text
stringlengths
41
89.8k
type
stringclasses
1 value
start
int64
79
258k
end
int64
342
260k
depth
int64
0
0
filepath
stringlengths
81
164
parent_class
null
class_index
int64
0
1.38k
class StableUnCLIPPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
67,319
67,754
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
700
class StableVideoDiffusionPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
67,757
68,200
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
701
class TextToVideoSDPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
68,203
68,639
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
702
class TextToVideoZeroPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
68,642
69,080
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
703
class TextToVideoZeroSDXLPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
69,083
69,525
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
704
class UnCLIPImageVariationPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
69,528
69,971
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
705
class UnCLIPPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
69,974
70,403
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
706
class UniDiffuserModel(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
70,406
70,837
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
707
class UniDiffuserPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
70,840
71,274
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
708
class UniDiffuserTextDecoder(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
71,277
71,714
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
709
class VersatileDiffusionDualGuidedPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
71,717
72,168
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
710
class VersatileDiffusionImageVariationPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
72,171
72,626
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
711
class VersatileDiffusionPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
72,629
73,070
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
712
class VersatileDiffusionTextToImagePipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
73,073
73,525
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
713
class VideoToVideoSDPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
73,528
73,965
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
714
class VQDiffusionPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
73,968
74,402
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
715
class WuerstchenCombinedPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
74,405
74,846
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
716
class WuerstchenDecoderPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
74,849
75,289
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
717
class WuerstchenPriorPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
class_definition
75,292
75,730
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
null
718
class PushToHubMixin: """ A Mixin to push a model, scheduler, or pipeline to the Hugging Face Hub. """ def _upload_folder( self, working_dir: Union[str, os.PathLike], repo_id: str, token: Optional[str] = None, commit_message: Optional[str] = None, create_pr: bool = False, ): """ Uploads all files in `working_dir` to `repo_id`. """ if commit_message is None: if "Model" in self.__class__.__name__: commit_message = "Upload model" elif "Scheduler" in self.__class__.__name__: commit_message = "Upload scheduler" else: commit_message = f"Upload {self.__class__.__name__}" logger.info(f"Uploading the files of {working_dir} to {repo_id}.") return upload_folder( repo_id=repo_id, folder_path=working_dir, token=token, commit_message=commit_message, create_pr=create_pr ) def push_to_hub( self, repo_id: str, commit_message: Optional[str] = None, private: Optional[bool] = None, token: Optional[str] = None, create_pr: bool = False, safe_serialization: bool = True, variant: Optional[str] = None, ) -> str: """ Upload model, scheduler, or pipeline files to the 🤗 Hugging Face Hub. Parameters: repo_id (`str`): The name of the repository you want to push your model, scheduler, or pipeline files to. It should contain your organization name when pushing to an organization. `repo_id` can also be a path to a local directory. commit_message (`str`, *optional*): Message to commit while pushing. Default to `"Upload {object}"`. private (`bool`, *optional*): Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists. token (`str`, *optional*): The token to use as HTTP bearer authorization for remote files. The token generated when running `huggingface-cli login` (stored in `~/.huggingface`). create_pr (`bool`, *optional*, defaults to `False`): Whether or not to create a PR with the uploaded files or directly commit. safe_serialization (`bool`, *optional*, defaults to `True`): Whether or not to convert the model weights to the `safetensors` format. variant (`str`, *optional*): If specified, weights are saved in the format `pytorch_model.<variant>.bin`. Examples: ```python from diffusers import UNet2DConditionModel unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="unet") # Push the `unet` to your namespace with the name "my-finetuned-unet". unet.push_to_hub("my-finetuned-unet") # Push the `unet` to an organization with the name "my-finetuned-unet". unet.push_to_hub("your-org/my-finetuned-unet") ``` """ repo_id = create_repo(repo_id, private=private, token=token, exist_ok=True).repo_id # Create a new empty model card and eventually tag it model_card = load_or_create_model_card(repo_id, token=token) model_card = populate_model_card(model_card) # Save all files. save_kwargs = {"safe_serialization": safe_serialization} if "Scheduler" not in self.__class__.__name__: save_kwargs.update({"variant": variant}) with tempfile.TemporaryDirectory() as tmpdir: self.save_pretrained(tmpdir, **save_kwargs) # Update model card if needed: model_card.save(os.path.join(tmpdir, "README.md")) return self._upload_folder( tmpdir, repo_id, token=token, commit_message=commit_message, create_pr=create_pr, )
class_definition
23,125
27,270
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/hub_utils.py
null
719
class MidiProcessor(metaclass=DummyObject): _backends = ["note_seq"] def __init__(self, *args, **kwargs): requires_backends(self, ["note_seq"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["note_seq"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["note_seq"])
class_definition
129
505
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_note_seq_objects.py
null
720
class KolorsImg2ImgPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "sentencepiece"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "sentencepiece"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "sentencepiece"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "sentencepiece"])
class_definition
129
633
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py
null
721
class KolorsPAGPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "sentencepiece"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "sentencepiece"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "sentencepiece"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "sentencepiece"])
class_definition
636
1,136
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py
null
722
class KolorsPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "sentencepiece"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "sentencepiece"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "sentencepiece"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "sentencepiece"])
class_definition
1,139
1,636
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py
null
723
class FlaxStableDiffusionControlNetPipeline(metaclass=DummyObject): _backends = ["flax", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax", "transformers"])
class_definition
129
577
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_and_transformers_objects.py
null
724
class FlaxStableDiffusionImg2ImgPipeline(metaclass=DummyObject): _backends = ["flax", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax", "transformers"])
class_definition
580
1,025
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_and_transformers_objects.py
null
725
class FlaxStableDiffusionInpaintPipeline(metaclass=DummyObject): _backends = ["flax", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax", "transformers"])
class_definition
1,028
1,473
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_and_transformers_objects.py
null
726
class FlaxStableDiffusionPipeline(metaclass=DummyObject): _backends = ["flax", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax", "transformers"])
class_definition
1,476
1,914
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_and_transformers_objects.py
null
727
class FlaxStableDiffusionXLPipeline(metaclass=DummyObject): _backends = ["flax", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax", "transformers"])
class_definition
1,917
2,357
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_and_transformers_objects.py
null
728
class SpectrogramDiffusionPipeline(metaclass=DummyObject): _backends = ["transformers", "torch", "note_seq"] def __init__(self, *args, **kwargs): requires_backends(self, ["transformers", "torch", "note_seq"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["transformers", "torch", "note_seq"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["transformers", "torch", "note_seq"])
class_definition
129
620
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_transformers_and_torch_and_note_seq_objects.py
null
729
class DummyObject(type): """ Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by `requires_backend` each time a user tries to access any method of that class. """ def __getattr__(cls, key): if key.startswith("_") and key not in ["_load_connected_pipes", "_is_onnx"]: return super().__getattr__(cls, key) requires_backends(cls, cls._backends)
class_definition
24,377
24,818
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/import_utils.py
null
730
class OptionalDependencyNotAvailable(BaseException): """ An error indicating that an optional dependency of Diffusers was not found in the environment. """
class_definition
30,619
30,786
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/import_utils.py
null
731
class _LazyModule(ModuleType): """ Module class that surfaces all objects but only performs associated imports when the objects are requested. """ # Very heavily inspired by optuna.integration._IntegrationModule # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None): super().__init__(name) self._modules = set(import_structure.keys()) self._class_to_module = {} for key, values in import_structure.items(): for value in values: self._class_to_module[value] = key # Needed for autocompletion in an IDE self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values())) self.__file__ = module_file self.__spec__ = module_spec self.__path__ = [os.path.dirname(module_file)] self._objects = {} if extra_objects is None else extra_objects self._name = name self._import_structure = import_structure # Needed for autocompletion in an IDE def __dir__(self): result = super().__dir__() # The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether # they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir. for attr in self.__all__: if attr not in result: result.append(attr) return result def __getattr__(self, name: str) -> Any: if name in self._objects: return self._objects[name] if name in self._modules: value = self._get_module(name) elif name in self._class_to_module.keys(): module = self._get_module(self._class_to_module[name]) value = getattr(module, name) else: raise AttributeError(f"module {self.__name__} has no attribute {name}") setattr(self, name, value) return value def _get_module(self, module_name: str): try: return importlib.import_module("." + module_name, self.__name__) except Exception as e: raise RuntimeError( f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its" f" traceback):\n{e}" ) from e def __reduce__(self): return (self.__class__, (self._name, self.__file__, self._import_structure))
class_definition
30,789
33,331
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/import_utils.py
null
732
class LMSDiscreteScheduler(metaclass=DummyObject): _backends = ["torch", "scipy"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "scipy"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "scipy"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "scipy"])
class_definition
129
536
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_scipy_objects.py
null
733
class FlaxControlNetModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
129
495
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
734
class FlaxModelMixin(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
498
859
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
735
class FlaxUNet2DConditionModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
862
1,233
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
736
class FlaxAutoencoderKL(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
1,236
1,600
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
737
class FlaxDiffusionPipeline(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
1,603
1,971
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
738
class FlaxDDIMScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
1,974
2,338
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
739
class FlaxDDPMScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
2,341
2,705
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
740
class FlaxDPMSolverMultistepScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
2,708
3,086
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
741
class FlaxEulerDiscreteScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
3,089
3,462
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
742
class FlaxKarrasVeScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
3,465
3,833
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
743
class FlaxLMSDiscreteScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
3,836
4,207
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
744
class FlaxPNDMScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
4,210
4,574
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
745
class FlaxSchedulerMixin(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
4,577
4,942
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
746
class FlaxScoreSdeVeScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
class_definition
4,945
5,315
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_flax_objects.py
null
747
class BaseOutput(OrderedDict): """ Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular Python dictionary. <Tip warning={true}> You can't unpack a [`BaseOutput`] directly. Use the [`~utils.BaseOutput.to_tuple`] method to convert it to a tuple first. </Tip> """ def __init_subclass__(cls) -> None: """Register subclasses as pytree nodes. This is necessary to synchronize gradients when using `torch.nn.parallel.DistributedDataParallel` with `static_graph=True` with modules that output `ModelOutput` subclasses. """ if is_torch_available(): import torch.utils._pytree if is_torch_version("<", "2.2"): torch.utils._pytree._register_pytree_node( cls, torch.utils._pytree._dict_flatten, lambda values, context: cls(**torch.utils._pytree._dict_unflatten(values, context)), ) else: torch.utils._pytree.register_pytree_node( cls, torch.utils._pytree._dict_flatten, lambda values, context: cls(**torch.utils._pytree._dict_unflatten(values, context)), ) def __post_init__(self) -> None: class_fields = fields(self) # Safety and consistency checks if not len(class_fields): raise ValueError(f"{self.__class__.__name__} has no fields.") first_field = getattr(self, class_fields[0].name) other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:]) if other_fields_are_none and isinstance(first_field, dict): for key, value in first_field.items(): self[key] = value else: for field in class_fields: v = getattr(self, field.name) if v is not None: self[field.name] = v def __delitem__(self, *args, **kwargs): raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") def setdefault(self, *args, **kwargs): raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") def pop(self, *args, **kwargs): raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") def update(self, *args, **kwargs): raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") def __getitem__(self, k: Any) -> Any: if isinstance(k, str): inner_dict = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self, name: Any, value: Any) -> None: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(name, value) super().__setattr__(name, value) def __setitem__(self, key, value): # Will raise a KeyException if needed super().__setitem__(key, value) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(key, value) def __reduce__(self): if not is_dataclass(self): return super().__reduce__() callable, _args, *remaining = super().__reduce__() args = tuple(getattr(self, field.name) for field in fields(self)) return callable, args, *remaining def to_tuple(self) -> Tuple[Any, ...]: """ Convert self to a tuple containing all the attributes/keys that are not `None`. """ return tuple(self[k] for k in self.keys())
