text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can only be an instance of [`DDIMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful.
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: DDIMScheduler, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__()
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config)
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) is_unet_version_less_0_9_0 = ( unet is not None and hasattr(unet.config, "_diffusers_version") and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0") ) is_unet_sample_size_less_64 = ( unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than"
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
unet._internal_dict = FrozenDict(new_config)
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker)
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states.
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer.
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
" the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0]
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
def check_inputs( self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." )
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." )
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] if hasattr(self.scheduler, "set_begin_index"): self.scheduler.set_begin_index(t_start * self.scheduler.order) return timesteps, num_inference_steps - t_start def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): image = image.to(device=device, dtype=dtype) batch_size = image.shape[0] if image.shape[1] == 4: init_latents = image
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if isinstance(generator, list): init_latents = [ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(image.shape[0]) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = retrieve_latents(self.vae.encode(image), generator=generator) init_latents = self.vae.config.scaling_factor * init_latents
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: # expand init_latents for batch_size deprecation_message = ( f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) additional_image_per_prompt = batch_size // init_latents.shape[0] init_latents = torch.cat([init_latents] * additional_image_per_prompt * num_images_per_prompt, dim=0)
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." ) else: init_latents = torch.cat([init_latents] * num_images_per_prompt, dim=0)
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# add noise to latents using the timestep shape = init_latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents clean_latents = init_latents init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents return latents, clean_latents
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
@torch.no_grad() def __call__( self, prompt: Union[str, List[str]], source_prompt: Union[str, List[str]], image: PipelineImageInput = None, strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, source_guidance_scale: Optional[float] = 1, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, ): r""" The call function to the pipeline for generation.
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`torch.Tensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image` or tensor representing an image batch to be used as the starting point. Can also accept image latents as `image`, but if passing latents directly it is not encoded again. strength (`float`, *optional*, defaults to 0.8): Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a starting point and more noise is added the higher the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. source_guidance_scale (`float`, *optional*, defaults to 1): Guidance scale for the source prompt. This is useful to control the amount of influence the source prompt has for encoding. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt.
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*):
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Example:
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
```py import requests import torch from PIL import Image from io import BytesIO from diffusers import CycleDiffusionPipeline, DDIMScheduler # load the pipeline # make sure you're logged in with `huggingface-cli login` model_id_or_path = "CompVis/stable-diffusion-v1-4" scheduler = DDIMScheduler.from_pretrained(model_id_or_path, subfolder="scheduler") pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, scheduler=scheduler).to("cuda") # let's download an initial image url = "https://raw.githubusercontent.com/ChenWu98/cycle-diffusion/main/data/dalle2/An%20astronaut%20riding%20a%20horse.png" response = requests.get(url) init_image = Image.open(BytesIO(response.content)).convert("RGB") init_image = init_image.resize((512, 512)) init_image.save("horse.png")
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# let's specify a prompt source_prompt = "An astronaut riding a horse" prompt = "An astronaut riding an elephant" # call the pipeline image = pipe( prompt=prompt, source_prompt=source_prompt, image=init_image, num_inference_steps=100, eta=0.1, strength=0.8, guidance_scale=2, source_guidance_scale=1, ).images[0] image.save("horse_to_elephant.png") # let's try another example # See more samples at the original repo: https://github.com/ChenWu98/cycle-diffusion url = ( "https://raw.githubusercontent.com/ChenWu98/cycle-diffusion/main/data/dalle2/A%20black%20colored%20car.png" ) response = requests.get(url) init_image = Image.open(BytesIO(response.content)).convert("RGB") init_image = init_image.resize((512, 512)) init_image.save("black.png")
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
source_prompt = "A black colored car" prompt = "A blue colored car" # call the pipeline torch.manual_seed(0) image = pipe( prompt=prompt, source_prompt=source_prompt, image=init_image, num_inference_steps=100, eta=0.1, strength=0.85, guidance_scale=3, source_guidance_scale=1, ).images[0] image.save("black_to_blue.png") ```
