text
stringlengths
41
89.8k
type
stringclasses
1 value
start
int64
79
258k
end
int64
342
260k
depth
int64
0
0
filepath
stringlengths
81
164
parent_class
null
class_index
int64
0
1.38k
class FourierEmbedder(nn.Module): def __init__(self, num_freqs=64, temperature=100): super().__init__() self.num_freqs = num_freqs self.temperature = temperature freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs) freq_bands = freq_bands[None, None, None] self.register_buffer("freq_bands", freq_bands, persistent=False) def __call__(self, x): x = self.freq_bands * x.unsqueeze(-1) return torch.stack((x.sin(), x.cos()), dim=-1).permute(0, 1, 3, 4, 2).reshape(*x.shape[:2], -1)
class_definition
5,901
6,467
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py
null
400
class GLIGENTextBoundingboxProjection(nn.Module): def __init__(self, positive_len, out_dim, feature_type, fourier_freqs=8): super().__init__() self.positive_len = positive_len self.out_dim = out_dim self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs) self.position_dim = fourier_freqs * 2 * 4 # 2: sin/cos, 4: xyxy if isinstance(out_dim, tuple): out_dim = out_dim[0] if feature_type == "text-only": self.linears = nn.Sequential( nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim), ) self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) elif feature_type == "text-image": self.linears_text = nn.Sequential( nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim), ) self.linears_image = nn.Sequential( nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim), ) self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim])) def forward( self, boxes, masks, positive_embeddings=None, phrases_masks=None, image_masks=None, phrases_embeddings=None, image_embeddings=None, ): masks = masks.unsqueeze(-1) xyxy_embedding = self.fourier_embedder(boxes) xyxy_null = self.null_position_feature.view(1, 1, -1) xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null if positive_embeddings: positive_null = self.null_positive_feature.view(1, 1, -1) positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1)) else: phrases_masks = phrases_masks.unsqueeze(-1) image_masks = image_masks.unsqueeze(-1) text_null = self.null_text_feature.view(1, 1, -1) image_null = self.null_image_feature.view(1, 1, -1) phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1)) objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1)) objs = torch.cat([objs_text, objs_image], dim=1) return objs
class_definition
6,470
9,617
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py
null
401
class UNetFlatConditionModel(ModelMixin, ConfigMixin): r""" A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample shaped output. This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Parameters: sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): Height and width of input/output sample. in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample. out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. flip_sin_to_cos (`bool`, *optional*, defaults to `False`): Whether to flip the sin to cos in the time embedding. freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "DownBlockFlat")`): The tuple of downsample blocks to use. mid_block_type (`str`, *optional*, defaults to `"UNetMidBlockFlatCrossAttn"`): Block type for middle of UNet, it can be one of `UNetMidBlockFlatCrossAttn`, `UNetMidBlockFlat`, or `UNetMidBlockFlatSimpleCrossAttn`. If `None`, the mid block layer is skipped. up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat")`): The tuple of upsample blocks to use. only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`): Whether to include self-attention in the basic transformer blocks, see [`~models.attention.BasicTransformerBlock`]. block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): The tuple of output channels for each block. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. If `None`, normalization and activation layers is skipped in post-processing. norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): The dimension of the cross attention features. transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for [`~models.unet_2d_blocks.CrossAttnDownBlockFlat`], [`~models.unet_2d_blocks.CrossAttnUpBlockFlat`], [`~models.unet_2d_blocks.UNetMidBlockFlatCrossAttn`]. reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None): The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for [`~models.unet_2d_blocks.CrossAttnDownBlockFlat`], [`~models.unet_2d_blocks.CrossAttnUpBlockFlat`], [`~models.unet_2d_blocks.UNetMidBlockFlatCrossAttn`]. encoder_hid_dim (`int`, *optional*, defaults to None): If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` dimension to `cross_attention_dim`. encoder_hid_dim_type (`str`, *optional*, defaults to `None`): If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. num_attention_heads (`int`, *optional*): The number of attention heads. If not defined, defaults to `attention_head_dim` resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config for ResNet blocks (see [`~models.resnet.ResnetBlockFlat`]). Choose from `default` or `scale_shift`. class_embed_type (`str`, *optional*, defaults to `None`): The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`, `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. addition_embed_type (`str`, *optional*, defaults to `None`): Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or "text". "text" will use the `TextTimeEmbedding` layer. addition_time_embed_dim: (`int`, *optional*, defaults to `None`): Dimension for the timestep embeddings. num_class_embeds (`int`, *optional*, defaults to `None`): Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing class conditioning with `class_embed_type` equal to `None`. time_embedding_type (`str`, *optional*, defaults to `positional`): The type of position embedding to use for timesteps. Choose from `positional` or `fourier`. time_embedding_dim (`int`, *optional*, defaults to `None`): An optional override for the dimension of the projected time embedding. time_embedding_act_fn (`str`, *optional*, defaults to `None`): Optional activation function to use only once on the time embeddings before they are passed to the rest of the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`. timestep_post_act (`str`, *optional*, defaults to `None`): The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`. time_cond_proj_dim (`int`, *optional*, defaults to `None`): The dimension of `cond_proj` layer in the timestep embedding. conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when `class_embed_type="projection"`. class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time embeddings with the class embeddings. mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`): Whether to use cross attention with the mid block when using the `UNetMidBlockFlatSimpleCrossAttn`. If `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False` otherwise. """ _supports_gradient_checkpointing = True _no_split_modules = ["BasicTransformerBlock", "ResnetBlockFlat", "CrossAttnUpBlockFlat"] @register_to_config def __init__( self, sample_size: Optional[int] = None, in_channels: int = 4, out_channels: int = 4, center_input_sample: bool = False, flip_sin_to_cos: bool = True, freq_shift: int = 0, down_block_types: Tuple[str] = ( "CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "DownBlockFlat", ), mid_block_type: Optional[str] = "UNetMidBlockFlatCrossAttn", up_block_types: Tuple[str] = ( "UpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat", ), only_cross_attention: Union[bool, Tuple[bool]] = False, block_out_channels: Tuple[int] = (320, 640, 1280, 1280), layers_per_block: Union[int, Tuple[int]] = 2, downsample_padding: int = 1, mid_block_scale_factor: float = 1, dropout: float = 0.0, act_fn: str = "silu", norm_num_groups: Optional[int] = 32, norm_eps: float = 1e-5, cross_attention_dim: Union[int, Tuple[int]] = 1280, transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None, encoder_hid_dim: Optional[int] = None, encoder_hid_dim_type: Optional[str] = None, attention_head_dim: Union[int, Tuple[int]] = 8, num_attention_heads: Optional[Union[int, Tuple[int]]] = None, dual_cross_attention: bool = False, use_linear_projection: bool = False, class_embed_type: Optional[str] = None, addition_embed_type: Optional[str] = None, addition_time_embed_dim: Optional[int] = None, num_class_embeds: Optional[int] = None, upcast_attention: bool = False, resnet_time_scale_shift: str = "default", resnet_skip_time_act: bool = False, resnet_out_scale_factor: int = 1.0, time_embedding_type: str = "positional", time_embedding_dim: Optional[int] = None, time_embedding_act_fn: Optional[str] = None, timestep_post_act: Optional[str] = None, time_cond_proj_dim: Optional[int] = None, conv_in_kernel: int = 3, conv_out_kernel: int = 3, projection_class_embeddings_input_dim: Optional[int] = None, attention_type: str = "default", class_embeddings_concat: bool = False, mid_block_only_cross_attention: Optional[bool] = None, cross_attention_norm: Optional[str] = None, addition_embed_type_num_heads=64, ): super().__init__() self.sample_size = sample_size if num_attention_heads is not None: raise ValueError( "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. num_attention_heads = num_attention_heads or attention_head_dim # Check inputs if len(down_block_types) != len(up_block_types): raise ValueError( f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." ) if len(block_out_channels) != len(down_block_types): raise ValueError( f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." ) if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): raise ValueError( f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." ) if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): raise ValueError( f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." ) if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): raise ValueError( f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." ) if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): raise ValueError( f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." ) if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): raise ValueError( f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." ) if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None: for layer_number_per_block in transformer_layers_per_block: if isinstance(layer_number_per_block, list): raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.") # input conv_in_padding = (conv_in_kernel - 1) // 2 self.conv_in = LinearMultiDim( in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding ) # time if time_embedding_type == "fourier": time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 if time_embed_dim % 2 != 0: raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.") self.time_proj = GaussianFourierProjection( time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos ) timestep_input_dim = time_embed_dim elif time_embedding_type == "positional": time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) timestep_input_dim = block_out_channels[0] else: raise ValueError( f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." ) self.time_embedding = TimestepEmbedding( timestep_input_dim, time_embed_dim, act_fn=act_fn, post_act_fn=timestep_post_act, cond_proj_dim=time_cond_proj_dim, ) if encoder_hid_dim_type is None and encoder_hid_dim is not None: encoder_hid_dim_type = "text_proj" self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") if encoder_hid_dim is None and encoder_hid_dim_type is not None: raise ValueError( f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." ) if encoder_hid_dim_type == "text_proj": self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) elif encoder_hid_dim_type == "text_image_proj": # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)` self.encoder_hid_proj = TextImageProjection( text_embed_dim=encoder_hid_dim, image_embed_dim=cross_attention_dim, cross_attention_dim=cross_attention_dim, ) elif encoder_hid_dim_type == "image_proj": # Kandinsky 2.2 self.encoder_hid_proj = ImageProjection( image_embed_dim=encoder_hid_dim, cross_attention_dim=cross_attention_dim, ) elif encoder_hid_dim_type is not None: raise ValueError( f"`encoder_hid_dim_type`: {encoder_hid_dim_type} must be None, 'text_proj', 'text_image_proj' or 'image_proj'." ) else: self.encoder_hid_proj = None # class embedding if class_embed_type is None and num_class_embeds is not None: self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) elif class_embed_type == "timestep": self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) elif class_embed_type == "identity": self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) elif class_embed_type == "projection": if projection_class_embeddings_input_dim is None: raise ValueError( "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" ) # The projection `class_embed_type` is the same as the timestep `class_embed_type` except # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings # 2. it projects from an arbitrary input dimension. # # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. # As a result, `TimestepEmbedding` can be passed arbitrary vectors. self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) elif class_embed_type == "simple_projection": if projection_class_embeddings_input_dim is None: raise ValueError( "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" ) self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) else: self.class_embedding = None if addition_embed_type == "text": if encoder_hid_dim is not None: text_time_embedding_from_dim = encoder_hid_dim else: text_time_embedding_from_dim = cross_attention_dim self.add_embedding = TextTimeEmbedding( text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads ) elif addition_embed_type == "text_image": # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)` self.add_embedding = TextImageTimeEmbedding( text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim ) elif addition_embed_type == "text_time": self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) elif addition_embed_type == "image": # Kandinsky 2.2 self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) elif addition_embed_type == "image_hint": # Kandinsky 2.2 ControlNet self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) elif addition_embed_type is not None: raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") if time_embedding_act_fn is None: self.time_embed_act = None else: self.time_embed_act = get_activation(time_embedding_act_fn) self.down_blocks = nn.ModuleList([]) self.up_blocks = nn.ModuleList([]) if isinstance(only_cross_attention, bool): if mid_block_only_cross_attention is None: mid_block_only_cross_attention = only_cross_attention only_cross_attention = [only_cross_attention] * len(down_block_types) if mid_block_only_cross_attention is None: mid_block_only_cross_attention = False if isinstance(num_attention_heads, int): num_attention_heads = (num_attention_heads,) * len(down_block_types) if isinstance(attention_head_dim, int): attention_head_dim = (attention_head_dim,) * len(down_block_types) if isinstance(cross_attention_dim, int): cross_attention_dim = (cross_attention_dim,) * len(down_block_types) if isinstance(layers_per_block, int): layers_per_block = [layers_per_block] * len(down_block_types) if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) if class_embeddings_concat: # The time embeddings are concatenated with the class embeddings. The dimension of the # time embeddings passed to the down, middle, and up blocks is twice the dimension of the # regular time embeddings blocks_time_embed_dim = time_embed_dim * 2 else: blocks_time_embed_dim = time_embed_dim # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=layers_per_block[i], transformer_layers_per_block=transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, temb_channels=blocks_time_embed_dim, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim[i], num_attention_heads=num_attention_heads[i], downsample_padding=downsample_padding, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, attention_type=attention_type, resnet_skip_time_act=resnet_skip_time_act, resnet_out_scale_factor=resnet_out_scale_factor, cross_attention_norm=cross_attention_norm, attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, dropout=dropout, ) self.down_blocks.append(down_block) # mid if mid_block_type == "UNetMidBlockFlatCrossAttn": self.mid_block = UNetMidBlockFlatCrossAttn( transformer_layers_per_block=transformer_layers_per_block[-1], in_channels=block_out_channels[-1], temb_channels=blocks_time_embed_dim, dropout=dropout, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_time_scale_shift=resnet_time_scale_shift, cross_attention_dim=cross_attention_dim[-1], num_attention_heads=num_attention_heads[-1], resnet_groups=norm_num_groups, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, attention_type=attention_type, ) elif mid_block_type == "UNetMidBlockFlatSimpleCrossAttn": self.mid_block = UNetMidBlockFlatSimpleCrossAttn( in_channels=block_out_channels[-1], temb_channels=blocks_time_embed_dim, dropout=dropout, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, cross_attention_dim=cross_attention_dim[-1], attention_head_dim=attention_head_dim[-1], resnet_groups=norm_num_groups, resnet_time_scale_shift=resnet_time_scale_shift, skip_time_act=resnet_skip_time_act, only_cross_attention=mid_block_only_cross_attention, cross_attention_norm=cross_attention_norm, ) elif mid_block_type == "UNetMidBlockFlat": self.mid_block = UNetMidBlockFlat( in_channels=block_out_channels[-1], temb_channels=blocks_time_embed_dim, dropout=dropout, num_layers=0, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_groups=norm_num_groups, resnet_time_scale_shift=resnet_time_scale_shift, add_attention=False, ) elif mid_block_type is None: self.mid_block = None else: raise ValueError(f"unknown mid_block_type : {mid_block_type}") # count how many layers upsample the images self.num_upsamplers = 0 # up reversed_block_out_channels = list(reversed(block_out_channels)) reversed_num_attention_heads = list(reversed(num_attention_heads)) reversed_layers_per_block = list(reversed(layers_per_block)) reversed_cross_attention_dim = list(reversed(cross_attention_dim)) reversed_transformer_layers_per_block = ( list(reversed(transformer_layers_per_block)) if reverse_transformer_layers_per_block is None else reverse_transformer_layers_per_block ) only_cross_attention = list(reversed(only_cross_attention)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): is_final_block = i == len(block_out_channels) - 1 prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] # add upsample block for all BUT final layer if not is_final_block: add_upsample = True self.num_upsamplers += 1 else: add_upsample = False up_block = get_up_block( up_block_type, num_layers=reversed_layers_per_block[i] + 1, transformer_layers_per_block=reversed_transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=blocks_time_embed_dim, add_upsample=add_upsample, resnet_eps=norm_eps, resnet_act_fn=act_fn, resolution_idx=i, resnet_groups=norm_num_groups, cross_attention_dim=reversed_cross_attention_dim[i], num_attention_heads=reversed_num_attention_heads[i], dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, attention_type=attention_type, resnet_skip_time_act=resnet_skip_time_act, resnet_out_scale_factor=resnet_out_scale_factor, cross_attention_norm=cross_attention_norm, attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, dropout=dropout, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out if norm_num_groups is not None: self.conv_norm_out = nn.GroupNorm( num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps ) self.conv_act = get_activation(act_fn) else: self.conv_norm_out = None self.conv_act = None conv_out_padding = (conv_out_kernel - 1) // 2 self.conv_out = LinearMultiDim( block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding ) if attention_type in ["gated", "gated-text-image"]: positive_len = 768 if isinstance(cross_attention_dim, int): positive_len = cross_attention_dim elif isinstance(cross_attention_dim, (list, tuple)): positive_len = cross_attention_dim[0] feature_type = "text-only" if attention_type == "gated" else "text-image" self.position_net = GLIGENTextBoundingboxProjection( positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type ) @property def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) def set_attention_slice(self, slice_size): r""" Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor in slices to compute attention in several steps. This is useful for saving some memory in exchange for a small decrease in speed. Args: slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ sliceable_head_dims = [] def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): if hasattr(module, "set_attention_slice"): sliceable_head_dims.append(module.sliceable_head_dim) for child in module.children(): fn_recursive_retrieve_sliceable_dims(child) # retrieve number of attention layers for module in self.children(): fn_recursive_retrieve_sliceable_dims(module) num_sliceable_layers = len(sliceable_head_dims) if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory slice_size = [dim // 2 for dim in sliceable_head_dims] elif slice_size == "max": # make smallest slice possible slice_size = num_sliceable_layers * [1] slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size if len(slice_size) != len(sliceable_head_dims): raise ValueError( f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." ) for i in range(len(slice_size)): size = slice_size[i] dim = sliceable_head_dims[i] if size is not None and size > dim: raise ValueError(f"size {size} has to be smaller or equal to {dim}.") # Recursively walk through all the children. # Any children which exposes the set_attention_slice method # gets the message def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): if hasattr(module, "set_attention_slice"): module.set_attention_slice(slice_size.pop()) for child in module.children(): fn_recursive_set_attention_slice(child, slice_size) reversed_slice_size = list(reversed(slice_size)) for module in self.children(): fn_recursive_set_attention_slice(module, reversed_slice_size) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def enable_freeu(self, s1, s2, b1, b2): r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497. The suffixes after the scaling factors represent the stage blocks where they are being applied. Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. Args: s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process. s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process. b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. """ for i, upsample_block in enumerate(self.up_blocks): setattr(upsample_block, "s1", s1) setattr(upsample_block, "s2", s2) setattr(upsample_block, "b1", b1) setattr(upsample_block, "b2", b2) def disable_freeu(self): """Disables the FreeU mechanism.""" freeu_keys = {"s1", "s2", "b1", "b2"} for i, upsample_block in enumerate(self.up_blocks): for k in freeu_keys: if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: setattr(upsample_block, k, None) def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def unload_lora(self): """Unloads LoRA weights.""" deprecate( "unload_lora", "0.28.0", "Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().", ) for module in self.modules(): if hasattr(module, "set_lora_layer"): module.set_lora_layer(None) def forward( self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, class_labels: Optional[torch.Tensor] = None, timestep_cond: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, mid_block_additional_residual: Optional[torch.Tensor] = None, down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, encoder_attention_mask: Optional[torch.Tensor] = None, return_dict: bool = True, ) -> Union[UNet2DConditionOutput, Tuple]: r""" The [`UNetFlatConditionModel`] forward method. Args: sample (`torch.Tensor`): The noisy input tensor with the following shape `(batch, channel, height, width)`. timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input. encoder_hidden_states (`torch.Tensor`): The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. class_labels (`torch.Tensor`, *optional*, defaults to `None`): Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`): Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed through the `self.time_embedding` layer to obtain the timestep embeddings. attention_mask (`torch.Tensor`, *optional*, defaults to `None`): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). added_cond_kwargs: (`dict`, *optional*): A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that are passed along to the UNet blocks. down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*): A tuple of tensors that if specified are added to the residuals of down unet blocks. mid_block_additional_residual: (`torch.Tensor`, *optional*): A tensor that if specified is added to the residual of the middle unet block. encoder_attention_mask (`torch.Tensor`): A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. added_cond_kwargs: (`dict`, *optional*): A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that are passed along to the UNet blocks. down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*): additional residuals to be added to UNet long skip connections from down blocks to up blocks for example from ControlNet side model(s) mid_block_additional_residual (`torch.Tensor`, *optional*): additional residual to be added to UNet mid block output, for example from ControlNet side model down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*): additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s) Returns: [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise a `tuple` is returned where the first element is the sample tensor. """ # By default samples have to be AT least a multiple of the overall upsampling factor. # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). # However, the upsampling interpolation output size can be forced to fit any upsampling size # on the fly if necessary. default_overall_up_factor = 2**self.num_upsamplers # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` forward_upsample_size = False upsample_size = None for dim in sample.shape[-2:]: if dim % default_overall_up_factor != 0: # Forward upsample size to force interpolation output size. forward_upsample_size = True break # ensure attention_mask is a bias, and give it a singleton query_tokens dimension # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None: encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 0. center input if necessary if self.config.center_input_sample: sample = 2 * sample - 1.0 # 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) t_emb = self.time_proj(timesteps) # `Timesteps` does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=sample.dtype) emb = self.time_embedding(t_emb, timestep_cond) aug_emb = None if self.class_embedding is not None: if class_labels is None: raise ValueError("class_labels should be provided when num_class_embeds > 0") if self.config.class_embed_type == "timestep": class_labels = self.time_proj(class_labels) # `Timesteps` does not contain any weights and will always return f32 tensors # there might be better ways to encapsulate this. class_labels = class_labels.to(dtype=sample.dtype) class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) if self.config.class_embeddings_concat: emb = torch.cat([emb, class_emb], dim=-1) else: emb = emb + class_emb if self.config.addition_embed_type == "text": aug_emb = self.add_embedding(encoder_hidden_states) elif self.config.addition_embed_type == "text_image": # Kandinsky 2.1 - style if "image_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" ) image_embs = added_cond_kwargs.get("image_embeds") text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) aug_emb = self.add_embedding(text_embs, image_embs) elif self.config.addition_embed_type == "text_time": # SDXL - style if "text_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" ) text_embeds = added_cond_kwargs.get("text_embeds") if "time_ids" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" ) time_ids = added_cond_kwargs.get("time_ids") time_embeds = self.add_time_proj(time_ids.flatten()) time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) add_embeds = add_embeds.to(emb.dtype) aug_emb = self.add_embedding(add_embeds) elif self.config.addition_embed_type == "image": # Kandinsky 2.2 - style if "image_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" ) image_embs = added_cond_kwargs.get("image_embeds") aug_emb = self.add_embedding(image_embs) elif self.config.addition_embed_type == "image_hint": # Kandinsky 2.2 - style if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" ) image_embs = added_cond_kwargs.get("image_embeds") hint = added_cond_kwargs.get("hint") aug_emb, hint = self.add_embedding(image_embs, hint) sample = torch.cat([sample, hint], dim=1) emb = emb + aug_emb if aug_emb is not None else emb if self.time_embed_act is not None: emb = self.time_embed_act(emb) if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": # Kandinsky 2.1 - style if "image_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" ) image_embeds = added_cond_kwargs.get("image_embeds") encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": # Kandinsky 2.2 - style if "image_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" ) image_embeds = added_cond_kwargs.get("image_embeds") encoder_hidden_states = self.encoder_hid_proj(image_embeds) elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj": if "image_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" ) image_embeds = added_cond_kwargs.get("image_embeds") image_embeds = self.encoder_hid_proj(image_embeds) encoder_hidden_states = (encoder_hidden_states, image_embeds) # 2. pre-process sample = self.conv_in(sample) # 2.5 GLIGEN position net if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: cross_attention_kwargs = cross_attention_kwargs.copy() gligen_args = cross_attention_kwargs.pop("gligen") cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} # 3. down lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets is_adapter = down_intrablock_additional_residuals is not None # maintain backward compatibility for legacy usage, where # T2I-Adapter and ControlNet both use down_block_additional_residuals arg # but can only use one or the other if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: deprecate( "T2I should not use down_block_additional_residuals", "1.3.0", "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", standard_warn=False, ) down_intrablock_additional_residuals = down_block_additional_residuals is_adapter = True down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: # For t2i-adapter CrossAttnDownBlockFlat additional_residuals = {} if is_adapter and len(down_intrablock_additional_residuals) > 0: additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask, **additional_residuals, ) else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb) if is_adapter and len(down_intrablock_additional_residuals) > 0: sample += down_intrablock_additional_residuals.pop(0) down_block_res_samples += res_samples if is_controlnet: new_down_block_res_samples = () for down_block_res_sample, down_block_additional_residual in zip( down_block_res_samples, down_block_additional_residuals ): down_block_res_sample = down_block_res_sample + down_block_additional_residual new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) down_block_res_samples = new_down_block_res_samples # 4. mid if self.mid_block is not None: if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: sample = self.mid_block( sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask, ) else: sample = self.mid_block(sample, emb) # To support T2I-Adapter-XL if ( is_adapter and len(down_intrablock_additional_residuals) > 0 and sample.shape == down_intrablock_additional_residuals[0].shape ): sample += down_intrablock_additional_residuals.pop(0) if is_controlnet: sample = sample + mid_block_additional_residual # 5. up for i, upsample_block in enumerate(self.up_blocks): is_final_block = i == len(self.up_blocks) - 1 res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # if we have not reached the final block and need to forward the # upsample size, we do it here if not is_final_block and forward_upsample_size: upsample_size = down_block_res_samples[-1].shape[2:] if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, upsample_size=upsample_size, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, ) else: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, scale=lora_scale, ) # 6. post-process if self.conv_norm_out: sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (sample,) return UNet2DConditionOutput(sample=sample)
class_definition
9,620
71,422
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py
null
402
class LinearMultiDim(nn.Linear): def __init__(self, in_features, out_features=None, second_dim=4, *args, **kwargs): in_features = [in_features, second_dim, 1] if isinstance(in_features, int) else list(in_features) if out_features is None: out_features = in_features out_features = [out_features, second_dim, 1] if isinstance(out_features, int) else list(out_features) self.in_features_multidim = in_features self.out_features_multidim = out_features super().__init__(np.array(in_features).prod(), np.array(out_features).prod()) def forward(self, input_tensor, *args, **kwargs): shape = input_tensor.shape n_dim = len(self.in_features_multidim) input_tensor = input_tensor.reshape(*shape[0:-n_dim], self.in_features) output_tensor = super().forward(input_tensor) output_tensor = output_tensor.view(*shape[0:-n_dim], *self.out_features_multidim) return output_tensor