class_definition
1,081
4,952
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/outputs.py
null
748
class AutoencoderKLOutput(BaseOutput): """ Output of AutoencoderKL encoding method. Args: latent_dist (`DiagonalGaussianDistribution`): Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`. `DiagonalGaussianDistribution` allows for sampling latents from the distribution. """ latent_dist: "DiagonalGaussianDistribution" # noqa: F821
class_definition
79
511
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/modeling_outputs.py
null
749
class Transformer2DModelOutput(BaseOutput): """ The output of [`Transformer2DModel`]. Args: sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability distributions for the unnoised latent pixels. """ sample: "torch.Tensor" # noqa: F821
class_definition
525
1,041
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/modeling_outputs.py
null
750
class Upsample1D(nn.Module): """A 1D upsampling layer with an optional convolution. Parameters: channels (`int`): number of channels in the inputs and outputs. use_conv (`bool`, default `False`): option to use a convolution. use_conv_transpose (`bool`, default `False`): option to use a convolution transpose. out_channels (`int`, optional): number of output channels. Defaults to `channels`. name (`str`, default `conv`): name of the upsampling 1D layer. """ def __init__( self, channels: int, use_conv: bool = False, use_conv_transpose: bool = False, out_channels: Optional[int] = None, name: str = "conv", ): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose self.name = name self.conv = None if use_conv_transpose: self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1) elif use_conv: self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1) def forward(self, inputs: torch.Tensor) -> torch.Tensor: assert inputs.shape[1] == self.channels if self.use_conv_transpose: return self.conv(inputs) outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest") if self.use_conv: outputs = self.conv(outputs) return outputs
class_definition
828
2,426
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/upsampling.py
null
751
class Upsample2D(nn.Module): """A 2D upsampling layer with an optional convolution. Parameters: channels (`int`): number of channels in the inputs and outputs. use_conv (`bool`, default `False`): option to use a convolution. use_conv_transpose (`bool`, default `False`): option to use a convolution transpose. out_channels (`int`, optional): number of output channels. Defaults to `channels`. name (`str`, default `conv`): name of the upsampling 2D layer. """ def __init__( self, channels: int, use_conv: bool = False, use_conv_transpose: bool = False, out_channels: Optional[int] = None, name: str = "conv", kernel_size: Optional[int] = None, padding=1, norm_type=None, eps=None, elementwise_affine=None, bias=True, interpolate=True, ): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose self.name = name self.interpolate = interpolate if norm_type == "ln_norm": self.norm = nn.LayerNorm(channels, eps, elementwise_affine) elif norm_type == "rms_norm": self.norm = RMSNorm(channels, eps, elementwise_affine) elif norm_type is None: self.norm = None else: raise ValueError(f"unknown norm_type: {norm_type}") conv = None if use_conv_transpose: if kernel_size is None: kernel_size = 4 conv = nn.ConvTranspose2d( channels, self.out_channels, kernel_size=kernel_size, stride=2, padding=padding, bias=bias ) elif use_conv: if kernel_size is None: kernel_size = 3 conv = nn.Conv2d(self.channels, self.out_channels, kernel_size=kernel_size, padding=padding, bias=bias) # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed if name == "conv": self.conv = conv else: self.Conv2d_0 = conv def forward(self, hidden_states: torch.Tensor, output_size: Optional[int] = None, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) assert hidden_states.shape[1] == self.channels if self.norm is not None: hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) if self.use_conv_transpose: return self.conv(hidden_states) # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 until PyTorch 2.1 # https://github.com/pytorch/pytorch/issues/86679#issuecomment-1783978767 dtype = hidden_states.dtype if dtype == torch.bfloat16 and is_torch_version("<", "2.1"): hidden_states = hidden_states.to(torch.float32) # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: hidden_states = hidden_states.contiguous() # if `output_size` is passed we force the interpolation output # size and do not make use of `scale_factor=2` if self.interpolate: # upsample_nearest_nhwc also fails when the number of output elements is large # https://github.com/pytorch/pytorch/issues/141831 scale_factor = ( 2 if output_size is None else max([f / s for f, s in zip(output_size, hidden_states.shape[-2:])]) ) if hidden_states.numel() * scale_factor > pow(2, 31): hidden_states = hidden_states.contiguous() if output_size is None: hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") else: hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") # Cast back to original dtype if dtype == torch.bfloat16 and is_torch_version("<", "2.1"): hidden_states = hidden_states.to(dtype) # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed if self.use_conv: if self.name == "conv": hidden_states = self.conv(hidden_states) else: hidden_states = self.Conv2d_0(hidden_states) return hidden_states
class_definition
2,429
7,354
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/upsampling.py
null
752
class FirUpsample2D(nn.Module): """A 2D FIR upsampling layer with an optional convolution. Parameters: channels (`int`, optional): number of channels in the inputs and outputs. use_conv (`bool`, default `False`): option to use a convolution. out_channels (`int`, optional): number of output channels. Defaults to `channels`. fir_kernel (`tuple`, default `(1, 3, 3, 1)`): kernel for the FIR filter. """ def __init__( self, channels: Optional[int] = None, out_channels: Optional[int] = None, use_conv: bool = False, fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1), ): super().__init__() out_channels = out_channels if out_channels else channels if use_conv: self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) self.use_conv = use_conv self.fir_kernel = fir_kernel self.out_channels = out_channels def _upsample_2d( self, hidden_states: torch.Tensor, weight: Optional[torch.Tensor] = None, kernel: Optional[torch.Tensor] = None, factor: int = 2, gain: float = 1, ) -> torch.Tensor: """Fused `upsample_2d()` followed by `Conv2d()`. Padding is performed only once at the beginning, not between the operations. The fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary order. Args: hidden_states (`torch.Tensor`): Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. weight (`torch.Tensor`, *optional*): Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. kernel (`torch.Tensor`, *optional*): FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. factor (`int`, *optional*): Integer upsampling factor (default: 2). gain (`float`, *optional*): Scaling factor for signal magnitude (default: 1.0). Returns: output (`torch.Tensor`): Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as `hidden_states`. """ assert isinstance(factor, int) and factor >= 1 # Setup filter kernel. if kernel is None: kernel = [1] * factor # setup kernel kernel = torch.tensor(kernel, dtype=torch.float32) if kernel.ndim == 1: kernel = torch.outer(kernel, kernel) kernel /= torch.sum(kernel) kernel = kernel * (gain * (factor**2)) if self.use_conv: convH = weight.shape[2] convW = weight.shape[3] inC = weight.shape[1] pad_value = (kernel.shape[0] - factor) - (convW - 1) stride = (factor, factor) # Determine data dimensions. output_shape = ( (hidden_states.shape[2] - 1) * factor + convH, (hidden_states.shape[3] - 1) * factor + convW, ) output_padding = ( output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH, output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW, ) assert output_padding[0] >= 0 and output_padding[1] >= 0 num_groups = hidden_states.shape[1] // inC # Transpose weights. weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW)) weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4) weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW)) inverse_conv = F.conv_transpose2d( hidden_states, weight, stride=stride, output_padding=output_padding, padding=0, ) output = upfirdn2d_native( inverse_conv, torch.tensor(kernel, device=inverse_conv.device), pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1), ) else: pad_value = kernel.shape[0] - factor output = upfirdn2d_native( hidden_states, torch.tensor(kernel, device=hidden_states.device), up=factor, pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2), ) return output def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.use_conv: height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel) height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1) else: height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) return height
class_definition
7,357
12,567
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/upsampling.py
null
753
class KUpsample2D(nn.Module): r"""A 2D K-upsampling layer. Parameters: pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use. """ def __init__(self, pad_mode: str = "reflect"): super().__init__() self.pad_mode = pad_mode kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2 self.pad = kernel_1d.shape[1] // 2 - 1 self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False) def forward(self, inputs: torch.Tensor) -> torch.Tensor: inputs = F.pad(inputs, ((self.pad + 1) // 2,) * 4, self.pad_mode) weight = inputs.new_zeros( [ inputs.shape[1], inputs.shape[1], self.kernel.shape[0], self.kernel.shape[1], ] ) indices = torch.arange(inputs.shape[1], device=inputs.device) kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1) weight[indices, indices] = kernel return F.conv_transpose2d(inputs, weight, stride=2, padding=self.pad * 2 + 1)
class_definition
12,570
13,684
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/upsampling.py
null
754
class CogVideoXUpsample3D(nn.Module): r""" A 3D Upsample layer using in CogVideoX by Tsinghua University & ZhipuAI # Todo: Wait for paper relase. Args: in_channels (`int`): Number of channels in the input image. out_channels (`int`): Number of channels produced by the convolution. kernel_size (`int`, defaults to `3`): Size of the convolving kernel. stride (`int`, defaults to `1`): Stride of the convolution. padding (`int`, defaults to `1`): Padding added to all four sides of the input. compress_time (`bool`, defaults to `False`): Whether or not to compress the time dimension. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, padding: int = 1, compress_time: bool = False, ) -> None: super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) self.compress_time = compress_time def forward(self, inputs: torch.Tensor) -> torch.Tensor: if self.compress_time: if inputs.shape[2] > 1 and inputs.shape[2] % 2 == 1: # split first frame x_first, x_rest = inputs[:, :, 0], inputs[:, :, 1:] x_first = F.interpolate(x_first, scale_factor=2.0) x_rest = F.interpolate(x_rest, scale_factor=2.0) x_first = x_first[:, :, None, :, :] inputs = torch.cat([x_first, x_rest], dim=2) elif inputs.shape[2] > 1: inputs = F.interpolate(inputs, scale_factor=2.0) else: inputs = inputs.squeeze(2) inputs = F.interpolate(inputs, scale_factor=2.0) inputs = inputs[:, :, None, :, :] else: # only interpolate 2D b, c, t, h, w = inputs.shape inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w) inputs = F.interpolate(inputs, scale_factor=2.0) inputs = inputs.reshape(b, t, c, *inputs.shape[2:]).permute(0, 2, 1, 3, 4) b, c, t, h, w = inputs.shape inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w) inputs = self.conv(inputs) inputs = inputs.reshape(b, t, *inputs.shape[1:]).permute(0, 2, 1, 3, 4) return inputs
class_definition
13,687
16,160
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/upsampling.py
null
755
class Downsample1D(nn.Module): """A 1D downsampling layer with an optional convolution. Parameters: channels (`int`): number of channels in the inputs and outputs. use_conv (`bool`, default `False`): option to use a convolution. out_channels (`int`, optional): number of output channels. Defaults to `channels`. padding (`int`, default `1`): padding for the convolution. name (`str`, default `conv`): name of the downsampling 1D layer. """ def __init__( self, channels: int, use_conv: bool = False, out_channels: Optional[int] = None, padding: int = 1, name: str = "conv", ): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.padding = padding stride = 2 self.name = name if use_conv: self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding) else: assert self.channels == self.out_channels self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride) def forward(self, inputs: torch.Tensor) -> torch.Tensor: assert inputs.shape[1] == self.channels return self.conv(inputs)
class_definition
819
2,193
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/downsampling.py
null
756
class Downsample2D(nn.Module): """A 2D downsampling layer with an optional convolution. Parameters: channels (`int`): number of channels in the inputs and outputs. use_conv (`bool`, default `False`): option to use a convolution. out_channels (`int`, optional): number of output channels. Defaults to `channels`. padding (`int`, default `1`): padding for the convolution. name (`str`, default `conv`): name of the downsampling 2D layer. """ def __init__( self, channels: int, use_conv: bool = False, out_channels: Optional[int] = None, padding: int = 1, name: str = "conv", kernel_size=3, norm_type=None, eps=None, elementwise_affine=None, bias=True, ): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.padding = padding stride = 2 self.name = name if norm_type == "ln_norm": self.norm = nn.LayerNorm(channels, eps, elementwise_affine) elif norm_type == "rms_norm": self.norm = RMSNorm(channels, eps, elementwise_affine) elif norm_type is None: self.norm = None else: raise ValueError(f"unknown norm_type: {norm_type}") if use_conv: conv = nn.Conv2d( self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias ) else: assert self.channels == self.out_channels conv = nn.AvgPool2d(kernel_size=stride, stride=stride) # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed if name == "conv": self.Conv2d_0 = conv self.conv = conv elif name == "Conv2d_0": self.conv = conv else: self.conv = conv def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) assert hidden_states.shape[1] == self.channels if self.norm is not None: hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) if self.use_conv and self.padding == 0: pad = (0, 1, 0, 1) hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) assert hidden_states.shape[1] == self.channels hidden_states = self.conv(hidden_states) return hidden_states
class_definition
2,196
5,197
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/downsampling.py
null
757
