float8_e4m3_row`, - **Floating point X-bit quantization:** - Full function names: `fpx_weight_only` - Shorthands: `fpX_eAwB`, where `X` is the number of bits (between `1` to `7`), `A` is the number of exponent bits and `B` is the number of mantissa bits. The constraint of `X == A + B + 1` must be satisfied for a given shorthand notation. - **Unsigned Integer quantization:** - Full function names: `uintx_weight_only` - Shorthands: `uint1wo`, `uint2wo`, `uint3wo`, `uint4wo`, `uint5wo`, `uint6wo`, `uint7wo` modules_to_not_convert (`List[str]`, *optional*, default to `None`): The list of modules to not quantize, useful for quantizing models that explicitly require to have some modules left in their original precision. kwargs (`Dict[str, Any]`, *optional*): The keyword arguments for the chosen type of quantization, for example, int4_weight_only quantization supports two keyword arguments `group_size` and `inner_k_tiles` currently. More API examples and documentation of arguments can be found in https://github.com/pytorch/ao/tree/main/torchao/quantization#other-available-quantization-techniques Example: ```python from diffusers import FluxTransformer2DModel, TorchAoConfig quantization_config = TorchAoConfig("int8wo") transformer = FluxTransformer2DModel.from_pretrained( "black-forest-labs/Flux.1-Dev", subfolder="transformer", quantization_config=quantization_config, torch_dtype=torch.bfloat16, ) ```
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/quantization.md
https://huggingface.co/docs/diffusers/en/api/quantization/#torchaoconfig
#torchaoconfig
.md
95_4
DiffusersQuantizer Abstract class of the HuggingFace quantizer. Supports for now quantizing HF diffusers models for inference and/or quantization. This class is used only for diffusers.models.modeling_utils.ModelMixin.from_pretrained and cannot be easily used outside the scope of that method yet. Attributes quantization_config (`diffusers.quantizers.quantization_config.QuantizationConfigMixin`): The quantization config that defines the quantization parameters of your model that you want to quantize. modules_to_not_convert (`List[str]`, *optional*): The list of module names to not convert when quantizing the model. required_packages (`List[str]`, *optional*): The list of required pip packages to install prior to using the quantizer requires_calibration (`bool`): Whether the quantization method requires to calibrate the model before using it.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/quantization.md
https://huggingface.co/docs/diffusers/en/api/quantization/#diffusersquantizer
#diffusersquantizer
.md
95_5
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/video_processor.md
https://huggingface.co/docs/diffusers/en/api/video_processor/
.md
96_0
The [`VideoProcessor`] provides a unified API for video pipelines to prepare inputs for VAE encoding and post-processing outputs once they're decoded. The class inherits [`VaeImageProcessor`] so it includes transformations such as resizing, normalization, and conversion between PIL Image, PyTorch, and NumPy arrays.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/video_processor.md
https://huggingface.co/docs/diffusers/en/api/video_processor/#video-processor
#video-processor
.md
96_1
[[autodoc]] preprocess_video: No module named 'diffusers.video_processor.VideoProcessor'; 'diffusers.video_processor' is not a package [[autodoc]] postprocess_video: No module named 'diffusers.video_processor.VideoProcessor'; 'diffusers.video_processor' is not a package
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/video_processor.md
https://huggingface.co/docs/diffusers/en/api/video_processor/#videoprocessor
#videoprocessor
.md
96_2
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/activations.md
https://huggingface.co/docs/diffusers/en/api/activations/
.md
97_0
Customized activation functions for supporting various models in πŸ€— Diffusers.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/activations.md
https://huggingface.co/docs/diffusers/en/api/activations/#activation-functions
#activation-functions
.md
97_1
GELU GELU activation function with tanh approximation support with `approximate="tanh"`. Parameters: dim_in (`int`): The number of channels in the input. dim_out (`int`): The number of channels in the output. approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation. bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/activations.md
https://huggingface.co/docs/diffusers/en/api/activations/#gelu
#gelu
.md
97_2
GEGLU A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. Parameters: dim_in (`int`): The number of channels in the input. dim_out (`int`): The number of channels in the output. bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/activations.md
https://huggingface.co/docs/diffusers/en/api/activations/#geglu
#geglu
.md
97_3
ApproximateGELU The approximate form of the Gaussian Error Linear Unit (GELU). For more details, see section 2 of this [paper](https://arxiv.org/abs/1606.08415). Parameters: dim_in (`int`): The number of channels in the input. dim_out (`int`): The number of channels in the output. bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/activations.md
https://huggingface.co/docs/diffusers/en/api/activations/#approximategelu
#approximategelu
.md
97_4
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/pipelines/stable_unclip.md
https://huggingface.co/docs/diffusers/en/api/pipelines/stable_unclip/
.md
98_0
Stable unCLIP checkpoints are finetuned from [Stable Diffusion 2.1](./stable_diffusion/stable_diffusion_2) checkpoints to condition on CLIP image embeddings. Stable unCLIP still conditions on text embeddings. Given the two separate conditionings, stable unCLIP can be used for text guided image variation. When combined with an unCLIP prior, it can also be used for full text to image generation. The abstract from the paper is: *Contrastive models like CLIP have been shown to learn robust representations of images that capture both semantics and style. To leverage these representations for image generation, we propose a two-stage model: a prior that generates a CLIP image embedding given a text caption, and a decoder that generates an image conditioned on the image embedding. We show that explicitly generating image representations improves image diversity with minimal loss in photorealism and caption similarity. Our decoders conditioned on image representations can also produce variations of an image that preserve both its semantics and style, while varying the non-essential details absent from the image representation. Moreover, the joint embedding space of CLIP enables language-guided image manipulations in a zero-shot fashion. We use diffusion models for the decoder and experiment with both autoregressive and diffusion models for the prior, finding that the latter are computationally more efficient and produce higher-quality samples.*
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/pipelines/stable_unclip.md
https://huggingface.co/docs/diffusers/en/api/pipelines/stable_unclip/#stable-unclip
#stable-unclip
.md
98_1
Stable unCLIP takes `noise_level` as input during inference which determines how much noise is added to the image embeddings. A higher `noise_level` increases variation in the final un-noised images. By default, we do not add any additional noise to the image embeddings (`noise_level = 0`).
/Users/nielsrogge/Documents/python_projecten/diffusers/docs/source/en/api/pipelines/stable_unclip.md
https://huggingface.co/docs/diffusers/en/api/pipelines/stable_unclip/#tips
#tips
.md
98_2