class_definition
71,425
72,406
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py
null
403
class ResnetBlockFlat(nn.Module): def __init__( self, *, in_channels, out_channels=None, dropout=0.0, temb_channels=512, groups=32, groups_out=None, pre_norm=True, eps=1e-6, time_embedding_norm="default", use_in_shortcut=None, second_dim=4, **kwargs, ): super().__init__() self.pre_norm = pre_norm self.pre_norm = True in_channels = [in_channels, second_dim, 1] if isinstance(in_channels, int) else list(in_channels) self.in_channels_prod = np.array(in_channels).prod() self.channels_multidim = in_channels if out_channels is not None: out_channels = [out_channels, second_dim, 1] if isinstance(out_channels, int) else list(out_channels) out_channels_prod = np.array(out_channels).prod() self.out_channels_multidim = out_channels else: out_channels_prod = self.in_channels_prod self.out_channels_multidim = self.channels_multidim self.time_embedding_norm = time_embedding_norm if groups_out is None: groups_out = groups self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=self.in_channels_prod, eps=eps, affine=True) self.conv1 = torch.nn.Conv2d(self.in_channels_prod, out_channels_prod, kernel_size=1, padding=0) if temb_channels is not None: self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels_prod) else: self.time_emb_proj = None self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels_prod, eps=eps, affine=True) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels_prod, out_channels_prod, kernel_size=1, padding=0) self.nonlinearity = nn.SiLU() self.use_in_shortcut = ( self.in_channels_prod != out_channels_prod if use_in_shortcut is None else use_in_shortcut ) self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = torch.nn.Conv2d( self.in_channels_prod, out_channels_prod, kernel_size=1, stride=1, padding=0 ) def forward(self, input_tensor, temb): shape = input_tensor.shape n_dim = len(self.channels_multidim) input_tensor = input_tensor.reshape(*shape[0:-n_dim], self.in_channels_prod, 1, 1) input_tensor = input_tensor.view(-1, self.in_channels_prod, 1, 1) hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv1(hidden_states) if temb is not None: temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = input_tensor + hidden_states output_tensor = output_tensor.view(*shape[0:-n_dim], -1) output_tensor = output_tensor.view(*shape[0:-n_dim], *self.out_channels_multidim) return output_tensor
class_definition
72,409
75,878
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py
null
404
class DownBlockFlat(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor: float = 1.0, add_downsample: bool = True, downsample_padding: int = 1, ): super().__init__() resnets = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlockFlat( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.resnets = nn.ModuleList(resnets) if add_downsample: self.downsamplers = nn.ModuleList( [ LinearMultiDim( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: output_states = () for resnet in self.resnets: if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward if is_torch_version(">=", "1.11.0"): hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, use_reentrant=False ) else: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb ) else: hidden_states = resnet(hidden_states, temb) output_states = output_states + (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states = output_states + (hidden_states,) return hidden_states, output_states
class_definition
75,881
78,877
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py
null
405
class CrossAttnDownBlockFlat(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, transformer_layers_per_block: Union[int, Tuple[int]] = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, num_attention_heads: int = 1, cross_attention_dim: int = 1280, output_scale_factor: float = 1.0, downsample_padding: int = 1, add_downsample: bool = True, dual_cross_attention: bool = False, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, attention_type: str = "default", ): super().__init__() resnets = [] attentions = [] self.has_cross_attention = True self.num_attention_heads = num_attention_heads if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = [transformer_layers_per_block] * num_layers for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlockFlat( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) if not dual_cross_attention: attentions.append( Transformer2DModel( num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, attention_type=attention_type, ) ) else: attentions.append( DualTransformer2DModel( num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) if add_downsample: self.downsamplers = nn.ModuleList( [ LinearMultiDim( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.Tensor] = None, additional_residuals: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: output_states = () blocks = list(zip(self.resnets, self.attentions)) for i, (resnet, attn) in enumerate(blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] else: hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] # apply additional residuals to the output of the last pair of resnet and attention blocks if i == len(blocks) - 1 and additional_residuals is not None: hidden_states = hidden_states + additional_residuals output_states = output_states + (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states = output_states + (hidden_states,) return hidden_states, output_states
class_definition
78,880
85,267
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py
null
406
class UpBlockFlat(nn.Module): def __init__( self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, resolution_idx: Optional[int] = None, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor: float = 1.0, add_upsample: bool = True, ): super().__init__() resnets = [] for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlockFlat( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.resnets = nn.ModuleList(resnets) if add_upsample: self.upsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None self.gradient_checkpointing = False self.resolution_idx = resolution_idx def forward( self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor] = None, upsample_size: Optional[int] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) is_freeu_enabled = ( getattr(self, "s1", None) and getattr(self, "s2", None) and getattr(self, "b1", None) and getattr(self, "b2", None) ) for resnet in self.resnets: # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] # FreeU: Only operate on the first two stages if is_freeu_enabled: hidden_states, res_hidden_states = apply_freeu( self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2, ) hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward if is_torch_version(">=", "1.11.0"): hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, use_reentrant=False ) else: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb ) else: hidden_states = resnet(hidden_states, temb) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states
class_definition
85,420
89,705
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py
null
407
class CrossAttnUpBlockFlat(nn.Module): def __init__( self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, resolution_idx: Optional[int] = None, dropout: float = 0.0, num_layers: int = 1, transformer_layers_per_block: Union[int, Tuple[int]] = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, num_attention_heads: int = 1, cross_attention_dim: int = 1280, output_scale_factor: float = 1.0, add_upsample: bool = True, dual_cross_attention: bool = False, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, attention_type: str = "default", ): super().__init__() resnets = [] attentions = [] self.has_cross_attention = True self.num_attention_heads = num_attention_heads if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = [transformer_layers_per_block] * num_layers for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlockFlat( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) if not dual_cross_attention: attentions.append( Transformer2DModel( num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, attention_type=attention_type, ) ) else: attentions.append( DualTransformer2DModel( num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) if add_upsample: self.upsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None self.gradient_checkpointing = False self.resolution_idx = resolution_idx def forward( self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, upsample_size: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") is_freeu_enabled = ( getattr(self, "s1", None) and getattr(self, "s2", None) and getattr(self, "b1", None) and getattr(self, "b2", None) ) for resnet, attn in zip(self.resnets, self.attentions): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] # FreeU: Only operate on the first two stages if is_freeu_enabled: hidden_states, res_hidden_states = apply_freeu( self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2, ) hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] else: hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states
class_definition
89,885
96,987
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py
null
408