class FirDownsample2D(nn.Module): """A 2D FIR downsampling layer with an optional convolution. Parameters: channels (`int`): number of channels in the inputs and outputs. use_conv (`bool`, default `False`): option to use a convolution. out_channels (`int`, optional): number of output channels. Defaults to `channels`. fir_kernel (`tuple`, default `(1, 3, 3, 1)`): kernel for the FIR filter. """ def __init__( self, channels: Optional[int] = None, out_channels: Optional[int] = None, use_conv: bool = False, fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1), ): super().__init__() out_channels = out_channels if out_channels else channels if use_conv: self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) self.fir_kernel = fir_kernel self.use_conv = use_conv self.out_channels = out_channels def _downsample_2d( self, hidden_states: torch.Tensor, weight: Optional[torch.Tensor] = None, kernel: Optional[torch.Tensor] = None, factor: int = 2, gain: float = 1, ) -> torch.Tensor: """Fused `Conv2d()` followed by `downsample_2d()`. Padding is performed only once at the beginning, not between the operations. The fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary order. Args: hidden_states (`torch.Tensor`): Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. weight (`torch.Tensor`, *optional*): Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. kernel (`torch.Tensor`, *optional*): FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to average pooling. factor (`int`, *optional*, default to `2`): Integer downsampling factor. gain (`float`, *optional*, default to `1.0`): Scaling factor for signal magnitude. Returns: output (`torch.Tensor`): Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same datatype as `x`. """ assert isinstance(factor, int) and factor >= 1 if kernel is None: kernel = [1] * factor # setup kernel kernel = torch.tensor(kernel, dtype=torch.float32) if kernel.ndim == 1: kernel = torch.outer(kernel, kernel) kernel /= torch.sum(kernel) kernel = kernel * gain if self.use_conv: _, _, convH, convW = weight.shape pad_value = (kernel.shape[0] - factor) + (convW - 1) stride_value = [factor, factor] upfirdn_input = upfirdn2d_native( hidden_states, torch.tensor(kernel, device=hidden_states.device), pad=((pad_value + 1) // 2, pad_value // 2), ) output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0) else: pad_value = kernel.shape[0] - factor output = upfirdn2d_native( hidden_states, torch.tensor(kernel, device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2), ) return output def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.use_conv: downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel) hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1) else: hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) return hidden_states
class_definition
5,200
9,400
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/downsampling.py
null
758
class KDownsample2D(nn.Module): r"""A 2D K-downsampling layer. Parameters: pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use. """ def __init__(self, pad_mode: str = "reflect"): super().__init__() self.pad_mode = pad_mode kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) self.pad = kernel_1d.shape[1] // 2 - 1 self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False) def forward(self, inputs: torch.Tensor) -> torch.Tensor: inputs = F.pad(inputs, (self.pad,) * 4, self.pad_mode) weight = inputs.new_zeros( [ inputs.shape[1], inputs.shape[1], self.kernel.shape[0], self.kernel.shape[1], ] ) indices = torch.arange(inputs.shape[1], device=inputs.device) kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1) weight[indices, indices] = kernel return F.conv2d(inputs, weight, stride=2)
class_definition
9,510
10,577
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/downsampling.py
null
759
class CogVideoXDownsample3D(nn.Module): # Todo: Wait for paper relase. r""" A 3D Downsampling layer using in [CogVideoX]() by Tsinghua University & ZhipuAI Args: in_channels (`int`): Number of channels in the input image. out_channels (`int`): Number of channels produced by the convolution. kernel_size (`int`, defaults to `3`): Size of the convolving kernel. stride (`int`, defaults to `2`): Stride of the convolution. padding (`int`, defaults to `0`): Padding added to all four sides of the input. compress_time (`bool`, defaults to `False`): Whether or not to compress the time dimension. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 2, padding: int = 0, compress_time: bool = False, ): super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) self.compress_time = compress_time def forward(self, x: torch.Tensor) -> torch.Tensor: if self.compress_time: batch_size, channels, frames, height, width = x.shape # (batch_size, channels, frames, height, width) -> (batch_size, height, width, channels, frames) -> (batch_size * height * width, channels, frames) x = x.permute(0, 3, 4, 1, 2).reshape(batch_size * height * width, channels, frames) if x.shape[-1] % 2 == 1: x_first, x_rest = x[..., 0], x[..., 1:] if x_rest.shape[-1] > 0: # (batch_size * height * width, channels, frames - 1) -> (batch_size * height * width, channels, (frames - 1) // 2) x_rest = F.avg_pool1d(x_rest, kernel_size=2, stride=2) x = torch.cat([x_first[..., None], x_rest], dim=-1) # (batch_size * height * width, channels, (frames // 2) + 1) -> (batch_size, height, width, channels, (frames // 2) + 1) -> (batch_size, channels, (frames // 2) + 1, height, width) x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2) else: # (batch_size * height * width, channels, frames) -> (batch_size * height * width, channels, frames // 2) x = F.avg_pool1d(x, kernel_size=2, stride=2) # (batch_size * height * width, channels, frames // 2) -> (batch_size, height, width, channels, frames // 2) -> (batch_size, channels, frames // 2, height, width) x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2) # Pad the tensor pad = (0, 1, 0, 1) x = F.pad(x, pad, mode="constant", value=0) batch_size, channels, frames, height, width = x.shape # (batch_size, channels, frames, height, width) -> (batch_size, frames, channels, height, width) -> (batch_size * frames, channels, height, width) x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channels, height, width) x = self.conv(x) # (batch_size * frames, channels, height, width) -> (batch_size, frames, channels, height, width) -> (batch_size, channels, frames, height, width) x = x.reshape(batch_size, frames, x.shape[1], x.shape[2], x.shape[3]).permute(0, 2, 1, 3, 4) return x
class_definition
10,580
14,033
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/downsampling.py
null
760
class GatedSelfAttentionDense(nn.Module): r""" A gated self-attention dense layer that combines visual features and object features. Parameters: query_dim (`int`): The number of channels in the query. context_dim (`int`): The number of channels in the context. n_heads (`int`): The number of heads to use for attention. d_head (`int`): The number of channels in each head. """ def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): super().__init__() # we need a linear projection since we need cat visual feature and obj feature self.linear = nn.Linear(context_dim, query_dim) self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) self.ff = FeedForward(query_dim, activation_fn="geglu") self.norm1 = nn.LayerNorm(query_dim) self.norm2 = nn.LayerNorm(query_dim) self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) self.enabled = True def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: if not self.enabled: return x n_visual = x.shape[1] objs = self.linear(objs) x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) return x
class_definition
1,921
3,415
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention.py
null
761
class JointTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, context_pre_only: bool = False, qk_norm: Optional[str] = None, use_dual_attention: bool = False, ): super().__init__() self.use_dual_attention = use_dual_attention self.context_pre_only = context_pre_only context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero" if use_dual_attention: self.norm1 = SD35AdaLayerNormZeroX(dim) else: self.norm1 = AdaLayerNormZero(dim) if context_norm_type == "ada_norm_continous": self.norm1_context = AdaLayerNormContinuous( dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm" ) elif context_norm_type == "ada_norm_zero": self.norm1_context = AdaLayerNormZero(dim) else: raise ValueError( f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`" ) if hasattr(F, "scaled_dot_product_attention"): processor = JointAttnProcessor2_0() else: raise ValueError( "The current PyTorch version does not support the `scaled_dot_product_attention` function." ) self.attn = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=context_pre_only, bias=True, processor=processor, qk_norm=qk_norm, eps=1e-6, ) if use_dual_attention: self.attn2 = Attention( query_dim=dim, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=True, processor=processor, qk_norm=qk_norm, eps=1e-6, ) else: self.attn2 = None self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") if not context_pre_only: self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") else: self.norm2_context = None self.ff_context = None # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 # Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor, joint_attention_kwargs: Optional[Dict[str, Any]] = None, ): joint_attention_kwargs = joint_attention_kwargs or {} if self.use_dual_attention: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1( hidden_states, emb=temb ) else: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) if self.context_pre_only: norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) else: norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) # Attention. attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, **joint_attention_kwargs, ) # Process attention outputs for the `hidden_states`. attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output if self.use_dual_attention: attn_output2 = self.attn2(hidden_states=norm_hidden_states2, **joint_attention_kwargs) attn_output2 = gate_msa2.unsqueeze(1) * attn_output2 hidden_states = hidden_states + attn_output2 norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output # Process attention outputs for the `encoder_hidden_states`. if self.context_pre_only: encoder_hidden_states = None else: context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory context_ff_output = _chunked_feed_forward( self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size ) else: context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output return encoder_hidden_states, hidden_states
class_definition
3,440
10,325
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention.py
null
762
class BasicTransformerBlock(nn.Module): r""" A basic Transformer block. Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. num_embeds_ada_norm (: obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. attention_bias (: obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. only_cross_attention (`bool`, *optional*): Whether to use only cross-attention layers. In this case two cross attention layers are used. double_self_attention (`bool`, *optional*): Whether to use two self-attention layers. In this case no cross attention layers are used. upcast_attention (`bool`, *optional*): Whether to upcast the attention computation to float32. This is useful for mixed precision training. norm_elementwise_affine (`bool`, *optional*, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_type (`str`, *optional*, defaults to `"layer_norm"`): The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. final_dropout (`bool` *optional*, defaults to False): Whether to apply a final dropout after the last feed-forward layer. attention_type (`str`, *optional*, defaults to `"default"`): The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. positional_embeddings (`str`, *optional*, defaults to `None`): The type of positional embeddings to apply to. num_positional_embeddings (`int`, *optional*, defaults to `None`): The maximum number of positional embeddings to apply. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, norm_elementwise_affine: bool = True, norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen' norm_eps: float = 1e-5, final_dropout: bool = False, attention_type: str = "default", positional_embeddings: Optional[str] = None, num_positional_embeddings: Optional[int] = None, ada_norm_continous_conditioning_embedding_dim: Optional[int] = None, ada_norm_bias: Optional[int] = None, ff_inner_dim: Optional[int] = None, ff_bias: bool = True, attention_out_bias: bool = True, ): super().__init__() self.dim = dim self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim self.dropout = dropout self.cross_attention_dim = cross_attention_dim self.activation_fn = activation_fn self.attention_bias = attention_bias self.double_self_attention = double_self_attention self.norm_elementwise_affine = norm_elementwise_affine self.positional_embeddings = positional_embeddings self.num_positional_embeddings = num_positional_embeddings self.only_cross_attention = only_cross_attention # We keep these boolean flags for backward-compatibility. self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" self.use_ada_layer_norm_single = norm_type == "ada_norm_single" self.use_layer_norm = norm_type == "layer_norm" self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) self.norm_type = norm_type self.num_embeds_ada_norm = num_embeds_ada_norm if positional_embeddings and (num_positional_embeddings is None): raise ValueError( "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." ) if positional_embeddings == "sinusoidal": self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) else: self.pos_embed = None # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if norm_type == "ada_norm": self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) elif norm_type == "ada_norm_zero": self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) elif norm_type == "ada_norm_continuous": self.norm1 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "rms_norm", ) else: self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, out_bias=attention_out_bias, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. if norm_type == "ada_norm": self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) elif norm_type == "ada_norm_continuous": self.norm2 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "rms_norm", ) else: self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, out_bias=attention_out_bias, ) # is self-attn if encoder_hidden_states is none else: if norm_type == "ada_norm_single": # For Latte self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) else: self.norm2 = None self.attn2 = None # 3. Feed-forward if norm_type == "ada_norm_continuous": self.norm3 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "layer_norm", ) elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]: self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) elif norm_type == "layer_norm_i2vgen": self.norm3 = None self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias, ) # 4. Fuser if attention_type == "gated" or attention_type == "gated-text-image": self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) # 5. Scale-shift for PixArt-Alpha. if norm_type == "ada_norm_single": self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention batch_size = hidden_states.shape[0] if self.norm_type == "ada_norm": norm_hidden_states = self.norm1(hidden_states, timestep) elif self.norm_type == "ada_norm_zero": norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: norm_hidden_states = self.norm1(hidden_states) elif self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) elif self.norm_type == "ada_norm_single": shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) ).chunk(6, dim=1) norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa else: raise ValueError("Incorrect norm used") if self.pos_embed is not None: norm_hidden_states = self.pos_embed(norm_hidden_states) # 1. Prepare GLIGEN inputs cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} gligen_kwargs = cross_attention_kwargs.pop("gligen", None) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if self.norm_type == "ada_norm_zero": attn_output = gate_msa.unsqueeze(1) * attn_output elif self.norm_type == "ada_norm_single": attn_output = gate_msa * attn_output hidden_states = attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 1.2 GLIGEN Control if gligen_kwargs is not None: hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) # 3. Cross-Attention if self.attn2 is not None: if self.norm_type == "ada_norm": norm_hidden_states = self.norm2(hidden_states, timestep) elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: norm_hidden_states = self.norm2(hidden_states) elif self.norm_type == "ada_norm_single": # For PixArt norm2 isn't applied here: # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 norm_hidden_states = hidden_states elif self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) else: raise ValueError("Incorrect norm") if self.pos_embed is not None and self.norm_type != "ada_norm_single": norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 4. Feed-forward # i2vgen doesn't have this norm 🤷‍♂️ if self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) elif not self.norm_type == "ada_norm_single": norm_hidden_states = self.norm3(hidden_states) if self.norm_type == "ada_norm_zero": norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self.norm_type == "ada_norm_single": norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) if self.norm_type == "ada_norm_zero": ff_output = gate_mlp.unsqueeze(1) * ff_output elif self.norm_type == "ada_norm_single": ff_output = gate_mlp * ff_output hidden_states = ff_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) return hidden_states