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 1. Check inputs self.check_inputs(prompt, strength, callback_steps)
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# 2. Define call parameters batch_size = 1 if isinstance(prompt, str) else len(prompt) device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds_tuple = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, prompt_embeds=prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip, ) source_prompt_embeds_tuple = self.encode_prompt( source_prompt, device, num_images_per_prompt, do_classifier_free_guidance, None, clip_skip=clip_skip ) if prompt_embeds_tuple[1] is not None: prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) else: prompt_embeds = prompt_embeds_tuple[0] if source_prompt_embeds_tuple[1] is not None: source_prompt_embeds = torch.cat([source_prompt_embeds_tuple[1], source_prompt_embeds_tuple[0]])
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
else: source_prompt_embeds = source_prompt_embeds_tuple[0]
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# 4. Preprocess image image = self.image_processor.preprocess(image) # 5. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) # 6. Prepare latent variables latents, clean_latents = self.prepare_latents( image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator ) source_latents = latents # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) generator = extra_step_kwargs.pop("generator", None)
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# 8. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents source_latent_model_input = ( torch.cat([source_latents] * 2) if do_classifier_free_guidance else source_latents ) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) source_latent_model_input = self.scheduler.scale_model_input(source_latent_model_input, t)
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# predict the noise residual if do_classifier_free_guidance: concat_latent_model_input = torch.stack( [ source_latent_model_input[0], latent_model_input[0], source_latent_model_input[1], latent_model_input[1], ], dim=0, ) concat_prompt_embeds = torch.stack( [ source_prompt_embeds[0], prompt_embeds[0], source_prompt_embeds[1], prompt_embeds[1], ], dim=0, ) else: concat_latent_model_input = torch.cat( [ source_latent_model_input,
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
latent_model_input, ], dim=0, ) concat_prompt_embeds = torch.cat( [ source_prompt_embeds, prompt_embeds, ], dim=0, )
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
concat_noise_pred = self.unet( concat_latent_model_input, t, cross_attention_kwargs=cross_attention_kwargs, encoder_hidden_states=concat_prompt_embeds, ).sample # perform guidance if do_classifier_free_guidance: ( source_noise_pred_uncond, noise_pred_uncond, source_noise_pred_text, noise_pred_text, ) = concat_noise_pred.chunk(4, dim=0) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) source_noise_pred = source_noise_pred_uncond + source_guidance_scale * ( source_noise_pred_text - source_noise_pred_uncond )
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
else: (source_noise_pred, noise_pred) = concat_noise_pred.chunk(2, dim=0) # Sample source_latents from the posterior distribution. prev_source_latents = posterior_sample( self.scheduler, source_latents, t, clean_latents, generator=generator, **extra_step_kwargs ) # Compute noise. noise = compute_noise( self.scheduler, prev_source_latents, source_latents, t, source_noise_pred, **extra_step_kwargs ) source_latents = prev_source_latents # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, variance_noise=noise, **extra_step_kwargs ).prev_sample
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
# call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # 9. Post-processing if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
393
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py
class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline): r""" Pipeline for text-guided image inpainting using Stable Diffusion. This is a *legacy feature* for Onnx pipelines to provide compatibility with StableDiffusionInpaintPipelineLegacy and may be removed in the future. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
_optional_components = ["safety_checker", "feature_extractor"] _is_onnx = True vae_encoder: OnnxRuntimeModel vae_decoder: OnnxRuntimeModel text_encoder: OnnxRuntimeModel tokenizer: CLIPTokenizer unet: OnnxRuntimeModel scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] safety_checker: OnnxRuntimeModel feature_extractor: CLIPImageProcessor def __init__( self, vae_encoder: OnnxRuntimeModel, vae_decoder: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: CLIPTokenizer, unet: OnnxRuntimeModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: OnnxRuntimeModel, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__()
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config)
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config)
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae_encoder=vae_encoder, vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.register_to_config(requires_safety_checker=requires_safety_checker)
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion.OnnxStableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt: Union[str, List[str]], num_images_per_prompt: Optional[int], do_classifier_free_guidance: bool, negative_prompt: Optional[str], prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, ): r""" Encodes the prompt into text encoder hidden states.
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
Args: prompt (`str` or `List[str]`): prompt to be encoded num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids if not np.array_equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] * batch_size elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`."