class UNetMidBlockFlat(nn.Module): """ A 2D UNet mid-block [`UNetMidBlockFlat`] with multiple residual blocks and optional attention blocks. Args: in_channels (`int`): The number of input channels. temb_channels (`int`): The number of temporal embedding channels. dropout (`float`, *optional*, defaults to 0.0): The dropout rate. num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. resnet_time_scale_shift (`str`, *optional*, defaults to `default`): The type of normalization to apply to the time embeddings. This can help to improve the performance of the model on tasks with long-range temporal dependencies. resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. resnet_groups (`int`, *optional*, defaults to 32): The number of groups to use in the group normalization layers of the resnet blocks. attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. resnet_pre_norm (`bool`, *optional*, defaults to `True`): Whether to use pre-normalization for the resnet blocks. add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. attention_head_dim (`int`, *optional*, defaults to 1): Dimension of a single attention head. The number of attention heads is determined based on this value and the number of input channels. output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. Returns: `torch.Tensor`: The output of the last residual block, which is a tensor of shape `(batch_size, in_channels, height, width)`. """ def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", # default, spatial resnet_act_fn: str = "swish", resnet_groups: int = 32, attn_groups: Optional[int] = None, resnet_pre_norm: bool = True, add_attention: bool = True, attention_head_dim: int = 1, output_scale_factor: float = 1.0, ): super().__init__() resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) self.add_attention = add_attention if attn_groups is None: attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None # there is always at least one resnet if resnet_time_scale_shift == "spatial": resnets = [ ResnetBlockCondNorm2D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm="spatial", non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, ) ] else: resnets = [ ResnetBlockFlat( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ] attentions = [] if attention_head_dim is None: logger.warning( f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." ) attention_head_dim = in_channels for _ in range(num_layers): if self.add_attention: attentions.append( Attention( in_channels, heads=in_channels // attention_head_dim, dim_head=attention_head_dim, rescale_output_factor=output_scale_factor, eps=resnet_eps, norm_num_groups=attn_groups, spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, residual_connection=True, bias=True, upcast_softmax=True, _from_deprecated_attn_block=True, ) ) else: attentions.append(None) if resnet_time_scale_shift == "spatial": resnets.append( ResnetBlockCondNorm2D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm="spatial", non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, ) ) else: resnets.append( ResnetBlockFlat( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor: hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet in zip(self.attentions, self.resnets[1:]): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} if attn is not None: hidden_states = attn(hidden_states, temb=temb) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) else: if attn is not None: hidden_states = attn(hidden_states, temb=temb) hidden_states = resnet(hidden_states, temb) return hidden_states
class_definition
97,127
104,910
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py
null
409
class UNetMidBlockFlatCrossAttn(nn.Module): def __init__( self, in_channels: int, temb_channels: int, out_channels: Optional[int] = None, dropout: float = 0.0, num_layers: int = 1, transformer_layers_per_block: Union[int, Tuple[int]] = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_groups_out: Optional[int] = None, resnet_pre_norm: bool = True, num_attention_heads: int = 1, output_scale_factor: float = 1.0, cross_attention_dim: int = 1280, dual_cross_attention: bool = False, use_linear_projection: bool = False, upcast_attention: bool = False, attention_type: str = "default", ): super().__init__() out_channels = out_channels or in_channels self.in_channels = in_channels self.out_channels = out_channels self.has_cross_attention = True self.num_attention_heads = num_attention_heads resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) # support for variable transformer layers per block if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = [transformer_layers_per_block] * num_layers resnet_groups_out = resnet_groups_out or resnet_groups # there is always at least one resnet resnets = [ ResnetBlockFlat( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, groups_out=resnet_groups_out, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ] attentions = [] for i in range(num_layers): if not dual_cross_attention: attentions.append( Transformer2DModel( num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups_out, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, attention_type=attention_type, ) ) else: attentions.append( DualTransformer2DModel( num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, ) ) resnets.append( ResnetBlockFlat( in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups_out, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet in zip(self.attentions, self.resnets[1:]): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) else: hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] hidden_states = resnet(hidden_states, temb) return hidden_states
class_definition
105,077
111,471
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py
null
410
class UNetMidBlockFlatSimpleCrossAttn(nn.Module): def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attention_head_dim: int = 1, output_scale_factor: float = 1.0, cross_attention_dim: int = 1280, skip_time_act: bool = False, only_cross_attention: bool = False, cross_attention_norm: Optional[str] = None, ): super().__init__() self.has_cross_attention = True self.attention_head_dim = attention_head_dim resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) self.num_heads = in_channels // self.attention_head_dim # there is always at least one resnet resnets = [ ResnetBlockFlat( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act, ) ] attentions = [] for _ in range(num_layers): processor = ( AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() ) attentions.append( Attention( query_dim=in_channels, cross_attention_dim=in_channels, heads=self.num_heads, dim_head=self.attention_head_dim, added_kv_proj_dim=cross_attention_dim, norm_num_groups=resnet_groups, bias=True, upcast_softmax=True, only_cross_attention=only_cross_attention, cross_attention_norm=cross_attention_norm, processor=processor, ) ) resnets.append( ResnetBlockFlat( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) def forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") if attention_mask is None: # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. mask = None if encoder_hidden_states is None else encoder_attention_mask else: # when attention_mask is defined: we don't even check for encoder_attention_mask. # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. # then we can simplify this whole if/else block to: # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask mask = attention_mask hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet in zip(self.attentions, self.resnets[1:]): # attn hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=mask, **cross_attention_kwargs, ) # resnet hidden_states = resnet(hidden_states, temb) return hidden_states
class_definition
111,656
116,682
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py
null
411
class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline): r""" Pipeline for image-text dual-guided generation using Versatile Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: vqvae ([`VQModel`]): Vector-quantized (VQ) model to encode and decode images to and from latent representations. bert ([`LDMBertModel`]): Text-encoder model based on [`~transformers.BERT`]. tokenizer ([`~transformers.BertTokenizer`]): A `BertTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. """ model_cpu_offload_seq = "bert->unet->vqvae" tokenizer: CLIPTokenizer image_feature_extractor: CLIPImageProcessor text_encoder: CLIPTextModelWithProjection image_encoder: CLIPVisionModelWithProjection image_unet: UNet2DConditionModel text_unet: UNetFlatConditionModel vae: AutoencoderKL scheduler: KarrasDiffusionSchedulers _optional_components = ["text_unet"] def __init__( self, tokenizer: CLIPTokenizer, image_feature_extractor: CLIPImageProcessor, text_encoder: CLIPTextModelWithProjection, image_encoder: CLIPVisionModelWithProjection, image_unet: UNet2DConditionModel, text_unet: UNetFlatConditionModel, vae: AutoencoderKL, scheduler: KarrasDiffusionSchedulers, ): super().__init__() self.register_modules( tokenizer=tokenizer, image_feature_extractor=image_feature_extractor, text_encoder=text_encoder, image_encoder=image_encoder, image_unet=image_unet, text_unet=text_unet, vae=vae, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) if self.text_unet is not None and ( "dual_cross_attention" not in self.image_unet.config or not self.image_unet.config.dual_cross_attention ): # if loading from a universal checkpoint rather than a saved dual-guided pipeline self._convert_to_dual_attention() def remove_unused_weights(self): self.register_modules(text_unet=None) def _convert_to_dual_attention(self): """ Replace image_unet's `Transformer2DModel` blocks with `DualTransformer2DModel` that contains transformer blocks from both `image_unet` and `text_unet` """ for name, module in self.image_unet.named_modules(): if isinstance(module, Transformer2DModel): parent_name, index = name.rsplit(".", 1) index = int(index) image_transformer = self.image_unet.get_submodule(parent_name)[index] text_transformer = self.text_unet.get_submodule(parent_name)[index] config = image_transformer.config dual_transformer = DualTransformer2DModel( num_attention_heads=config.num_attention_heads, attention_head_dim=config.attention_head_dim, in_channels=config.in_channels, num_layers=config.num_layers, dropout=config.dropout, norm_num_groups=config.norm_num_groups, cross_attention_dim=config.cross_attention_dim, attention_bias=config.attention_bias, sample_size=config.sample_size, num_vector_embeds=config.num_vector_embeds, activation_fn=config.activation_fn, num_embeds_ada_norm=config.num_embeds_ada_norm, ) dual_transformer.transformers[0] = image_transformer dual_transformer.transformers[1] = text_transformer self.image_unet.get_submodule(parent_name)[index] = dual_transformer self.image_unet.register_to_config(dual_cross_attention=True) def _revert_dual_attention(self): """ Revert the image_unet `DualTransformer2DModel` blocks back to `Transformer2DModel` with image_unet weights Call this function if you reuse `image_unet` in another pipeline, e.g. `VersatileDiffusionPipeline` """ for name, module in self.image_unet.named_modules(): if isinstance(module, DualTransformer2DModel): parent_name, index = name.rsplit(".", 1) index = int(index) self.image_unet.get_submodule(parent_name)[index] = module.transformers[0] self.image_unet.register_to_config(dual_cross_attention=False) def _encode_text_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not """ def normalize_embeddings(encoder_output): embeds = self.text_encoder.text_projection(encoder_output.last_hidden_state) embeds_pooled = encoder_output.text_embeds embeds = embeds / torch.norm(embeds_pooled.unsqueeze(1), dim=-1, keepdim=True) return embeds batch_size = len(prompt) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids if not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) prompt_embeds = normalize_embeddings(prompt_embeds) # duplicate text embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens = [""] * batch_size max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = normalize_embeddings(negative_prompt_embeds) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds def _encode_image_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not """ def normalize_embeddings(encoder_output): embeds = self.image_encoder.vision_model.post_layernorm(encoder_output.last_hidden_state) embeds = self.image_encoder.visual_projection(embeds) embeds_pooled = embeds[:, 0:1] embeds = embeds / torch.norm(embeds_pooled, dim=-1, keepdim=True) return embeds batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings image_input = self.image_feature_extractor(images=prompt, return_tensors="pt") pixel_values = image_input.pixel_values.to(device).to(self.image_encoder.dtype) image_embeddings = self.image_encoder(pixel_values) image_embeddings = normalize_embeddings(image_embeddings) # duplicate image embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = image_embeddings.shape image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size uncond_images = self.image_feature_extractor(images=uncond_images, return_tensors="pt") pixel_values = uncond_images.pixel_values.to(device).to(self.image_encoder.dtype) negative_prompt_embeds = self.image_encoder(pixel_values) negative_prompt_embeds = normalize_embeddings(negative_prompt_embeds) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and conditional embeddings into a single batch # to avoid doing two forward passes image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) return image_embeddings # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs(self, prompt, image, height, width, callback_steps): if not isinstance(prompt, str) and not isinstance(prompt, PIL.Image.Image) and not isinstance(prompt, list): raise ValueError(f"`prompt` has to be of type `str` `PIL.Image` or `list` but is {type(prompt)}") if not isinstance(image, str) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list): raise ValueError(f"`image` has to be of type `str` `PIL.Image` or `list` but is {type(image)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def set_transformer_params(self, mix_ratio: float = 0.5, condition_types: Tuple = ("text", "image")): for name, module in self.image_unet.named_modules(): if isinstance(module, DualTransformer2DModel): module.mix_ratio = mix_ratio for i, type in enumerate(condition_types): if type == "text": module.condition_lengths[i] = self.text_encoder.config.max_position_embeddings module.transformer_index_for_condition[i] = 1 # use the second (text) transformer else: module.condition_lengths[i] = 257 module.transformer_index_for_condition[i] = 0 # use the first (image) transformer @torch.no_grad() def __call__( self, prompt: Union[PIL.Image.Image, List[PIL.Image.Image]], image: Union[str, List[str]], text_to_image_strength: float = 0.5, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, **kwargs, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image generation. height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Examples: ```py >>> from diffusers import VersatileDiffusionDualGuidedPipeline >>> import torch >>> import requests >>> from io import BytesIO >>> from PIL import Image >>> # let's download an initial image >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" >>> response = requests.get(url) >>> image = Image.open(BytesIO(response.content)).convert("RGB") >>> text = "a red car in the sun" >>> pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained( ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 ... ) >>> pipe.remove_unused_weights() >>> pipe = pipe.to("cuda") >>> generator = torch.Generator(device="cuda").manual_seed(0) >>> text_to_image_strength = 0.75 >>> image = pipe( ... prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator ... ).images[0] >>> image.save("./car_variation.png") ``` Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ # 0. Default height and width to unet height = height or self.image_unet.config.sample_size * self.vae_scale_factor width = width or self.image_unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs(prompt, image, height, width, callback_steps) # 2. Define call parameters prompt = [prompt] if not isinstance(prompt, list) else prompt image = [image] if not isinstance(image, list) else image batch_size = len(prompt) device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompts prompt_embeds = self._encode_text_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance) image_embeddings = self._encode_image_prompt(image, device, num_images_per_prompt, do_classifier_free_guidance) dual_prompt_embeddings = torch.cat([prompt_embeds, image_embeddings], dim=1) prompt_types = ("text", "image") # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.image_unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, dual_prompt_embeddings.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Combine the attention blocks of the image and text UNets self.set_transformer_params(text_to_image_strength, prompt_types) # 8. Denoising loop for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.image_unet(latent_model_input, t, encoder_hidden_states=dual_prompt_embeddings).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents image = self.image_processor.postprocess(image, output_type=output_type) if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
1,393
27,207
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py
null
412
class VersatileDiffusionImageVariationPipeline(DiffusionPipeline): r""" Pipeline for image variation using Versatile Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: vqvae ([`VQModel`]): Vector-quantized (VQ) model to encode and decode images to and from latent representations. bert ([`LDMBertModel`]): Text-encoder model based on [`~transformers.BERT`]. tokenizer ([`~transformers.BertTokenizer`]): A `BertTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. """ model_cpu_offload_seq = "bert->unet->vqvae" image_feature_extractor: CLIPImageProcessor image_encoder: CLIPVisionModelWithProjection image_unet: UNet2DConditionModel vae: AutoencoderKL scheduler: KarrasDiffusionSchedulers def __init__( self, image_feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection, image_unet: UNet2DConditionModel, vae: AutoencoderKL, scheduler: KarrasDiffusionSchedulers, ): super().__init__() self.register_modules( image_feature_extractor=image_feature_extractor, image_encoder=image_encoder, image_unet=image_unet, vae=vae, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). """ def normalize_embeddings(encoder_output): embeds = self.image_encoder.vision_model.post_layernorm(encoder_output.last_hidden_state) embeds = self.image_encoder.visual_projection(embeds) embeds_pooled = embeds[:, 0:1] embeds = embeds / torch.norm(embeds_pooled, dim=-1, keepdim=True) return embeds if isinstance(prompt, torch.Tensor) and len(prompt.shape) == 4: prompt = list(prompt) batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings image_input = self.image_feature_extractor(images=prompt, return_tensors="pt") pixel_values = image_input.pixel_values.to(device).to(self.image_encoder.dtype) image_embeddings = self.image_encoder(pixel_values) image_embeddings = normalize_embeddings(image_embeddings) # duplicate image embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = image_embeddings.shape image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_images: List[str] if negative_prompt is None: uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, PIL.Image.Image): uncond_images = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_images = negative_prompt uncond_images = self.image_feature_extractor(images=uncond_images, return_tensors="pt") pixel_values = uncond_images.pixel_values.to(device).to(self.image_encoder.dtype) negative_prompt_embeds = self.image_encoder(pixel_values) negative_prompt_embeds = normalize_embeddings(negative_prompt_embeds) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and conditional embeddings into a single batch # to avoid doing two forward passes image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) return image_embeddings # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline.check_inputs def check_inputs(self, image, height, width, callback_steps): if ( not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list) ): raise ValueError( "`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" f" {type(image)}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() def __call__( self, image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, **kwargs, ): r""" The call function to the pipeline for generation. Args: image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `torch.Tensor`): The image prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Examples: ```py >>> from diffusers import VersatileDiffusionImageVariationPipeline >>> import torch >>> import requests >>> from io import BytesIO >>> from PIL import Image >>> # let's download an initial image >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" >>> response = requests.get(url) >>> image = Image.open(BytesIO(response.content)).convert("RGB") >>> pipe = VersatileDiffusionImageVariationPipeline.from_pretrained( ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> generator = torch.Generator(device="cuda").manual_seed(0) >>> image = pipe(image, generator=generator).images[0] >>> image.save("./car_variation.png") ``` Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ # 0. Default height and width to unet height = height or self.image_unet.config.sample_size * self.vae_scale_factor width = width or self.image_unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs(image, height, width, callback_steps) # 2. Define call parameters batch_size = 1 if isinstance(image, PIL.Image.Image) else len(image) device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt image_embeddings = self._encode_prompt( image, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.image_unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, image_embeddings.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.image_unet(latent_model_input, t, encoder_hidden_states=image_embeddings).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents image = self.image_processor.postprocess(image, output_type=output_type) if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
1,222
19,721
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py
null
413
class VersatileDiffusionTextToImagePipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using Versatile Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: vqvae ([`VQModel`]): Vector-quantized (VQ) model to encode and decode images to and from latent representations. bert ([`LDMBertModel`]): Text-encoder model based on [`~transformers.BERT`]. tokenizer ([`~transformers.BertTokenizer`]): A `BertTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. """ model_cpu_offload_seq = "bert->unet->vqvae" tokenizer: CLIPTokenizer image_feature_extractor: CLIPImageProcessor text_encoder: CLIPTextModelWithProjection image_unet: UNet2DConditionModel text_unet: UNetFlatConditionModel vae: AutoencoderKL scheduler: KarrasDiffusionSchedulers _optional_components = ["text_unet"] def __init__( self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, image_unet: UNet2DConditionModel, text_unet: UNetFlatConditionModel, vae: AutoencoderKL, scheduler: KarrasDiffusionSchedulers, ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, image_unet=image_unet, text_unet=text_unet, vae=vae, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) if self.text_unet is not None: self._swap_unet_attention_blocks() def _swap_unet_attention_blocks(self): """ Swap the `Transformer2DModel` blocks between the image and text UNets """ for name, module in self.image_unet.named_modules(): if isinstance(module, Transformer2DModel): parent_name, index = name.rsplit(".", 1) index = int(index) self.image_unet.get_submodule(parent_name)[index], self.text_unet.get_submodule(parent_name)[index] = ( self.text_unet.get_submodule(parent_name)[index], self.image_unet.get_submodule(parent_name)[index], ) def remove_unused_weights(self): self.register_modules(text_unet=None) def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). """ def normalize_embeddings(encoder_output): embeds = self.text_encoder.text_projection(encoder_output.last_hidden_state) embeds_pooled = encoder_output.text_embeds embeds = embeds / torch.norm(embeds_pooled.unsqueeze(1), dim=-1, keepdim=True) return embeds batch_size = len(prompt) if isinstance(prompt, list) else 1 text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids if not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) prompt_embeds = normalize_embeddings(prompt_embeds) # duplicate text embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = normalize_embeddings(negative_prompt_embeds) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, **kwargs, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image generation. height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Examples: ```py >>> from diffusers import VersatileDiffusionTextToImagePipeline >>> import torch >>> pipe = VersatileDiffusionTextToImagePipeline.from_pretrained( ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 ... ) >>> pipe.remove_unused_weights() >>> pipe = pipe.to("cuda") >>> generator = torch.Generator(device="cuda").manual_seed(0) >>> image = pipe("an astronaut riding on a horse on mars", generator=generator).images[0] >>> image.save("./astronaut.png") ``` Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ # 0. Default height and width to unet height = height or self.image_unet.config.sample_size * self.vae_scale_factor width = width or self.image_unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs(prompt, height, width, callback_steps) # 2. Define call parameters batch_size = 1 if isinstance(prompt, str) else len(prompt) device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.image_unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.image_unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents image = self.image_processor.postprocess(image, output_type=output_type) if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
1,274
22,925
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py
null
414
class VersatileDiffusionPipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ tokenizer: CLIPTokenizer image_feature_extractor: CLIPImageProcessor text_encoder: CLIPTextModel image_encoder: CLIPVisionModel image_unet: UNet2DConditionModel text_unet: UNet2DConditionModel vae: AutoencoderKL scheduler: KarrasDiffusionSchedulers def __init__( self, tokenizer: CLIPTokenizer, image_feature_extractor: CLIPImageProcessor, text_encoder: CLIPTextModel, image_encoder: CLIPVisionModel, image_unet: UNet2DConditionModel, text_unet: UNet2DConditionModel, vae: AutoencoderKL, scheduler: KarrasDiffusionSchedulers, ): super().__init__() self.register_modules( tokenizer=tokenizer, image_feature_extractor=image_feature_extractor, text_encoder=text_encoder, image_encoder=image_encoder, image_unet=image_unet, text_unet=text_unet, vae=vae, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 @torch.no_grad() def image_variation( self, image: Union[torch.Tensor, PIL.Image.Image], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, ): r""" The call function to the pipeline for generation. Args: image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `torch.Tensor`): The image prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Examples: ```py >>> from diffusers import VersatileDiffusionPipeline >>> import torch >>> import requests >>> from io import BytesIO >>> from PIL import Image >>> # let's download an initial image >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" >>> response = requests.get(url) >>> image = Image.open(BytesIO(response.content)).convert("RGB") >>> pipe = VersatileDiffusionPipeline.from_pretrained( ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> generator = torch.Generator(device="cuda").manual_seed(0) >>> image = pipe.image_variation(image, generator=generator).images[0] >>> image.save("./car_variation.png") ``` Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ expected_components = inspect.signature(VersatileDiffusionImageVariationPipeline.__init__).parameters.keys() components = {name: component for name, component in self.components.items() if name in expected_components} return VersatileDiffusionImageVariationPipeline(**components)( image=image, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, ) @torch.no_grad() def text_to_image( self, prompt: Union[str, List[str]], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image generation. height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Examples: ```py >>> from diffusers import VersatileDiffusionPipeline >>> import torch >>> pipe = VersatileDiffusionPipeline.from_pretrained( ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> generator = torch.Generator(device="cuda").manual_seed(0) >>> image = pipe.text_to_image("an astronaut riding on a horse on mars", generator=generator).images[0] >>> image.save("./astronaut.png") ``` Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ expected_components = inspect.signature(VersatileDiffusionTextToImagePipeline.__init__).parameters.keys() components = {name: component for name, component in self.components.items() if name in expected_components} temp_pipeline = VersatileDiffusionTextToImagePipeline(**components) output = temp_pipeline( prompt=prompt, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, ) # swap the attention blocks back to the original state temp_pipeline._swap_unet_attention_blocks() return output @torch.no_grad() def dual_guided( self, prompt: Union[PIL.Image.Image, List[PIL.Image.Image]], image: Union[str, List[str]], text_to_image_strength: float = 0.5, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image generation. height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Examples: ```py >>> from diffusers import VersatileDiffusionPipeline >>> import torch >>> import requests >>> from io import BytesIO >>> from PIL import Image >>> # let's download an initial image >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" >>> response = requests.get(url) >>> image = Image.open(BytesIO(response.content)).convert("RGB") >>> text = "a red car in the sun" >>> pipe = VersatileDiffusionPipeline.from_pretrained( ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> generator = torch.Generator(device="cuda").manual_seed(0) >>> text_to_image_strength = 0.75 >>> image = pipe.dual_guided( ... prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator ... ).images[0] >>> image.save("./car_variation.png") ``` Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ expected_components = inspect.signature(VersatileDiffusionDualGuidedPipeline.__init__).parameters.keys() components = {name: component for name, component in self.components.items() if name in expected_components} temp_pipeline = VersatileDiffusionDualGuidedPipeline(**components) output = temp_pipeline( prompt=prompt, image=image, text_to_image_strength=text_to_image_strength, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, ) temp_pipeline._revert_dual_attention() return output
class_definition
737
21,887
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
null
415
class StableDiffusionKDiffusionPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "k_diffusion"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "k_diffusion"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "k_diffusion"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "k_diffusion"])
class_definition
129
637
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_k_diffusion_objects.py
null
416
class StableDiffusionXLKDiffusionPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "k_diffusion"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "k_diffusion"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "k_diffusion"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "k_diffusion"])
class_definition
640
1,150
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_k_diffusion_objects.py
null
417
class OnnxRuntimeModel(metaclass=DummyObject): _backends = ["onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["onnx"])
class_definition
129
492
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_onnx_objects.py
null
418
class EmptyTqdm: """Dummy tqdm which doesn't do anything.""" def __init__(self, *args, **kwargs): # pylint: disable=unused-argument self._iterator = args[0] if args else None def __iter__(self): return iter(self._iterator) def __getattr__(self, _): """Return empty function.""" def empty_fn(*args, **kwargs): # pylint: disable=unused-argument return return empty_fn def __enter__(self): return self def __exit__(self, type_, value, traceback): return
class_definition
8,060
8,611
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/logging.py
null
419
class _tqdm_cls: def __call__(self, *args, **kwargs): if _tqdm_active: return tqdm_lib.tqdm(*args, **kwargs) else: return EmptyTqdm(*args, **kwargs) def set_lock(self, *args, **kwargs): self._lock = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*args, **kwargs) def get_lock(self): if _tqdm_active: return tqdm_lib.tqdm.get_lock()
class_definition
8,614
9,052
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/logging.py
null
420
class OnnxStableDiffusionImg2ImgPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"])
class_definition
129
610
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
null
421
class OnnxStableDiffusionInpaintPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"])
class_definition
613
1,094
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
null
422
class OnnxStableDiffusionInpaintPipelineLegacy(metaclass=DummyObject): _backends = ["torch", "transformers", "onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"])
class_definition
1,097
1,584
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
null
423
class OnnxStableDiffusionPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"])
class_definition
1,587
2,061
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
null
424
class OnnxStableDiffusionUpscalePipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"])
class_definition
2,064
2,545
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
null
425
class StableDiffusionOnnxPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"])
class_definition
2,548
3,022
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
null
426
class AudioDiffusionPipeline(metaclass=DummyObject): _backends = ["torch", "librosa"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "librosa"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "librosa"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "librosa"])
class_definition
129
546
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_librosa_objects.py
null
427