class_definition
10,350
25,762
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention.py
null
763
class LuminaFeedForward(nn.Module): r""" A feed-forward layer. Parameters: hidden_size (`int`): The dimensionality of the hidden layers in the model. This parameter determines the width of the model's hidden representations. intermediate_size (`int`): The intermediate dimension of the feedforward layer. multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple of this value. ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden dimension. Defaults to None. """ def __init__( self, dim: int, inner_dim: int, multiple_of: Optional[int] = 256, ffn_dim_multiplier: Optional[float] = None, ): super().__init__() inner_dim = int(2 * inner_dim / 3) # custom hidden_size factor multiplier if ffn_dim_multiplier is not None: inner_dim = int(ffn_dim_multiplier * inner_dim) inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of) self.linear_1 = nn.Linear( dim, inner_dim, bias=False, ) self.linear_2 = nn.Linear( inner_dim, dim, bias=False, ) self.linear_3 = nn.Linear( dim, inner_dim, bias=False, ) self.silu = FP32SiLU() def forward(self, x): return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x))
class_definition
25,765
27,303
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention.py
null
764
class TemporalBasicTransformerBlock(nn.Module): r""" A basic Transformer block for video like data. Parameters: dim (`int`): The number of channels in the input and output. time_mix_inner_dim (`int`): The number of channels for temporal attention. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. """ def __init__( self, dim: int, time_mix_inner_dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: Optional[int] = None, ): super().__init__() self.is_res = dim == time_mix_inner_dim self.norm_in = nn.LayerNorm(dim) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn self.ff_in = FeedForward( dim, dim_out=time_mix_inner_dim, activation_fn="geglu", ) self.norm1 = nn.LayerNorm(time_mix_inner_dim) self.attn1 = Attention( query_dim=time_mix_inner_dim, heads=num_attention_heads, dim_head=attention_head_dim, cross_attention_dim=None, ) # 2. Cross-Attn if cross_attention_dim is not None: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. self.norm2 = nn.LayerNorm(time_mix_inner_dim) self.attn2 = Attention( query_dim=time_mix_inner_dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, ) # is self-attn if encoder_hidden_states is none else: self.norm2 = None self.attn2 = None # 3. Feed-forward self.norm3 = nn.LayerNorm(time_mix_inner_dim) self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu") # let chunk size default to None self._chunk_size = None self._chunk_dim = None def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs): # Sets chunk feed-forward self._chunk_size = chunk_size # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off self._chunk_dim = 1 def forward( self, hidden_states: torch.Tensor, num_frames: int, encoder_hidden_states: Optional[torch.Tensor] = None, ) -> torch.Tensor: # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention batch_size = hidden_states.shape[0] batch_frames, seq_length, channels = hidden_states.shape batch_size = batch_frames // num_frames hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels) hidden_states = hidden_states.permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels) residual = hidden_states hidden_states = self.norm_in(hidden_states) if self._chunk_size is not None: hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size) else: hidden_states = self.ff_in(hidden_states) if self.is_res: hidden_states = hidden_states + residual norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) hidden_states = attn_output + hidden_states # 3. Cross-Attention if self.attn2 is not None: norm_hidden_states = self.norm2(hidden_states) attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states) hidden_states = attn_output + hidden_states # 4. Feed-forward norm_hidden_states = self.norm3(hidden_states) if self._chunk_size is not None: ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) if self.is_res: hidden_states = ff_output + hidden_states else: hidden_states = ff_output hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels) hidden_states = hidden_states.permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels) return hidden_states
class_definition
27,328
32,297
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention.py
null
765
class SkipFFTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, kv_input_dim: int, kv_input_dim_proj_use_bias: bool, dropout=0.0, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, attention_out_bias: bool = True, ): super().__init__() if kv_input_dim != dim: self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias) else: self.kv_mapper = None self.norm1 = RMSNorm(dim, 1e-06) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim, out_bias=attention_out_bias, ) self.norm2 = RMSNorm(dim, 1e-06) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, out_bias=attention_out_bias, ) def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs): cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} if self.kv_mapper is not None: encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states)) norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states norm_hidden_states = self.norm2(hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states return hidden_states
class_definition
32,300
34,482
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention.py
null
766
class FreeNoiseTransformerBlock(nn.Module): r""" A FreeNoise Transformer block. Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. num_embeds_ada_norm (`int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. attention_bias (`bool`, defaults to `False`): Configure if the attentions should contain a bias parameter. only_cross_attention (`bool`, defaults to `False`): Whether to use only cross-attention layers. In this case two cross attention layers are used. double_self_attention (`bool`, defaults to `False`): Whether to use two self-attention layers. In this case no cross attention layers are used. upcast_attention (`bool`, defaults to `False`): Whether to upcast the attention computation to float32. This is useful for mixed precision training. norm_elementwise_affine (`bool`, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_type (`str`, defaults to `"layer_norm"`): The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. final_dropout (`bool` defaults to `False`): Whether to apply a final dropout after the last feed-forward layer. attention_type (`str`, defaults to `"default"`): The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. positional_embeddings (`str`, *optional*): The type of positional embeddings to apply to. num_positional_embeddings (`int`, *optional*, defaults to `None`): The maximum number of positional embeddings to apply. ff_inner_dim (`int`, *optional*): Hidden dimension of feed-forward MLP. ff_bias (`bool`, defaults to `True`): Whether or not to use bias in feed-forward MLP. attention_out_bias (`bool`, defaults to `True`): Whether or not to use bias in attention output project layer. context_length (`int`, defaults to `16`): The maximum number of frames that the FreeNoise block processes at once. context_stride (`int`, defaults to `4`): The number of frames to be skipped before starting to process a new batch of `context_length` frames. weighting_scheme (`str`, defaults to `"pyramid"`): The weighting scheme to use for weighting averaging of processed latent frames. As described in the Equation 9. of the [FreeNoise](https://arxiv.org/abs/2310.15169) paper, "pyramid" is the default setting used. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout: float = 0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, norm_elementwise_affine: bool = True, norm_type: str = "layer_norm", norm_eps: float = 1e-5, final_dropout: bool = False, positional_embeddings: Optional[str] = None, num_positional_embeddings: Optional[int] = None, ff_inner_dim: Optional[int] = None, ff_bias: bool = True, attention_out_bias: bool = True, context_length: int = 16, context_stride: int = 4, weighting_scheme: str = "pyramid", ): super().__init__() self.dim = dim self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim self.dropout = dropout self.cross_attention_dim = cross_attention_dim self.activation_fn = activation_fn self.attention_bias = attention_bias self.double_self_attention = double_self_attention self.norm_elementwise_affine = norm_elementwise_affine self.positional_embeddings = positional_embeddings self.num_positional_embeddings = num_positional_embeddings self.only_cross_attention = only_cross_attention self.set_free_noise_properties(context_length, context_stride, weighting_scheme) # We keep these boolean flags for backward-compatibility. self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" self.use_ada_layer_norm_single = norm_type == "ada_norm_single" self.use_layer_norm = norm_type == "layer_norm" self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) self.norm_type = norm_type self.num_embeds_ada_norm = num_embeds_ada_norm if positional_embeddings and (num_positional_embeddings is None): raise ValueError( "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." ) if positional_embeddings == "sinusoidal": self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) else: self.pos_embed = None # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, out_bias=attention_out_bias, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, out_bias=attention_out_bias, ) # is self-attn if encoder_hidden_states is none # 3. Feed-forward self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias, ) self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]: frame_indices = [] for i in range(0, num_frames - self.context_length + 1, self.context_stride): window_start = i window_end = min(num_frames, i + self.context_length) frame_indices.append((window_start, window_end)) return frame_indices def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]: if weighting_scheme == "flat": weights = [1.0] * num_frames elif weighting_scheme == "pyramid": if num_frames % 2 == 0: # num_frames = 4 => [1, 2, 2, 1] mid = num_frames // 2 weights = list(range(1, mid + 1)) weights = weights + weights[::-1] else: # num_frames = 5 => [1, 2, 3, 2, 1] mid = (num_frames + 1) // 2 weights = list(range(1, mid)) weights = weights + [mid] + weights[::-1] elif weighting_scheme == "delayed_reverse_sawtooth": if num_frames % 2 == 0: # num_frames = 4 => [0.01, 2, 2, 1] mid = num_frames // 2 weights = [0.01] * (mid - 1) + [mid] weights = weights + list(range(mid, 0, -1)) else: # num_frames = 5 => [0.01, 0.01, 3, 2, 1] mid = (num_frames + 1) // 2 weights = [0.01] * mid weights = weights + list(range(mid, 0, -1)) else: raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}") return weights def set_free_noise_properties( self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid" ) -> None: self.context_length = context_length self.context_stride = context_stride self.weighting_scheme = weighting_scheme def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None: # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Dict[str, Any] = None, *args, **kwargs, ) -> torch.Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} # hidden_states: [B x H x W, F, C] device = hidden_states.device dtype = hidden_states.dtype num_frames = hidden_states.size(1) frame_indices = self._get_frame_indices(num_frames) frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme) frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1) is_last_frame_batch_complete = frame_indices[-1][1] == num_frames # Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length # For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges: # [(0, 16), (4, 20), (8, 24), (10, 26)] if not is_last_frame_batch_complete: if num_frames < self.context_length: raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}") last_frame_batch_length = num_frames - frame_indices[-1][1] frame_indices.append((num_frames - self.context_length, num_frames)) num_times_accumulated = torch.zeros((1, num_frames, 1), device=device) accumulated_values = torch.zeros_like(hidden_states) for i, (frame_start, frame_end) in enumerate(frame_indices): # The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle # cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or # essentially a non-multiple of `context_length`. weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end]) weights *= frame_weights hidden_states_chunk = hidden_states[:, frame_start:frame_end] # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention norm_hidden_states = self.norm1(hidden_states_chunk) if self.pos_embed is not None: norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) hidden_states_chunk = attn_output + hidden_states_chunk if hidden_states_chunk.ndim == 4: hidden_states_chunk = hidden_states_chunk.squeeze(1) # 2. Cross-Attention if self.attn2 is not None: norm_hidden_states = self.norm2(hidden_states_chunk) if self.pos_embed is not None and self.norm_type != "ada_norm_single": norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states_chunk = attn_output + hidden_states_chunk if i == len(frame_indices) - 1 and not is_last_frame_batch_complete: accumulated_values[:, -last_frame_batch_length:] += ( hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:] ) num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length] else: accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights num_times_accumulated[:, frame_start:frame_end] += weights # TODO(aryan): Maybe this could be done in a better way. # # Previously, this was: # hidden_states = torch.where( # num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values # ) # # The reasoning for the change here is `torch.where` became a bottleneck at some point when golfing memory # spikes. It is particularly noticeable when the number of frames is high. My understanding is that this comes # from tensors being copied - which is why we resort to spliting and concatenating here. I've not particularly # looked into this deeply because other memory optimizations led to more pronounced reductions. hidden_states = torch.cat( [ torch.where(num_times_split > 0, accumulated_split / num_times_split, accumulated_split) for accumulated_split, num_times_split in zip( accumulated_values.split(self.context_length, dim=1), num_times_accumulated.split(self.context_length, dim=1), ) ], dim=1, ).to(dtype) # 3. Feed-forward norm_hidden_states = self.norm3(hidden_states) if self._chunk_size is not None: ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) hidden_states = ff_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) return hidden_states
class_definition
34,507
50,766
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention.py
null
767
class FeedForward(nn.Module): r""" A feed-forward layer. Parameters: dim (`int`): The number of channels in the input. dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, dropout: float = 0.0, activation_fn: str = "geglu", final_dropout: bool = False, inner_dim=None, bias: bool = True, ): super().__init__() if inner_dim is None: inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim if activation_fn == "gelu": act_fn = GELU(dim, inner_dim, bias=bias) if activation_fn == "gelu-approximate": act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) elif activation_fn == "geglu": act_fn = GEGLU(dim, inner_dim, bias=bias) elif activation_fn == "geglu-approximate": act_fn = ApproximateGELU(dim, inner_dim, bias=bias) elif activation_fn == "swiglu": act_fn = SwiGLU(dim, inner_dim, bias=bias) elif activation_fn == "linear-silu": act_fn = LinearActivation(dim, inner_dim, bias=bias, activation="silu") self.net = nn.ModuleList([]) # project in self.net.append(act_fn) # project dropout self.net.append(nn.Dropout(dropout)) # project out self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(dropout)) def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) for module in self.net: hidden_states = module(hidden_states) return hidden_states
class_definition
50,769
53,574
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention.py
null
768