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
) else: uncond_tokens = negative_prompt
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np", ) negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] if do_classifier_free_guidance: negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) return prompt_embeds
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
def check_inputs( self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." )
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." )
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
def __call__( self, prompt: Union[str, List[str]], image: Union[np.ndarray, PIL.Image.Image] = None, mask_image: Union[np.ndarray, PIL.Image.Image] = None, strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[np.random.RandomState] = None, prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, np.ndarray], None]] = None, callback_steps: int = 1, ): r""" Function invoked when calling the pipeline for generation.
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`nd.ndarray` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. This is the image whose masked region will be inpainted. mask_image (`nd.ndarray` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.uu strength (`float`, *optional*, defaults to 0.8):
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter will be modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (?) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others.
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
generator (`np.random.RandomState`, *optional*): A np.random.RandomState to make generation deterministic. prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`):
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step.
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # check inputs. Raise error if not correct self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) # define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if generator is None: generator = np.random # set timesteps self.scheduler.set_timesteps(num_inference_steps) if isinstance(image, PIL.Image.Image): image = preprocess(image) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds = self._encode_prompt( prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, )
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
latents_dtype = prompt_embeds.dtype image = image.astype(latents_dtype) # encode the init image into latents and scale the latents init_latents = self.vae_encoder(sample=image)[0] init_latents = 0.18215 * init_latents # Expand init_latents for batch_size and num_images_per_prompt init_latents = np.concatenate([init_latents] * num_images_per_prompt, axis=0) init_latents_orig = init_latents # preprocess mask if not isinstance(mask_image, np.ndarray): mask_image = preprocess_mask(mask_image, 8) mask_image = mask_image.astype(latents_dtype) mask = np.concatenate([mask_image] * num_images_per_prompt, axis=0) # check sizes if not mask.shape == init_latents.shape: raise ValueError("The mask and image should be the same size!")
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
# get the original timestep using init_timestep offset = self.scheduler.config.get("steps_offset", 0) init_timestep = int(num_inference_steps * strength) + offset init_timestep = min(init_timestep, num_inference_steps) timesteps = self.scheduler.timesteps.numpy()[-init_timestep] timesteps = np.array([timesteps] * batch_size * num_images_per_prompt) # add noise to latents using the timesteps noise = generator.randn(*init_latents.shape).astype(latents_dtype) init_latents = self.scheduler.add_noise( torch.from_numpy(init_latents), torch.from_numpy(noise), torch.from_numpy(timesteps) ) init_latents = init_latents.numpy()
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (?) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to ? in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta latents = init_latents t_start = max(num_inference_steps - init_timestep + offset, 0) timesteps = self.scheduler.timesteps[t_start:].numpy() timestep_dtype = next( (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" ) timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual timestep = np.array([t], dtype=timestep_dtype) noise_pred = self.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)[ 0 ] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
# compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs ).prev_sample latents = latents.numpy() init_latents_proper = self.scheduler.add_noise( torch.from_numpy(init_latents_orig), torch.from_numpy(noise), torch.from_numpy(np.array([t])) ) init_latents_proper = init_latents_proper.numpy() latents = (init_latents_proper * mask) + (latents * (1 - mask)) # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents)
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
latents = 1 / 0.18215 * latents # image = self.vae_decoder(latent_sample=latents)[0] # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 image = np.concatenate( [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] ) image = np.clip(image / 2 + 0.5, 0, 1) image = image.transpose((0, 2, 3, 1))
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
if self.safety_checker is not None: safety_checker_input = self.feature_extractor( self.numpy_to_pil(image), return_tensors="np" ).pixel_values.astype(image.dtype) # There will throw an error if use safety_checker batchsize>1 images, has_nsfw_concept = [], [] for i in range(image.shape[0]): image_i, has_nsfw_concept_i = self.safety_checker( clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] ) images.append(image_i) has_nsfw_concept.append(has_nsfw_concept_i[0]) image = np.concatenate(images) else: has_nsfw_concept = None if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
394
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py
class StableDiffusionParadigmsPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin, ): r""" Pipeline for text-to-image generation using a parallelized version of Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
395
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful.
395
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """
395
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py
model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor"] _exclude_from_cpu_offload = ["safety_checker"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__()
395
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py
if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
395
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py
if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker)
395
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py
# attribute to wrap the unet with torch.nn.DataParallel when running multiple denoising steps on multiple GPUs self.wrapped_unet = self.unet # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
395
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py
prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds
395
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states.
395
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py