class Mel(metaclass=DummyObject): _backends = ["torch", "librosa"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "librosa"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "librosa"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "librosa"])
class_definition
549
947
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_librosa_objects.py
null
428
class CosineDPMSolverMultistepScheduler(metaclass=DummyObject): _backends = ["torch", "torchsde"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "torchsde"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "torchsde"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "torchsde"])
class_definition
129
561
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_torchsde_objects.py
null
429
class DPMSolverSDEScheduler(metaclass=DummyObject): _backends = ["torch", "torchsde"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "torchsde"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "torchsde"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "torchsde"])
class_definition
564
984
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_torchsde_objects.py
null
430
class AllegroTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
129
505
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
431
class AsymmetricAutoencoderKL(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
508
882
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
432
class AuraFlowTransformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
885
1,262
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
433
class AutoencoderDC(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
1,265
1,629
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
434
class AutoencoderKL(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
1,632
1,996
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
435
class AutoencoderKLAllegro(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
1,999
2,370
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
436
class AutoencoderKLCogVideoX(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
2,373
2,746
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
437
class AutoencoderKLHunyuanVideo(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
2,749
3,125
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
438
class AutoencoderKLLTXVideo(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
3,128
3,500
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
439
class AutoencoderKLMochi(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
3,503
3,872
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
440
class AutoencoderKLTemporalDecoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
3,875
4,254
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
441
class AutoencoderOobleck(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
4,257
4,626
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
442
class AutoencoderTiny(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
4,629
4,995
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
443
class CogVideoXTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
4,998
5,376
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
444
class CogView3PlusTransformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
5,379
5,760
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
445
class ConsisIDTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
5,763
6,140
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
446
class ConsistencyDecoderVAE(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
6,143
6,515
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
447
class ControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
6,518
6,884
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
448
class ControlNetUnionModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
6,887
7,258
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
449
class ControlNetXSAdapter(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
7,261
7,631
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
450
class DiTTransformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
7,634
8,006
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
451
class FluxControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
8,009
8,379
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
452
class FluxMultiControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
8,382
8,757
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
453
class FluxTransformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
8,760
9,133
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
454
class HunyuanDiT2DControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
9,136
9,514
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
455
class HunyuanDiT2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
9,517
9,885
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
456
class HunyuanDiT2DMultiControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
9,888
10,271
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
457
class HunyuanVideoTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
10,274
10,655
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
458
class I2VGenXLUNet(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
10,658
11,021
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
459
class Kandinsky3UNet(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
11,024
11,389
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
460
class LatteTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
11,392
11,766
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
461
class LTXVideoTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
11,769
12,146
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
462
class LuminaNextDiT2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
12,149
12,520
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
463
class MochiTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
12,523
12,897
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
464
class ModelMixin(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
12,900
13,261
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
465
class MotionAdapter(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
13,264
13,628
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
466
class MultiAdapter(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
13,631
13,994
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
467
class MultiControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
13,997
14,368
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
468
class PixArtTransformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
14,371
14,746
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
469
class PriorTransformer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
14,749
15,116
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
470
class SanaTransformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
15,119
15,492
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
471
class SD3ControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
15,495
15,864
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
472
class SD3MultiControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
15,867
16,241
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
473
class SD3Transformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
16,244
16,616
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
474
class SparseControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
16,619
16,991
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
475
class StableAudioDiTModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
16,994
17,364
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
476
class T2IAdapter(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
17,367
17,728
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
477
class T5FilmDecoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
17,731
18,095
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
478
class Transformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
18,098
18,467
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
479
class UNet1DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
18,470
18,832
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
480
class UNet2DConditionModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
18,835
19,206
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
481
class UNet2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
19,209
19,571
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
482
class UNet3DConditionModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
19,574
19,945
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
483
class UNetControlNetXSModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
19,948
20,320
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
484
class UNetMotionModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
20,323
20,689
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
485
class UNetSpatioTemporalConditionModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
20,692
21,075
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
486
class UVit2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
21,078
21,440
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
487
class VQModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
21,443
21,801
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
488
class AudioPipelineOutput(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
22,664
23,034
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
489
class AutoPipelineForImage2Image(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
23,037
23,414
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
490
class AutoPipelineForInpainting(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
23,417
23,793
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
491
class AutoPipelineForText2Image(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
23,796
24,172
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
492
class BlipDiffusionControlNetPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
24,175
24,557
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
493
class BlipDiffusionPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
24,560
24,932
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
494
class CLIPImageProjection(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
24,935
25,305
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
495
class ConsistencyModelPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
25,308
25,683
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
496
class DanceDiffusionPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
25,686
26,059
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
497
class DDIMPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
26,062
26,425
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
498
class DDPMPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
class_definition
26,428
26,791
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
null
499