class Attention(nn.Module): r""" A cross attention layer. Parameters: query_dim (`int`): The number of channels in the query. cross_attention_dim (`int`, *optional*): The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. kv_heads (`int`, *optional*, defaults to `None`): The number of key and value heads to use for multi-head attention. Defaults to `heads`. If `kv_heads=heads`, the model will use Multi Head Attention (MHA), if `kv_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. bias (`bool`, *optional*, defaults to False): Set to `True` for the query, key, and value linear layers to contain a bias parameter. upcast_attention (`bool`, *optional*, defaults to False): Set to `True` to upcast the attention computation to `float32`. upcast_softmax (`bool`, *optional*, defaults to False): Set to `True` to upcast the softmax computation to `float32`. cross_attention_norm (`str`, *optional*, defaults to `None`): The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the group norm in the cross attention. added_kv_proj_dim (`int`, *optional*, defaults to `None`): The number of channels to use for the added key and value projections. If `None`, no projection is used. norm_num_groups (`int`, *optional*, defaults to `None`): The number of groups to use for the group norm in the attention. spatial_norm_dim (`int`, *optional*, defaults to `None`): The number of channels to use for the spatial normalization. out_bias (`bool`, *optional*, defaults to `True`): Set to `True` to use a bias in the output linear layer. scale_qk (`bool`, *optional*, defaults to `True`): Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. only_cross_attention (`bool`, *optional*, defaults to `False`): Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if `added_kv_proj_dim` is not `None`. eps (`float`, *optional*, defaults to 1e-5): An additional value added to the denominator in group normalization that is used for numerical stability. rescale_output_factor (`float`, *optional*, defaults to 1.0): A factor to rescale the output by dividing it with this value. residual_connection (`bool`, *optional*, defaults to `False`): Set to `True` to add the residual connection to the output. _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): Set to `True` if the attention block is loaded from a deprecated state dict. processor (`AttnProcessor`, *optional*, defaults to `None`): The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and `AttnProcessor` otherwise. """ def __init__( self, query_dim: int, cross_attention_dim: Optional[int] = None, heads: int = 8, kv_heads: Optional[int] = None, dim_head: int = 64, dropout: float = 0.0, bias: bool = False, upcast_attention: bool = False, upcast_softmax: bool = False, cross_attention_norm: Optional[str] = None, cross_attention_norm_num_groups: int = 32, qk_norm: Optional[str] = None, added_kv_proj_dim: Optional[int] = None, added_proj_bias: Optional[bool] = True, norm_num_groups: Optional[int] = None, spatial_norm_dim: Optional[int] = None, out_bias: bool = True, scale_qk: bool = True, only_cross_attention: bool = False, eps: float = 1e-5, rescale_output_factor: float = 1.0, residual_connection: bool = False, _from_deprecated_attn_block: bool = False, processor: Optional["AttnProcessor"] = None, out_dim: int = None, out_context_dim: int = None, context_pre_only=None, pre_only=False, elementwise_affine: bool = True, is_causal: bool = False, ): super().__init__() # To prevent circular import. from .normalization import FP32LayerNorm, LpNorm, RMSNorm self.inner_dim = out_dim if out_dim is not None else dim_head * heads self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads self.query_dim = query_dim self.use_bias = bias self.is_cross_attention = cross_attention_dim is not None self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim self.upcast_attention = upcast_attention self.upcast_softmax = upcast_softmax self.rescale_output_factor = rescale_output_factor self.residual_connection = residual_connection self.dropout = dropout self.fused_projections = False self.out_dim = out_dim if out_dim is not None else query_dim self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim self.context_pre_only = context_pre_only self.pre_only = pre_only self.is_causal = is_causal # we make use of this private variable to know whether this class is loaded # with an deprecated state dict so that we can convert it on the fly self._from_deprecated_attn_block = _from_deprecated_attn_block self.scale_qk = scale_qk self.scale = dim_head**-0.5 if self.scale_qk else 1.0 self.heads = out_dim // dim_head if out_dim is not None else heads # for slice_size > 0 the attention score computation # is split across the batch axis to save memory # You can set slice_size with `set_attention_slice` self.sliceable_head_dim = heads self.added_kv_proj_dim = added_kv_proj_dim self.only_cross_attention = only_cross_attention if self.added_kv_proj_dim is None and self.only_cross_attention: raise ValueError( "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." ) if norm_num_groups is not None: self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) else: self.group_norm = None if spatial_norm_dim is not None: self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) else: self.spatial_norm = None if qk_norm is None: self.norm_q = None self.norm_k = None elif qk_norm == "layer_norm": self.norm_q = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine) self.norm_k = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine) elif qk_norm == "fp32_layer_norm": self.norm_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) self.norm_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) elif qk_norm == "layer_norm_across_heads": # Lumina applies qk norm across all heads self.norm_q = nn.LayerNorm(dim_head * heads, eps=eps) self.norm_k = nn.LayerNorm(dim_head * kv_heads, eps=eps) elif qk_norm == "rms_norm": self.norm_q = RMSNorm(dim_head, eps=eps) self.norm_k = RMSNorm(dim_head, eps=eps) elif qk_norm == "rms_norm_across_heads": # LTX applies qk norm across all heads self.norm_q = RMSNorm(dim_head * heads, eps=eps) self.norm_k = RMSNorm(dim_head * kv_heads, eps=eps) elif qk_norm == "l2": self.norm_q = LpNorm(p=2, dim=-1, eps=eps) self.norm_k = LpNorm(p=2, dim=-1, eps=eps) else: raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None,'layer_norm','fp32_layer_norm','rms_norm'") if cross_attention_norm is None: self.norm_cross = None elif cross_attention_norm == "layer_norm": self.norm_cross = nn.LayerNorm(self.cross_attention_dim) elif cross_attention_norm == "group_norm": if self.added_kv_proj_dim is not None: # The given `encoder_hidden_states` are initially of shape # (batch_size, seq_len, added_kv_proj_dim) before being projected # to (batch_size, seq_len, cross_attention_dim). The norm is applied # before the projection, so we need to use `added_kv_proj_dim` as # the number of channels for the group norm. norm_cross_num_channels = added_kv_proj_dim else: norm_cross_num_channels = self.cross_attention_dim self.norm_cross = nn.GroupNorm( num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True ) else: raise ValueError( f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" ) self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias) if not self.only_cross_attention: # only relevant for the `AddedKVProcessor` classes self.to_k = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) self.to_v = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) else: self.to_k = None self.to_v = None self.added_proj_bias = added_proj_bias if self.added_kv_proj_dim is not None: self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias) self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias) if self.context_pre_only is not None: self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) else: self.add_q_proj = None self.add_k_proj = None self.add_v_proj = None if not self.pre_only: self.to_out = nn.ModuleList([]) self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)) self.to_out.append(nn.Dropout(dropout)) else: self.to_out = None if self.context_pre_only is not None and not self.context_pre_only: self.to_add_out = nn.Linear(self.inner_dim, self.out_context_dim, bias=out_bias) else: self.to_add_out = None if qk_norm is not None and added_kv_proj_dim is not None: if qk_norm == "fp32_layer_norm": self.norm_added_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) self.norm_added_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) elif qk_norm == "rms_norm": self.norm_added_q = RMSNorm(dim_head, eps=eps) self.norm_added_k = RMSNorm(dim_head, eps=eps) else: raise ValueError( f"unknown qk_norm: {qk_norm}. Should be one of `None,'layer_norm','fp32_layer_norm','rms_norm'`" ) else: self.norm_added_q = None self.norm_added_k = None # set attention processor # We use the AttnProcessor2_0 by default when torch 2.x is used which uses # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 if processor is None: processor = ( AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() ) self.set_processor(processor) def set_use_xla_flash_attention( self, use_xla_flash_attention: bool, partition_spec: Optional[Tuple[Optional[str], ...]] = None, is_flux=False, ) -> None: r""" Set whether to use xla flash attention from `torch_xla` or not. Args: use_xla_flash_attention (`bool`): Whether to use pallas flash attention kernel from `torch_xla` or not. partition_spec (`Tuple[]`, *optional*): Specify the partition specification if using SPMD. Otherwise None. """ if use_xla_flash_attention: if not is_torch_xla_available: raise "torch_xla is not available" elif is_torch_xla_version("<", "2.3"): raise "flash attention pallas kernel is supported from torch_xla version 2.3" elif is_spmd() and is_torch_xla_version("<", "2.4"): raise "flash attention pallas kernel using SPMD is supported from torch_xla version 2.4" else: if is_flux: processor = XLAFluxFlashAttnProcessor2_0(partition_spec) else: processor = XLAFlashAttnProcessor2_0(partition_spec) else: processor = ( AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() ) self.set_processor(processor) def set_use_npu_flash_attention(self, use_npu_flash_attention: bool) -> None: r""" Set whether to use npu flash attention from `torch_npu` or not. """ if use_npu_flash_attention: processor = AttnProcessorNPU() else: # set attention processor # We use the AttnProcessor2_0 by default when torch 2.x is used which uses # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 processor = ( AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() ) self.set_processor(processor) def set_use_memory_efficient_attention_xformers( self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None ) -> None: r""" Set whether to use memory efficient attention from `xformers` or not. Args: use_memory_efficient_attention_xformers (`bool`): Whether to use memory efficient attention from `xformers` or not. attention_op (`Callable`, *optional*): The attention operation to use. Defaults to `None` which uses the default attention operation from `xformers`. """ is_custom_diffusion = hasattr(self, "processor") and isinstance( self.processor, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0), ) is_added_kv_processor = hasattr(self, "processor") and isinstance( self.processor, ( AttnAddedKVProcessor, AttnAddedKVProcessor2_0, SlicedAttnAddedKVProcessor, XFormersAttnAddedKVProcessor, ), ) is_ip_adapter = hasattr(self, "processor") and isinstance( self.processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor), ) is_joint_processor = hasattr(self, "processor") and isinstance( self.processor, ( JointAttnProcessor2_0, XFormersJointAttnProcessor, ), ) if use_memory_efficient_attention_xformers: if is_added_kv_processor and is_custom_diffusion: raise NotImplementedError( f"Memory efficient attention is currently not supported for custom diffusion for attention processor type {self.processor}" ) if not is_xformers_available(): raise ModuleNotFoundError( ( "Refer to https://github.com/facebookresearch/xformers for more information on how to install" " xformers" ), name="xformers", ) elif not torch.cuda.is_available(): raise ValueError( "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" " only available for GPU " ) else: try: # Make sure we can run the memory efficient attention _ = xformers.ops.memory_efficient_attention( torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), ) except Exception as e: raise e if is_custom_diffusion: processor = CustomDiffusionXFormersAttnProcessor( train_kv=self.processor.train_kv, train_q_out=self.processor.train_q_out, hidden_size=self.processor.hidden_size, cross_attention_dim=self.processor.cross_attention_dim, attention_op=attention_op, ) processor.load_state_dict(self.processor.state_dict()) if hasattr(self.processor, "to_k_custom_diffusion"): processor.to(self.processor.to_k_custom_diffusion.weight.device) elif is_added_kv_processor: # TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP # which uses this type of cross attention ONLY because the attention mask of format # [0, ..., -10.000, ..., 0, ...,] is not supported # throw warning logger.info( "Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation." ) processor = XFormersAttnAddedKVProcessor(attention_op=attention_op) elif is_ip_adapter: processor = IPAdapterXFormersAttnProcessor( hidden_size=self.processor.hidden_size, cross_attention_dim=self.processor.cross_attention_dim, num_tokens=self.processor.num_tokens, scale=self.processor.scale, attention_op=attention_op, ) processor.load_state_dict(self.processor.state_dict()) if hasattr(self.processor, "to_k_ip"): processor.to( device=self.processor.to_k_ip[0].weight.device, dtype=self.processor.to_k_ip[0].weight.dtype ) elif is_joint_processor: processor = XFormersJointAttnProcessor(attention_op=attention_op) else: processor = XFormersAttnProcessor(attention_op=attention_op) else: if is_custom_diffusion: attn_processor_class = ( CustomDiffusionAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else CustomDiffusionAttnProcessor ) processor = attn_processor_class( train_kv=self.processor.train_kv, train_q_out=self.processor.train_q_out, hidden_size=self.processor.hidden_size, cross_attention_dim=self.processor.cross_attention_dim, ) processor.load_state_dict(self.processor.state_dict()) if hasattr(self.processor, "to_k_custom_diffusion"): processor.to(self.processor.to_k_custom_diffusion.weight.device) elif is_ip_adapter: processor = IPAdapterAttnProcessor2_0( hidden_size=self.processor.hidden_size, cross_attention_dim=self.processor.cross_attention_dim, num_tokens=self.processor.num_tokens, scale=self.processor.scale, ) processor.load_state_dict(self.processor.state_dict()) if hasattr(self.processor, "to_k_ip"): processor.to( device=self.processor.to_k_ip[0].weight.device, dtype=self.processor.to_k_ip[0].weight.dtype ) else: # set attention processor # We use the AttnProcessor2_0 by default when torch 2.x is used which uses # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 processor = ( AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() ) self.set_processor(processor) def set_attention_slice(self, slice_size: int) -> None: r""" Set the slice size for attention computation. Args: slice_size (`int`): The slice size for attention computation. """ if slice_size is not None and slice_size > self.sliceable_head_dim: raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") if slice_size is not None and self.added_kv_proj_dim is not None: processor = SlicedAttnAddedKVProcessor(slice_size) elif slice_size is not None: processor = SlicedAttnProcessor(slice_size) elif self.added_kv_proj_dim is not None: processor = AttnAddedKVProcessor() else: # set attention processor # We use the AttnProcessor2_0 by default when torch 2.x is used which uses # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 processor = ( AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() ) self.set_processor(processor) def set_processor(self, processor: "AttnProcessor") -> None: r""" Set the attention processor to use. Args: processor (`AttnProcessor`): The attention processor to use. """ # if current processor is in `self._modules` and if passed `processor` is not, we need to # pop `processor` from `self._modules` if ( hasattr(self, "processor") and isinstance(self.processor, torch.nn.Module) and not isinstance(processor, torch.nn.Module) ): logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") self._modules.pop("processor") self.processor = processor def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor": r""" Get the attention processor in use. Args: return_deprecated_lora (`bool`, *optional*, defaults to `False`): Set to `True` to return the deprecated LoRA attention processor. Returns: "AttentionProcessor": The attention processor in use. """ if not return_deprecated_lora: return self.processor def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, **cross_attention_kwargs, ) -> torch.Tensor: r""" The forward method of the `Attention` class. Args: hidden_states (`torch.Tensor`): The hidden states of the query. encoder_hidden_states (`torch.Tensor`, *optional*): The hidden states of the encoder. attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. **cross_attention_kwargs: Additional keyword arguments to pass along to the cross attention. Returns: `torch.Tensor`: The output of the attention layer. """ # The `Attention` class can call different attention processors / attention functions # here we simply pass along all tensors to the selected processor class # For standard processors that are defined here, `**cross_attention_kwargs` is empty attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys()) quiet_attn_parameters = {"ip_adapter_masks", "ip_hidden_states"} unused_kwargs = [ k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters and k not in quiet_attn_parameters ] if len(unused_kwargs) > 0: logger.warning( f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored." ) cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters} return self.processor( self, hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, **cross_attention_kwargs, ) def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: r""" Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` is the number of heads initialized while constructing the `Attention` class. Args: tensor (`torch.Tensor`): The tensor to reshape. Returns: `torch.Tensor`: The reshaped tensor. """ head_size = self.heads batch_size, seq_len, dim = tensor.shape tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: r""" Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is the number of heads initialized while constructing the `Attention` class. Args: tensor (`torch.Tensor`): The tensor to reshape. out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is reshaped to `[batch_size * heads, seq_len, dim // heads]`. Returns: `torch.Tensor`: The reshaped tensor. """ head_size = self.heads if tensor.ndim == 3: batch_size, seq_len, dim = tensor.shape extra_dim = 1 else: batch_size, extra_dim, seq_len, dim = tensor.shape tensor = tensor.reshape(batch_size, seq_len * extra_dim, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3) if out_dim == 3: tensor = tensor.reshape(batch_size * head_size, seq_len * extra_dim, dim // head_size) return tensor def get_attention_scores( self, query: torch.Tensor, key: torch.Tensor, attention_mask: Optional[torch.Tensor] = None ) -> torch.Tensor: r""" Compute the attention scores. Args: query (`torch.Tensor`): The query tensor. key (`torch.Tensor`): The key tensor. attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. Returns: `torch.Tensor`: The attention probabilities/scores. """ dtype = query.dtype if self.upcast_attention: query = query.float() key = key.float() if attention_mask is None: baddbmm_input = torch.empty( query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device ) beta = 0 else: baddbmm_input = attention_mask beta = 1 attention_scores = torch.baddbmm( baddbmm_input, query, key.transpose(-1, -2), beta=beta, alpha=self.scale, ) del baddbmm_input if self.upcast_softmax: attention_scores = attention_scores.float() attention_probs = attention_scores.softmax(dim=-1) del attention_scores attention_probs = attention_probs.to(dtype) return attention_probs def prepare_attention_mask( self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3 ) -> torch.Tensor: r""" Prepare the attention mask for the attention computation. Args: attention_mask (`torch.Tensor`): The attention mask to prepare. target_length (`int`): The target length of the attention mask. This is the length of the attention mask after padding. batch_size (`int`): The batch size, which is used to repeat the attention mask. out_dim (`int`, *optional*, defaults to `3`): The output dimension of the attention mask. Can be either `3` or `4`. Returns: `torch.Tensor`: The prepared attention mask. """ head_size = self.heads if attention_mask is None: return attention_mask current_length: int = attention_mask.shape[-1] if current_length != target_length: if attention_mask.device.type == "mps": # HACK: MPS: Does not support padding by greater than dimension of input tensor. # Instead, we can manually construct the padding tensor. padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) attention_mask = torch.cat([attention_mask, padding], dim=2) else: # TODO: for pipelines such as stable-diffusion, padding cross-attn mask: # we want to instead pad by (0, remaining_length), where remaining_length is: # remaining_length: int = target_length - current_length # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) if out_dim == 3: if attention_mask.shape[0] < batch_size * head_size: attention_mask = attention_mask.repeat_interleave(head_size, dim=0) elif out_dim == 4: attention_mask = attention_mask.unsqueeze(1) attention_mask = attention_mask.repeat_interleave(head_size, dim=1) return attention_mask def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: r""" Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the `Attention` class. Args: encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. Returns: `torch.Tensor`: The normalized encoder hidden states. """ assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states" if isinstance(self.norm_cross, nn.LayerNorm): encoder_hidden_states = self.norm_cross(encoder_hidden_states) elif isinstance(self.norm_cross, nn.GroupNorm): # Group norm norms along the channels dimension and expects # input to be in the shape of (N, C, *). In this case, we want # to norm along the hidden dimension, so we need to move # (batch_size, sequence_length, hidden_size) -> # (batch_size, hidden_size, sequence_length) encoder_hidden_states = encoder_hidden_states.transpose(1, 2) encoder_hidden_states = self.norm_cross(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.transpose(1, 2) else: assert False return encoder_hidden_states @torch.no_grad() def fuse_projections(self, fuse=True): device = self.to_q.weight.data.device dtype = self.to_q.weight.data.dtype if not self.is_cross_attention: # fetch weight matrices. concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data]) in_features = concatenated_weights.shape[1] out_features = concatenated_weights.shape[0] # create a new single projection layer and copy over the weights. self.to_qkv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype) self.to_qkv.weight.copy_(concatenated_weights) if self.use_bias: concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data]) self.to_qkv.bias.copy_(concatenated_bias) else: concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data]) in_features = concatenated_weights.shape[1] out_features = concatenated_weights.shape[0] self.to_kv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype) self.to_kv.weight.copy_(concatenated_weights) if self.use_bias: concatenated_bias = torch.cat([self.to_k.bias.data, self.to_v.bias.data]) self.to_kv.bias.copy_(concatenated_bias) # handle added projections for SD3 and others. if ( getattr(self, "add_q_proj", None) is not None and getattr(self, "add_k_proj", None) is not None and getattr(self, "add_v_proj", None) is not None ): concatenated_weights = torch.cat( [self.add_q_proj.weight.data, self.add_k_proj.weight.data, self.add_v_proj.weight.data] ) in_features = concatenated_weights.shape[1] out_features = concatenated_weights.shape[0] self.to_added_qkv = nn.Linear( in_features, out_features, bias=self.added_proj_bias, device=device, dtype=dtype ) self.to_added_qkv.weight.copy_(concatenated_weights) if self.added_proj_bias: concatenated_bias = torch.cat( [self.add_q_proj.bias.data, self.add_k_proj.bias.data, self.add_v_proj.bias.data] ) self.to_added_qkv.bias.copy_(concatenated_bias) self.fused_projections = fuse
class_definition
1,620
38,027
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
769
class SanaMultiscaleAttentionProjection(nn.Module): def __init__( self, in_channels: int, num_attention_heads: int, kernel_size: int, ) -> None: super().__init__() channels = 3 * in_channels self.proj_in = nn.Conv2d( channels, channels, kernel_size, padding=kernel_size // 2, groups=channels, bias=False, ) self.proj_out = nn.Conv2d(channels, channels, 1, 1, 0, groups=3 * num_attention_heads, bias=False) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.proj_in(hidden_states) hidden_states = self.proj_out(hidden_states) return hidden_states
class_definition
38,030
38,791
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
770
class SanaMultiscaleLinearAttention(nn.Module): r"""Lightweight multi-scale linear attention""" def __init__( self, in_channels: int, out_channels: int, num_attention_heads: Optional[int] = None, attention_head_dim: int = 8, mult: float = 1.0, norm_type: str = "batch_norm", kernel_sizes: Tuple[int, ...] = (5,), eps: float = 1e-15, residual_connection: bool = False, ): super().__init__() # To prevent circular import from .normalization import get_normalization self.eps = eps self.attention_head_dim = attention_head_dim self.norm_type = norm_type self.residual_connection = residual_connection num_attention_heads = ( int(in_channels // attention_head_dim * mult) if num_attention_heads is None else num_attention_heads ) inner_dim = num_attention_heads * attention_head_dim self.to_q = nn.Linear(in_channels, inner_dim, bias=False) self.to_k = nn.Linear(in_channels, inner_dim, bias=False) self.to_v = nn.Linear(in_channels, inner_dim, bias=False) self.to_qkv_multiscale = nn.ModuleList() for kernel_size in kernel_sizes: self.to_qkv_multiscale.append( SanaMultiscaleAttentionProjection(inner_dim, num_attention_heads, kernel_size) ) self.nonlinearity = nn.ReLU() self.to_out = nn.Linear(inner_dim * (1 + len(kernel_sizes)), out_channels, bias=False) self.norm_out = get_normalization(norm_type, num_features=out_channels) self.processor = SanaMultiscaleAttnProcessor2_0() def apply_linear_attention(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor: value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1) # Adds padding scores = torch.matmul(value, key.transpose(-1, -2)) hidden_states = torch.matmul(scores, query) hidden_states = hidden_states.to(dtype=torch.float32) hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps) return hidden_states def apply_quadratic_attention(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor: scores = torch.matmul(key.transpose(-1, -2), query) scores = scores.to(dtype=torch.float32) scores = scores / (torch.sum(scores, dim=2, keepdim=True) + self.eps) hidden_states = torch.matmul(value, scores.to(value.dtype)) return hidden_states def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return self.processor(self, hidden_states)
class_definition
38,794
41,491
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
771
class MochiAttention(nn.Module): def __init__( self, query_dim: int, added_kv_proj_dim: int, processor: "MochiAttnProcessor2_0", heads: int = 8, dim_head: int = 64, dropout: float = 0.0, bias: bool = False, added_proj_bias: bool = True, out_dim: Optional[int] = None, out_context_dim: Optional[int] = None, out_bias: bool = True, context_pre_only: bool = False, eps: float = 1e-5, ): super().__init__() from .normalization import MochiRMSNorm self.inner_dim = out_dim if out_dim is not None else dim_head * heads self.out_dim = out_dim if out_dim is not None else query_dim self.out_context_dim = out_context_dim if out_context_dim else query_dim self.context_pre_only = context_pre_only self.heads = out_dim // dim_head if out_dim is not None else heads self.norm_q = MochiRMSNorm(dim_head, eps, True) self.norm_k = MochiRMSNorm(dim_head, eps, True) self.norm_added_q = MochiRMSNorm(dim_head, eps, True) self.norm_added_k = MochiRMSNorm(dim_head, eps, True) self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias) self.to_k = nn.Linear(query_dim, self.inner_dim, bias=bias) self.to_v = nn.Linear(query_dim, self.inner_dim, bias=bias) self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) if self.context_pre_only is not None: self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) self.to_out = nn.ModuleList([]) self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)) self.to_out.append(nn.Dropout(dropout)) if not self.context_pre_only: self.to_add_out = nn.Linear(self.inner_dim, self.out_context_dim, bias=out_bias) self.processor = processor def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, **kwargs, ): return self.processor( self, hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, **kwargs, )
class_definition
41,494
43,957
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
772
class MochiAttnProcessor2_0: """Attention processor used in Mochi.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("MochiAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: "MochiAttention", hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) query = query.unflatten(2, (attn.heads, -1)) key = key.unflatten(2, (attn.heads, -1)) value = value.unflatten(2, (attn.heads, -1)) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) encoder_query = attn.add_q_proj(encoder_hidden_states) encoder_key = attn.add_k_proj(encoder_hidden_states) encoder_value = attn.add_v_proj(encoder_hidden_states) encoder_query = encoder_query.unflatten(2, (attn.heads, -1)) encoder_key = encoder_key.unflatten(2, (attn.heads, -1)) encoder_value = encoder_value.unflatten(2, (attn.heads, -1)) if attn.norm_added_q is not None: encoder_query = attn.norm_added_q(encoder_query) if attn.norm_added_k is not None: encoder_key = attn.norm_added_k(encoder_key) if image_rotary_emb is not None: def apply_rotary_emb(x, freqs_cos, freqs_sin): x_even = x[..., 0::2].float() x_odd = x[..., 1::2].float() cos = (x_even * freqs_cos - x_odd * freqs_sin).to(x.dtype) sin = (x_even * freqs_sin + x_odd * freqs_cos).to(x.dtype) return torch.stack([cos, sin], dim=-1).flatten(-2) query = apply_rotary_emb(query, *image_rotary_emb) key = apply_rotary_emb(key, *image_rotary_emb) query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2) encoder_query, encoder_key, encoder_value = ( encoder_query.transpose(1, 2), encoder_key.transpose(1, 2), encoder_value.transpose(1, 2), ) sequence_length = query.size(2) encoder_sequence_length = encoder_query.size(2) total_length = sequence_length + encoder_sequence_length batch_size, heads, _, dim = query.shape attn_outputs = [] for idx in range(batch_size): mask = attention_mask[idx][None, :] valid_prompt_token_indices = torch.nonzero(mask.flatten(), as_tuple=False).flatten() valid_encoder_query = encoder_query[idx : idx + 1, :, valid_prompt_token_indices, :] valid_encoder_key = encoder_key[idx : idx + 1, :, valid_prompt_token_indices, :] valid_encoder_value = encoder_value[idx : idx + 1, :, valid_prompt_token_indices, :] valid_query = torch.cat([query[idx : idx + 1], valid_encoder_query], dim=2) valid_key = torch.cat([key[idx : idx + 1], valid_encoder_key], dim=2) valid_value = torch.cat([value[idx : idx + 1], valid_encoder_value], dim=2) attn_output = F.scaled_dot_product_attention( valid_query, valid_key, valid_value, dropout_p=0.0, is_causal=False ) valid_sequence_length = attn_output.size(2) attn_output = F.pad(attn_output, (0, 0, 0, total_length - valid_sequence_length)) attn_outputs.append(attn_output) hidden_states = torch.cat(attn_outputs, dim=0) hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) hidden_states, encoder_hidden_states = hidden_states.split_with_sizes( (sequence_length, encoder_sequence_length), dim=1 ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if hasattr(attn, "to_add_out"): encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states
class_definition
43,960
48,254
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
773
class AttnProcessor: r""" Default processor for performing attention-related computations. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
48,257
51,006
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
774
class CustomDiffusionAttnProcessor(nn.Module): r""" Processor for implementing attention for the Custom Diffusion method. Args: train_kv (`bool`, defaults to `True`): Whether to newly train the key and value matrices corresponding to the text features. train_q_out (`bool`, defaults to `True`): Whether to newly train query matrices corresponding to the latent image features. hidden_size (`int`, *optional*, defaults to `None`): The hidden size of the attention layer. cross_attention_dim (`int`, *optional*, defaults to `None`): The number of channels in the `encoder_hidden_states`. out_bias (`bool`, defaults to `True`): Whether to include the bias parameter in `train_q_out`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. """ def __init__( self, train_kv: bool = True, train_q_out: bool = True, hidden_size: Optional[int] = None, cross_attention_dim: Optional[int] = None, out_bias: bool = True, dropout: float = 0.0, ): super().__init__() self.train_kv = train_kv self.train_q_out = train_q_out self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim # `_custom_diffusion` id for easy serialization and loading. if self.train_kv: self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) if self.train_q_out: self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) self.to_out_custom_diffusion = nn.ModuleList([]) self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) self.to_out_custom_diffusion.append(nn.Dropout(dropout)) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if self.train_q_out: query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype) else: query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype)) if encoder_hidden_states is None: crossattn = False encoder_hidden_states = hidden_states else: crossattn = True if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) if self.train_kv: key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) key = key.to(attn.to_q.weight.dtype) value = value.to(attn.to_q.weight.dtype) else: key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) if crossattn: detach = torch.ones_like(key) detach[:, :1, :] = detach[:, :1, :] * 0.0 key = detach * key + (1 - detach) * key.detach() value = detach * value + (1 - detach) * value.detach() query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) if self.train_q_out: # linear proj hidden_states = self.to_out_custom_diffusion[0](hidden_states) # dropout hidden_states = self.to_out_custom_diffusion[1](hidden_states) else: # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states
class_definition
51,009
55,415
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
775
class AttnAddedKVProcessor: r""" Processor for performing attention-related computations with extra learnable key and value matrices for the text encoder. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) query = attn.head_to_batch_dim(query) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) if not attn.only_cross_attention: key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) else: key = encoder_hidden_states_key_proj value = encoder_hidden_states_value_proj attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) hidden_states = hidden_states + residual return hidden_states
class_definition
55,418
58,327
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
776
class AttnAddedKVProcessor2_0: r""" Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra learnable key and value matrices for the text encoder. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) query = attn.head_to_batch_dim(query, out_dim=4) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4) encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4) if not attn.only_cross_attention: key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) key = attn.head_to_batch_dim(key, out_dim=4) value = attn.head_to_batch_dim(value, out_dim=4) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) else: key = encoder_hidden_states_key_proj value = encoder_hidden_states_value_proj # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1]) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) hidden_states = hidden_states + residual return hidden_states
class_definition
58,330
61,779
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
777
class JointAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, *args, **kwargs, ) -> torch.FloatTensor: residual = hidden_states batch_size = hidden_states.shape[0] # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # `context` projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) query = torch.cat([query, encoder_hidden_states_query_proj], dim=2) key = torch.cat([key, encoder_hidden_states_key_proj], dim=2) value = torch.cat([value, encoder_hidden_states_value_proj], dim=2) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: # Split the attention outputs. hidden_states, encoder_hidden_states = ( hidden_states[:, : residual.shape[1]], hidden_states[:, residual.shape[1] :], ) if not attn.context_pre_only: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if encoder_hidden_states is not None: return hidden_states, encoder_hidden_states else: return hidden_states
class_definition
61,782
65,402
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
778
class PAGJointAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGJointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: residual = hidden_states input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) context_input_ndim = encoder_hidden_states.ndim if context_input_ndim == 4: batch_size, channel, height, width = encoder_hidden_states.shape encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) # store the length of image patch sequences to create a mask that prevents interaction between patches # similar to making the self-attention map an identity matrix identity_block_size = hidden_states.shape[1] # chunk hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) encoder_hidden_states_org, encoder_hidden_states_ptb = encoder_hidden_states.chunk(2) ################## original path ################## batch_size = encoder_hidden_states_org.shape[0] # `sample` projections. query_org = attn.to_q(hidden_states_org) key_org = attn.to_k(hidden_states_org) value_org = attn.to_v(hidden_states_org) # `context` projections. encoder_hidden_states_org_query_proj = attn.add_q_proj(encoder_hidden_states_org) encoder_hidden_states_org_key_proj = attn.add_k_proj(encoder_hidden_states_org) encoder_hidden_states_org_value_proj = attn.add_v_proj(encoder_hidden_states_org) # attention query_org = torch.cat([query_org, encoder_hidden_states_org_query_proj], dim=1) key_org = torch.cat([key_org, encoder_hidden_states_org_key_proj], dim=1) value_org = torch.cat([value_org, encoder_hidden_states_org_value_proj], dim=1) inner_dim = key_org.shape[-1] head_dim = inner_dim // attn.heads query_org = query_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key_org = key_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value_org = value_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) hidden_states_org = F.scaled_dot_product_attention( query_org, key_org, value_org, dropout_p=0.0, is_causal=False ) hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query_org.dtype) # Split the attention outputs. hidden_states_org, encoder_hidden_states_org = ( hidden_states_org[:, : residual.shape[1]], hidden_states_org[:, residual.shape[1] :], ) # linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if not attn.context_pre_only: encoder_hidden_states_org = attn.to_add_out(encoder_hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) if context_input_ndim == 4: encoder_hidden_states_org = encoder_hidden_states_org.transpose(-1, -2).reshape( batch_size, channel, height, width ) ################## perturbed path ################## batch_size = encoder_hidden_states_ptb.shape[0] # `sample` projections. query_ptb = attn.to_q(hidden_states_ptb) key_ptb = attn.to_k(hidden_states_ptb) value_ptb = attn.to_v(hidden_states_ptb) # `context` projections. encoder_hidden_states_ptb_query_proj = attn.add_q_proj(encoder_hidden_states_ptb) encoder_hidden_states_ptb_key_proj = attn.add_k_proj(encoder_hidden_states_ptb) encoder_hidden_states_ptb_value_proj = attn.add_v_proj(encoder_hidden_states_ptb) # attention query_ptb = torch.cat([query_ptb, encoder_hidden_states_ptb_query_proj], dim=1) key_ptb = torch.cat([key_ptb, encoder_hidden_states_ptb_key_proj], dim=1) value_ptb = torch.cat([value_ptb, encoder_hidden_states_ptb_value_proj], dim=1) inner_dim = key_ptb.shape[-1] head_dim = inner_dim // attn.heads query_ptb = query_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key_ptb = key_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value_ptb = value_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # create a full mask with all entries set to 0 seq_len = query_ptb.size(2) full_mask = torch.zeros((seq_len, seq_len), device=query_ptb.device, dtype=query_ptb.dtype) # set the attention value between image patches to -inf full_mask[:identity_block_size, :identity_block_size] = float("-inf") # set the diagonal of the attention value between image patches to 0 full_mask[:identity_block_size, :identity_block_size].fill_diagonal_(0) # expand the mask to match the attention weights shape full_mask = full_mask.unsqueeze(0).unsqueeze(0) # Add batch and num_heads dimensions hidden_states_ptb = F.scaled_dot_product_attention( query_ptb, key_ptb, value_ptb, attn_mask=full_mask, dropout_p=0.0, is_causal=False ) hidden_states_ptb = hidden_states_ptb.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_ptb = hidden_states_ptb.to(query_ptb.dtype) # split the attention outputs. hidden_states_ptb, encoder_hidden_states_ptb = ( hidden_states_ptb[:, : residual.shape[1]], hidden_states_ptb[:, residual.shape[1] :], ) # linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if not attn.context_pre_only: encoder_hidden_states_ptb = attn.to_add_out(encoder_hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) if context_input_ndim == 4: encoder_hidden_states_ptb = encoder_hidden_states_ptb.transpose(-1, -2).reshape( batch_size, channel, height, width ) ################ concat ############### hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) encoder_hidden_states = torch.cat([encoder_hidden_states_org, encoder_hidden_states_ptb]) return hidden_states, encoder_hidden_states
class_definition
65,405
72,695
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
779
class PAGCFGJointAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGCFGJointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, *args, **kwargs, ) -> torch.FloatTensor: residual = hidden_states input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) context_input_ndim = encoder_hidden_states.ndim if context_input_ndim == 4: batch_size, channel, height, width = encoder_hidden_states.shape encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) identity_block_size = hidden_states.shape[ 1 ] # patch embeddings width * height (correspond to self-attention map width or height) # chunk hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) ( encoder_hidden_states_uncond, encoder_hidden_states_org, encoder_hidden_states_ptb, ) = encoder_hidden_states.chunk(3) encoder_hidden_states_org = torch.cat([encoder_hidden_states_uncond, encoder_hidden_states_org]) ################## original path ################## batch_size = encoder_hidden_states_org.shape[0] # `sample` projections. query_org = attn.to_q(hidden_states_org) key_org = attn.to_k(hidden_states_org) value_org = attn.to_v(hidden_states_org) # `context` projections. encoder_hidden_states_org_query_proj = attn.add_q_proj(encoder_hidden_states_org) encoder_hidden_states_org_key_proj = attn.add_k_proj(encoder_hidden_states_org) encoder_hidden_states_org_value_proj = attn.add_v_proj(encoder_hidden_states_org) # attention query_org = torch.cat([query_org, encoder_hidden_states_org_query_proj], dim=1) key_org = torch.cat([key_org, encoder_hidden_states_org_key_proj], dim=1) value_org = torch.cat([value_org, encoder_hidden_states_org_value_proj], dim=1) inner_dim = key_org.shape[-1] head_dim = inner_dim // attn.heads query_org = query_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key_org = key_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value_org = value_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) hidden_states_org = F.scaled_dot_product_attention( query_org, key_org, value_org, dropout_p=0.0, is_causal=False ) hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query_org.dtype) # Split the attention outputs. hidden_states_org, encoder_hidden_states_org = ( hidden_states_org[:, : residual.shape[1]], hidden_states_org[:, residual.shape[1] :], ) # linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if not attn.context_pre_only: encoder_hidden_states_org = attn.to_add_out(encoder_hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) if context_input_ndim == 4: encoder_hidden_states_org = encoder_hidden_states_org.transpose(-1, -2).reshape( batch_size, channel, height, width ) ################## perturbed path ################## batch_size = encoder_hidden_states_ptb.shape[0] # `sample` projections. query_ptb = attn.to_q(hidden_states_ptb) key_ptb = attn.to_k(hidden_states_ptb) value_ptb = attn.to_v(hidden_states_ptb) # `context` projections. encoder_hidden_states_ptb_query_proj = attn.add_q_proj(encoder_hidden_states_ptb) encoder_hidden_states_ptb_key_proj = attn.add_k_proj(encoder_hidden_states_ptb) encoder_hidden_states_ptb_value_proj = attn.add_v_proj(encoder_hidden_states_ptb) # attention query_ptb = torch.cat([query_ptb, encoder_hidden_states_ptb_query_proj], dim=1) key_ptb = torch.cat([key_ptb, encoder_hidden_states_ptb_key_proj], dim=1) value_ptb = torch.cat([value_ptb, encoder_hidden_states_ptb_value_proj], dim=1) inner_dim = key_ptb.shape[-1] head_dim = inner_dim // attn.heads query_ptb = query_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key_ptb = key_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value_ptb = value_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # create a full mask with all entries set to 0 seq_len = query_ptb.size(2) full_mask = torch.zeros((seq_len, seq_len), device=query_ptb.device, dtype=query_ptb.dtype) # set the attention value between image patches to -inf full_mask[:identity_block_size, :identity_block_size] = float("-inf") # set the diagonal of the attention value between image patches to 0 full_mask[:identity_block_size, :identity_block_size].fill_diagonal_(0) # expand the mask to match the attention weights shape full_mask = full_mask.unsqueeze(0).unsqueeze(0) # Add batch and num_heads dimensions hidden_states_ptb = F.scaled_dot_product_attention( query_ptb, key_ptb, value_ptb, attn_mask=full_mask, dropout_p=0.0, is_causal=False ) hidden_states_ptb = hidden_states_ptb.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_ptb = hidden_states_ptb.to(query_ptb.dtype) # split the attention outputs. hidden_states_ptb, encoder_hidden_states_ptb = ( hidden_states_ptb[:, : residual.shape[1]], hidden_states_ptb[:, residual.shape[1] :], ) # linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if not attn.context_pre_only: encoder_hidden_states_ptb = attn.to_add_out(encoder_hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) if context_input_ndim == 4: encoder_hidden_states_ptb = encoder_hidden_states_ptb.transpose(-1, -2).reshape( batch_size, channel, height, width ) ################ concat ############### hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) encoder_hidden_states = torch.cat([encoder_hidden_states_org, encoder_hidden_states_ptb]) return hidden_states, encoder_hidden_states
class_definition
72,698
80,242
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
780
class FusedJointAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, *args, **kwargs, ) -> torch.FloatTensor: residual = hidden_states input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) context_input_ndim = encoder_hidden_states.ndim if context_input_ndim == 4: batch_size, channel, height, width = encoder_hidden_states.shape encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size = encoder_hidden_states.shape[0] # `sample` projections. qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) # `context` projections. encoder_qkv = attn.to_added_qkv(encoder_hidden_states) split_size = encoder_qkv.shape[-1] // 3 ( encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj, ) = torch.split(encoder_qkv, split_size, dim=-1) # attention query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # Split the attention outputs. hidden_states, encoder_hidden_states = ( hidden_states[:, : residual.shape[1]], hidden_states[:, residual.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if not attn.context_pre_only: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if context_input_ndim == 4: encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) return hidden_states, encoder_hidden_states
class_definition
80,245
83,617
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
781
class XFormersJointAttnProcessor: r""" Processor for implementing memory efficient attention using xFormers. Args: attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. """ def __init__(self, attention_op: Optional[Callable] = None): self.attention_op = attention_op def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, *args, **kwargs, ) -> torch.FloatTensor: residual = hidden_states # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) query = attn.head_to_batch_dim(query).contiguous() key = attn.head_to_batch_dim(key).contiguous() value = attn.head_to_batch_dim(value).contiguous() if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # `context` projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = attn.head_to_batch_dim(encoder_hidden_states_query_proj).contiguous() encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj).contiguous() encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj).contiguous() if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) hidden_states = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale ) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.batch_to_head_dim(hidden_states) if encoder_hidden_states is not None: # Split the attention outputs. hidden_states, encoder_hidden_states = ( hidden_states[:, : residual.shape[1]], hidden_states[:, residual.shape[1] :], ) if not attn.context_pre_only: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if encoder_hidden_states is not None: return hidden_states, encoder_hidden_states else: return hidden_states
class_definition
83,620
87,184
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
782
class AllegroAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the Allegro model. It applies a normalization layer and rotary embedding on the query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AllegroAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # Apply RoPE if needed if image_rotary_emb is not None and not attn.is_cross_attention: from .embeddings import apply_rotary_emb_allegro query = apply_rotary_emb_allegro(query, image_rotary_emb[0], image_rotary_emb[1]) key = apply_rotary_emb_allegro(key, image_rotary_emb[0], image_rotary_emb[1]) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
87,187
91,027
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
783
class AuraFlowAttnProcessor2_0: """Attention processor used typically in processing Aura Flow.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention") and is_torch_version("<", "2.1"): raise ImportError( "AuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. " ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, *args, **kwargs, ) -> torch.FloatTensor: batch_size = hidden_states.shape[0] # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) # `context` projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) # Reshape. inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim) key = key.view(batch_size, -1, attn.heads, head_dim) value = value.view(batch_size, -1, attn.heads, head_dim) # Apply QK norm. if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Concatenate the projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj) query = torch.cat([encoder_hidden_states_query_proj, query], dim=1) key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) # Attention. hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # Split the attention outputs. if encoder_hidden_states is not None: hidden_states, encoder_hidden_states = ( hidden_states[:, encoder_hidden_states.shape[1] :], hidden_states[:, : encoder_hidden_states.shape[1]], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if encoder_hidden_states is not None: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) if encoder_hidden_states is not None: return hidden_states, encoder_hidden_states else: return hidden_states
class_definition
91,030
94,871
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
784
class FusedAuraFlowAttnProcessor2_0: """Attention processor used typically in processing Aura Flow with fused projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention") and is_torch_version("<", "2.1"): raise ImportError( "FusedAuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. " ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, *args, **kwargs, ) -> torch.FloatTensor: batch_size = hidden_states.shape[0] # `sample` projections. qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) # `context` projections. if encoder_hidden_states is not None: encoder_qkv = attn.to_added_qkv(encoder_hidden_states) split_size = encoder_qkv.shape[-1] // 3 ( encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj, ) = torch.split(encoder_qkv, split_size, dim=-1) # Reshape. inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim) key = key.view(batch_size, -1, attn.heads, head_dim) value = value.view(batch_size, -1, attn.heads, head_dim) # Apply QK norm. if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Concatenate the projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj) query = torch.cat([encoder_hidden_states_query_proj, query], dim=1) key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) # Attention. hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # Split the attention outputs. if encoder_hidden_states is not None: hidden_states, encoder_hidden_states = ( hidden_states[:, encoder_hidden_states.shape[1] :], hidden_states[:, : encoder_hidden_states.shape[1]], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if encoder_hidden_states is not None: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) if encoder_hidden_states is not None: return hidden_states, encoder_hidden_states else: return hidden_states
class_definition
94,874
98,859
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
785
class FluxAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states
class_definition
98,862
102,788
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
786
class FluxAttnProcessor2_0_NPU: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FluxAttnProcessor2_0_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0 and install torch NPU" ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) if query.dtype in (torch.float16, torch.bfloat16): hidden_states = torch_npu.npu_fusion_attention( query, key, value, attn.heads, input_layout="BNSD", pse=None, scale=1.0 / math.sqrt(query.shape[-1]), pre_tockens=65536, next_tockens=65536, keep_prob=1.0, sync=False, inner_precise=0, )[0] else: hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states
class_definition
102,791
107,319
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
787
class FusedFluxAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FusedFluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` # `context` projections. if encoder_hidden_states is not None: encoder_qkv = attn.to_added_qkv(encoder_hidden_states) split_size = encoder_qkv.shape[-1] // 3 ( encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj, ) = torch.split(encoder_qkv, split_size, dim=-1) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states
class_definition
107,322
111,394
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
788
class FusedFluxAttnProcessor2_0_NPU: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FluxAttnProcessor2_0_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0, and install torch NPU" ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` # `context` projections. if encoder_hidden_states is not None: encoder_qkv = attn.to_added_qkv(encoder_hidden_states) split_size = encoder_qkv.shape[-1] // 3 ( encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj, ) = torch.split(encoder_qkv, split_size, dim=-1) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) if query.dtype in (torch.float16, torch.bfloat16): hidden_states = torch_npu.npu_fusion_attention( query, key, value, attn.heads, input_layout="BNSD", pse=None, scale=1.0 / math.sqrt(query.shape[-1]), pre_tockens=65536, next_tockens=65536, keep_prob=1.0, sync=False, inner_precise=0, )[0] else: hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states
class_definition
111,397
116,039
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
789
class FluxIPAdapterJointAttnProcessor2_0(torch.nn.Module): """Flux Attention processor for IP-Adapter.""" def __init__( self, hidden_size: int, cross_attention_dim: int, num_tokens=(4,), scale=1.0, device=None, dtype=None ): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") self.scale = scale self.to_k_ip = nn.ModuleList( [ nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype) for _ in range(len(num_tokens)) ] ) self.to_v_ip = nn.ModuleList( [ nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype) for _ in range(len(num_tokens)) ] ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ip_hidden_states: Optional[List[torch.Tensor]] = None, ip_adapter_masks: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. hidden_states_query_proj = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads hidden_states_query_proj = hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: hidden_states_query_proj = attn.norm_q(hidden_states_query_proj) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, hidden_states_query_proj], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) # IP-adapter ip_query = hidden_states_query_proj ip_attn_output = None # for ip-adapter # TODO: support for multiple adapters for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip( ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip ): ip_key = to_k_ip(current_ip_hidden_states) ip_value = to_v_ip(current_ip_hidden_states) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 ip_attn_output = F.scaled_dot_product_attention( ip_query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) ip_attn_output = ip_attn_output.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ip_attn_output = scale * ip_attn_output ip_attn_output = ip_attn_output.to(ip_query.dtype) return hidden_states, encoder_hidden_states, ip_attn_output else: return hidden_states
class_definition
116,042
122,492
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
790
class CogVideoXAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on query and key vectors, but does not include spatial normalization. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.size(1) hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) if not attn.is_cross_attention: key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states, hidden_states = hidden_states.split( [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1 ) return hidden_states, encoder_hidden_states
class_definition
122,495
125,340
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
791
class FusedCogVideoXAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on query and key vectors, but does not include spatial normalization. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.size(1) hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) if not attn.is_cross_attention: key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states, hidden_states = hidden_states.split( [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1 ) return hidden_states, encoder_hidden_states
class_definition
125,343
128,218
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
792
class XFormersAttnAddedKVProcessor: r""" Processor for implementing memory efficient attention using xFormers. Args: attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. """ def __init__(self, attention_op: Optional[Callable] = None): self.attention_op = attention_op def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) query = attn.head_to_batch_dim(query) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) if not attn.only_cross_attention: key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) else: key = encoder_hidden_states_key_proj value = encoder_hidden_states_value_proj hidden_states = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale ) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) hidden_states = hidden_states + residual return hidden_states
class_definition
128,221
131,194
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
793
class XFormersAttnProcessor: r""" Processor for implementing memory efficient attention using xFormers. Args: attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. """ def __init__(self, attention_op: Optional[Callable] = None): self.attention_op = attention_op def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, key_tokens, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size) if attention_mask is not None: # expand our mask's singleton query_tokens dimension: # [batch*heads, 1, key_tokens] -> # [batch*heads, query_tokens, key_tokens] # so that it can be added as a bias onto the attention scores that xformers computes: # [batch*heads, query_tokens, key_tokens] # we do this explicitly because xformers doesn't broadcast the singleton dimension for us. _, query_tokens, _ = hidden_states.shape attention_mask = attention_mask.expand(-1, query_tokens, -1) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query).contiguous() key = attn.head_to_batch_dim(key).contiguous() value = attn.head_to_batch_dim(value).contiguous() hidden_states = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale ) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
131,197
135,144
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
794
class AttnProcessorNPU: r""" Processor for implementing flash attention using torch_npu. Torch_npu supports only fp16 and bf16 data types. If fp32 is used, F.scaled_dot_product_attention will be used for computation, but the acceleration effect on NPU is not significant. """ def __init__(self): if not is_torch_npu_available(): raise ImportError("AttnProcessorNPU requires torch_npu extensions and is supported only on npu devices.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) if query.dtype in (torch.float16, torch.bfloat16): hidden_states = torch_npu.npu_fusion_attention( query, key, value, attn.heads, input_layout="BNSD", pse=None, atten_mask=attention_mask, scale=1.0 / math.sqrt(query.shape[-1]), pre_tockens=65536, next_tockens=65536, keep_prob=1.0, sync=False, inner_precise=0, )[0] else: # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
135,147
139,570
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
795
class AttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
139,573
143,425
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
796
class XLAFlashAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention with pallas flash attention kernel if using `torch_xla`. """ def __init__(self, partition_spec: Optional[Tuple[Optional[str], ...]] = None): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "XLAFlashAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) if is_torch_xla_version("<", "2.3"): raise ImportError("XLA flash attention requires torch_xla version >= 2.3.") if is_spmd() and is_torch_xla_version("<", "2.4"): raise ImportError("SPMD support for XLA flash attention needs torch_xla version >= 2.4.") self.partition_spec = partition_spec def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 if all(tensor.shape[2] >= 4096 for tensor in [query, key, value]): if attention_mask is not None: attention_mask = attention_mask.view(batch_size, 1, 1, attention_mask.shape[-1]) # Convert mask to float and replace 0s with -inf and 1s with 0 attention_mask = ( attention_mask.float() .masked_fill(attention_mask == 0, float("-inf")) .masked_fill(attention_mask == 1, float(0.0)) ) # Apply attention mask to key key = key + attention_mask query /= math.sqrt(query.shape[3]) partition_spec = self.partition_spec if is_spmd() else None hidden_states = flash_attention(query, key, value, causal=False, partition_spec=partition_spec) else: logger.warning( "Unable to use the flash attention pallas kernel API call due to QKV sequence length < 4096." ) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
143,428
148,346
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
797
class XLAFluxFlashAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention with pallas flash attention kernel if using `torch_xla`. """ def __init__(self, partition_spec: Optional[Tuple[Optional[str], ...]] = None): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "XLAFlashAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) if is_torch_xla_version("<", "2.3"): raise ImportError("XLA flash attention requires torch_xla version >= 2.3.") if is_spmd() and is_torch_xla_version("<", "2.4"): raise ImportError("SPMD support for XLA flash attention needs torch_xla version >= 2.4.") self.partition_spec = partition_spec def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) query /= math.sqrt(head_dim) hidden_states = flash_attention(query, key, value, causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states
class_definition
148,349
152,754
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
798
class MochiVaeAttnProcessor2_0: r""" Attention processor used in Mochi VAE. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states is_single_frame = hidden_states.shape[1] == 1 batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if is_single_frame: hidden_states = attn.to_v(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=attn.is_causal ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
152,757
155,845
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
799